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Part I

C O S M I C A C C E L E R AT I O N I N S U P E R G R AV I T Y





2
D A R K E N E R G Y, a - AT T R A C T O R S , A N D L A R G E - S C A L E
S T R U C T U R E S U RV E Y S

This chapter is dedicated to a study of a new class of inflationary models
known as cosmological a-attractors. We promote these models towards a uni-
fied framework describing both inflation and dark energy. We construct and
study several phenomenologically rich models which are compatible with
current observations. In the simplest models, with vanishing cosmological
constant L, one has the tensor to scalar ratio r = 12a

N2 , with N being the num-
ber of e-folds till the end of inflation, and the asymptotic equation of state of
dark energy w = �1 + 2

9a . For example, for a theoretically interesting model
given by a = 7/3 one finds r ⇠ 10�2 and the asymptotic equation of state
is w ⇠ �0.9. Future observations, including large-scale structure surveys as
well as Cosmic Microwave Background B-mode polarization experiments
will test these, as well as more general models presented here. We also
discuss the gravitational reheating in models of quintessential inflation and
argue that its investigation may be interesting from the point of view of
inflationary cosmology. Such models require a much greater number of
e-folds, and therefore predict a spectral index ns that can exceed the value
in more conventional models of inflationary a-attractors by about 0.006.
This suggests a way to distinguish the conventional inflationary models
from the models of quintessential inflation, even if the latter predict w = �1.
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2.1 introduction

In this chapter we are going to construct viable dynamical dark energy
models in the context of recent progress achived in cosmological applica-
tions of supergravity. We particularly will be using some novel ideas which
have been discovered in inflationary cosmology. More concretely, recent
investigations have found a broad class of theories, known as cosmological
a-attractors, which are based on models where the kinetic term of a scalar
field has a pole [76–81]. In such theories, the potential has a plateau shape,
exponentially rapidly approaching a constant at large values of the inflaton
field j. These models, to be described in section 2.2 of this chapter, are
favored by the recent inflation-related cosmological observations [82].

Because of the extreme flatness of the potential in a-attractors, these
models can be suitable not only for describing inflation but also to describe
dark energy, see e.g. Refs. [83–88]. Moreover, it may also be possible to find
a-attractor models which can simultaneously describe inflation and dark
energy [84, 87, 88] in the context of the quintessential inflation [89].

In this chapter, we extend the investigation of the quintessential inflation
models based on a-attractors. We study models with arbitrary L, relax some
of the assumptions made in Refs. [84, 87, 88], and consider a much more
general class of theories. In particular, we describe the a-attractor version of
the simplest linear dark energy model, a model with exponential potential
with two shoulders proposed in Ref. [90], and a generalized version of the
model studied in Refs. [84, 88].

The asymptotic value w• of the parameter w in the equation of state
p = wr for quintessential inflation depends on the limiting value of the
quintessence potential. If this value is negative, the universe eventually
collapses, but under certain conditions it may pass through a temporary
but long stage of acceleration. Here we call w• the asymptotic value of
w for dark energy, to distinguish it from the time-dependent dark energy
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equation of state wDE and the observable "all-inclusive" effective equation
of state weff.

If the potential V of the quintessential inflation models asymptotically
vanishes (i.e. if the cosmological constant is zero), the value of w• in the
simplest models is given by

w• = �1 +
2

9a
. (2.1)

Interestingly, the difference between w• and the equation of state w = �1
for the cosmological constant is inversely proportional to a, whereas the
tensor to scalar ratio is directly proportional to it,

r =
12a

N2 , (2.2)

where N corresponds to the remaining number of e-folds from the end of
inflation at the moment of generation of perturbations studied by WMAP
and Planck. This may help us either to rule out, or to confirm theories of
that type by a combination of searches for B-modes and investigation of
dark energy.

Note that this result is valid only if the cosmological constant is zero,
which provides us with an intriguing possibility to test this hypothesis.
Meanwhile in the theories with a negative cosmological constant, the uni-
verse eventually collapses. However, in some cases one may have a pro-
longed state of accelerated expansion, just as in the model proposed in
Ref. [91].

If the asymptotic value of the potential is positive (i.e. if the cosmological
constant is positive), and the quintessence field slowly rolls towards infinity,
the universe asymptotically approaches a de Sitter regime with

w• = �1 . (2.3)
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This is the most general regime that is relatively easy to achieve in the su-
pergravity constructions discussed here. Of course, if these models correctly
describe our world, the observations looking for deviations of quintessence
from the cosmological constant will not bring us anything exciting. But
there may be a silver lining here.

Indeed, the process of reheating in the models of quintessential inflation
is non-standard, and it can be very inefficient. In that case, the inflaton field
after the end of inflation may enter a long stage when its energy density
is dominated by the kinetic energy with w = +1. This simple fact affects
the number of e-folds N [84]. Indeed, as we will show, the number of e-
folds in the a-attractor models of quintessential inflation with gravitational
reheating can be greater than the corresponding number in the conventional
(non-quintessential) versions of a-attractors and in the Starobinsky model
by DN ⇠ 10. This is a significant difference, which may have important
observational consequences.

In particular, the general prediction of a attractors for ns is

ns = 1 � 2
N

. (2.4)

One can easily check that the difference between ns for conventional a-
attractors with N ⇠ 50 and a-attractor models of quintessential inflation
with N ⇠ 60 is about 0.006, which coincides with 1s error bar in the Planck
2015 results [82]. This increase in the value of ns and N is not very easy to
achieve otherwise, see e.g. Refs. [92, 93].

This suggests that future observations may be able to differentiate be-
tween the regular versions of inflationary a-attractors and their quintessen-
tial generalizations. More generally, we might be able to differentiate,
though somewhat indirectly, the cosmological constant and quintessence
without relying on extreme accuracy in measuring w. This is a rather
intriguing byproduct of the present investigation.

In this chapter we will also describe the models which involve two
different fields with a-attractor potentials. The first of these two fields (or
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the combination of the two) will be responsible for inflation, and the second
field will be responsible for quintessence. The resulting models are very
flexible; they are close in spirit to the models of multi-field cascade inflation
proposed in Ref. [94].

In addition to the current cosmic microwave background (CMB) experi-
ments, such as WMAP [95], Planck [96], ACTPol [97] and SPT-Pol [98], as
well as the Stage III CMB experiments like AdvACT [99] and SPT-3G [100],
and the future CMB Stage IV ground [101] and space based experiments
such as LiteBIRD [102, 103], aiming at more precise measurements of the
CMB B-modes, arguably the next leading cosmological probes are the large-
scale structure surveys, measuring baryon acoustic oscillations (BAO) and
the growth of structure through redshift-space distortions (RSD), as well
as weak gravitational lensing. There is a classification of the LSS surveys
similar to that of the CMB experiments. This includes Stage III experiments
currently taking data and continuing to do so for the next two or three
years, as well as Stage IV experiments that are currently being designed and
constructed to provide a large amount of high quality data in the next five
to ten years. The Stage III experiments include, for example, the Canada-
France Hawaii Telescope Lensing Survey (CFHTLenS) [104, 105], the Kilo
Degree Survey (KiDS) [106, 107], the Extended Baryon Oscillation Spectro-
scopic Survey (eBOSS) [108], and the Dark Energy Survey (DES) [109–111].
We however expect an exciting time to come when the Stage IV LSS surveys
start to deliver data. These include several ground based experiments such
as the Dark Energy Spectroscopic Instrument (DESI) [112, 113], the Large
Synoptic Survey Telescope (LSST) [114, 115], and the Square Kilometre
Array (SKA) [116–121], as well as the space based experiments Euclid [122,
123] and the Wide Field InfraRed Survey Telescope (WFIRST) [124, 125]. A
synergy of all these various probes of both early- and late-time observables
will provide invaluable information about the models of inflation and dark
energy.
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In this chapter, we perform an analysis of our a-attractor models of dark
energy in view of their implications for the current and future large-scale
structure surveys. We do not intend here to perform a comprehensive
comparison of our models to the current data or a detailed forecast analysis
of the models for the future LSS experiments (such a study is currently
ongoing). For some models, we base our discussions solely on simple
numerical computations of cosmic histories as well as dark energy and
effective equations of state, without going through a detailed comparison
to observations, to see whether these models can potentially provide viable
cosmologies. For some others, though, we perform a statistical analysis and
compare their predictions to geometrical constraints on the cosmic history
using a combination of current observational data, which we believe can
provide a sufficiently good understanding of our models and their viability.
We also discuss the implications of our findings for future cosmological
surveys and in particular ask the question of whether the more precise
measurements of dark energy properties will enable us to test our models
against LCDM. Here we similarly do not perform a detailed forecast
analysis of the models and are interested only in a rough estimate of the
testability of the models using future data.

2.2 asymmetric cosmological a-attractors

There are several different ways to introduce the theory of a-attractors, see
Refs. [76–81]. On a purely phenomenological level, the main features of all
of these models can be represented in terms of a single-field model with
the Lagrangian [80, 81]

1p�g
L =

R
2

�
(∂µf)2

2
�
1 � f2

6a

�2 � V(f) . (2.5)
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Here f(x) is the scalar field, and we use units where MPl = 1. The origin
of the pole in the kinetic term can be explained in the context of hyper-
bolic geometry of the field-space manifold. These geometries are natural
in extended supergravity, although they may also describe cosmological
models unrelated to supergravity. The parameter a can take any positive
value in the minimal N = 1 supergravity, but recent developments based
on extended supergravity, M-theory, and string theory favor 7 particular
choices: 3a = 1, 2, 3, ..., 7 [94, 126, 127].

In the limit a ! • this model coincides with the standard chaotic
inflation with a canonically normalized field f and the inflaton potential
V(f) [128]. However, for any finite value of a, the field f in (2.5) is not
canonically normalized, and must satisfy the condition f2 < 6a.

Instead of the variable f, one can use a canonically normalized field j by
solving the equation ∂f

1� f2
6a

= ∂j, which yields

f =
p

6a tanh
jp
6a

. (2.6)

The full theory, in terms of the canonical variables, becomes

1p�g
L =

R
2

�
(∂µ j)2

2
� V

�p
6a tanh

jp
6a

�
. (2.7)

Note that in the limit f ! 0 the variables f and j coincide; the main
difference appears in the limit f2 ! 6a: In terms of the new variables, a
tiny vicinity of the boundary of the moduli space at f2 = 6a stretches and
extends to infinitely large |j|. We will assume that the potential V(f) and
its derivatives are non-singular for f2  6a. In that case, generic potentials
V(f) = V(

p
6a tanh jp

6a
) at large |j| approach two infinitely long plateaus

with the heights corresponding to the values of V(f) at the two boundaries,

V± ⌘ V(f)|f=±
p

6a . (2.8)
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The simplest example of such a theory is given by the model with V(f) =
m2f2/2. In terms of the canonically normalized field j, the potential is
given by

V(j) = 3am2 tanh2 jp
6a

. (2.9)

This is the simplest representative of the so-called T-models, with the
T-shaped potential shown in Fig. 2.1.
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Figure 2.1: The potential V(j) = 3am2 tanh2 jp
6a

for a = 1, shown in units of 3m2, with j

in Planck units. For 1/3 < a < 10 one has ns ⇠ 0.965 and the tensor to scalar
ratio r is in the range from 3 ⇥ 10�2 to 10�3, providing a good match to the
Planck data.

For any values of a . 10, the amplitude of the inflationary perturbations,
the prediction for the spectral index ns, and the tensor to scalar ratio r
match observational data under a single condition [129]

V±
a

⇠ 3m2 ⇠ 10�10 . (2.10)

To understand what is going on in this class of theories for general potentials
V(f), let us consider, for definiteness, positive values of f and study a small
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vicinity of the point f =
p

6a, which becomes stretched to infinitely large
values of the canonical field j upon the change of variables f ! j. If the
potential V(f) is non-singular at the boundary f =

p
6a, we can expand it

in series with respect to the distance from the boundary,

V(f) = V+ + (f �
p

6a) V 0
+ + O

⇣
(f �

p
6a)2

⌘
, (2.11)

where we have introduced V 0
+ ⌘ ∂fV|f=+

p
6a.

In the vicinity of the boundary f =
p

6a, the relation (2.6) between the
original field variable f and the canonically normalized inflaton field j is
given by

f =
p

6a
⇣

1 � 2e�
p

2
3a j
⌘

, (2.12)

up to the higher order terms O
�
e�2

p
2

3a j
�
. At j �

p
6a, these terms are

exponentially small as compared to the terms ⇠ e�
p

2
3a j, and the potential

acquires the following asymptotic form

V(j) = V+ � 2
p

6a V 0
+ e�

p
2

3a j . (2.13)

The constant 2
p

6a V 0
+ in this expression can be absorbed into a redefinition

of the field j. This is the reason of the universal inflationary predictions,
given the inflation takes places at large j �

p
a.

In particular, the parameters ns and r describing the spectrum of infla-
tionary perturbations are given by

r =
12a

N2 , ns = 1 � 2
N

. (2.14)
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These results depend only on a and the number of e-folds N remaining
to the end of inflation since the moment when quantum fluctuations were
generated. Meanwhile, the amplitude of scalar perturbations for a-attractors
generated at the upper plateau of the potential (2.13) is given by

PR(k) =
N2

18p2
V+

a
. (2.15)

Thus the COBE/Planck normalization constrains the ratio V+/a [129].
Taking the value (2.208 ± 0.075) ⇥ 10�9 [130, 131] for PR and N ⇠ 60 e-
folds for inflation, we find the constraint on the height of the inflationary
plateau,

V+

a
⇠ 10�10 . (2.16)

These results were explained in Refs. [76, 78] and formulated in a partic-
ularly general way in Ref. [80]; the kinetic term in this class of models has
a pole at the boundary of the moduli space. If inflation occurs in a vicinity
of such a pole, and the potential near the pole has a finite first derivative,
all other details of the potential V(f) and of the kinetic term far away from
the pole are not important for making cosmological predictions. That is
why these models are called cosmological attractors.

