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Part II

M O D I F I C AT I O N S O F G R AV I T Y
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N E U T R O N S TA R M E R G E R G W 1 7 0 8 1 7 S T R O N G LY
C O N S T R A I N S D O U B LY- C O U P L E D B I G R AV I T Y

The topic of this chapter is the theory of massive bigravity, where one
has two dynamical tensor degrees of freedom. We consider an interesting
extension where both of the metrics are coupled to the matter sector, which
is known as the doubly-coupled bigravity. The main aim of this chapter is
the study of gravitational-wave propagation in this theory. We demonstrate
that the bounds on the speed of gravitational waves imposed by the recent
detection of gravitational waves emitted by a pair of merging neutron stars
and their electromagnetic counterpart, events GW170817 and GRB170817A,
strongly limit the viable solution space of the doubly-coupled models. We
have shown that these bounds either force the two metrics to be propor-
tional at the background level or the models to become singly-coupled (i.e.
only one of the metrics to be coupled to the matter sector). The mentioned
proportional background solutions are particularly interesting. Indeed, it is
shown that they provide stable cosmological solutions with phenomenolo-
gies equivalent to that of LCDM at the background level and at the level of
linear perturbations.

This chapter is based on: Y. Akrami, Ph. Brax, A.-C. Davis, V. Vardanyan,
Neutron star merger GW170817 strongly constrains doubly-coupled bigravity,
Phys. Rev. D 97 (2018) 124010, arXiv:1803.09726.
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124 doubly coupled bigravity and the gw170817 event

3.1 introduction

In the introduction of this thesis we have briefly discussed the theories
of massive gravity and their natural extension to bimetric gravity. We
particularly had discussed the so-called singly-coupled regime of the theory,
where only one of the metrics is coupled to the matter sector.

However, in the absence of any theoretical mechanism that forbids the
coupling of the matter fields directly to the reference metric, it is natural to
go beyond the singly-coupled scenarios and study doubly-coupled models,
where the two metrics couple to matter either directly or through a compos-
ite metric constructed out of the two spin-2 fields. This generalisation might
look even more natural since the gravity sector of ghost-free bigravity is
fully symmetric in terms of the two metrics, and it might feel unnatural to
impose the matter sector to break this symmetry by coupling only to one
metric.1 Theories of doubly-coupled massive gravity and bigravity, and in
particular their cosmologies, have also been extensively studied [172–194].
It has been shown, particularly, that the dangerous Boulware-Deser (BD)
ghost [195] re-emerges almost always if the same matter fields couple to
both metrics. One interesting exception has been proposed in Ref. [177],
where an acceptable doubly-coupled theory of bimetric gravity has been
constructed with matter coupled to a composite metric of the form

geff
µn = a2gµn + 2abgµg(

q
g�1 f )g

n + b2 fµn , (3.1)

with gµn and fµn being the two metrics of the theory, and a and b being
two arbitrary constants. Clearly, setting b to zero (a to zero) turns the
doubly-coupled theory into a singly-coupled one with gµn ( fµn) being the

1 Note also that such theories do not necessarily violate the equivalence principle, and if they
do, this may not be an issue. For discussions on the violation of the equivalence principle in
theories with both metrics minimally coupled to matter, see Refs. [172, 173]. For theories
with a composite metric coupled to matter the (weak) equivalence principle is not violated,
as all particles move along the geodesics of the composite metric.
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physical metric. Even though in this case the BD ghost is not completely
removed from the theory, it is effective only at high energies, above the
cutoff scale of the theory,2 making it a valid effective field theory at low
energies.

This doubly-coupled theory has been shown to provide viable and in-
teresting cosmological solutions at the background level [179, 189], with
linear perturbations that are stable at least around specific cosmological
backgrounds [196] (see also Refs. [185, 192–194]). In particular, in contrast
to the singly-coupled theory, this double coupling admits combinations of
proportional metrics at the background level, and interestingly, the effec-
tive metric always corresponds to the massless fluctuations around such
backgrounds, i.e. it satisfies the linearized Einstein equations. This means
that around proportional backgrounds the theory is equivalent to general
relativity at the background level as well as for linear perturbations, and
differences from general relativity are expected only at the nonlinear level,
at least in the sector coupled to matter. The immediate implication of this
feature is that doubly-coupled bigravity admits viable and stable cosmolo-
gies at least for proportional metrics, which are potentially distinguishable
from standard cosmology in the nonlinear regime.3 As we show in this

2 This cut-off scale for massive gravity, corresponding to the strong-coupling scale, is L3 ⌘
(m2 MPl)

1/3, where m is the graviton mass and MPl is the Planck mass. The cut-off scale can
be higher for bigravity [53].

3 The linear cosmological perturbations for doubly-coupled bigravity around proportional,
FLRW backgrounds separate into two decoupled sectors. The first (visible) sector coupled
to matter is equivalent to general relativity. The second (hidden) sector is decoupled from
matter and is not free from some instabilities. The most dangerous one [192, 196] occurs
for vectors, which have a gradient instability in the radiation era. This may jeopardise the
perturbativity of the models very early on in the Universe. On the other hand, however, the
doubly-coupled models with a mass m ⇠ H0 are expected to have an ultraviolet (UV) cut-off
scale of order L3 = (H2

0 MPl)
1/3, which is low and prevents any reliable description of the

physics of bigravity when the horizon scale becomes smaller than L�1
3 . Strictly speaking,

for bimetric theories L3 is the cut-off scale in the decoupling limit, and the cut-off scale for
the full theory can be higher, contrary to massive gravity. However, since the decoupling
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chapter, proportional metrics are extremely interesting also from the point
of view of gravitational waves (GWs), as they are the only cases that survive
after the recent measurements of the speed of gravity in addition to the
singly-coupled models. This provides us with a unique class of bimetric
models that are healthy and compatible with all cosmological observations
as well as gravitational wave constraints.

GWs in bigravity have been studied in Refs. [193, 197–205], although they
have been investigated for the doubly-coupled models only in Ref. [193].
In the literature, bigravity models are often considered to be on the safe
side with respect to the bounds placed by current observations of GWs.
While this holds for singly-coupled models, we show in this chapter that
the bounds on the speed of GWs severely constrain the parameter space of
the doubly-coupled scenarios. We particularly show that the models which
survive the bounds from current gravitational wave observations are the
ones for which the two background metrics are proportional, or for the
choices of the parameters of the model that render it singly-coupled.

We first derive, analytically, the conditions under which bimetric models
are safe in terms of the gravitational wave measurements. We then perform
a Markov Chain Monte Carlo (MCMC) analysis of the parameter space
of doubly-coupled bigravity by imposing the constraints from geomet-
rical measurements of cosmic history, now taking into account also the
constraints from gravitational wave observations. We illustrate that this
numerical analysis confirms our analytical arguments.

The chapter is organised as follows: In section 3.2 we summarise the
basics of doubly-coupled bigravity and its cosmology, and present the
equations necessary for studying the background cosmological evolution.

limit is not well defined above L3, we expect the entire theory to need modifications. The
L3 scale happens at a redshift of order 1012 which is just before Big Bang Nucleosynthesis.
The unknown UV completion of doubly-coupled bigravity would certainly affect the early-
Universe instability. In the late Universe as we consider here, no instability is present and
the decoupled sector can be safely ignored for proportional backgrounds.
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Section 3.3 discusses the evolution equations and the speed of GWs in the
theory and presents the cosmological conditions that result in the speed
equal to the speed of light. Section 3.4 provides the results of our MCMC
scans, and our conclusions are given in section 3.5. Finally, in Appendix 3.6
we derive the cosmological evolution equations for tensor modes in detail,
at the level of the field equations as well as the action.

