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1
I N T R O D U C T I O N

Cosmological research is about the global, large-scale properties of the
universe. It is one of the most actively developing fields of modern physics.
This rapid flourishing of the field is partly motivated by the Nobel Prize
winning discovery of cosmic acceleration in 1998 [1, 2], and partly by the
fact that cosmology can serve as a uniquely fascinating laboratory for
testing various aspects of fundamental theories of physics. Indeed, it is
already widely acknowledged that the cosmological observations suggest
tests at regimes which are by far not accessible at the laboratory setups.

All the wealth of cosmological observations are consistently explained
by a phenomenological model referred to as the cosmological standard model.
This model assumes, first of all, that the universe is homogeneous and
isotropic at the largest scales. Additionally, it is now well measured that
the biggest share in the energy budget of the universe, about 68%, belongs
to the cosmological constant, L - a constant energy density component with
a negative pressure. Such a component causes the universe to expand with
increasing rate, a phenomenon known as cosmic acceleration. In addition
to this, about 27% of the universe is composed of a non-relativistic, pres-
sureless gas called cold dark matter, which interacts gravitationally, but does
not interact electromagnetically, and hence can be observed only through
its gravitational effects. The conventional baryonic matter and radiation
together make only about 5% of the universe’s energy budget. This matter
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2 introduction

content, together with a hypothesized short period of very rapid expansion
of spacetime in the very early universe, known as cosmic inflation, provides
a beautifully simple interpretation of practically all the currently available
cosmological observations in the context of General Theory of Relativity (GR).
This cosmological model is often referred to as the L-Cold Dark Matter
(LCDM) model.

The rough timeline of the universe is that it experienced a rapid (infla-
tionary) expansion during its earliest stages. This expansion caused most of
the inhomogeneity and anisotropies in spacetime to reduce, and the spatial
curvature to flatten out (see later in this chapter). After the inflationary
stage the universe reheats, i.e it becomes dominated by a relativistic plasma.
As universe expands, the energy density of this relativistic plasma decreases
and the universe enters the epoch dominated by non-relativistic particles -
baryons and dark matter. At some point the energy of collisions in cosmic
plasma decreases so much that neutral atoms are formed, and the residual
photons, unable to Compton-scatter on free electrons anymore, freestream
through the entire universe. Later on, as the universe becomes dominated
by dark matter, the small fluctuations in density start to grow, eventually
leading to formation of galaxies and galaxy clusters. The matter dominated
epoch then is followed by an accelerated expansion caused by yet unknown
mechanism. Phenomenologically the simplest candidate for this unknown
mechanism is the cosmological constant mentioned above.

Even though phenomenologically extremely successful, the cosmological
standard model is in fact very difficult to incorporate into fundamental
physics. The 95% of the universe’s energy budget, namely the cosmological
constant and the dark matter sectors are still waiting for their theoretical
explanations. A completely satisfactory model for cosmic inflation is also
still a subject of active research. In this thesis our primary interest will be
the phenomenon of comic acceleration, and the nature of dark matter, while
also very important and interesting, is beyond the scope of this thesis.
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It is a very curious fact that the standard framework of quantum field
theory already leads to accelerated expansion of the universe. Indeed,
quantum mechanically we expect a non-zero vacuum energy, which behaves
exactly like a cosmological constant. If the theoretically estimated value of
the vacuum energy density would agree with the cosmological observations,
this would have been one of the most elegant predictions in theoretical
physics. Unfortunately the reality is by far not as simple as that. The
trouble is that the theoretical expectation for the value of this vacuum
energy is at least tens of orders of magnitude larger than the value inferred
from cosmological observations (see [3] for a pedagogical treatment of
the topic). Besides the quantum mechanical contribution, there is also
a classical contribution to the vacuum energy density originating, e.g.,
from the minima of scalar field potentials. The huge value of the quantum
mechanical vacuum energy can in principle be cancelled against the classical
contributions. This cancellation between two huge values, however, is highly
unsatisfactory as we would need a very precise, finely-tuned cancellation.

In the last decades this problem has motivated a substantial effort in
exploring possible modifications to the standard model of cosmology. This
effort can be overall split into two main categories. One category is dubbed
as dynamical dark energy scenario. In this scenario the cosmological constant
sector is replaced by a field which evolves during cosmic history and
is responsible for late-time cosmic acceleration. Another category goes
under the name of modified gravity, where one constructs gravitational
theories which posses so-called self-accelerating solutions, i.e. they can
explain the accelerated expansion without the need of cosmological constant.
Both of these possibilities, of course, do not provide an explanation for
the abovementioned difficulty with the quantum-field theoretical vacuum
energy. The typical attitude is to assume that there is a yet unknown
symmetry or mechanism which makes the vacuum energy exactly zero,
and instead achieve the cosmic acceleration via either the dynamical dark
energy or the appropriate modifications of General Relativity.
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The line of research of exploring the alternatives to the cosmological stan-
dard model, while originating from the need of explaining the accelerated
expansion, has now to some extent diverged from its origins. Indeed, now
a big part of research in this direction is devoted to using cosmological
observations for testing various theoretical models, without necessarily re-
quiring these models to give cosmic acceleration in absence of cosmological
constant.

The theme of this dissertation is largely motivated by the phenomenon of
cosmic acceleration and is devoted to understanding various properties of
the fundamental laws of nature by exploiting the cosmological phenomena.
Before moving to the main chapters of this thesis, let us quickly review the
main ideas in modern cosmology.