The simplest model V(f) = m2f2/2 considered above is symmetric with
respect to the change f ! �f. However, this is not a universal property.
Consider, for example, its generalization [90] with the potential

V =
m2

2(1 + c)2 (f + c
p

6a)2 . (2.17)

In terms of the canonically normalized field j, the potential becomes

V =
3am2

(1 + c)2

�
tanh

jp
6a

+ c
�2 . (2.18)
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The coefficient (1 + c)�2 is introduced to preserve the height of the infla-
tionary plateau at j ! •.
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Figure 2.2: The potential (2.17) shown in units of am2 for a = 1, and c = 0 (blue), 0.3
(orange), 1 (red), and 1.9 (green).

For |c| < 1 this potential has a minimum and two asymptotically flat
shoulders of different heights, as shown by the orange curve in Fig. 2.2.
For c = 1 the minimum of the potential disappears and the left shoulder
describes a potential which exponentially decreases to zero at large, negative
values of j. Finally, for c < �1, the potential at large, negative j approaches
a constant value of V� = 3am2(c � 1)2/(c + 1)2. One can further modify
the potential by adding to it a constant of any sign, which is absolutely
legitimate from the point of view of the string theory landscape.

Historically, the first versions of a-attractor models have been developed
in Refs. [76–81] in the supergravity context, where the potentials could
be represented as f 2(f), where f (f) is a real holomorphic function of
the argument. That is why we started the discussion of a-attractors with
presenting models with a quadratic potential V(f). However, recently a
more general approach to a-attractors in supergravity has been developed
[94, 132], which allows us to describe models with arbitrary potentials
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V(f), including the simplest linear dark energy potential V(f) = gf + L
proposed as early as in Ref. [91].

In this chapter, we study V(j) at very large, negative j. Therefore we
will often identify L not with V(0), but with V�, the height of the potential
in this limit of large, negative j. This can be achieved by representing the
linear potential as V(f) = gf + g

p
6a + L. In terms of the canonically

normalized field j, this potential is given by

V(j) = g
p

6a(tanh
jp
6a

+ 1) + L , (2.19)

where L = V� is now the asymptotic value of the potential at j ! �•.
We illustrate the shape of this potential for various values of its parame-

ters in Fig. 2.3.
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Figure 2.3: The potential (2.19) has two plateaus, with V = V±. We illustrate its values for
V+ = 1 and V� = L = �0.1 (blue), 0 (green), and +0.1 (red).

At j �
p

6a the potential is given by

V = V+ � 2g
p

6a e�
p

2
3a j , (2.20)
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whereas at j ⌧ �
p

6a one has

V = V� + 2g
p

6a e
p

2
3a j . (2.21)

In general, the asymptotic behavior of asymmetric potentials V(j) at
large, negative values of the field, j ⌧ �

p
6a, is given by an expression

similar to (2.13),

V(j) = V� + 2
p

6a V 0
� e

p
2

3a j , (2.22)

where V 0
� ⌘ ∂fV|f=�

p
6a. Thus, as long as V 0

� is non-singular and does
not vanish,1 all such potentials have the same universal asymptotic behav-

ior at large, negative j: up to a shift j ! j �
q

3a
2 log(2

p
6a V 0

�) and a

redefinition
q

2
3a ! l, they can be represented in a more familiar way,

V(j) = L + elj . (2.23)

This general asymptotic expression will be very helpful in evaluation of
a-attractors as dark energy candidates.

To explain the basic idea, let us first consider the simplest case of L = 0.
Then we will have an exponential potential 2

V(j) = elj , (2.24)

1 If one fine-tunes the potential V(f) to have a minimum, or maximum, at one of the
boundaries f = ±

p
6a, the first derivative V0

� in (2.22), or V0
+ in (2.13), vanishes. This affects

the asymptotic behavior of the potential. For example, in the theory with the quadratic
potential (2.17) with c = 1, the asymptotic behavior at j ! �• is governed by the higher
exponent e2

p
2

3a j, which is equivalent to making a four times smaller.
2 The related effective models of accelerated expansion in string theory were proposed in

Ref. [133], and they lead to wDE < �1/3.
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where

l =

r
2

3a
. (2.25)

This potential vanishes in the limit j ! �•. For l ⌧ 1, the potential is
flat, the energy density of normal matter decreases faster than V, and the
system eventually enters the asymptotic regime of power-law inflation with
(see for example the review [134])

w• = �1 +
l2

3
= �1 +

2
9a

. (2.26)

It is interesting to compare this result with the inflationary predictions of
a-attractors (2.14): ns = 1 � 2

N , r = 12a
N2 . Thus, in this scenario, inflationary

predictions, as well as the value of w•, are determined by the parameter
a. In particular, for L = 0, and a = 7/3 (i.e. l ⇠ 0.53), which is one of the
values advocated in Refs. [94, 126, 127], the asymptotic equation of state of
dark energy is given by

w• = �0.905 . (2.27)

Note, however, that in the derivation of (2.26) we assumed that L = 0. This
assumption, which simplifies the investigation, is very hard to justify in the
supergravity framework. For any positive L one has

w• = �1 , (2.28)

but for large a the transition from w = �1 + 2
9a to w = �1 may take a long

time. On the other hand, while in the models with L < 0, the universe
eventually collapses, if l ⌧ 1 and |L| ⌧ 10�120, there is a very long
interval, potentially longer than the present age of the universe, during
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which w is very close to �1 [135]. Also, our universe may be very far from
the asymptotic regime discussed above. Therefore, one should keep the
estimate (2.26) in mind, but perform a more detailed analysis of different
dark energy models, as we will do in this chapter.

2.3 a-attractors and supergravity

2.3.1 General formulation, geometry, and special values of a

One of the nice features of all cosmological a-attractor models which we
will study here is that they can be easily embedded into the string theory
motivated supergravity where the scalar fields are complex. The most
advanced version of these models [94] is based on anti-D3-brane induced
geometric models — here we review these models in the simple case where
a bosonic model has a single inflaton-quintessence field.

There is one complex scalar Z, a coordinate of the Poincaré disk with the
following geometry

ds2 = 3a
dZdZ̄

(1 � ZZ̄)2 . (2.29)

Advanced formulations of a-attractors in supergravity also contain a
nilpotent superfield S such that S(x, q)2 = 0, whose Kähler geometry
represents the interaction between the anti-D3-brane and the background
fields, including the inflaton-quintessence field Z. The scalar component of
it, S(x), vanishes on the inflationary trajectory, since in this Volkov-Akulov
multiplet the scalar is not independent but is a bilinear of fermions. It is
convenient to use the geometric Kähler function formalism [94], where

G ⌘ K + log W + log W , V = eG(Gab̄GaGb̄ � 3) , (2.30)
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G = ln W2
0 � 3a

2
log

(1 � ZZ̄)2

(1 � Z2)(1 � Z̄2)
+ S + S̄ +

W2
0

|FS|2 + f (Z, Z̄)
SS̄ , (2.31)

and f (Z, Z̄) is an arbitrary, real function of Z and Z̄. This employs the
Kähler frame that has a manifest inflaton shift symmetry [136]. The potential
has a stable minimum at Z = Z̄. Its value along the inflaton direction
Z = Z̄ = tanh jp

6a
is given by

V|Z=Z̄ = f (Z, Z̄)|Z=Z̄ + L = f (tanh
jp
6a

) + L . (2.32)

Here, the cosmological constant L can take arbitrary values determined by
the choice of FS and W0:

L = F2
S � 3W2

0 . (2.33)

The choice of the Kähler potential for Z was made in Ref. [94] such that

K(Z, Z̄)|Z=Z̄ = �3a

2
log

(1 � ZZ̄)2

(1 � Z2)(1 � Z̄2)
|Z=Z̄ = 0 , KZ(Z, Z̄)|Z=Z̄ = 0 .

(2.34)

This Kähler frame leads to a simple relation between the inflaton potential
(2.32) and the S-field geometry gSS̄ = W2

0
|FS|2+ f (Z,Z̄)

. It also provides stabiliza-
tion of the sinflaton field Z � Z̄ at Z � Z̄ = 0.

In the disk geometry (2.29) 3a = R2 is a geometric parameter defining
the radius square of the Poincaré disk of the hyperbolic geometry of the a-
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attractor models, since by change of variables Z0 = Z
p

3a one can represent
the metric in the form

ds2 =
dZ0dZ̄0
�
1 � Z0Z̄0

3a

�2 , |Z0|2 < 3a . (2.35)

The parameter a also defines a curvature of the corresponding Kähler
manifold, RK = � 2

3a . Finally, one can return to the variables used in the
previous section by representing the real part of Z0 as fp

2
=

p
3a tanh jp

6a
.

The asymptotic freedom of the interactions of the field j with all other
fields protects the asymptotic flatness of the potential for any a. Thus, in
general quantum field theory models, as well as in N = 1 supergravity,
there are no constraints on a, it can take any value a > 03.

From the point of view of maximal supergravity, string theory, and
M-theory, the most interesting values of a are [94, 126, 127]

3a = 1, 2, 3, 4, 5, 6, 7 . (2.36)

An interpretation of this family of models is rather interesting. These models
describe 7 unit size Poincaré disks with 3a = 1 for seven different fields Zi.
The basic choice of a = 1/3 corresponds to a single unit size disk model
with Z1Z̄1 < 1. If all other fields are stabilized and cannot move, one has a

3 One should distinguish the general theoretical constraints on a and the model-dependent
cosmological constraints. In Ref. [84], the authors assumed 0.03 < a < 1/3. In a subsequent
paper [88], they noted that these conditions did not lead to a satisfactory dark energy model
in their scenario, and instead picked the range 1.5 < a < 4.2. However, they admitted
that the constraint a < 4.2 is not firmly motivated because of the asymptotic freedom
of the field j in a-attractors [137]. Meanwhile, we find that the condition a > 1.5 is
excessive, and it completely disappears in the models with a positive cosmological constant,
see section 2.5.3.2. In particular, in section 2.5.1 we will present a model with a positive
cosmological constant where one can have quintessential inflation for a . 10�2.
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single attractor with a = 1/3, where the corresponding field f1 can change
from �

p
2 to +

p
2. If all seven of them interact and are forced dynamically

to move together [94, 127], then each of them also moves from �
p

2 to +
p

2,
but the combination of these fields changes from �

p
14 to +

p
14, along the

diagonal of a 7-dimensional cube.
The choice of a = 1 describes a-attractor formulations of the Starobinsky

model and Higgs inflation. The fibre inflation model, which is based on
the large volume compactification in string theory, corresponds to a = 2
[138, 139]. The choice of a = 7/3, which we will sometimes use in various
examples, corresponds to the maximally symmetric realization of the 7-disk
M-theory model [94, 126, 127].

2.3.2 Suppressing the fifth force

There is a well known issue with quintessence regarding the fifth force
problem. This problem appears if the masses of particles in the standard
model depend on the quintessence field f.

Consider first an unrealistic example and assume that the electron mass
me receives a contribution Dme = g f. Then (in addition to electromagnetic
interactions) electrons would attract each other through the gravitational
force ⇠ (me+gf)2

r2 , as well as through an additional fifth force F5 ⇠ g2

r2 due to
the interactions via the nearly massless quintessence field f. This force will
have the same dependence on r as the gravitational attraction, but it will
not be proportional to m2

e, which would violate the equivalence principle.
An obvious way to avoid this problem is to suppress the interaction of

the standard model fields with quintessence. For example, as was already
observed in Ref. [88], the asymptotic freedom of the field j in a-attractors
[137] allows to exponentially suppress this coupling even if it were present.
However, the suppression of the fifth force should be extremely strong,
which may require very large values of j. In the a-attractor models to be
discussed in this paper, this may not be a problem since we do not introduce
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any direct coupling between f and electrons or quarks, which would lead
to the force F5 ⇠ g2

r2 discussed above.
However, one may wonder whether this coupling may appear in super-

gravity even if the field j belongs to the hidden sector, without a direct
coupling to the standard model fields. Fortunately, there is a specific feature
of our underlying supergravity models which helps to avoid the fifth force
issues. The coupling of the inflationary sector to matter in these models has
been studied in Ref. [140]. The inflaton-quintessence field is Z, and there is
also a nilpotent superfield S, as explained above. It has been found how to
construct the interaction between matter and the inflationary sector so that
the presence of the matter fields does not affect a successful inflationary
evolution and that there are no tachyons in the matter sector during and
after inflation.

One of the most important features of this class of models is the require-
ment of the flatness of the Kähler potential for the inflaton-quintessence
field Z, shown in Eq. (2.34). In particular, since the field Z � Z̄ orthogonal to
the inflaton direction is heavy and is stabilized at the inflaton-quintessence
trajectory Z = Z̄, one finds that

eK(Z=Z̄) = 1 , (2.37)

and there is no dependence of the mass of the matter fields on the inflaton
field via the Kähler potential since

KZ(Z = Z̄) = 0 . (2.38)

These features of the Kähler potential have been discussed in Ref. [141]
as the reason for the fifth force problem to be alleviated in supergravity.
Our models, which were constructed with the purpose of stabilization of
the sinflaton field Z � Z̄ during the cosmological evolution, just satisfy the
properties required from the Kähler potentials in Ref. [141].
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Moreover, according to Ref. [140] one can construct satisfactory cosmo-
logical models where the mass of the matter field U does not depend on
the inflaton-quintessence field Z. Examples of such models in Ref. [140]
include the following Kähler potential and superpotential:

K(Z, Z̄) = �3a

2
log

(1 � ZZ̄)2

(1 � Z2)(1 � Z̄2)
+ SS̄ + UŪ , (2.39)

W = g(Z) + S f (Z) +
m
2

U2. (2.40)

For our purposes, we need to assume that g(Z) has a negligible dependence
on Z or is completely Z-independent, and the same for the parameter m in
the superpotential. The mass eigenvalues of the scalar field U are

µ2 = V + |g|2 ± |g|m + m2 . (2.41)

The value of the potential V during the quintessence stage is negligible,
V ⇠ 10�120. The rest of the mass formula is Z-independent by the choice of
the parameters in the superpotential. The situation with fermions is similar,
their masses are Z-independent (see Ref. [140] for more details). This means
that with a proper embedding of the standard model in our theory, matter
fields decouple from quintessence. Such models do not suffer from the fifth
force problem.