3.2 cosmology of doubly-coupled bigravity

The theory of doubly-coupled bigravity can be formulated in terms of an
action of the form [177, 179]

S = �
M2

eff
2

Z
d4x

p
�gRg �

M2
eff

2

Z
d4x

p
� f R f

+ m2M2
eff

Z
d4x

p
�g

4

Â
n=0

bnen(
q

g�1 f ) + Smatter[geff
µn, Y] , (3.2)

where gµn and fµn are the two metrics of the theory with determinants g
and f , respectively, and standard Einstein-Hilbert kinetic terms. Meff plays
the role of the Planck mass,4 en are the elementary symmetric polynomials
of the matrix

p
g�1 f (see Ref. [47] for their detailed definitions), and the

quantities bn (n = 0, ..., 4) are five free parameters determining the strength
of the possible interaction terms. The parameter m sets the mass scale of
the interactions and is not an independent parameter of the theory as it can
be absorbed into the bn parameters; m needs to be of the order of H0, the
present value of the Hubble parameter H, in order for the theory to provide

4 It should be noted that the theory can be formulated in terms of two separate Planck
masses Mg and Mf corresponding to the g and f sectors, respectively. As has been shown
in Ref. [179], the effective metric in this case will not include any free parameters and will
have the fixed form gµn + 2gµg(

p
g�1 f )g

n + fµn. We have chosen the formulation in terms
of Meff with a and b being present explicitly since it shows the singly-coupled limits of the
theory more clearly.
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self-accelerating solutions consistent with observational data. Matter fields
have been shown collectively by Y, which couple to the effective metric geff

µn

defined in Eq. (3.1) in terms of gµn and fµn and the two coupling parameters
a and b.

In order to study the cosmological implications of the theory, we assume
the background metrics gµn and fµn to have the FLRW forms

ds2
g = �N2

gdt2 + a2
gdxidxi , (3.3)

ds2
f = �N2

f dt2 + a2
f dxidxi , (3.4)

where t is the cosmic time, Ng and Nf are the lapse functions for gµn and
fµn, respectively, and ag and a f are the corresponding scale factors, all
functions of t only.

Using the forms (3.3) and (3.4) for the background metrics gµn and fµn,
Eq. (3.1) fixes the form of the effective metric geff

µn to

ds2
eff = �N2dt2 + a2dxidxi , (3.5)

where [179]

N ⌘ aNg + bNf , (3.6)
a ⌘ aag + ba f , (3.7)

are the lapse and the scale factor of the effective metric, respectively. The
dynamics of gµn and fµn are governed by their Friedmann equations, which
take the forms
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3H2
g =

a

M2
eff

r
a3

a3
g

+ H2
0(b0 + 3b1r + 3b2r2 + b3r3) , (3.8)

3H2
f =

b

M2
eff

r
a3

a3
f
+ H2

0(
b1

r3 + 3
b2

r2 + 3
b3

r
+ b4) , (3.9)

where

Hg ⌘
ȧg

Ngag
, Hf ⌘

ȧ f

Nf a f
, (3.10)

are the Hubble parameters for gµn and fµn, respectively, r is the energy
density of matter and radiation, the dot denotes a derivative with respect
to t, and

r ⌘
a f

ag
(3.11)

is the ratio of the two scale factors a f and ag. We have also fixed m to H0
in the two Friedmann equations, as we are interested in self-accelerating
solutions for which m ⇠ H0.

In addition to the two Friedmann equations (3.8) and (3.9), the consistency
of the theory requires the Bianchi constraint [179]

Nf

Ng
=

ȧ f

ȧg
! Hg = rHf (3.12)
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to be satisfied.5 Having introduced the effective lapse and scale factor N
and a, one can naturally introduce an effective Hubble parameter associated
with the effective metric geff

µn,

H ⌘ ȧ
Na

, (3.13)

which satisfies its own effective Friedmann equation [179],

H2 =
r

6M2
eff

(a + br)(a +
b

r
) + H2

0
B0 + r2B1

6(a + br)2 , (3.14)

where we have also introduced

B0 ⌘ b0 + 3b1r + 3b2r2 + b3r3 , (3.15)

B1 ⌘ b1

r3 + 3
b2

r2 + 3
b3

r
+ b4 . (3.16)

Eq. (3.14) is obtained by adding the two Friedman equations (3.8) and (3.9),
and applying the Bianchi constraint (3.12). The effective Hubble parameter
H can be written in terms of Hg or Hf as

H =
Hg

a + br
=

rHf

a + br
. (3.17)

In addition to the Friedmann equation for H, by again using the Bianchi
constraint (3.12) and now subtracting the two Friedmann equations (3.8)
and (3.9) we arrive at the algebraic condition

r

M2
eff

(a + br)3(a � b

r
) + H2

0(B0 � r2B1) = 0 . (3.18)

5 Note that the Bianchi constraint gives two branches of solutions. The one we consider here
is the so-called dynamical branch. See Refs. [179, 189] for the discussion of the second,
algebraic branch.
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The energy-momentum tensor for matter and radiation is covariantly
conserved with respect to the effective metric, which means that the energy
density r satisfies the continuity equation

ṙ + 3
ȧ
a
(r + p) = 0 . (3.19)

This motivates us to introduce x ⌘ ln a, the number of e-folds in terms
of the effective scale factor a, as a time coordinate. In terms of x, we can
recover the usual behaviour of the matter and radiation energy densities

rM = r(0)
M e�3x , rR = r(0)

R e�4x , (3.20)

assuming that these two components are conserved separately. Here, r(0)
M

and r(0)
R are the current values of the energy densities of matter and radia-

tion, respectively.
It is easy to show that the coupling parameters a and b affect observables

only though their ratio b/a, as we can assume a 6= 0 without loss of
generality6 and then rescale M2

eff by a factor of 1/a4. Later in this chapter,
when discussing the constraints, we will use this rescaling freedom and
introduce a new parameter

g ⌘ b

a
, (3.21)

which will play the role of the only extra parameter for doubly-coupled
models compared to the singly-coupled ones. Identifying the effective
Planck mass Meff with the usual Planck mass MPl, our doubly-coupled
bimetric model now possesses six free parameters, bn with n = 0, ..., 4, and
g. For now, however, let us keep both a and b explicit as it allows us to see

6 This is indeed the case because the singly-coupled bigravity theories with either of the
metrics being coupled to matter are completely equivalent.
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explicitly the duality properties of the background dynamics equations as
well as the equations governing the propagation speed of the GWs.

Before we proceed with our studies of gravitational waves in the next sec-
tions, let us emphasise an important property of the cosmological evolution
equations that we presented in this section. As can be seen easily at the level
of the action, the theory is symmetric under the simultaneous interchanges
gµn $ fµn, bn ! b4�n and a $ b (or g ! 1/g), and therefore all the dy-
namical equations remain unchanged [179]. More concretely, let us consider
two sets of parameters {b0, b1, b2, b3, b4, a, b} = {v0, v1, v2, v3, v4, v5, v6}
and {b0, b1, b2, b3, b4, a, b} = {v4, v3, v2, v1, v0, v6, v5}, where v0,...,6 are some
particular values of the parameters. It is easy to show that the solution
of Eq. (3.18) for r with the first set of parameter values is identical to the
solution for the quantity r̃ ⌘ 1/r with the second set of parameter values.
Now if we rewrite Eq. 3.14 in terms of r̃ (note that we do not make an
actual interchange r ! 1/r, and we only rewrite the equations in terms of
r̃) then for the two distinct sets of parameter values given above the two
Friedmann equations are precisely the same. This, for example, implies that
when scanning the single-parameter submodel with all the bn parameters
turned off except b1 the space of all the cosmological solutions that we
obtain is fully equivalent to the one for the submodel with only b3 turned
on (given that we leave a and b, or equivalently g, free). This is a useful
observation and will help us reduce the number of cases studied in the next
sections.