2.4 single-field quintessential inflation models

2.4.1 Inflationary dynamics, late-time evolution, and cosmic acceleration

In this section, we focus on several interesting models where a single scalar
field f is responsible for both inflation and dark energy. The action for
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these single-field, a-attractor, quintessential inflation models has the general
structure

S =
1
2

Z
d4x

p
�gR �

Z
d4x

p
�g

 
∂µf∂µf

2
�
1 � f2

6a

�2 + V(f)

!
+ Smatter[gµn, Y]

(2.42)

where the scalar field f has a potential V(f). Here Smatter is the matter
action where matter fields are denoted collectively by Y. Note that we have
absorbed any cosmological constant term L into the potential. This action
can be rewritten in terms of the canonical field j, as discussed earlier.

Before we discuss specific models, defined by assuming specific forms
for the potential V(f), we briefly review the general dynamical equations
and some important quantities for the studies of cosmic histories, during
inflation and after that.

During inflation, matter and radiation are both negligible, and the dy-
namics of our system is given by

3H2 =
1
2

j̇2 + V(j) , (2.43)

j̈ + 3H j̇ +
d

dj
V(j) = 0 , (2.44)

where H ⌘ ȧ
a is the Hubble parameter, and a dot denotes derivatives with

respect to cosmic time. It is useful to work with the number of e-folds
N ⌘ ln a as a time coordinate. Denoting a derivative with respect to N by a
prime, we have dj

dt = j0H. Introducing slow-roll parameter as

e ⌘ � H0

H
, (2.45)
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we will have

H2 =
V(j)

3 � 1
2 j02

, (2.46)

j00 + (3 � e)j0 +
1

H2
d

dj
V(j) = 0 , (2.47)

e =
1
2

j02 . (2.48)

Note that here we have not made any slow-roll approximation for e, and
all the expressions are exact. The second slow-roll parameter h has the
form,4

h ⌘ e0

e
. (2.50)

One can solve Eqs. (2.46)-(2.48) numerically to obtain the evolution of j,
H, e, and h during inflation, as we will do for our quintessential inflation
models in this chapter. In addition, given e and h, we can compute two
other important inflationary quantities, namely the spectral index for scalar
perturbations ns and the tensor-to-scalar ratio r — assuming the approximate
relations between these quantities we have

4 Note that here we have adopted the definition of h from e.g. Ref [142]. There exists another
definition for this second slow-roll parameter, namely [143]

h̃ ⌘ � j̈

H j̇
= �

d ln |H,j|
dN

= 2
H,jj

H
=

d ln |j̇|
dN

, (2.49)

where H,j ⌘ d
dj H and H,jj ⌘ d

dj H,j. h̃ is related to our h by h̃ = e � 1
2 h. The spectral index

ns now has the form ns ⇡ 1 + 2h̃ � 4e, and since e ⇡ ev and h̃ ⇡ h̃v � ev, where ev and h̃v
are the slow-roll approximations to e and h̃, respectively, we have that ns ⇡ 1 + 2h̃v � 6ev.
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ns ⇡ 1 � 2e � h , (2.51)
r ⇡ 16e . (2.52)

Later in this paper, we will discuss several observational constraints on
the parameters of the quintessential inflation models that we consider in
this work, and for that we will scan over the parameters of the models and
compare their theoretical predictions to the data. It is therefore important
to have an idea for theoretical priors on the values of the parameters
in the potential, for a given model, which can provide viable inflation.
This can be achieved by applying the approximate constraint placed on
the inflationary potentials from the requirement that the power spectrum
of curvature fluctuations after inflation should match the COBE/Planck
normalization, as discussed in section 2.2. Assuming a slow-roll regime for
inflation, i.e. neglecting the terms including j0 and j00 in Eqs. (2.46) and
(2.47), respectively, the equations simplify to

H2 =
1
3

V(j) , (2.53)

3j0 +
1

H2
d

dj
V(j) = 0 . (2.54)

In this slow-roll regime, the potential is related to the power spectrum
of primordial curvature perturbations PR(k) through the COBE/Planck
normalization equation,

V(j)3

(dV(j)/dj)2 = 12p2PR(k) , (2.55)

see e.g. Ref. [144]. By solving these equations in the slow-roll approximation,
one finds that in the large N approximation the results for ns, r, and the
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amplitude of perturbations for a attractors are given by Eqs. (2.14), (2.15)
and (2.16).

In order to see whether a model of quintessential inflation is able to
describe the dynamics of the universe after inflation, we need to add matter
and radiation to the system of equations (2.46)-(2.48). In this case, the
equations are modified as

H2 =
V(j) + rM + rR

3 � 1
2 j02

, (2.56)

j00 + (3 � e)j0 +
1

H2
d

dj
V(j) = 0 , (2.57)

e =
1
2
�

j02 � r0
M + r0

R
3H2

�
, (2.58)

where rM and rR are the energy densities of matter and radiation, respec-
tively. They can be written as

rM = 3H2
0 WMe�3N , (2.59)

rR = 3H2
0 WRe�4N , (2.60)

with WM and WR being the present values of density parameters for matter
and radiation, respectively, and H0 is the present value of the Hubble
parameter. We can solve the set of Eqs. (2.56)-(2.60) numerically and obtain
the cosmic evolution in terms of H for a specific model and for a set of
parameters. This can then be compared to the cosmological measurements
of H and therefore constrain the model. We should however note that
one important ingredient in solving the evolution equations is the initial
conditions for the field j. This is set by the reheating mechanism after
inflation, as we will discuss in section 2.4.2 below.
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At this stage it is useful to remember about two quantities. The first one
is the equation of state wDE of the scalar field:

wDE ⌘ pDE

rDE
=

1
2 j02H2 � V(j)
1
2 j02H2 + V(j)

, (2.61)

where rDE and pDE are the dark energy density and pressure, respectively,
and V(j) is again the dark energy potential (which, as we discussed, can
in principle contain a piece from the cosmological constant L). wDE for a
pure L is �1.

Similarly to the slow-roll quantity e for inflation, a useful quantity for
late-time evolution of the universe is the so-called effective equation of state
weff, defined as

weff ⌘ �1 � 2
3

Ḣ
H2 = �1 +

2
3

e . (2.62)

During radiation and matter domination epochs, weff becomes 1/3 and 0,
corresponding to e = 2 and 3/2, respectively. In LCDM, the dark energy
domination epoch corresponds to weff = �1 (e = 0).

We can study in more detail the behavior of dark energy in a given model
by parameterizing the dark energy equation of state wDE in terms of the
two so-called Chevallier-Polarski-Linder (CPL) [145, 146] parameters w0
and wa through

wDE(z) = w0 + waz/(1 + z), (2.63)

where z is the redshift. This parameterization is however valid only near the
present time (i.e. in the range �1 . N . 0, with N = 0 corresponding to
today). However, even though Eq. (2.63) cannot be used to fit the equation
of state at early times or in the future, it gives a rough idea of how much
the models deviate from LCDM at present time. w0 and wa are also the
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parameters used in the definition of the figure of merit for the upcoming Stage
IV large-scale structure surveys to quantify how well they can distinguish
dark energy and modified gravity models from LCDM. We will therefore
compute also w0 and wa for our models below.

It is important to note that it is weff (and not wDE) which is used in direct
comparison of the dynamics of the universe in a given model to the cosmo-
logical data, and one cannot directly constrain wDE without parametrizing
it. Even though parametrizations of wDE are helpful in comparison of a
model to the data, a detailed statistical analysis is always required in order
to test and constrain the model.

2.4.2 Gravitational reheating versus instant preheating

The conventional mechanism of reheating after inflation is associated with
a period of oscillations of the inflaton field at the minimum of its potential.
In quintessential inflation, where the inflaton field does not oscillate, this
mechanism does not work, and is replaced by gravitational reheating [89,
147, 148], which occurs due to particle production in changing gravitational
background [149–151], and instant preheating [152–154]. Out of these two
mechanisms, the gravitational reheating is the least efficient but the most
general one, so we start with describing it here, limiting ourselves to simple
estimates.

Inflationary quantum fluctuations of a light scalar field produced during
inflation have the energy density of r ⇠ 3H4

8p2 [155]. When inflation stops,
some of this energy converts to the energy of scalar particles. This is an
oversimplified way to describe the effect of particle production during
inflation, but it shows a special role of the light scalar particles in this
process. For example, massless vector particles are not produced, massless
fermions are not produced, massive particles with masses much greater
than H are not produced. Following Refs. [89, 147], and ignoring factors of
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O(1), one can estimate the energy of the produced particles at the end of
inflation as

rgr ⇠ 10�2H4
end ⇠ 10�3r2

end ⇠ 10�2V2
end . (2.64)

Here H4
end and rend ⇠ 2Vend are, respectively, the Hubble constant and the

inflaton energy at the end of inflation, which happens at some field j end
when the kinetic energy of the field approaches Vend and the universe stops
accelerating.

The energy density rgr subsequently decreases as a�4 due to the expan-
sion of the universe, as long as the produced particles have masses much
smaller than H, which is the case for the flat quintessence potentials.

If the potential after inflation is very steep, as is the case in the single-field
models to be considered below, soon after inflation the scalar field falls
down and almost all of its energy proportional to V becomes converted to
its kinetic energy rkin = 1

2 j̇2. Thus in the first approximation rkin ⇠ V. This
kinetic energy corresponds to the equation of state w = +1, and decreases
as a�6.

Thus, shortly after inflation the universe enters the regime of kinetic
energy domination, which is sometimes called kination, but this regime
ends when rkin ⇠ renda�6 becomes smaller than rgr ⇠ 10�3r2

enda�4. This
happens at a2 ⇠ 103r�1

end, when the energy density of radiation produced by
reheating was rreh ⇠ 10�9 r4

end. The energy density scale rend at the end of
inflation in a-attractors is typically in the range close to rend ⇠ 10�10 in the
Planck density units. In that case one finds rreh ⇠ 10�49 in Planck density
units, or, equivalently rreh ⇠ (106GeV)4.

After that, the field j continues rolling towards its large negative values
until it freezes at some value jF due to the famous Hubble friction term
3H j̇ in its equation of motion. Eventually, after the densities of radiation
and cold dark matter become sufficiently small, the field j starts rolling
down again. The final results of the investigation of the equation of state of
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all matter in the universe depend on the value of jF. This value has been
estimated in Ref. [84], with the final result that in realistic models with
gravitational preheating one may expect

|Dj| = |jF � jend| ⇠ 43 . (2.65)

Note that this does not necessarily mean |jF| ⇠ 43 as stated in Ref. [84],
where the authors have considered the case with a ⌧ 1 rendering jend
negligible. Meanwhile for a = 7/3 the end of inflation in the model studied
in Ref. [84] occurs not at jend ⇠ 0, but at jend ⇠ 8, which implies jF ⇠ �35.

The value of |jF| may become much smaller if one takes into account the
possibility of instant preheating [152–154]. This effect occurs if we consider
interactions of the field j with some other fields.

For example, one may add to the original theory (2.5) a massless field
s interacting with f as g2

2 f2s2. When the field f moves through the point
f = 0 with velocity ḟ0, it creates particles s in the small vicinity of the
point f = 0, with the width |Df| ⇠

p
ḟ0/g. The value of ḟ0 in our problem

is always smaller than p
rend . 10�5. Therefore, for sufficiently large g

one has
p

ḟ0/g <
p

6a. In that case, particle production occurs in a small
region where f ⇡ j, and the old results of Refs. [152–154] derived for the
canonical field j apply. These results show that the density of massless
particles s, created when the field j passes through the point j = 0 is
given by

ns =
(gḟ0)3/2

8p3 . (2.66)

Then the field f continues rolling further, giving each particle s a mass
g|f|. This creates a gas of particles s with the energy density

rs =
(gḟ0)3/2

8p3 g|f| . (2.67)
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This potential grows in both directions away from f = 0. For sufficiently
large g, this may lead to a temporary trapping of the field f near f = 0 [154].
The field continues oscillating near this point until it loses some energy, par-
ticle production becomes inefficient, and the previously produced particles
become diluted either by cosmic expansion or through their decay. Then the
field f resumes its rolling downhill. If instead of a single interaction term
considered above one considers a more general interaction Â g2

i
2 (f � fi)2s2

with |fi| ⌧
p

6a, one may have a chain of particle production events at
each point f = fi [154, 156].

It is not our goal here to study all the regimes that are possible due to
instant preheating; see Refs. [88, 152–154, 156] for a discussion of other
possibilities. The efficiency of this process is controlled not only by the
values of the couplings gi, but also by the possibility of the decay of particles
s. This suggests that by a proper tuning of this scenario one may achieve
freezing of the field j much earlier than in the gravitational reheating
scenario. Therefore, in our subsequent analysis we will examine a broad
range of possible values of jF.

2.4.3 Spectral index: Comparison with the non-quintessence scenario

The calculation of the inflationary parameters ns and r in quintessential
inflation have some distinguishing features. As we will show shortly, extend-
ing the results of Refs. [84, 88, 157], predictions for ns and r in quintessential
inflation may differ rather significantly from the ones in the more traditional
versions of a-attractors, which do not have a stage of kination where the
energy density of the universe is for a long time dominated by the kinetic
energy of the inflaton field. This may give us a novel possibility to test
quintessential inflation with gravitational reheating and a long stage of
kination.
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Let us remember that the values of ns and r for a-attractors are given by

ns = 1 � 2
N

, r =
12a

N2 , (2.68)

where N is the number of e-folds corresponding to the moment of produc-
tion of the perturbations with momentum k⇤ generated when the potential
was equal to V⇤ = V(j⇤).

We use the standard equation for the required number of e-folds, see Eq.
(47) and a description of the notations in Ref. [82]:

N ⇡ 67 � ln
✓

k⇤
a0H0

◆
+

1
4

ln

 
V⇤

M4
Pl

!
+

1
4

ln
✓

V2
⇤

rend

◆
(2.69)

+
1 � 3wint

12(1 + wint)
ln
✓

rreh
rend

◆
� 1

12
ln(gth) . (2.70)

Using this equation, one can calculate the required number of e-folds N for
any model based on a-attractors. Unless one studies models with extremely
large or extremely small a, one has rend ⇠ V⇤ = O(10�10), with some
variations which typically do not affect too much the value of the term
1
4 ln

⇣
V2

⇤
rend

⌘
. The main difference between N for different a-attractors can be

attributed to the term DN = 1�3wint
12(1+wint)

ln
⇣

rreh
rend

⌘
.

In the simplest a-attractor models, as well as in the Starobinsky model,
which can be represented as an a-attractor with a = 1, after inflation
one typically has wint = 0, i.e. DN = 1

12 ln
⇣

rreh
rend

⌘
. In supergravity-based

a-attractors and in the simplest versions of the Starobinsky model one often
encounters an inefficient reheating with the reheating temperature Treh ⇠
109 � 1011 GeV. For Treh ⇠ 1010 GeV and assuming O(100) different types
of particles in thermal equilibrium after reheating, one finds DN ⇠ �4.

Meanwhile, in the quintessential a-attractors with gravitational reheating
and a long stage of kinetic energy domination, one has DN = � 1

12 ln
⇣

rreh
rend

⌘
.
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Notice the important sign change. Using the numerical estimates made in
section 2.4.2, one finds DN = +7.5. This particular number is rather sensi-
tive to various assumptions on the energy scale of gravitational reheating,
but let us take it at its face value. It shows that the required number of
e-folds N in the quintessential a-attractor models can be greater than the
one in the more conventional a-attractors or in the Starobinsky model by
DN ⇠ 10.

As a result, the value of ns in quintessential a-attractors with gravitational
reheating is typically greater than in more traditional models by about 0.006.
This number coincides with one standard deviation in the Planck results
[82]. Thus, by a more precise determination of ns, which can be achieved in
the future, we may be able to distinguish quintessential a-attractors with
gravitational reheating from other models with more efficient reheating
and without a long stage of kinetic energy domination. This result may
become quite interesting for development of inflationary models if more
precise observations shift ns towards greater values as compared to the
Planck 2015 results [82]. Moreover, further improvement of the accuracy
of the measurement of ns may help us to distinguish the conventional
inflationary models with the cosmological constant from the models of
quintessential inflation, even if the equation of state of dark energy almost
exactly coincides with w = �1.
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2.5 examples of single-field models of quintessential infla-
tion

2.5.1 Linear potential

We begin with the a-attractor version of the simplest linear dark energy
potential [91]

V(f) = gf + L . (2.71)

In terms of the canonically normalized field j, this potential is given by

V(j) = g
p

6a(tanh
jp
6a

+ 1) + L . (2.72)

At j � +
p

6a and L ⌧ g
p

6a the potential is given by

V(j) = 2g
p

6a(1 � e�
p

2
3a j) , (2.73)

whereas at j ⌧ �
p

6a one has

V(j) = L + 2g
p

6a e
p

2
3a j . (2.74)

From the COBE/Planck normalization (2.16), we find a constraint

gp
a

⇠ 2 ⇥ 10�11 . (2.75)

One could expect that the simplest linear model (2.71) with L = 0 can
be used as a model of quintessential inflation if one takes a & 1; see e.g.
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Figure 2.4: Linear potential V = 1
2
p

6a
(
p

6a + f) + L = 1
2 (1 + tanh jp

6a
) + L for a = 10�2

and L ⇠ 10�120. The tiny cosmological constant L is crucial for the validity of
our scenario, but L is so small that it is invisible in this figure.

(2.26) and (2.27) for a = 7/3. However, one can check that in this model
with a > 1/3 the inflationary slow-roll parameter e always remains smaller
than 1 and inflation never ends.

This problem can be solved by using a ⌧ 1, for example a = O(10�2),
and adding a small cosmological constant L ⇠ 10�120, see Fig. 2.4. In that

case, inflation does end in a vicinity of j = 0, at jend ⇡
q

3a
8 ln 1

3a ⇠ 0.2.
Then the field j rolls down until it freezes at some value j = jF depending

on the efficiency of reheating, see section 2.4.2. If |jF| >
q

3a
2 ln L

2g
p

6a
, then

the potential (2.72) is dominated by the positive cosmological constant L.
In that case, at the moment when the field starts moving again, the universe
gradually enters the stage of expansion dominated by the cosmological
constant L with the equation of state wDE = �1.

To go beyond the simple estimates given above and in order to determine
the range of possible values of jF required in this scenario, we performed a
numerical analysis for two different values of a = O(10�2). Figs. 2.5 and 2.6
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show the effective equation of state weff (thick, blue curves), as well as the
equation of state of dark energy wDE (thick, orange curves) for this linear
potential and for two illustrative choices of a = 0.02 and a = 0.005, and for
different choices of jF. In both cases, L has been set to 0.7rc, with rc ⌘ 3H2

0
being the present value of the critical density, providing a total dark energy
density today in agreement with observational data. The value of g

p
6a

has been set to 2.57 ⇥ 10�12 and 6.4 ⇥ 10�13 for a = 0.02 and a = 0.005,
respectively, in order to obtain a correct inflationary scale; see (2.15) and
(2.75). In addition, we have presented weff for LCDM in each case (thin,
black curves) for comparison.
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Figure 2.5: Evolution of the equation of state as a function of the number of e-folds N
after reheating for the linear potential g

p
6a(tanh jp

6a
+ 1) + L with L = 0.7rc

and a set to 0.02. The panels in the clockwise direction, starting from the top
left, correspond to jF = �43, jF = �36, and jF = �33, respectively. The blue
and orange curves in each case correspond to weff and wDE, respectively, and
we have also shown weff for LCDM with a thin, black curve for comparison.
N = 0 corresponds to the present time.
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For a = 0.02, we have plotted three cases with jF = �43 (top left panel),
jF = �36 (top right panel), and jF = �33 (bottom panel). Looking first
at weff for jF = �43 we see that the desired cosmic history has been
recovered although the evolution of weff shows a small difference from the
LCDM model at around N = �2. wDE in this scenario, however, shows a
significant difference compared to the standard model — wDE is not �1
always, contrary to a pure L, and has a bump at late times. For jF = �36,
we see that although the late-time behavior of weff is almost identical to
that of LCDM, it shows a difference at early times (N . �10), and wDE
is drastically different from a pure L dark energy. By increasing jF to
�33, we now see that the times earlier than N ⇠ �8 (corresponding to the
matter-radiation equality in LCDM) are strongly affected by the dynamics
of the scalar field. We no longer recover a radiation domination epoch as
in LCDM, and weff goes all the way to +1 back in time rather than 1/3
for radiation. This can be understood by looking at how wDE behaves at
early times. The inflaton is in a kination phase at N . �5, and is dominant
over matter and radiation at N . �8, hence the effective equation of state
follows mainly the contribution from the inflaton and takes the value of
⇠ +1 at early times. Note that in this case the model does not give an early
dark energy as wDE is ⇠ +1 and not ⇠ �1.

Having this observation, let us systematically study different scenarios
depending on the value of jF. Our numerical investigation of the model
with a = 0.02 reveals three different possibilities:

• �43 6 jF . �34: jF ⇡ �43 is the lowest value that jF is allowed to
take due to the reheating constraints, see section 2.4.2. For the entire
range of [�43, �34] we obtain a dark energy which, while provides
viable cosmologies over the entire history, it predicts deviations from
a pure L that are detectable by future observations. For example,
for the two ends of the range, jF = �43 and jF = �34, we obtain
w0 ⇠ �0.936 and wa ⇠ 0.192, and w0 = �0.956 and wa = 0.119,
respectively, which both should be detectable by the future Stage IV
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large-scale structure surveys, see section 2.5.3.2. In addition, for this
range we recover radiation and matter domination epochs which are
very similar to those of LCDM, with some small distortions due to
the fact that the scalar field is not completely subdominant at early
times; the larger the value of jF, the larger the distortions. weff and
wDE for another example of jF in this range are presented in Fig. 2.5
(top right panel) for jF = �36 with w0 ⇠ �0.956 and wa ⇠ 0.119.
Note that in this case we are dealing with a tracking solution, with
wDE mimicking the equation of state of the dominating background
fluid.

• �34 . jF . �32: In this case, the model is viable from the point of
view of late-time cosmology, with a L-like dark energy at late times
(w0 ⇠ �1 and wa ⇠ 0), the reason being that the L term is dominant
over the scalar field during this period. The very early times (N . �8)
in this range are however strongly affected by the scalar field, and
behave significantly differently from that of LCDM, i.e. we do not get
radiation domination at early times, but a domination by the inflaton
in a kination phase. The model therefore gives viable cosmologies
from the point of view of late-time observations, but we obtain no
radiation domination epoch at early times. An example of this case
has been presented in Fig. 2.5 (bottom panel) for jF = �33.

• �32 . jF: By increasing jF to values larger than ⇠ �32 the scalar
field stays in the kination phase for a longer period of time, and is also
dominant over matter and radiation for a longer period, resulting in
an extended epoch of weff = +1 at early times. Increasing jF to �30.5
already extends the domination of the scalar field with wDE = +1 all
the way to N ⇡ �5, which is the beginning of matter domination. The
more we increase jF, the longer the period of dark energy domination
(with wDE = +1), so that the model will give predictions that are in
clear contradiction with observations. Of course, for any values of jF
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the energy density of dark energy will eventually be dominated by
the cosmological constant with w = �1, but our numerical studies
show that this happens later and later in time when jF increases, and
the L domination eventually happens only in the future.

In summary, our analysis shows that the linear model with a = 0.02
provides viable cosmologies as long as jF remains in the relatively broad
range of ⇠ [�43, �34], while predicting detectable deviations from LCDM
that are sufficiently large for the model to be tested against LCDM. One
should note that larger values of jF all the way to about �32 can also
provide viable late-time cosmologies and only affect the epoch of radiation
domination in the early universe.

Let us now decrease a to 0.005. Fig. 2.6 shows the evolution of wDE and
weff for this scenario, but for three choices of jF = �22.5 (top left panel),
jF = �18 (top right panel), and jF = �16 (bottom panel). We see that for
jF = �22.5, the model already behaves almost identically to LCDM, with
wDE being �1 for the entire history. Clearly, for jF < �22.5 all the way to
our lower bound of �43, the model will remain like LCDM. Let us now
increase jF from �22.5 to �21.5 (not shown in Fig. 2.6). Our numerical
analysis gives w0 ⇠ �0.983 and wa ⇠ 0.050 in this case. This shows that the
deviations from a pure L increases by increasing jF. Increasing jF further
to ⇠ �16 still gives viable cosmologies, while the values larger than ⇠ �16
will make the early times (N . �8) completely affected by the kination
domination of the inflaton over radiation, and radiation domination will
be lost; the model, however, behaves like a pure cosmological constant
at late times, i.e. with w0 ⇠ �1 and wa ⇠ 0. An example of how weff
and wDE behaves for the range [�21.5, �16] is presented for jF = �18
(with w0 ⇠ �0.989 and wa ⇠ 0.030) in Fig. 2.6 (top right panel), while the
behavior of weff and wDE for jF = �16 is given in the bottom panel of the
figure. We see that dark energy for jF = �18 shows an evolution similar
to the previous case of a = 0.02 with jF = �36. For values of jF larger
than �16 we see a behavior similar to the case of �32 . jF for a = 0.02, i.e
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the epoch of dark energy domination in the kination phase gets extended
to later times, making the model more and more unviable by increasing
jF. We therefore conclude that the linear model with a = 0.005 provides
viable cosmologies for jF 2 [⇠ �21.5, ⇠ �16] with w0 and wa showing
deviations from LCDM, and for jF . �21 with dark energy behaving
almost identically to a pure L. The deviations for the range [�21.5, �16]
are not as large as the ones we obtained for a = 0.02, but might still be
detectable by the Stage IV LSS surveys.
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Figure 2.6: The same as in Fig. 2.5 but for a = 0.005. The panels in the clockwise direction,
starting from the top left, now correspond to jF = �22.5, jF = �18, and
jF = �16, respectively.

In conclusion, we have found a realistic model of quintessential inflation
based on the a-attractor model with a linear potential. This model requires

gp
a

⇠ 2 ⇥ 10�11, a . 0.02, and a cosmological constant in the anthropically
allowed range of L ⇠ 10�120. The smaller the value of a, the larger the
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range of jF for which viable cosmic histories exist, although deviations from
LCDM are expected to become less and less likely in the limit a ⌧ 0.01.