3.3 the speed of gravitational waves

The spectrum of bimetric theories of gravity contains two gravitons, one
massive and one massless, with five and two degrees of freedom, respec-
tively. In order to study the properties of gravitational waves one needs
to focus only on tensor modes, i.e. the helicity-2 modes of the gravitons.
Massless and massive gravitons have two helicity-2 modes each. It is impor-
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tant to note that in general the two metrics of the theory, gµn and fµn, each
contain a combination of massive and massless modes, and therefore the
evolution equations for the g and f tensor modes do not represent directly
the evolution of the tensor modes for massive and massless modes. Indeed,
it is not possible in general to diagonalise the spectrum of spin-2 perturba-
tions into mass eigenstates, and therefore the notion of mass does not make
sense around arbitrary backgrounds [181]. One can specifically show [181]
that mass eigenstates can be defined only around proportional metrics
by computing the spectrum of linear perturbations and comparing their
equations with those of linearised general relativity. Proportional metrics
are therefore extremely interesting from this point of view, as the notion
of spin-2 mass eigenstates does not exist for other types of backgrounds.
As we mentioned in section 3.1, contrary to the theory of singly-coupled
bigravity, the doubly-coupled theory admits proportional backgrounds
(both in vacuum and in the presence of matter). It can be shown addition-
ally that the effective metric of the theory, geff

µn, corresponds exactly to the
massless mode around such backgrounds, while the massive mode is fully
decoupled [181]. This immediately implies that the speed of GWs around
proportional backgrounds measured by any detectors must be equal to
the speed of light since the detectors only "see" the effective metric. Such
solutions are therefore safe regarding the bounds from the GW observations.
We will show later in this chapter that, in addition to the singly-coupled
corner of the theory, proportional backgrounds are indeed the only solutions
that survive the bounds from GWs.

As detailed in Appendix 3.6, the propagation equations for the g and f
tensor modes hg and h f around the cosmological backgrounds are
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h00
g+/⇥ +

 
N0

N
�

N0
g

Ng
� a0

a
+ 3

a0
g

ag

!
h0

g+/⇥

�
N2

g

N2
a2

a2
g
r2hg+/⇥ +

N2
g

N2 a2A(h f +/⇥ � hg+/⇥) = 0 , (3.22)

h00
f +/⇥ +

 
N0

N
�

N0
f

Nf
� a0

a
+ 3

a0
f

a f

!
h0

f +/⇥

�
N2

f

N2
a2

a2
f
r2h f +/⇥ +

N2
f

N2 a2B(hg+/⇥ � h f +/⇥) = 0 . (3.23)

Here, the prime denotes a derivative with respect to the conformal time
corresponding to the effective metric, heff, which is defined through

dh2
eff = dt2N2/a2. (3.24)

With this time coordinate the background effective metric reads

ds2
eff = a2(�dh2

eff + dx2) . (3.25)

First note that we have written the equations in terms of the time coordinate
corresponding to the effective metric and not gµn or fµn, because the effective
metric is the one that couples to matter and therefore plays the role of the
physical spacetime metric, used for measuring distances and time intervals.
In addition, we chose to work with the conformal time because in this
coordinate light rays travel as in a Minkowski spacetime, making heff a
particularly useful time coordinate for identifying the propagation speeds
of the gravitational waves.
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We can now read off from Eqs. (3.22) and (3.23) the propagation speeds
cg and c f for the gravitational waves hg and h f , respectively, as7

c2
g =

N2
g

N2 (a + br)2 , (3.26)

c2
f =

N2
f

N2 (a
1
r

+ b)2 . (3.27)

The ratio of the two speeds is a coordinate-independent quantity and is
given by

c f

cg
= b ⌘ 1

r
Nf

Ng
=

1
r

ȧ f

ȧg
. (3.28)

As we will see, the quantity b will play a crucial role in the rest of the
discussions in this chapter.

One should note again that in doubly-coupled bigravity one measures
neither hg nor h f separately. The tensor modes measured by gravitational
wave detectors are the ones corresponding to the effective metric geff

µn. These

observable modes can be written in terms of h(g)
ij and h( f )

ij , the tensor modes
of the g and f metrics respectively, as

dg(eff)
ij = a

⇣
ah(g)

ij + bh( f )
ij

⌘
, (3.29)

where

7 Note that since we are interested in bigravity solutions with the interaction scale m ⇠ H0 in
order to explain cosmic acceleration, the effects of the graviton mass on the speed of the
gravitational waves are several orders of magnitude smaller than the sensitivity of current
GW detectors. We therefore fully ignore the direct contributions from the mass terms to the
speed.
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h(I)
11 = aIhI+ , (3.30)

h(I)
12 = aIhI⇥ = h(I)

21 , (3.31)

h(I)
22 = �aIhI+ , (3.32)

with I 2 {g, f } (see Appendix 3.6 for details).
The recent measurements of the GWs from neutron star mergers have

imposed incredibly tight constraints on the speed of gravitons. The relative
difference between the speed of GWs and that of light must be smaller than
⇠ 10�15, which is practically zero. Let us therefore assume that the speed
of GWs is exactly the same as the speed of light, and study its implications.

The mentioned bound on the speed of GWs tells us that at least one of
the quantities cg and c f should be unity (note that c = 1 in our units). The
reason for this is that at least one of the g or f graviton modes should have
traveled with the speed of light when arriving at the detector. Keeping this
in mind let us first assume that

• we are in a truly doubly-coupled regime (i.e. a 6= 0 and b 6= 0) ,

• r is a finite and nonzero quantity,

• Nf and Ng are finite and nonzero.

Let us further set N = 1 and write the two speeds cg and c f as

c2
g =

(a + br)2

(a + brb)2 , (3.33)

c2
f =

(a 1
r + b)2

(a 1
br + b)2

. (3.34)
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Now it is clear that, first of all, when b = 1, both cg and c f become unity.
Moreover, when either cg or c f is unity, we will necessarily have b = 1. This
then tells us very strongly that in the case of finite and nonzero Nf , Ng and
r, and under the assumption of a 6= 0 and b 6= 0, b = 1 is the necessary and
sufficient condition for compatibility with the GW experiments.

Let us now discuss the validity of the assumptions that we made above.
From the Friedmann equation (3.14) we see that both infinite and zero
values of r lead to singularity in the observable Hubble function H unless
either a or b is zero, i.e. the theory is singly-coupled. This means that for
physical solutions in the doubly-coupled regime r is necessarily finite and
nonzero. Additionally, if Nf = 0 while Ng is finite and nonzero, we see that
c2

f = 0 while c2
g = (1 + gr)2,8 which is not equal to unity unless we are in

the singly-coupled regime of b = 0. In exactly the same way the case of
Ng = 0 while simultaneously Nf being finite and nonzero is excluded. In
principle one should also consider the cases with one of the lapse functions
Ng, f going to infinity while their ratio is fixed9. Note however that such
cases will not only produce unphysical propagation speeds in both g and
f sectors, but they will also remove the second-order time-derivatives in
the tensor propagation equations, hence rendering the initial data from the
past lost at one particular instant in time (when the divergence happens).
Based on these considerations we can conclude that the cases with b = 0 or
b ! • are excluded.