This is the simplest model of quintessential inflation based on a-attractors,
so let us pause here a little, before turning to other, more complicated
models. The linear potential V(f) = gf + L is the simplest potential ever,
and yet it was never used in inflationary theory until now, for a good reason:
This potential is unbounded from below, so unless g is extraordinarily
small, it leads to a rapid instability and a collapse of the universe. A linear
potential was used in Ref. [91] for describing dark energy and solving the
cosmological constant problem, but it required an extremely small constant
g . 10�120 to avoid the collapse of the universe within 14 billion years.

In our new model described in this section, we have gp
a

⇠ 2 ⇥ 10�11

(2.75), which is the standard inflationary requirement for the COBE/Planck
normalization. Thus g can be 110 orders of magnitude greater than in the
quintessence model of Ref. [91]. And nevertheless, we do not have any
vacuum instability, because in the context of a-attractors the potential is
defined only in the finite range |f| <

p
6a. The lower part of the potential

in this range becomes an infinite, exponentially flat plateau in canonical
variables.

By modifying the value of a and the strength of interaction of the field j
with matter, one can control the parameter w. One may also increase the
value of the inflationary spectral index ns by about one standard deviation
of the Planck 2015 results for ns. The only additional fine-tuning required
in this model, as compared to the more conventional models of inflationary
a-attractors, is the condition a . 0.02. It would be nice to find consistent
versions of such models with a = O(1), and especially with a = 1/3, ..., 7/3,
which are better motivated in extended supergravity, M-theory, and string
theory [94, 126, 127]. However, N = 1 supergravity does not impose any
constraints on a. From a purely phenomenological point of view, the re-
quirement a . 0.02 is not an unreasonable price to pay for a simple, unified
description of inflation and dark energy.
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2.5.2 Two-shoulder model with exponential potential

The next example to consider is the exponential two-shoulder potential
introduced in Ref. [90],

V(f) = M2e�2g
�
e

gfp
6a � 1

�2 . (2.76)

In the canonical variables, one finds

V(j) = M2e�2g
�
eg tanh jp

6a � 1
�2 . (2.77)

The potential has a minimum at j = 0. The general shape of such potentials
is illustrated by Fig. 2.7 for a toy model with M = 1, a = 1/3, and g = 2.
In realistic models, we need to take g � 1. In this limit, the right shoulder
has the height V+ = M2, and the left shoulder has the height V� = M2e�g.
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Figure 2.7: The potential (2.77) shown for a toy model with M = 1, g = 4, and a = 1/3. It
illustrates the main feature of the models of this class: two shoulders with an
exponentially large difference in their heights.
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An advantage of this model is that it can easily incorporate the exponen-
tially large hierarchy e2g between the inflationary energy scale V+ = M2 ⇠
10�10 and the dark energy scale V� = M2e�2g ⇠ 10�120. For a = O(1),
M ⇠ 10�5, and g ⇠ 126, this model fits all the inflationary data, and de-
scribes the present stage of acceleration driven by the effective cosmological
constant V� ⇠ 10�120. It is difficult to show the right and the left plateaus
in one figure, because the height of the right shoulder is 110 orders of
magnitude greater than the height of the left one. Therefore, we show only
the left shoulder of the potential and a small vicinity of its minimum in
Fig. 2.8.
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Figure 2.8: The potential (2.77) shown in Planck energy density units for M ⇠ 10�5,
g ⇠ 126, a = 1/3 (blue curve), 1 (yellow curve), and 7/3 (red curve). Inflation
begins at the right shoulder of this potential, which is not shown here because
it is 110 orders of magnitude higher. After that, the field rolls to the left
plateau, which almost immediately becomes flat. That is why it is practically
indistinguishable from the cosmological constant.
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The shape of the left plateau shown in Fig. 2.8 is determined by the
following asymptotic expression for V(j) at large negative j:

V = M2e�2g
⇣

1 � 4ge�ge
p

2
3a j
⌘

. (2.78)

The potential approaches V� = M2e�2g ⇠ 10�120, and the asymptotic
deviation from this value at large, negative j is suppressed not only by
the factor e

p
2

3a j, but also by an extra factor e�g ⇠ 10�55. This means that
the potential is extremely flat everywhere outside a small vicinity near
j = 0. One can check, for example, that the slow-roll parameter eV in this
model is smaller than 10�25 for j < 1. The simplest way to understand
it is to note that even the potential (2.76) in terms of the original variable
f is exponentially flat at the boundary of the moduli space f =

p
6a for

g � 1, and the transition to the canonical variables leads to an additional
flattening. As a result, a generic prediction for dark energy in this model is
w = �1.

In general, one may add an arbitrary constant L to the potential (2.77).
By adding a negative constant one may decrease the required value of
the parameter g. As one can see from Fig. 2.9, one can easily tune the
asymptotic value of the potential to be L = V� ⇠ 10�120 in accordance
with anthropic considerations.

Since we generically obtain w = �1 in this model, one may wonder
whether it has any merit over the simple LCDM. In fact, the model pre-
sented here demonstrates that one can easily construct a family of infla-
tionary models in which inflation ends without any need to stabilize the
inflaton field at the minimum of its potential. Even in the models where
the potential has an anti-de Sitter minimum with a negative cosmological
constant at j = 0, as in Fig. 2.9, one can safely live in a de Sitter-like state
on an exponentially flat low plateau. The flatness of the potential in this
model, just as in all other models considered in this paper, is protected by
the geometric origin of a-attractors.
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Figure 2.9: In the asymmetric potential with a minimum at V < 0 one can achieve ex-
ponential hierarchy of the heights V+ and V� with smaller values of g. For
illustration, in this figure we used M = 1, g = 1, a = 1/3, and added a constant
V0 = �0.047. By taking a slightly smaller value of V0, one can easily make the
asymptotic value of the potential L = V� ⇠ 10�120, as required by anthropic
considerations.

As we have already mentioned, further improvement of the accuracy
of the measurement of ns may help to distinguish this model and other
models of quintessential inflation from the more conventional a-attractors,
even if the equation of state of dark energy in quintessential inflation
almost exactly coincides with w = �1, see section 2.4.3. The possibility of
having a somewhat larger value of ns due to the long stage of kination in
this scenario may become very welcome in the future, depending on the
observational data.

2.5.3 Exponential potential

Let us now assume a simple exponential form for the non-canonical po-
tential V(f) where a free cosmological constant term L is also (implicitly)
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included. We will later fix L to specific values in order to construct two
specific working models with this potential.

The total potentials of our single-field, quintessential inflation models
have the structure

V(f) = M2eg( fp
6a

�1)
+ V0 , (2.79)

which, again with f =
p

6a tanh jp
6a

, gives

V(j) = M2eg (tanh jp
6a

�1)
+ V0 . (2.80)

At large, positive j this potential tends to the inflationary plateau with
V+ = M2 + V0, and at large, negative j it tends to the cosmological constant
L = V� = M2e�2g + V0. Instead of making a general investigation for
arbitrary V0 (or L), we concentrate here on two particular cases, which we
call Exp-model I and Exp-model II:

• Exp-model I: The constant V0 is set to zero. In this case the potential
for dark energy is solely the exponential one,

V = M2eg
�

tanh jp
6a

�1
�

. (2.81)

At large, positive j this potential tends to V+ = M2. Its asymptotic
value at large, negative j is given by the cosmological constant L =
V� = M2e�2g.

• Exp-model II: The constant V0 is set to �M2e�2g [84]. In this case
the potential for dark energy is

V = M2e�2g
⇣

eg
�

tanh jp
6a

+1
�

� 1
⌘

. (2.82)
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At large, positive j in the large g limit it reaches M2, as before, up to
an exponentially small correction �M2e�2g. It vanishes asymptotically
for large, negative j, i.e. L = V� = 0.

The ratio of V� to V+ in Exp-model I is given by

V�
V+

= e�2g ⇡ 10�110 ⇡ e�252 . (2.83)

An analogous relation should be valid for Exp-model II, but instead of V�
one should have the present value of dark energy Vtoday ⇠ 10�120. One can
view this property of our quintessential inflation models as a drawback,
since our potentials have a huge number built in. This is however the
price to pay for having one plateau of the model for the early universe at
about 10�10 in Planck density units, and another one for the current and
future acceleration at about 10�120. In the context of a phenomenological
model, however, we may view this as a parameter which is determined
observationally,

g ⇡ ln
H infl

H DE
. (2.84)

In such a case, we still have to find the working models which show a
consistent deviation from the cosmological constant dynamically.

Clearly, scenarios with other choices of V0 (and the resulting cosmological
constant L) are also possible in general, but as we will discuss later, our
Exp-models I and II are of particular interest, and capture all the interesting
features of the exponential potential. The two potentials for our Exp-models
I and II are shown in Fig. 2.10. Exp-model I (orange curve) has a constant,
nonzero asymptotic value for large, negative j, while Exp-model II (blue
curve) decreases to zero when j ! �•.
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Figure 2.10: The two quintessential inflation models with an exponential potential studied

in this work: Exp-model I (orange curve) with the form M2eg(tanh jp
6a

�1), and
a constant, nonzero asymptotic value for j ! �•, and Exp-model II (blue

curve) with the form M2e�2g
⇣

eg
�

tanh jp
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and a vanishing asymptotic
value.

2.5.3.1 Inflationary and late-time dynamics

Fig. 2.11 shows an example of the evolution of the inflationary quantities e
and h, introduced in section 2.4.1, for Exp-model II and for a typical set of
parameters with viable cosmologies. The parameters chosen for the plots
are the best-fit ones found through the comparison of the model to the
current late-time cosmological observations as described in section 2.5.3.2
below. In particular, a has been set to 7/3. The results for Exp-model I are
very similar and we do not present them here.

In each panel, the red, vertical line shows the end of inflation (i.e. when
e becomes unity), and N is the number of e-folds before that, such that the
end of inflation is at N = 0. Both e and h have very small values during
the inflationary period. N ⇡ 63 corresponds to the moment at which the
cosmological scales observed by the CMB experiments had left the horizon.
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Fig. 2.11 shows that e at the beginning of the last 63 e-folds has a value
very close to zero, and stays almost vanishing for a long period (which is a
necessary condition for slow-roll inflation), and then suddenly increases
and becomes of O(1); this ends inflation. The transition of e from almost
zero to 3 corresponds to a transition from slow roll (where the potential
dominates) to a kination period (where the kinetic energy dominates over
the potential). This transition is required for inflation to end, and in order
to enter a reheating phase. The second slow-roll parameter, h, is also small
during inflation and becomes of O(1) at the end of inflation. For both e
and h we have computed their exact values over time, i.e. Eqs. (2.45) and
(2.50), whereas the slow-roll values for these two quantities, which can be
written in terms of the potential and its derivatives, are valid only during
the inflationary period and not in general. The values of e and h measured
by the CMB are the ones at N ⇠ 63.

0204060
0.0

0.5

1.0

1.5

2.0

2.5

3.0

N

ϵ

0204060-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

N

η

Figure 2.11: Evolution of the slow-roll parameters e and h as functions of the number
of e-folds N before the end of inflation for Exp-model II and for a typical
set of parameters which give viable late-time cosmological histories. In each
panel, the red, vertical line depicts the end of inflation (i.e. when e becomes
of O(1)), and N = 63 corresponds to the moment at which the cosmological
scales observed by the CMB experiments had left the horizon.
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We can also solve the set of Eqs. (2.56)-(2.60) numerically and obtain the
cosmic evolution in terms of H for a given set of the free parameters WM, WR,
M2, and g. This can then be compared to the cosmological measurements
of H and therefore constrain the models. We should however note that
one important ingredient in solving the evolution equations is the initial
conditions for the field j. The initial value of j is the freezing value jF set
by the reheating mechanism after inflation, see section 2.4.2.

Let us recap the story. As discussed in section 2.4.2, the field takes
positive values during inflation, and rolls down the potential with its value
reducing with time and approaching zero. Around this time, and when
j ⇠ +8, reheating takes place and matter particles are produced. In case
the only reheating at work is gravitational particle production, which is
not a very efficient mechanism, the field continues rolling down to values
around �35 and then freezes. In case other reheating mechanisms, such as
instant preheating [152–154], are at work in addition to gravitational particle
production, reheating will be more efficient and the field will freeze earlier,
to values that can be much larger than �35; we call this value of the field
after reheating jF, at which j is frozen. The field remains frozen at jF for
some time after reheating until the Hubble friction becomes so low that the
field starts rolling down its potential again. The evolution of the field after
reheating and starting from the value jF determines the evolution of the
universe and cosmic histories at late times, i.e. from radiation domination
all the way to the present time.

Fig. 2.12 depicts an example of the evolution of the scalar field j as a
function of the number of e-folds N for the entire history of the universe
from inflation to late times, for both Exp-models I (left panel) and II (right
panel). These have been computed for the same set of parameters as the
ones used for computing the inflationary quantities of Fig. 2.11, providing
viable late-time cosmological histories. We have set the value of jF to �10
in both cases.
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The vertical, red bands depict the period after the end of inflation and
before the time at which the scalar field freezes, separating the inflationary
and late-time periods. Note that this period starts with a kination phase,
followed by radiation domination, after the occurrence of reheating. Since
the exact behavior of the field depends on the details of reheating, we have
shown this period of kination plus the start of the radiation domination by
a red band. The details of this period are not important for our numerical
and statistical analysis later, as long as we have the required information on
the initial conditions of the field for our late-time investigation. This boils
down to the values of jF used in our analysis, which we have ensured to
be achievable through our reheating mechanisms. The red bands should
therefore be considered only as a sketch for illustrative purposes, while the
inflationary evolution and the late-time dynamics shown in Fig. 2.12 are
the results of precise numerical computations. Note how the field behaves
differently in the future (N > 0) for the two models.