Finally, as it is expected, in the singly-coupled case (say, b = 0 and
a = 1), we have Ng = 1 and c2

g = 1, which is the only observationally
important speed in this limit. It is very important to note that in such a
singly-coupled limit r ! 0 or r ! • are not necessarily dangerous since
the potentially singular terms containing 1

r (as well as the terms containing
r, which are dangerous when r ! •) are multiplied by both a and b and
therefore vanish in the either case of a = 0 or b = 0. Putting all these

8 Here we have used the expression for the effective lapse function 1 = aNg + bNf
9 Otherwise, obviously, they cannot satisfy the gauge fixing condition N = 1.
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discussions together we arrive at an important statement: the propagation
of gravitational waves in doubly-coupled bigravity is viable if and only if
b = 1 or we are in a singly-coupled regime.

It is important to note that the current bounds on the speed of GWs have
been placed through the observations at very low redshifts (z ⇡ 0), i.e. at
almost the present time. This means that, strictly speaking, the viability
conditions we discussed above are required to hold only at z ⇡ 0, including
the condition b = 1. Let us for now assume that the constraint on the speed
of GWs is valid not only in the present epoch but it applies also to the
earlier epochs of the universe, i.e. we assume b = 1 at all times. Later on,
when we discuss our numerical analysis, we will show a rather vigorous
feature of the theory that imposing b|z⇡0 = 1 will force b to be unity at all
redshifts.

Imposing b(z) = 1 at all times tells us that the two background metrics
gµn and fµn should be proportional. This can easily be seen by setting
b(z) = 1 in Eq. (3.28) and noting that r = a f /ag, resulting in

a f (z)
ag(z)

= C =
Nf (z)
Ng(z)

, (3.35)

with C being some (constant) proportionality factor. In order to understand
under which circumstances these proportional solutions exist, let us con-
sider the early-time and late-time asymptotic limits of Eq. (3.18). By taking
the future asymptotic limit, with r ! 0, we obtain

b3r4
•+(3b2�b4)r3

•+3(b1�b3)r2
•+(b0�3b2)r•�b1 =0 (3.36)

for the value of r in the far future, r•. Note that r• being a solution of
this time-independent equation means that it is a constant. This in turn
means that the two metrics are necessarily proportional in the far-future
limit. Additionally, the early-universe limit of Eq. (3.18) fixes the value of r
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to either g or �g. The latter does not give viable cosmologies [179], and
therefore r ! r�• = g is the only viable early-time limit. Restricting to the
solutions for which r does not exhibit any singular behaviour [179], one can
show that r should monotonically evolve between r = r�• and r = r• over
the history. The monotonicity of r implies that when the two limiting values
r�• and r• coincide, i.e. when r• = g, we have constant r over the entire
history of the universe and hence the background metrics are proportional
in that case.
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Figure 3.1: Behaviour of r, the ratio of the scale factors of the two metrics, as a function
of the number of e-folds x, with x = 0 corresponding to the present time.
The evolution of r has been shown with blue and orange curves for two
different values of g, both for a single-interaction-parameter model with only
b1 being turned on. The blue curve corresponds to a case where g does not
satisfy the special tuning condition for proportional metrics. The curve exhibits
two constant-r epochs of r�• = g and r• = 1/

p
3, with the latter being

the solution of Eq. (3.36) regardless of the value of b1. The orange curve
corresponds to a case where g is chosen such that it is the solution of Eq. (3.36),
i.e. g = r• = 1/

p
3.

Based on the discussions above, we can now formulate the necessary and
sufficient conditions for the two background metrics to be proportional:
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1. Background solutions are proportional iff r is given by r = g at all
times, where g ⌘ b/a. Note that one does not need to check whether
this condition holds at all times; as we argued above, because of the
monotonicity of r, having r = g even at one instant in time, other
than the asymptotic past, is sufficient for the condition to be satisfied
at all times.

2. Equivalently, the background solutions are proportional iff the pa-
rameters of the model solve the algebraic equation

b3g4+(3b2�b4)g3+3(b1�b3)g2+(b0�3b2)g�b1 =0 . (3.37)

We demonstrate these conditions in Fig. 3.1 by plotting the dependence
of r on the number of e-folds x, with the present time given by x = 0,
for a single-interaction-parameter scenario where only b1 is turned on
while b0,2,3,4 = 0. The blue curve corresponds to a case where g does not
satisfy the special tuning condition for proportional metrics. The curve
exhibits two constant-r epochs. The far-past epoch corresponds to r = g
(the horizontal, thin, black line), while the far-future limit is given by the
solution of Eq. (3.36) for which r• = 1/

p
3 regardless of the value of b1.

The orange curve corresponds to a case where g is chosen such that it is the
solution of Eq. (3.36), i.e. g = r• = 1/

p
3. The value of b1 is not relevant

for the arguments here because in this case the asymptotic value r• is
independent of the value of b1 (the value of r�• is always independent of
the values of bn parameters). In order to illustrate our arguments, we have
chosen two different values of b1 for producing the two curves (blue and
orange). As expected, they agree in the far-future limit, even though the
values of b1 are different for the two curves.

As we will see in the next section, bigravity models for which only one of
the b0,1,2,3,4 parameters is turned on are particularly interesting. For those
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cases the proportional background solutions correspond to the following
values of the parameter g:

1. b0 or b4 only: g = r• = 0 ,

2. b1 only: g = r• = 1p
3

,

3. b2 only: g = r• = 1 ,

4. b3 only: g = r• =
p

3 .

Note that g and therefore r• in these cases are independent of the value
of the corresponding bn parameter. Note also that, as we discussed in the
previous section, the single-parameter models with only b1 or b3 turned on
are identical, as long as r $ 1/r (or equivalently g $ 1/g), justifying the
values 1/

p
3 and

p
3 for r• in these models. In addition, it is interesting to

notice that for the b0 and b4 only models, proportional backgrounds do not
exist, as in those cases g is forced to be vanishing, and therefore the theory
becomes singly-coupled.

All these cases of proportional background metrics with only one of
the b1,2,3 parameters being nonzero can be verified easily by applying the
Bianchi constraint Hg = rHf to the Friedmann equations (3.8) and (3.9),
obtaining

3H2
g =

1
M2

eff
r(1 + gr)3 + H2

0(b0 + 3b1r + 3b2r2 + b3r3) , (3.38)

3H2
g =

g

M2
eff

r
(1 + gr)3

r
+ H2

0(
b1

r
+ 3b2 + 3b3r + b4r2) . (3.39)

In general, we have two dynamical variables ag and a f , which are deter-
mined by the two independent, dynamical equations (3.38) and (3.39). Now,
if the two metrics are proportional, this means that ag and a f are also
proportional, and r is a constant. We will then have effectively only one
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dynamical variable, ag or a f , and the two dynamical equations (3.38) and
(3.39) must be identical. This means that the right-hand sides of the two
equations should be identically the same. Now, setting all the parameters
bn to zero, except for either of b1, b2, or b3, we immediately arrive at the
values for r• and g presented above for these three cases.

Now turning back to the condition for the speed of the gravitational
waves to be identical to the speed of light, we argued that what is strictly
needed is to have b|z⇡0 ⇡ 1, as the speed of GWs has been measured only
at the present epoch z ⇡ 0. If, additionally, the parameters of the model
giving b|z=0 = 1 satisfy the algebraic equation (3.37) then they lead to
proportional background solutions and b = 1 condition is satisfied at all
times, implying necessarily that cg = c f = 1 at all times. The question of
whether a set of parameters giving b|z=0 = 1 (hence cg|z=0 = c f |z=0 = 1)
while not satisfying Eq. (3.37) can happen in our doubly-coupled bigravity
models cannot be answered based on our analytical arguments here, and
needs a numerical scanning of the parameter space. In principle it could be
possible that the two background metrics would not be proportional whilst
b would become unity at the present epoch simply as a coincidence for a
specific combination of the parameters. We will however demonstrate later
that for all the models that we study in this paper the cosmologically viable
solutions with b|z=0 = 1 also satisfy Eq. (3.37), implying b = 1 at all times,
and therefore the proportionality of the background metrics.

3.4 mcmc scans and observational constraints

In this section we present the results of a set of MCMC scans of the parame-
ter space of doubly-coupled bigravity when different sets of parameters are
allowed to vary while the rest are fixed to zero. We should first emphasise
that we do not intend here to perform a detailed parameter estimation of
the model using cosmological observations. This has been done in Ref. [179]
using the geometrical constraints on cosmic histories at the background
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level.10 We are rather interested in studying the impact of the constraints
from the measurements of gravitational waves and the bounds on their
speed on the cosmologically viable regions of the parameter space. We first
perform MCMC scans of the models using similar cosmological datasets as
those used in Ref. [179]. The geometrical constraints that we consider are a
combination of the observed angular scales of the cosmic microwave back-
ground anisotropies [130], the supernovae redshift-luminosity relation [158],
the measurements of the baryon acoustic oscillations (BAO) [159–163], and
the local measurement of the Hubble constant H0 [164]. Our scans provide
a set of points in the parameter space of the models all of which are in
good agreement with cosmological observations. We have checked that our
results are in perfect agreement with the results of Ref. [179] for the cases
studied in that paper. We then explore the implications of imposing the
GW constraints on the points, and investigate whether and how strongly
the cosmologically viable regions are affected by the GW observations.

Our full bigravity model contains seven free parameters, as far as our
MCMC scans are concerned. These include the five bn parameters for the
interaction terms, the ratio of the couplings of the two metrics to matter g,
and the present value of the matter density parameter W0

M, defined as

W0
M ⌘ r0

M
3M2

effH
2
0

. (3.40)

Note that one should not necessarily expect to obtain a value for W0
M similar

to the best-fit one in the standard model of cosmology, LCDM, for a bigrav-
ity model that fits the data well, even for proportional backgrounds where
the interaction terms contribute with a L-like constant to the Friedmann
equation. The reason, as explained in Ref. [179] in detail, is the extra factor

10 Note, however, that the MCMC scans presented in Ref. [179] include only single-bn models,
while in the current paper we consider also the cosmological constraints on two-parameter
models.
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appearing in the matter density term of the Friedmann equation. We will
see below that indeed in some cases the viable points in the parameter
space give values for W0

M that are significantly smaller than the LCDM
value of ⇠ 0.3.

For each point in the parameter space of the theory we also output the
corresponding values of r, b, cg and c f , all evaluated at the present time.
These will allow us to check which parts of the parameter space agree with
the observational constraint cg ⇡ 1 (or c f ⇡ 1), and to verify explicitly the
conditions on b and r. We will particularly use the quantity (c2

g � 1)(c2
f � 1)

as a measure of how fit a point is to the observational constraints on the
speed of GWs.

We perform our MCMC scans for various submodels, namely the single-
parameter11 models of b0, b1, and b2 (with other bn being set to zero in
each case), and the two-parameter models of b0b1, b0b2, b1b2, and b1b3.
One should note that, as we discussed before, the single-parameter models
of b3 and b4 are identical to the b1 and b0 models, respectively, because
of the duality properties of the theory. In addition, for the same reason,
each one of the other two-parameter models is equivalent to one of the
two-parameter models considered here, and their phenomenologies are
therefore already captured. Our objective in this chapter is not to perform
a detailed and extensive statistical analysis of the entire parameter space
of doubly-coupled bigravity, and we are mainly interested in a qualitative
understanding of the implications of the GW observations for the viability
of the theory, which can very well be captured in the studies of single-
parameter and two-parameter cases. We therefore do not discuss three- or
higher-parameter models. As we will see, although the constraints are quite
strong for most of these cases, the parameter space in some models still
allows viable cosmologies, and clearly, by increasing the number of free
parameters one expects to enlarge the number of possibilities for finding

11 This is only a terminological convention here, and strictly speaking, our single-parameter
models have two free parameters, as g is always a free parameter of the models.
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viable scenarios within the model. We leave a detailed statistical analysis of
the full model for future work.

3.4.1 One-parameter models

• b0b0b0 model: Let us first emphasise that, contrary to singly-coupled bigravity,
in the doubly-coupled theory the parameters b0 and b4 are no longer the
explicit cosmological constants corresponding to the two metrics gµn and
fµn. The reason is that matter couples to the effective metric geff

µn, which is
a combination of gµn and fµn. This can be seen explicitly by looking at the
effective Friedmann equation (3.14) and comparing it with Eqs. (3.8) and
(3.9). In addition, in the singly-coupled theory, where matter couples to, say,
gµn, b0 behaves as the matter vacuum energy in the action of the theory, as it
appears in the interaction terms as b0

p�g (note that e0 = 1). In the doubly-
coupled theory, however, all the interaction parameters bn directly receive
contributions from quantum matter loops, and the definition of vacuum
energy is more subtle than in the singly-coupled theory. It is therefore
interesting to study a single-parameter, doubly-coupled model with only
b0 turned on, while all the other parameters bn are set to zero — for the
singly-coupled case this will be nothing but LCDM. The cosmology of
this b0 model in doubly-coupled bigravity has been studied in Ref. [179].
As a cross check of our results with the latter paper we show the g � W0

M
posterior in Fig. 3.2, which is in a good agreement with the corresponding
result of Ref. [179]. Note that g = 0 corresponds to the singly-coupled
scenario, which reduces to LCDM for this b0-only model.

Fig. 3.3 demonstrates the interdependence of r, b, the quantity (c2
g �

1)(c2
f � 1) (capturing the deviations of the g and f gravitational wave

speeds from the speed of light), and g. Note that cg, c f , b, and r are all
computed at z = 0.

Let us concentrate on the right panel of Fig. 3.3, where the present value
of (c2

g � 1)(c2
f � 1) has been depicted versus g. This plot shows that in
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Figure 3.2: The plot shows the cosmologically viable samples in the g � W0
M parameter

plane of the doubly-coupled b0 model, where all the interaction parameters bn
are set to zero except for b0, which is allowed to vary. The contours show the
68% and the 95% CLs.

order for the model to be cosmologically viable and simultaneously predict
gravitational waves with the speed equal to the speed of light (i.e. for at
least one of the two quantities cg and c f to be unity), g is required to be
zero, which in turn implies that the model needs to be singly-coupled. In
this case r is forced to be vanishing, although r is no longer a meaningful
quantity as there is no interaction between gµn and fµn, and fµn completely
decouples from the theory. This all tells us that b0-model satisfies the
cosmological and gravitational-wave constraints only in its singly-coupled
limit, which is equivalent to LCDM. We do not see any cases of proportional
metrics in this model, as such cases should also give GWs consistent with
observations. Let us take a closer look at this and understand why such a
situation does not happen in b0-model by looking again at the condition for
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Figure 3.3: MCMC samples showing all the cosmologically viable points in the parameter
space of the doubly-coupled b0 model. The plots particularly demonstrate
the interdependence of r (the ratio of the scale factors of the two metrics gµn

and fµn), b ⌘ 1
r

Nf
Ng

, the quantity (c2
g � 1)(c2

f � 1) (capturing the deviations of

the g and f gravitational wave speeds from the speed of light), and g ⌘ b
a .