The evolutions of the effective equation of state weff as well as the equation
of state of dark energy wDE as functions of the number of e-folds N are
presented in Fig. 2.13 for both Exp-models I (upper panel) and II (lower
panel). The set of parameters used are the same as in Figs. 2.11 and 2.12
with viable late-time cosmological histories. The blue and green curves
depict, respectively, weff and wDE, and for comparison we have also shown
the effective equation of state for the LCDM cosmology (orange curve).
N = 0 corresponds to the present time. For computing these quantities,
and for both models, we have again set j to �10 and j0 to 0 initially.
These initial values have been set at N = �15, i.e. well inside the radiation
domination epoch.

First of all, the figures show that the evolutions of weff for both Exp-
models I and II closely follow the one for LCDM in the past, while there
are deviations in the future (N > 0). weff for Exp-model I approaches �1
asymptotically (when N ! +•), just as in LCDM, while its asymptotic



2.5 examples of single-field models of quintessential inflation 91

-80 -60 -40 -20 0 20 40-40

-30

-20

-10

0

10

N

φ

-80 -60 -40 -20 0 20 40-40

-30

-20

-10

0

10

N
φ

Figure 2.12: Left panel: Evolution of the scalar field j as a function of the number of e-folds
N over the entire history of the universe for Exp-model I and for the same
set of parameters used for computing the inflationary variables shown in
Fig. 2.11 with a viable late-time cosmological history. The vertical, red bands
depict the period after the end of inflation and before the time at which the
scalar field freezes, separating the inflationary and late-time periods. This
period includes kination and reheating. Note that the field rolls down during
inflation and kination (not shown), and then freezes after reheating (to �10
in this example), for almost the entire history until very recently when it
unfreezes again and starts rolling its potential; this is the onset of dark energy
domination. N = 0 corresponds to the present time. Right panel: The same
as in the left panel, but for Exp-model II. Note the different dynamics for j
compared to Exp-model I in the future (N > 0).

value in Exp-model II differs from �1. This asymptotic value w• for Exp-
model II is

w• = �1 +
2
3

1
3a

, (2.85)

which is a universal result that does not depend on the values of M2 and
g; it depends only on the value of a. It is this interesting situation, already
mentioned earlier in this chapter, where one geometric parameter a defines



92 dark energy, a-attractors , and large-scale structure surveys

-15 -10 -5 0 5 10

-1.0

-0.5

0.0

0.5

N

w

-15 -10 -5 0 5 10

-1.0

-0.5

0.0

0.5

N

w

Figure 2.13: Upper panel: Evolution of the equation of state as a function of the number of
e-folds N after reheating for Exp-model I and for the same set of parameters
used in Figs. 2.11 and 2.12 with a viable late-time cosmological history. The
blue and green curves show, respectively, the effective equation of state weff
and the equation of state of dark energy wDE. For comparison, the effective
equation of state for LCDM is also presented as an orange curve. N = 0
corresponds to the present time. Lower panel: The same as in the left panel,
but for Exp-model II.
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the deviation of w• from �1, as well as the level of primordial gravity
waves from inflation, see Eqs. (2.1) and (2.2).

Another interesting observation in Fig. 2.13 is the behavior of the dark
energy equation of state wDE, shown by green curves for both models.
Clearly, in both cases, wDE today deviates from the equation of state for L,
and is also different from its asymptotic value w• in the case of Exp-model
II. We will discuss this in more detail in the next section.

2.5.3.2 Comparison to observations, and constraints on parameters

We perform a statistical MCMC analysis of Exp-models I and II in order
to understand whether the models are cosmologically viable, how much
their parameters are constrained by cosmological observations, and to
which extent we expect deviations from the standard model. This will also
tell us whether the models can be distinguished from LCDM using the
current and upcoming cosmological surveys. For that, as mentioned in
section 2.1, we consider geometrical constraints on the cosmic history at the
background level using a combination of the redshift-luminosity relation of
supernovae [158], the observed angular scales of the CMB anisotropies [130],
measurements of the baryon acoustic oscillations (BAO) [159–163], and the
local measurements of the Hubble constant H0 [164].

Our aim in the present work is not an exhaustive and detailed comparison
of the models to observations, and the primary goal is to reach a qualitative
understanding of the models, their cosmological viability, and their dif-
ferences in terms of the observational implications. Additionally, contrary
to models of modified gravity for cosmic acceleration, minimally coupled
quintessence models (including ours) affect observations only through their
impacts on the background dynamics, and they do not directly affect cluster-
ing and growth of structure as well as other LSS observables such as weak
lensing. For these reasons we believe that the geometrical measurements
of the cosmic history on their own should provide sufficiently good con-
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straints on our models; we leave an extensive and detailed analysis of the
models using all the available cosmological observations, including those
involving the constraints from the full CMB temperature and polarization
power spectra, as well as galaxy clustering and weak lensing, for future
work where a perturbative analysis of the models will be performed and the
models will be implemented in a numerical Boltzmann code. Additionally,
here we do not perform detailed forecasts for future galaxy surveys using
for example a Fisher matrix approach.

Here, therefore, we use only a simple and rough criterion for a model to
be testable against LCDM: We assume a point in the parameter space of
the model to be distinguishable from LCDM if the corresponding w0 and
wa are different from the LCDM values of �1 and 0 by more than ⇠ 2%
and ⇠ 4%, respectively. These numbers are clearly only rough estimates,
and can be different depending on the specific experiments and probes
that are being considered. However, we believe that they are good (and
perhaps optimistic) estimates of what one will be able to reach using the
combination of various probes from the upcoming Stage IV large-scale
structure surveys and CMB experiments; see e.g. Ref. [122] for the values
that are targets of one of these experiments. In addition, the situation is
more subtle than using only the separate errors on w0 and wa, for example
because of possible correlations between the two parameters — in fact
a more proper way of using these errors is through the 2-dimensional
confidence contours for w0 and wa. However, since we do not intend to
perform a detailed statistical analysis in this chapter, and are concerned
more with a qualitative analysis of the models, we leave these subtle issues
to be addressed in future work.

Before we present and discuss the results of our statistical analysis based
on the cosmological data described above, let us use the expression (2.55) for
the COBE/Planck normalization discussed in section 2.4.1 and see which
constraints we can obtain on the values of the parameters in our potentials
solely from early-time (inflationary) physics. We will shortly see that the
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COBE/Planck normalization indeed provides us with an approximate
but a quite strong constraint on the two potentials M2eg(tanh jp

6a
�1) and

M2e�2g
⇣

eg
�

tanh jp
6a

+1
�

� 1
⌘

, for Exp-models I and II.
We should first note that on the tails of the potentials for large and

positive j, where we assume inflation to take place, the form of the effective
potential is approximated by the expression

V(j) = M2(1 � 2ge� 2jp
6a ) + V0 + O(e� 4jp

6a ) , (2.86)

where we have left the cosmological constant undetermined. Note that
even for Exp-model II with a nonvanishing V0, its contribution M2e�2g to
the potential (2.86) is exponentially small compared to the leading term
M2, by a factor of e�2g. We will see later that we need g to be ⇠ 125 in
order to obtain viable cosmic histories for both models, and therefore the
contribution from V0 to the inflationary potential (2.86) is negligible and
we can ignore it.

Integrating the slow-roll equations of motion over an arbitrary interval
[N1, N2] during the inflationary epoch we will get

Z j2

j1

V(j)
Vj(j)

dj = �
Z N2

N1

dN , (2.87)

where j1 and j2 are the values of the field at N1 and N2, respectively.
Assuming that both j1 and j2 are sufficiently large, we can use the approx-
imate expression (2.86) and arrive at

p
6a

4g

⇣p
6a

2
�
e

2j2p
6a � e

2j1p
6a
�
� 2g(j2 � j1)

⌘
= N1 � N2 . (2.88)

Now, choosing N1 to be the moment of horizon crossing Ncrossing for the
observable modes and N2 to correspond to the end of inflation Nend we
arrive at the approximate expression

e
2j⇤p

6a =
4

3a
gN , (2.89)



96 dark energy, a-attractors , and large-scale structure surveys

where j⇤ is the value of the field at the horizon crossing, and N ⌘ Nend �
Ncrossing is the number of e-folds corresponding to the duration of inflation
since the moment at which the observable perturbations left the horizon
until the end of inflation. In order to obtain Eq. (2.89) we have assumed
that the field has travelled at least a few Planck units between the horizon
crossing and the end of inflation, and therefore the term proportional to

e
2j1p

6a on the left-hand side of Eq. (2.88) is the dominant one; we ignore all the
other terms. For g ⇠ 125, and assuming N ⇡ 63, Eq. (2.89) gives j⇤ ⇠ 15.74
for a = 7/3, which is in full agreement with our numerical analysis; note
that jend ⇠ +8.

Let us now plug the asymptotic expression for our potential (2.86) into
the COBE/Planck normalization equation (2.55). Using Eq. (2.89) we arrive
at

M2 =
144p2aN

(2N � 3a)3 PR(k) . (2.90)

Taking into account that V+ ⇡ M2 and considering the limit N � a, we see
that this equation reproduces the previously mentioned general a-attractor
result (2.15).

Thus the COBE/Planck normalization constrains the ratio M2/a [129].
Assuming N ⇡ 63, using (2.90), and applying the measured value of PR,
we find that

M2

a
⇠ 10�10 . (2.91)

This means that this early-universe condition does not constrain M2 and/or
a separately, and the two parameters are degenerate as far as the COBE/-
Planck normalization is concerned. We will see later that this degeneracy
will be broken when the late-time cosmological data are used.
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Let us first focus on a = 7/3, which is an interesting case. In that case
M2 ⇠ 3 ⇥ 10�10. We will later discuss the dependence of our results on
a, as well as the constraints on a itself. We first scan over all the free
parameters of Exp-models I and II, i.e. M2, g, WM, and WR, as well as
the initial value of the field, jF, comparing the models to the (late-time)
cosmological observations described above. Note that although we do not
impose the COBE/Planck constraint in our numerical scans, we scan over a
range of log M2 around the value given by the COBE/Planck normalization
(2.91). Additionally, as we argued before, we expect jF for this potential to
be in the range [�35, +8], depending on the reheating mechanism — this is
the range we choose for our numerical analysis. We will see, however, that
because of the steepness of the potential for large values of jF, the effective,
viable range for jF will be ⇠ [�35, �5]. With all these, we scan over the
parameters and compare the cosmic histories with observations. Fig. 2.14
shows the obtained MCMC samples of log M2 and g (upper panels), as
well as of the two CPL parameters w0 and wa (lower panels) introduced in
Eq. (2.63). The color assigned to each point corresponds to the value of jF
and wa for the upper and lower panels, respectively, and the vertical, red
lines depict the value of log M2 given by the COBE/Planck constraint. The
figure shows that the constraints on g are quite tight for Exp-model I (left)
compared to Exp-model II (right).

We first focus on Exp-model II, which gives a wider region for g. The
color clearly shows that lower values of g correspond to larger |jF|. The
cut from below comes therefore from the fact that we imposed an upper
bound of 35 on |jF| in our scans, i.e. we did not allow jF to become smaller
than �35 due to gravitational reheating. (This means that in principle there
would be no lower bound on g if |jF| were allowed to take arbitrarily large
values.) The upper bound on g, on the other hand, comes from the fact that
if the field does not sufficiently roll down its potential after inflation and
before freezing, the model will not provide a viable cosmic history.
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Figure 2.14: Upper panels: Cosmological MCMC samples of log M2 and g for Exp-model
I (left panel) and Exp-model II (right panel) in term of jF, when it is allowed
to vary between �35 and +8. log M2 has been scanned over only in a range
around the COBE/Planck normalization value depicted by the vertical, red
lines. Lower panels: CPL parameters w0 and wa for the dark energy equation
of state, for Exp-models I (left panel) and II (right panel) as functions of jF.
The points cluster around w0 = �1 (model I) and w0 ⇠ �0.96 (model II) for
large, negative values of jF.

Focusing now on the left, upper panel in Fig. 2.14 for Exp-model I, we see
that the lower bound on g, for a given value of log M2, seems to be highly
strict and even increasing |jF| will not decrease g. This can be understood
if we remember again that Exp-model I possesses a cosmological constant
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limit. Increasing |jF| moves the field more and more on the tail of the
potential, and the model becomes more and more like LCDM. There is
however no possibility of decreasing the total potential energy of the field
further, as the scalar field only contributes with a positive energy on top
of the cosmological constant. Note that the g � log M2 degeneracy in these
plots can be understood by looking at the j ! �• limit of the models:

Exp � modelI : V(j) = M2e�2g(1 + 2ge2 jp
6a ) , (2.92)

Exp � modelII : V(j) = M2e�2gge2 jp
6a . (2.93)

The lower panels of Fig. 2.14 show how the CPL parameters w0 and wa
vary with jF in both models. First note that the viability regions are quite
thin, and already tight as far as the constraints from the cosmological data
are concerned. We have checked that by imposing the full COBE/Planck
constraint (2.91) these regions become only slightly thiner, which means that
the late-time data are quite constraining on their own, independently of the
strong constraint on the model imposed by the COBE/Planck normalization.
Second, we can clearly see that the models deviate more and more from
LCDM by increasing jF to less and less negative values, as illustrated
by the deviations in w0 and wa from �1 and 0, respectively. Note that all
the points shown in Fig. 2.14 are cosmologically viable, and therefore, by
having a sufficiently efficient reheating to stop the field from rolling too
much after inflation, we can expect a relatively large deviation from LCDM,
detectable by future cosmological surveys. The deviations are already quite
large around jF = �8 so that we do not obtain viable cosmologies for
larger values of jF. In addition, it is important to note that for Exp-model II,
the model does not predict the asymptotic value of w• = �1 + 2

9a (⇠ �0.9
in this case for a = 7/3) for the present value of the dark energy equation
of state. The closest value to w• it can reach is ⇠ �0.96 for large, negative
jF, and deviates more and more from it when jF increases.
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Let us now restrict ourselves to specific values of jF to see how much
deviation from LCDM we can expect for Exp-models I and II by decreasing
|jF|. This is interesting because specific, observed deviations from w0 = �1
and wa = 0 may constrain the initial value of the field after reheating,
and therefore in turn constrain the reheating mechanism itself within the
framework of these models.