Note that cg, c f , b, and r are all computed at z = 0. In this b0 model, the only
part of the parameter space that is left after imposing cg = 1 or cg = 1 is the
singly-coupled submodel characterised by g = 0.

proportional background metrics. As we argued in the previous section, for
proportional backgrounds g must satisfy Eq. (3.37), while r• = g. Setting
all bn parameters to zero except for b0, we arrive at g = r• = 0. First
of all, this is exactly what we see in the left panel of Fig. 3.3 for r and g.
Additionally, we are back to the condition g = 0 that corresponds to a single
coupling. This means that b0-model does not admit any sets of (nontrivial)
proportional backgrounds, unless we consider fµn to be proportional to
gµn with a vanishing proportionality factor. The fact that this is a peculiar
case can also be seen by looking at the middle panel of Fig. 3.2, which
shows b versus g. b is always negative, which means that the condition for
proportional backgrounds, b = 1, can never be satisfied.

• b1b1b1 model: Here we turn on only the b1 parameter and set to zero all
the other interaction parameters b0,2,3,4. Similarly to the b0 case, in Fig. 3.4
we show the g � W0

M posterior, again, in agreement with the corresponding
result of Ref. [179].
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Figure 3.4: The same as in Fig. 3.2, but for the b1 model.

Additionally, in Fig. 3.5 we demonstrate the interdependences of r, b,
the quantity (c2

g � 1)(c2
f � 1), and g. From our discussions in the previous

section, we expect this submodel to give the speed of gravity waves equal to
the speed of light for the cases with r• = g = 1/

p
3, where the background

metrics are proportional, as well as for the singly-coupled corners with g =
0. The right panel of Fig. 3.5 presents the dependence of (c2

g � 1)(c2
f � 1)|z=0

on the value of g as a result of our numerical scans. We first notice that
no viable combinations of the parameters provide cg and c f both larger
or smaller than the speed of light, as (c2

g � 1)(c2
f � 1) is always negative

or zero. The plot also shows two points with (c2
g � 1)(c2

f � 1) = 0, one of
which being the obvious limit of single coupling with g = 0, and the other
one, as expected, corresponding to the case of proportional backgrounds
with g = 1/

p
3, depicted by the vertical, red line. This becomes more

clear by looking at the left and the middle panels of Fig. 3.5, showing r
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and b versus g. The red lines in the plots show that indeed g = 1/
p

3
corresponds to r = 1/

p
3 and b = 1, as expected. Also note that b is always

positive for all the cosmologically viable points in the parameter space of
this model. Although most of the original, cosmologically viable points are
now excluded and the model is highly constrained, our results show that
there still remain some freedom in choosing b1 for the fixed g = 1/

p
3.

It is also interesting to note that the preferred values of W0
M are smaller

than the LCDM value of ⇠ 0.3. In summary, as expected, the viable points
in the parameter space of the model correspond to the scenarios which
do not represent the full dynamics of the doubly-coupled model. One
remaining region is the singly-coupled limit, and the other one corresponds
to the cases where the background metrics are proportional, and we again
effectively have only one dynamical metric at work. In this latter case, the
model is effectively equivalent to LCDM, at the level of the background
(and linear perturbations [181]).

Figure 3.5: The same as in Fig. 3.3, but for the doubly-coupled b1 model where all the
interaction parameters bn are set to zero except for b1. In this case, the only
parts of the parameter space that are left after imposing (c2

g � 1)(c2
f � 1) = 0

are the singly-coupled submodel characterised by g = 0, and the solutions with
the two background metrics being proportional, with g = 1/

p
3, illustrated by

the red lines in the plots.

• b2b2b2 model: Fig. 3.6 shows the g � W0
M posterior for the b2 model.

Fig. 3.7 additionally demonstrates the viable samples for the b2 model in
r � g, b � g, and (c2

g � 1)(c2
f � 1) � g planes. All the panels clearly show
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Figure 3.6: The same as in Fig. 3.2, but for the b2 model.

that the singly-coupled subset of the parameter space (with g = 0) is not
viable cosmologically as there are no points with g = 0 that fit the data.
This is in agreement with the results of Ref. [206]. The model, however,
provides excellent fits to the data for g & 0.3. Looking now at the right
panel of Fig. 3.7, we see that the only points in the parameter space that
are consistent with (c2

g � 1)(c2
f � 1) = 0 today, i.e. with the bounds from

the GW observations, are the ones for which g = 1, meaning that the
metrics are proportional. These points correspond to b = 1 (see the middle
panel). This is in agreement with our findings in the previous section for
the b2 model, with r• = g = 1 for proportional metrics. For all the other
cosmologically viable points the tensor modes of one of the two metrics gµn

and fµn travel faster and the other ones travel slower than light.
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Figure 3.7: The same as in Figs. 3.3 and 3.5, but for the doubly-coupled b2 model where
all interaction parameters bn are set to zero except for b2. In this case, the only
part of the parameter space consistent with (c2

g � 1)(c2
f � 1) = 0 is the one

corresponding to the two background metrics being proportional, with g = 1.

3.4.2 Two-parameter models

Let us now turn on two of the interaction parameters bn and let them vary.
As we argued earlier, many of these submodels are physically equivalent
because of the symmetry of the theory. We therefore study four represen-
tative cases of b0b1, b0b2, b1b2, and b1b3 models. Note that even though
for example the model with only b1 turned on is identical to the model
with only b3 turned on, when the two parameters are both nonzero the
resulting two-parameter model can in general be very different from the
single-parameter ones, with generally richer phenomenologies. The reason
is that the two parameters can take two different values, making the model
different from the cases with only one of the parameters left free.

The results of our MCMC explorations for these models are presented
in Fig. 3.8, where r computed at the present time is given in terms of the
coupling ratio g. The colour code shows the values of log10|(c2

g � 1)(c2
f � 1)|.

• b1b2b1b2b1b2 and b1b3b1b3b1b3 models: Looking at the two upper panels of Fig. 3.8 for
these models, we observe an interesting feature. The points in the parameter
space of both models for which |(c2

g � 1)(c2
f � 1)| is small, seem to be resid-

ing on a diagonal line. All the other points are excluded by gravitational
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Figure 3.8: Results of the MCMC explorations for the two-parameter models b0b1, b0b2,
b1b2 and b1b3. All the cosmologically viable points are shown in the r � g
plane, and the colour in each panel shows the values of log10|(c2

g � 1)(c2
f � 1)| as

a measure for how fit the points are to the bounds on the speed of gravitational
waves. Here, r and log10|(c2

g � 1)(c2
f � 1)| are all computed at z = 0.
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waves, although they give good fits to the cosmological observations. Let
us try to understand this favoured, thin region. We argued in the previous
section that if r becomes equal to g, even at one point over the history (in
addition to the far in the past), the two background metrics of the model
should be proportional at all times. This means that in particular if a point
in the parameter space requires r = g at the present time, that point should
correspond to proportional metrics. Now looking at the plots of r versus
g for both b1b2 and b1b3 models, we see that the very thin, line-like part
of the favoured region is indeed the r = g line. This therefore shows that
one main region with (c2

g � 1)(c2
f � 1) ⇡ 0 corresponds in fact to the cases

with proportional backgrounds. The other tiny region with (c2
g � 1)(c2

f � 1)
being very small is the one in the vicinity of g = 0. The plots are therefore
consistent with our analytical arguments in the previous section that only
singly-coupled submodels or the ones with the two background metrics
being proportional are consistent with the speed of gravitational waves
being the same as the speed of light. The observations of gravitational waves
therefore highly constrain these two bigravity models as it was the case also
for the single-parameter models. Note that the upper cuts in the plots are
the result of the finite ranges which we have chosen in our MCMC scans
for the bn parameters. We have checked that by increasing these ranges the
cuts on the plots systematically move upwards, but the main features do
not change — the thin, favoured regions only extend to larger g and r.

• b0b1b0b1b0b1 and b0b2b0b2b0b2 models: Let us now investigate the two b0b1 and b0b2
models, by studying the two lower panels of Fig. 3.8. Overall, the same
features as in the previous models of b1b2 and b1b3 can be seen here,
especially that proportional backgrounds survive the bounds on the speed
of gravitational waves. This can be seen again as a thin r = g line. There
is however an interesting difference in these two models compared to the
previous ones.

The parameters b1 and b2 being zero in each case while g is also set to
zero corresponds to LCDM, with b0 playing the role of the cosmological
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constant. We may therefore expect a large concentration of cosmologically
viable points in the g ⇡ 0 region. Even though this region does exist, as
is better visible for the b0b1 model, the majority of the viable points seem
to be clustering around large g, especially for the b0b2 model. In order to
understand this, let us look at Figs. 3.2 and 3.6 for the single-parameter,
b0 and b2 models. It is clear from these figures that the models act in
opposite ways. While the b0 model favours small g, b2-model does not
admit g smaller than ⇠ 0.3. Although we may expect the entire range
of g to be covered by turning on both of the parameters, our numerical
investigations show that the points in the parameter space of the b0b2
model fit the cosmological observations better when b0 is not zero and g
is large. That is why the density of the points in the figures is higher at
large g, where the model deviates significantly from the singly-coupled
scenario. The same holds for the b0b1 model, although in that case the
singly-coupled submodel is less disfavoured. This can be understood by
looking at Fig. 3.4 for the single-parameter, b1 model, where the plots show
that small g are cosmologically viable, contrary to the b2 model.

3.4.3 Further remarks

Before we end the discussions of our numerical investigation, let us present
the results of our MCMC scans for all the two-parameter models of b1b2,
b1b3, b0b1, and b0b2, as well as the single-parameter models of b1 and b2,
now in terms of the speed of the gravitational waves corresponding to the
two metrics of the theory, gµn and fµn. These have been shown in Fig. 3.9.
In order to see how far each cosmologically viable point in the parameter
space is from the proportional backgrounds, we colour-code the points by
the value of |b � 1|. All the quantities cg, c f , and b have been computed at
the present time, i.e. at z = 0.

First of all, the plots confirm our analytical arguments in the previous
section that having cg = 1 (c f = 1) automatically implies c f = 1 (cg = 1),
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Figure 3.9: MCMC samples showing the values of the speed of gravitational waves for
the tensor modes corresponding to the two metrics gµn and fµn for the two-
parameter models of b1b2, b1b3, b0b1, and b0b2, as well as the single-parameter
b1 and b2 models. The colour shows the value of |b � 1| at each point in the
parameter space, as a measure of the deviation from proportional backgrounds
(with b = 1). The red, vertical and horizontal lines show cg = 1 and c f = 1,
respectively. Again, all the quantities have been computed at the present time
(z = 0).
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unless the theory is singly-coupled. In addition, the plots also show that
c f = cg = 1 is equivalent to b = 1, i.e. it corresponds to proportional
backgrounds, as expected. These can clearly be seen in all the panels. Let
us first focus on the single-parameter cases of b1 and b2, i.e. the first two
upper panels of Fig. 3.9. The intersections of the cg = 1 and c f = 1 lines
in both models correspond to the proportional backgrounds, as b = 1 at
those points. In addition, for the b1 model we see that there are points for
which c2

g = 1 while c2
f takes larger values (⇠ 2.3). This is fully consistent

with our previous discussions that the b1 model admits cosmologically
viable singly-coupled solutions — these are the points with cg = 1 and
therefore consistent with the GW observations. The b2 model, on the other
hand, does not allow singly-coupled models consistent with cosmological
observations, and we therefore do not see any points in the b2 panel of
Fig. 3.9 with cg = 1 and c f 6= 1. Note that in our analysis where we work
with g instead of a and b, the singly-coupled models are captured only
by gµn being the physical metric, as we fix a to unity and therefore g = b.
That is why we do not see any points with c f = 1 and cg 6= 1 for the b1
model. Let us now focus on the two-parameter models. As we discussed
above, the b0b1 and b0b2 models do not favour singly-coupled solutions,
and that is why we do not see many points in the corresponding panels of
Fig. 3.9 with cg = 1 and c f 6= 1. Out of the two other two-parameter models
of b1b2 and b1b3, we see that in the latter case there is a concentration of
cosmologically favoured samples along the vertical line of c2

g = 1 even with
c2

f 6= 1 in the b1b2 and b1b3 panels of Fig. 3.9. This is again consistent with
our findings above that singly-coupled bigravity is not disfavoured in the
b1b3 model.

3.5 conclusions

In this chapter we have extensively studied the implications of the recently
detected gravitational waves from a neutron star merger and their elec-
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tromagnetic counterpart on the viability of the doubly-coupled theory of
bimetric gravity. As a result we have identified the regions of the parameter
space that are consistent with both cosmological observations and gravita-
tional wave measurements. We have been interested in models that provide
an alternative explanation for the late-time acceleration of the Universe, and
therefore require an interaction (or mass) scale of the order of the present
value of the Hubble parameter (i.e. m ⇠ H0). Our studies have been based
on both an analytical investigation of cosmic evolution and propagation
of tensor modes in the theory, as well as a numerical exploration of the
parameter space of the models using MCMC inference. We have demon-
strated that the only regions of the parameter space that survive both the
cosmological and gravitational wave constraints are those with the two
background metrics being proportional or the singly-coupled submodels.
Our findings therefore demonstrate that the theory is strongly constrained
by the bounds on the speed of gravity waves if it is considered as the
mechanism behind cosmic acceleration.

The cases with proportional backgrounds are particularly interesting for
various reasons [181]. First of all, the background evolution of the Universe
as well as linear perturbations mimic those of the LCDM model, and the
model is therefore consistent with all the existing cosmological observations.
This also means that the model does not suffer from any ghost or gradient
instabilities, which are the typical drawbacks of singly-coupled cosmological
scenarios, in the (visible) sector where the cosmological perturbations are
coupled to matter. The model is however expected to deviate from general
relativity, and therefore LCDM, at the nonlinear level and in the early
Universe such as the radiation era, where a vector instability in the (hidden)
sector decoupled from matter would have to be cured by an as yet unknown
UV completion. The expected nonlinear deviations from general relativity in
the late Universe open up an interesting route for further tests of the theory
using the observations of structure formation and evolution at nonlinear
scales. In addition, graviton mass eigenstates can be diagonalised only
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around the proportional backgrounds, and therefore the notion of spin-2
mass makes sense only in those cases — singly-coupled bigravity does not
admit proportional metrics in the presence of matter. Moreover, the effective
metric of the doubly-coupled theory, which is the one that couples to matter,
corresponds to the massless modes at the linear level, while the massive
modes are fully decoupled; the massive and massless modes however mix
at the nonlinear level.

We therefore conclude that the recent, tight constraints on the speed of
gravitational waves leave us with a highly constrained corner of bigravity
which is theoretically healthy at low energies12 and observationally viable.
It remains to be seen whether the model will also fit the cosmological
observations at the nonlinear level, or will be ruled out; we leave the
investigation of this interesting question for future work.

3.6 appendix : tensor modes

Here we present the detailed derivation of tensor perturbations and their
propagation equations in doubly-coupled bimetric gravity. We present the
calculations in the metric formalism at the level of the equations of motion,
as well as at the action level, both in metric and vierbein formalisms.