The upper panel of Fig. 2.15 shows the results of our scans of Exp-
model I when jF has been fixed to three values �10 (red contours), �10.5
(blue contours), and �11 (green contours). Each set of contours shows
1s, 2s, and 3s confidence regions. The shaded, grey regions indicate the
planned sensitivity of the upcoming Stage IV large-scale structure surveys
in combination with the CMB measurements, which are expected to detect
deviations of up to ⇠ 2% and ⇠ 4% in w0 and wa, respectively, from the
LCDM values; see the discussion earlier in this section.

We first notice that the three sets of contours are extremely tight and
w0 and wa are strongly constrained, even though M2 in these numerical
scans is not set to the exact COBE/Planck normalization value, and the
range is relatively large. The constraints are already quite strong that even
though constraining M2 to the COBE/Planck-normalization value makes
the contours even smaller, it will not affect the results significantly. Our
results show that |jF| of around 10 or smaller will be detectable by future
LSS experiments. It is also interesting to note that the changes in w0 and
wa are highly sensitive to the value of jF; we do not expect to detect any
deviations from LCDM for |jF| larger than ⇠ 10.5 in Exp-model I using
the next generation of the LSS surveys. Our analysis also shows that for
values smaller than ⇠ 10, on the other hand, it becomes difficult to obtain
viable late-time cosmologies.

The upper panel of Fig. 2.15 shows the same as the lower panel, but for
Exp-model II, where red, blue, green, and orange contours correspond to
�10, �10.5, �11, and �12 for jF, respectively. The deviations from LCDM
in this model are generically larger compared to Exp-model I, and are
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Figure 2.15: Upper panel: Constraints on w0 and wa for Exp-model I, and for three cases of
jF = �10 (red contours), jF = �10.5 (blue contours), and jF = �11 (green
contours). The shaded, grey regions indicate a rough estimate of the target
sensitivity for Stage IV large-scale structure surveys in combination with CMB
experiments, expected to detect deviations of up to ⇠ 2% and ⇠ 4% in w0
and wa, respectively, from the LCDM values. Lower panel: The same as in the
left panel, but for Exp-model II. Here, red, blue, green, and orange contours
correspond to jF = �10, jF = �10.5, jF = �11, and jF = �12, respectively.
Note that all these cases for Exp-model II show detectable deviations from
LCDM.
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therefore more easily detectable by upcoming surveys; note how all four
contours are located outside the shaded, grey regions.

It is interesting to see what happens with Fig. 2.15 when the inflationary
constraints on M2 are relaxed. Fig. 2.16 shows the results of our scans
for Exp-model I when jF is fixed to the same three values of �10 (red
contours), �10.5 (blue contours), and �11 (green contours) as before. First
of all, the figure shows that the deviations can be as large as about 10% for
both w0 and wa if |jF| is allowed to take values as low as about 10. More
importantly, since here we have not imposed any inflationary constraints on
M2, the contours are continuously connected to the LCDM values w0 = �1
and wa = 0. We find similar results for Exp-model II, with the only main
difference that in that case the contours are no longer connected to the
LCDM point, as expected; we do not show them here for brevity.
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wa
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Figure 2.16: The same as in Fig. 2.15, but by fully relaxing the power spectrum normaliza-
tion.

Finally, we study the effects of varying a in our two exponential models I
and II, by leaving it as a free parameter. We have chosen a representative
value for jF and have fixed it to �10. The results are presented in Fig. 2.17;
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Figure 2.17: The dependence of w0 and wa on a for Exp-model I (left panel) and Exp-
model II (right panel). Here the inflationary power spectrum normalization
has been imposed as M2 ⇡ 10�10a and jF has been fixed to �10.

the left panel corresponds to Exp-model I, and the right panel corresponds
to Exp-model II. For Exp-model I, we now see that there is an upper
bound of ⇠ 4 on a in order for the model to provide cosmic histories
consistent with current data; a can however take any values smaller than
this bound. Exp-model II, on the other hand, now allows only values of a
in the approximate range of [0.5, 3.5] when jF is fixed to �10. In addition,
it is interesting to see that both w0 and wa show different behavior in terms
of a for the two models. The left panel of Fig. 2.17 shows that increasing a
enhances the deviation from LCDM in Exp-model I, while the right panel
shows that for Exp-model II both w0 and wa are extremized around some
intermediate values of a ⇠ 1.5, below and above which the deviations from
LCDM are larger.
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2.6 2-field quintessential inflation models

2.6.1 Dark energy and exponential potentials

As we discussed in section 2.2, the asymptotic expression for the a-attractor
potential at large negative j, Eq. (2.22), after a change of variables and a

redefinition
q

2
3a ! l can be represented in a more familiar way V(j) =

L + elj. These models with a vanishing cosmological constant L = 0 were
among the first candidates for the role of dark energy, see e.g. Refs. [165,
166]. However, unlike the dark energy model with the linear potential,
which was proposed a year earlier [91], the original models with exponen-
tial potentials discussed in Refs. [165, 166] did not provide a solution to
the cosmological constant problem. Some progress in this direction was
achieved only much later, in the models with the potential (2.23) and L < 0
[135]. Even though the models considered in Ref. [135] described single
field exponential potentials, the context of this theory was similar to the
linear model of Refs. [91, 167], which presumed the prior stage of inflation
driven by another field. Therefore, before discussing dark energy in the
context of two-field a-attractors, we describe and generalize the results of
Ref. [135], in the light of the string theory landscape developments.

Let us first consider the simplest case of L = 0. For l ⌧ 1 (a � 1/3), the
potential is flat, the energy density of normal matter decreases faster than
V, and the system eventually enters the asymptotic regime of power-law
inflation with

w• = �1 +
l2

3
= �1 +

2
9a

. (2.94)

Meanwhile in the models with a dS plateau, L > 0, the asymptotic value of
w is �1, but for large a the transition from w = �1 + 2

9a to w = �1 may take
a long time. In the models with L < 0, the universe eventually collapses,
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but if l ⌧ 1 and |L| ⌧ 10�120, there is a very long interval, longer than the
present age of the universe, when life as we know it can exist, and w is very
close to �1 [135]. Thus, one could argue that exponential potentials, as well
as a-attractors, can easily provide us with viable dark energy models with
w very close to �1, but still noticeably different from it. However, a more
detailed investigation shows that the situation is much more nuanced.

First of all, models with exponential potentials cannot simultaneously
describe inflation and quintessence. They support inflation for l ⌧ 1,
but then inflation never ends. A way around it is to assume, along the
lines of Ref. [91], that the potential of the dark energy field j is given by
V(j) ⇠ elj + L, but inflation is driven by some other field. Then, because of
inflationary fluctuations of the ultra-light field j, after inflation the universe
becomes divided into exponentially many exponentially large parts where
j takes different values, so that its potential energy V(j) takes all possible
values of L, including values many orders of magnitude higher than 10�120.
In each of these parts, the field j is locally very homogeneous. Thus, just
as in the linear model of Ref. [91], the universe becomes divided into many
parts with different values of the effective cosmological constant L + elj.
Therefore all values of the field j with L + elj � 10�120 are anthropically
forbidden.

Indeed, in the parts of the post-inflationary universe models with l ⌧ 1
and |L| ⌧ 10�120, the scalar field starts moving (very slowly, because
V 0 ⇠ lV ⌧ V) when the density of cold (and hot) matter of the universe,
which rapidly decreases during its expansion, becomes smaller than V(j).
If the field was frozen and starts moving at V(j) � 10�120, the universe
enters the regime of quasi-exponential expansion too early, which disrupts
galaxy formation.

If L is negative, but the initial value of V(j) ⇠ elj + L was positive,
the universe in these models may enter the stage of accelerated expansion
which may continue for a few billion years after that, until the universe
collapses [135]. However, this regime is possible only for l . 1, and only in
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some finite (l-dependent) range of L < 0 and post-inflationary values of
the field j [135].

On the other hand, if L is small but positive, L ⇠ +10�120, the universe
may enter the stage consistent with the presently available data for any
value of l, and for an infinitely large range of post-inflationary values of
the field j such that elj . 10�120. Only in a finite part of this range of
j does one have elj ⇠ L and w close to -1 but distinctly different from
it. Meanwhile in the infinitely large range of j, all the way down to �•,
one has elj ⌧ L. Therefore, for any given l, the anthropically viable
“phase space” of L and j is dominated by positive L ⇠ +10�120 and by
indefinitely large negative j, where dark energy is indistinguishable from
the cosmological constant, and the equation of state is given by w = �1
with an exponentially good accuracy. A similar conclusion was reached in
Ref. [168] for a broad class of dark energy models, though some exceptions
from this rule are possible, see e.g. Refs. [169, 170].

2.6.2 Non-interacting a-attractors

A similar conclusion can be reached in many models of two-field a-
attractors, if one assumes, as we did before, that the potential of the field f
responsible for dark energy is very small, and inflation is driven by some
other field c, not interacting with the field f. To illustrate this possibility,
we consider here a toy model of two non-interacting fields.

Let us consider an extended version of the a-attractor model, adding to
it a scalar field s with a non-canonical kinetic term:

1p�g
L =

R
2

�
(∂µf)2

2(1 � f2

6a )2
�

(∂µs)2

2(1 � s2

6b )2
� m2

2
s2 � gf � V0 . (2.95)
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As before, one can represent this theory in terms of two canonically nor-
malized fields,

f =
p

6a tanh
jp
6a

, s =
p

6b tanh
cp
6b

. (2.96)

The inflaton potential in terms of the canonically normalized fields j and c
becomes

V(j, c) = 3bm2 tanh2 cp
6b

+ g
p

6a tanh
jp
6a

+ V0 . (2.97)

We illustrate the general structure of this potential for a = b = 1 and some
particular (non-realistic) values of parameters such that 3bm2 � g

p
6a, and

V0 ⇡ g
p

6a, see Fig. 2.18. In that case the term 3bm2 tanh2 jp
6b

is responsi-

ble for inflation in this model, the dark energy potential g
p

6a tanh jp
6a

+ V0

is very shallow, and it approaches a small cosmological constant V� =
V0 � g

p
6a in the limit j ! �•, and V+ = V0 + g

p
6a in the limit j ! •.

Figure 2.18: The shape of the potential V(j, c) (2.97) for a = b = 1, 3bm2 � g
p

6a, and
V0 ⇡ g

p
6a.
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Inflation begins at the plateau with V(j, c) = 3bm2 � V+. This plateau is
almost exactly flat, so inflation may begin with an equally large probability
at any point of the plateau with c �

p
6b [171]. It ends when the field

c falls down to the dark energy valley with c = 0. Since the field j at
the beginning of inflation can take any value with (almost exactly) equal
probability because of a (nearly exact) shift symmetry of the potential in the
j direction, all values of the field j after inflation will be equally probable
as well.

In that case, one can use the same argument as the one we used for the
theory with exponential potential: After inflation, the fields roll down either
to the right plateau, or to the left plateau, but it is most probable that it
will end up extremely far from j = 0. By a proper choice of parameters,
including adjustment of the parameter V0, one can easily have the regime of
acceleration at the time t ⇠ 1010 years. However, with an overwhelmingly
large probability the absolute value of the field j after inflation will be
extremely large, and therefore this stage will be indistinguishable from the
pure cosmological constant with w = �1.

The same conclusion is valid for most of the dark energy models based
on the a-attractors with V(j) much smaller than the energy density of
the inflaton field c during inflation. Indeed, for most of such models the
asymptotic behavior of the potential V(j) in the limit |j| ! • is given by
one of the two asymptotic expressions (2.13) or (2.22). The asymptotic values
of the cosmological constant L along the two shoulders of the potential
is given either by V� or by V+. By adding a constant to the potential, one
can adjust at least one of these parameters to belong to the anthropic range
|L| . 10�120. Then all arguments given above apply.

Thus we see that one can easily obtain a viable dark energy model in any
model of a-attractors, with a very broad range of parameters and potentials,
as long as the value of dark energy potential V(j) is sufficiently small. But
the observational consequences of these models for the most general class
of initial conditions are practically indistinguishable from the predictions
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of the simplest cosmological constant models. This is good news from the
point of view of generality of the predictions, but perhaps not very good
news from the point of view of observers.

However, these conclusions were obtained under the conditions some of
which can be relaxed. For example, consider the same model as before, but
instead of the regime with 3bm2 � g

p
6a we may investigate an opposite

regime 3bm2 ⌧ g
p

6a. The potential in this case is shown in Fig. 2.19.

Figure 2.19: The shape of the potential V(j, c) (2.97) for a = b = 1, 3bm2 ⌧ g
p

6a, and
V0 ⇡ g

p
6a.

In this model, the potential at the first stage of inflation is dominated
by the quintessence potential V(j) = g

p
6a tanh jp

6a
+ V0, falling from the

high (red) plateau. Depending on initial conditions, inflationary scenario
can be realized in two distinct ways. In the first scenario, the initial value
of the field c is extremely large, and its potential is very flat. In that case,
the fields will first roll in the j direction and fall from the cliff to the
yellow plateau determined by the term 3bm2 tanh2 cp

6b
. Then there will

be a second stage of inflation driven by the field c, which ends at c = 0.
We call this scenario "cascade inflation" [94]. The value of the field j at the
end of inflation will be determined by the initial conditions, and by the two
stages of cascade inflation, including (for some initial conditions) a stage of
eternal inflation.
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On the other hand, if the initial value of the field c is relatively small,
and the field j is very large, then in the beginning of inflation, the field c
rolls down the valley with c = 0, and the subsequent stage of inflation and
quintessential evolution will be determined by the single field evolution of
the field j.