Derivation from equations of motion. — Here our starting point is the
full (modified) Einstein equations for the two metrics gµn and fµn, which
are given by (see Ref. [181] for details)

12 These models are valid below the cut-off scale L3 and are therefore well suited for a
description of the late-time Universe.
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(X�1)(µ
aGn)a

g + m2
3

Â
n=0

(�1)nbngab(X�1)(µ
aYb)

(n)n =

=
a

M2
eff

s
detgeff

detg

⇣
a(X�1)(µ

aTn)a + bTµn
⌘

, (3.41)

and
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where Gµn
g and Gµn

f are the Einstein tensors for gµn and fµn, respectively,
Tµn is the stress-energy tensor corresponding to the effective metric geff

µn,
and the square-root matrices X and X�1 are defined through

X
µ

aXa
n ⌘ gµb fbn , (3.43)

(X�1)µ
a(X�1)a

n ⌘ f µbgbn . (3.44)

Now, the linear metric perturbations for g and f tensor modes hg+/⇥ and
h f +/⇥ can be written as

ds2
g = �N2

gdt2 + a2
g[(1 + hg+)dx2 + (1 � hg+)dy2

+ dz2 + 2hg⇥dxdy] , (3.45)
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+ dz2 + 2h f ⇥dxdy] . (3.46)
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Plugging these into Eqs. (3.43) and (3.44) we find
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and
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for the square-root matrices at the linear order.
Having these expressions for X and X�1, the nonvanishing parts of the

tensor sector of the effective metric can be shown to be

dgeff
11 = �dgeff

22 ⌘ a2heff+ = a
�
aaghg+ + ba f h f +

�
, (3.49)

dgeff
12 = dgeff

21 ⌘ a2heff⇥ = a
�
aaghg⇥ + ba f h f ⇥

�
. (3.50)

By using Eqs. (3.47) and (3.48) in the field equations we recover Fried-
mann equations at the background level, while at the linear order we obtain
the propagation equations for the tensor modes hg+/⇥ and h f +/⇥,
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with p here being the pressure of the matter sector.
It should be noted that these two propagation equations can be written

in a form that manifestly shows the symmetry of the interaction terms
(i.e. the symmetry of the mass matrix). This can be seen by rewriting the
propagation equations as
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d
dt
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where now the same factor of a3
gNg A appears in front of h f +/⇥ in the first

equation and in front of hg+/⇥ in the second equation.

Derivation of the quadratic action. — In order to facilitate the compar-
ison with the results of Refs. [192, 193] let us also present the calculation
of the graviton mass matrix at the level of the action. In this analysis we
ignore the matter sector, i.e. we study a fully dark energy dominated epoch.

First of all, by varying the background part of the action with respect to
the lapses and scale factors we recover the background equations of motion

3H2
g = m2B0 , 3H2

f = m2B1 , (3.57)
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Our objective here is to obtain the mass terms of the gravitational waves.
In principle, the calculation of the quadratic action is straightforward, but
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the subtle point here is that besides the potential terms of bigravity, also
the two Einstein-Hilbert terms contribute with additional terms quadratic
in hg+/⇥ and h f +/⇥. Let us exemplify this by looking at the kinetic term
of the g-sector. First of all, there is a contribution from the volume factor,
which reads as
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2
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d4x
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2
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g⇥ + h2
g+)

!
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where R̄g is the background part of the Ricci scalar, which is given by

R̄g = 6
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g
. (3.61)

Additional contributions come from some of the terms in the perturbed
part of the Ricci scalar, namely from
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The corresponding contributions to the mass matrix are given by
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Note that we needed to divide by a factor of 2 in the last expression, because
in the original terms only the variations with respect to the fields under
the time derivatives could contribute to the mass terms in the equations of
motion.

These contributions should be added to the contributions from the poten-
tial terms. In order to find the latter we also need the second-order piece of
the X

µ
n matrix, the nonvanishing components of which are found to be
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2
. (3.66)

Combining all the potential terms and dropping an overall factor of 1/2
from the action we obtain the graviton mass terms
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2 Â
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where the mass matrix is found to be
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Note particularly that we have recovered the same interaction terms as in
Eqs. (3.55) and (3.56).

In Refs. [192, 193] the interaction sector has been written in terms of the
constrained metric vierbeins as
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where the tetrad fields (or vierbeins) are defined through

gI
µn = habea

Iµeb
In . (3.70)

Here I labels the two metrics, I = {g, f }, µ and n are the covariant indices,
and a and b are the indices in the local Lorentz frame. The interaction
matrix mI JKL is fully symmetric and its components in terms of the b0,...,4
parameters are given by

mgggg =
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24
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with the other components being trivially related to the ones above due to
the total symmetry of the mI JKL matrix.

In order to derive the mass sector of the quadratic action in the vierbein
formalism we first derive the tensor perturbations of the vierbeins by
linearising Eq. (3.70). As a result, for the ea

Iµ matrix we have
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The total mass matrix is built up from two different parts of the action as
before.

The first (diagonal) contribution comes from the Einstein-Hilbert terms
in the action, and is given by
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where we have found that
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Here F(t) and f (t) are the same functions as in Eq. (3.63).
The second part comes from the expansion of the potential term (3.69) to

second order in the gravitons. Direct calculation gives
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Adding the two sectors, making use of the background equations of motion
(3.57), (3.58), and (3.59), and dropping an overall factor of 1/2 from the
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action, we retrieve the action (3.67) with the mass matrix given exactly by
(3.68).

The massless and massive modes. — The dynamics of the two gravitons
can be better understood by switching to the canonically normalised basis

hI? = DIh̄I? , (3.81)

where ? = +/⇥ and we have defined
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In this new basis the mass matrix reads
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where M2 = Mgg. In this basis the graviton equations read
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where we have identified the speeds of the waves in the effective conformal
time (for which photons have a normalised speed cg = 1):

cI =
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aI N
. (3.85)

It is easy to see that this mass matrix always has a massless and a massive
eigenmodes given by
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with eigen-mass-square being

M2a2 = M2(D2
g + D2

f ) , (3.87)

where the factor of a2 has been included to comply with the usual definition
for the mass of graviton in FLRW space-times. In the case of proportional
metrics, when r = g, the above mass-eigenvectors reduce to
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which guarantees that one can diagonalise the system of dynamical equa-
tions (3.84) by simply adding linear combinations of the two propagation
equations with constant coefficients.

Now, one can see that the canonically normalised massless eigenmode
is associated to the effective graviton modes. Indeed, first of all, from
Eqs. (3.49) and (3.50) we see that heff = aD(h̄g + gh̄ f ), with D ⌘

p
N/a3.

The canonically normalised version of this field is the massless mode
h̄0 ⌘ h̄g + gh̄ f . The massive mode, on the other hand, corresponds to the
difference h̄m = h̄g � h̄ f /g.

Combining the equations of motion in (3.84) appropriately, we obtain
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¨̄hm? � r2h̄m? + (M2a2 � ä
a
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Here we have used the fact that for the proportional backgrounds we have
DI = a�1

I if we pick the lapses as NI = aI . Moreover, recalling that

ag =
a

a2 + b2 a , a f =
b

a2 + b2 a , (3.91)
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we see that DId2
⇣

D�1
I

⌘
/dt2 = ä/a. The first of these dynamical equations

is the propagation equation of gravitons in general relativity, with the
gravitons being massless but receiving a "pseudo"-mass of the form �ä/a.
The second one is the propagation equation for a massive graviton of mass
M. Notice that for both modes the speed of propagation is one, and that
(3.91) implies that the light cones for gravitons and photons coincide.