In the next section we will briefly describe a simple model of two inter-
acting attractors; as we will see taking into account interactions may open
many other possibilities.

2.6.3 Interacting a-attractors

Now we add an interaction term g2f2s2 to the potential of the model (2.95),

1p�g
L =

R
2

�
(∂µf)2

2(1 � f2

6a )2
�

(∂µs)2

2(1 � s2

6b )2
� m2

2
s2 � g2f2s2 � gf � V0. (2.98)

The inflaton potential in terms of the canonically normalized fields j and c
becomes

V(j, c) = 36abg2 tanh2 jp
6a

tanh2 cp
6b

+ 3bm2 tanh2 cp
6b

+ g
p

6a tanh
jp
6a

+ V0. (2.99)

We will take the parameters such that 36abg2 � 3bm2 � g
p

6a, V0. In
that case, the potential can be illustrated (not to scale) by Fig. 2.20. Inflation
begins at one of the high red plateaus of the height approximately given
by 36abg2. The blue valley describes the a-attractor inflationary potential
V(c) = 3bm2 tanh2 cp

6b
+ V0. The green valley corresponds to the dark

energy potential g
p

6a tanh jp
6a

+ V0.
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Figure 2.20: The shape of the potential V(j, c) (2.99) for a = b = 1 and 36abg2 �
3bm2 � g

p
6a, V0. The green valley corresponds to quintessence with the

linear potential V = gf + V0 = g
p

6a tanh jp
6a

+ V0.

One can show that about half of all inflationary trajectories starting at
the red plateau describe the fields falling directly to the dark energy valley.
We assume that 3bm2 ⇠ 10�10 and 36abg2 is much greater, possibly even
as large as O(1) in Planck units, then the inflationary trajectories falling
directly to the dark energy valley produce parts of the universe with too
large perturbations of density, which make such parts of the universe
anthropically disfavored.

Another half of all inflationary trajectories starting at the red plateau
describe the fields falling towards the blue inflationary valley. Then the
inflaton field c rolls along this valley, which generates perturbations of
the proper magnitude in accordance with the a-attractor scenario. The
process of reheating occurs due to oscillations of the field c near the point
j = c = 0. At this point, the potential has a tiny slope which pushes the
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dark energy field j towards its large negative values, but this field does
not start rolling until the density of particles produced by reheating drops
down substantially. When this happens, the field j starts moving towards
j ! �•.

Consider the simplest case of V0 = g
p

6a ⇠ 10�120. Then the dark
energy potential g

p
6a tanh jp

6a
+ V0 is given by V0 ⇠ 10�120 at j = 0,

and vanishes in the limit j ! �•. To give a particular example, one may
consider a = 7/3. Then, just like in the theory with exponential potential,
the asymptotic value of w for dark energy will be about 0.905, but its initial
value at the moment when the field j starts moving down will be given
(almost) exactly by -1. By taking V0 slightly greater than g

p
6a, one can

make w much closer to �1. This model represents a simple a-attractor
version of the dark energy model with the linear potential proposed in
Ref. [91].

2.6.4 Quintessence with a linear potential

Inspired by our discussions in the previous section, let us now consider a
concrete example of the 2-field, interacting, a-attractor scenario where the
simplest linear potential for the quintessence field f has the form given in
Eq. (2.19), i.e.

V(j) = g
p

6a(tanh
jp
6a

+ 1) + L , (2.100)

in terms of the canonical field j, with L being a constant. We additionally
assume 36abg2 � 3bm2 � g

p
6a, L. As discussed in the previous section,

we further assume that the inflationary trajectory starts at the red plateau
of Fig. 2.20 at large values of the field c, and then the fields j and c fall
towards the blue inflationary valley at j = 0. The inflaton field c then rolls
along the valley, and reheating occurs through the oscillations of c near the
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point f = c = 0. At this point, the tiny slope in the dark energy potential
pushes the quintessence field j towards its negative values. As stated before,
in this scenario inflation is not driven by j, and it only sets the value of j
to something around 0 as the initial value of the dark energy field for the
late-time evolution of the universe, contrary to the quintessential inflation
models, studied in section 2.4, which could accommodate a wide range of
initial conditions for the quintessence field j that was also responsible for
inflation.

Now we consider the case with both g
p

6a and L being of O(10�120).
Note that the potential approaches a cosmological constant V� = L for
large, negative j, and therefore L = 0 corresponds to a potential with a
vanishing asymptotic value in the limit j ! �•. The potential has been
shown in Fig. 2.21 for L = 0 (left panel) and L = g

p
6a (right panel);

we have set a = 7/3 for both cases. The figure shows that the potential
monotonically decreases for L = 0 and takes an asymptotic, constant value
for L = g

p
6a at large, negative j. The value of g has been chosen such

that the asymptotic value of the potential gives 10�120.
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Figure 2.21: The shape of the potential V(j) = g
p

6a(tanh jp
6a

+ 1) + L for L = 0 (left

panel) and L = g
p

6a (right panel). Here we have set g
p

6a to 10�120 and a
to 7/3. The values of the potentials on the y-axes are normalized to 10�120.
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The asymptotic value for the equation of state of dark energy, wDE, in
this model can be obtained by assuming a slow-roll approximation. As we
discussed before, this asymptotic value for L = 0 is

w• = �1 +
2

9a
, (2.101)

which depends only on a. The asymptotic value for L 6= 0 is �1.
Let us now study the time evolution of weff as well as wDE for a few values

of L and for a = 7/3. The results have been presented in Fig. 2.22 for L = 0,
10�2 ⇥ g

p
6a, and 10�1 ⇥ g

p
6a. Note that weff is almost identical in the

past (N < 0) for all the cases (blue curve), and shows different behavior
for the future (N > 0). Note also that weff is different from wDE in the past,
and becomes identical to it in the future, when the field j dominates. In
addition, as expected, the figure shows that the deviation from LCDM is
maximal when L = 0, and decreases when L increases. For the specific
case of L = 0, w has an asymptotic value of ⇠ �0.905, in full agreement
with our analytical expression (2.101), while for any other values of L the
asymptotic value is �1.

2.6.5 Comparison to observations, and constraints on parameters

With the qualitative discussions of the previous section, let us now study
our 2-field, interacting, a-attractor model in a rigorous way and through the
comparison of the late-time predictions of the model to the observations.
The potential is of the form given in Eq. (2.100). We scan over the parameters
of the model, i.e. g, a, and L, and compare the evolution of the background
cosmological observables to the data. We set jF to 0 in all our scans.

The upper panels of Fig. 2.23 present our results for g versus a (left panel)
and L (right panel). Note that the values of g and L are given in units of
the critical density today. For the left panel, where a is kept free, the value
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Figure 2.22: Evolution of the equation of state as a function of the number of e-folds N
after reheating for the linear potential V(j) = g

p
6a(tanh jp

6a
+ 1) + L in the

framework of the interacting, 2-field a-attractors. The three yellow-to-orange
curves show the dark energy equation of state wDE for L = 0, 10�2 ⇥ g

p
6a,

and 10�1 ⇥ g
p

6a, respectively. The effective equation of state weff is almost
identical for all values of L in the past (shown collectively by a blue curve), is
different from wDE in the past, and becomes identical to it in the future when
the field j becomes dominant. N = 0 corresponds to the present time, g

p
6a

has been set to 10�120, and a has been set to 7/3 for all the cases.

Figure 2.23: Constraints on g, a and L for the linear, interacting, a-attractor model with
the linear potential V(j) = g

p
6a(tanh jp

6a
+ 1) + L, when L is fixed to 0

(left) and when a is fixed to 7/3 (right). Note that both g and L are presented
in units of the critical density today. The samples are color-coded with the
value of w0.
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of L has been set to 0, while for the right panel, with L being scanned over,
a has been fixed to 7/3. The value of g is correlated with both a and L. In
order to see this correlation clearly, let us first focus on the left panel with
L being fixed to 0, i.e. when the potential is V(j) = g

p
6a(tanh jp

6a
+ 1).

The figure shows that g increases by decreasing a. When a becomes very
small, we know that the potential rapidly decreases and the tanh jp

6a
piece

in the potential drops quickly to ⇠ �1. This will be largely cancelled by the
constant piece g

p
6a, and one therefore would need an enormous value of

g to compensate for that and to obtain the required amount of dark energy
given by observations. This may mean that we should in principle be able to
obtain good fits to the data for very small a with very large g. However, the
figure tells us that even though g indeed seems to be increasing at small a,
very small a (. 0.3) are disfavored by our analysis. This can be understood
by looking at the color-code of the left panel of the figure, which shows the
values of w0. This shows that reducing a corresponds to larger deviations
form LCDM. This illustrates why a cannot be smaller than ⇠ 0.3 for this
L = 0 case, as the model predicts an equation of state for dark energy
with present values that deviate too much from the observed values, and
the number of viable points is therefore almost vanishing for very small a.
Therefore, even though the required amount of dark energy can be provided
by the model for small a, it does not produce the correct behavior for the
dark energy equation of state. Clearly, by increasing L to nonzero values,
which is equivalent to adding a cosmological constant to the potential,
small a can also provide viable models of dark energy.

Let us now investigate the effect of changing L on the predictions of
the model, by focusing on the right panel of Fig. 2.23, where a has been
fixed to 7/3 and L has been allowed to vary. The figure shows that the
larger the value of L, the smaller the value of g. This behavior is easily
understood, as the total dark energy in our model is a combination of the
j-dependent piece and the cosmological constant L, and by increasing L
the contribution from the j-dependent piece should reduce in order for
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the model to produce the correct, total amount of dark energy consistent
with observations, i.e. to provide WDE ⇡ 0.7. WDE in general includes two
pieces, one from the dynamics of the scalar field (i.e. the field-dependent
part of the potential plus the kinetic energy of the field), and one from the
cosmological constant L. Here therefore, by increasing the contribution
from the cosmological constant the contribution from the field needs to
drop in order to have the total amount of WDE ⇡ 0.7. Decreasing g to zero
in the right panel of Fig. 2.23 will make L take a value of ⇡ 0.7 in units of rc,
which is what we expect. Note also that, as expected, increasing L makes
w0 closer to its LCDM value, which is consistent with our illustration in
Fig. 2.22.

Our conclusion, based on these results, is that this class of 2-field, inter-
acting models, can provide interesting cosmological evolutions perfectly
consistent with the current data. The deviations from the LCDM model
depend however on the value of a. For relatively large a, such as 7/3,
the deviations are not large enough to be detected by the next generation
of the LSS experiments, as w0 and wa are not sufficiently different from
the LCDM values, but (depending on the value of L) decreasing a can
make the deviations larger and potentially detectable. This class of models,
therefore, has predictions that in some cases can be tested, verified, or ruled
out by the future cosmological surveys.

2.7 conclusions

In this chapter we constructed several viable models of dark energy based
on the theory of a-attractors, using the flexibility of choosing the cosmolog-
ical constant provided by the string theory landscape. We studied a broad
variety of the models, such as the models of quintessential inflation, where
a single field j plays the double role of the inflaton and the quintessence.
The simplest of these models is the a-attractor version of the theory with
a linear potential described in section 2.5.1. We also performed a detailed
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investigation of the models with exponential potential in sections 2.5.2 and
2.5.3.

The asymptotic flatness of the plateau potential in a-attractors and the
possibility to avoid the fifth force problem, see section 2.3.2, make these
models particularly suitable candidates for the role of dark energy. In
several different models with the asymptotically vanishing height of the
potential V� = L = 0, we have a universal a-dependent prediction relating
to each other the tensor-to-scalar ratio r and the asymptotic value of the
equation of state w•:

r =
12a

N2 , w• = �1 +
2

9a
; (2.102)

see Eqs. (2.1) and (2.2). This is a rather interesting correlation between r and
w•, which may seem to be suggesting a possible way to test these models
using a combination of the upcoming Stage IV cosmological experiments
aiming at measuring both the B-mode polarization of the CMB and the
growth and evolution of large-scale structure in the universe. One should
however note that, as we have shown in this paper for various models of
quintessential inflation, w• is only the ultimate value of the dark energy
equation of state parameter and not its present value. This means that w•
cannot be used directly to test the models, and one needs a detailed analysis
in order to compare the predictions of the models to the cosmological
observations.

Moreover, if one accepts the simplest interpretation of the predictions of
the string theory landscape, one is free to add to the potential any constant
that keeps the effective value of L within the anthropically allowed range
of |L| . 10�120. If, for example, one adds a positive cosmological constant
L . 10�120, the last prediction in (2.102) changes to w• = �1, without
altering the prediction for r and the spectral index ns. In other words, by
combining quintessential inflation with the string theory landscape, we
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have a possibility to describe a broad range of outcomes for w without
altering the inflationary predictions of the models.

We also studied a-attractor models where inflaton and quintessence are
described by two different fields. From the point of view of model building,
these models described in section 2.6 can be quite simple, but they allow
much greater flexibility, which deserves a more detailed investigation.

An interesting byproduct of our investigation of a-attractors is the re-
alization that their universal prediction ns = 1 � 2/N may give distinctly
different numerical results for the quintessential a-attractors as compared
to the usual a-attractors with a conventional reheating mechanism. We
noticed that for some of the quintessential a-attractors with gravitational
reheating, the required number of inflationary e-folds N can be greater than
the required number of e-folds in more conventional models by DN ⇠ 10,
which increases the value of ns by about 0.006. This increase coincides with
the Planck 1s error bar for ns [82]. Therefore with the future improvement
in the accuracy of CMB observations we might be able to distinguish the
conventional inflationary models where the field after inflation oscillates
and relaxes at the minimum of its potential, from the simplest models of
quintessential inflation, even if these models predict w = �1.
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