1.1 the cosmological standard model in a nutshell

Homogeneous and isotropic universe

In order to understand the basic dynamical properties of the universe,
we should note that the most relevant interaction at such large scales is
the gravity. Our current picture of the latter is dominated by the fact that
spacetime is a dynamical object described by the metric tensor gµn (we use
Greek indices for denoting the 4-dimensional spacetime coordinates). In
this thesis we will employ the (�, +, +, +) sign convention for the metric.

Cosmological observations suggest that on very large scales (larger than
O(100) megaparsecs) the universe is described by a spatially homogeneous
and isotropic manifold, first presented by Friedmann [4, 5]. The most gen-
eral metric compatible with spatial homogeneity and isotropy is known as
Friedmann-Lemaître-Robertson-Walker (FLRW) metric and can be written
as

ds2 = �N(t)2dt2 + a(t)2
✓

dr2

1 � kr2 + r2d2W
◆

, (1.1)
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where t is the time coordinate, r is a radial coordinate on the spatial hyper-
surfaces, d2W is the metric of a two-sphere and k is introduced for account-
ing for the spatial curvature of the metric. As we see, we need to introduce
two functions of time, N(t) and a(t) known as the lapse function and the scale
factor of the universe. The former is related to the time-reparametrization
invariance of the metric, and can be safely fixed to any functional form. This
reparametrization invariance originates from the symmetries of General
Theory of Relativity to be discussed below. Two important choices for N(t)
are the so-called cosmic time, corresponding to N(t) = t and the conformal
time, corresponding to N(t) = a(t). The scale factor keeps track of how
length intervals on spatial slices of spacetime shrink or expand over cosmic
time t. For example, the ratio of physical distances between two galaxies
at times t1 and t2 is simply given by a(t1)/a(t2). This change between
the distances is an inherent feature of an FLRW metric and should not
be confused with the change caused by the peculiar motion of galaxies,
which can be, for example, due to the gravitational force exerted on the
considered galaxies by their neighbouring mass. An additional comment
on terminology is appropriate here. The radial coordinate r in FLRW metric
is typically referred to as a comoving coordinate. This reflects the fact that the
distance r between two point does not change during the cosmic evolution.
The physical distance between two points, rphys = a(t)r, however, of course
changes as the universe expands or contracts.

It is worth noting that the metric given in Eq. (1.1) is left invariant under
the following rescalings

a(t) ! sa(t), r ! r/s, k ! s2k, (1.2)

where s is a constant. This property, rather conveniently, allows us to rescale
the radial coordinate in such a way that the scale factor at present time is
equal to unity, i.e. a0 = 1.

Observationally it is well-known that a(t) is in fact an increasing function
of time, i.e. the observable universe is expanding. This fact is established
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by noticing that the spectra of distant galaxies are redshifted, i.e. a spectral
line with a restframe wavelength lrest is observed to have lobserved > lrest.
This is expected in an expanding universe, as the electromagnetic waves are
stretched alongside with cosmic evolution. An important relation between
the redshift factor z and the cosmic scale factor a is given by

z ⌘ lobserved
lrest

� 1 =
a0

a(t?)
� 1, (1.3)

where a0 is the present-time scale factor and a(t?) is the value of the scale
factor when the wave has been emitted.

The redshift of galaxy spectra can be interpreted as a result of Doppler
effect. When the considered galaxy moves much slower than the speed of
light, then the corresponding Doppler redshift of spectral lines would be
given by z ⇡ v/c, where c is the speed of light in vacuum and v is the
speed of the galaxy with respect to the observer.

As discussed above, in an expanding FLRW universe the physical dis-
tances between two points at fixed comoving distance r is given by rphys =
a(t)r. This then leads to the recession speed of a galaxy at the distance rphys
from the observer to be

v = Hrphys ⇡ H0rphys, (1.4)

where H ⌘ ȧ/a, with a dot denoting a derivative with respect to cosmic
time t, is known as the Hubble function. In the last part of this equation
we have assumed the galaxy to have a small redshift, so that the Hubble
function can be assumed to be approximately constant and equal to its
present-day value of H0. This result is the celebrated Hubble’s law of cosmic
expansion discovered in 1920’s. We recommend Ref. [6] for an interesting
summary of the story behind the discovery of this law.
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Dynamics of the FLRW universe

In the context of Einstein’s theory of General Relativity [7], the dynamics
of the metric tensor field can be derived from the Einstein-Hilbert action,
given by

S =
M2

Pl
2

Z
d4x

p
�gR + Sm(gµn, Yi), (1.5)

where g is the determinant of the metric tensor, R ⌘ gµnRµn is the Ricci
scalar constructed from the metric tensor gµn and the corresponding Ricci
tensor Rµn. Sm is the action describing the dynamics of matter fields, collec-
tively denoted by Yi. Additionally, we have introduced the reduced Planck
mass, defined by MPl ⌘

q
h̄c

8pGN
, with h̄ being the reduced Planck constant

and GN - the Newton’s constant. It should be noted that the central property
of GR is that all the matter species Yi are universally coupled to the metric.
This coupling is proportional to the Newtonian gravitational constant GN.

An additional observation at this point is that the symmetries of the ac-
tion (1.5), namely, the invariance under general coordinate transformations,
or, the diffeomorphism invariance, allow us to add a constant term in the
Einstein-Hilbert action. This term, known as the cosmological constant dis-
cussed earlier, is an essential piece for constructing the phenomenologically
simplest cosmological model which is compatible with all the currently
known experimental and observational evidence, namely the LCDM model.

We are going to assume that the matter content of the universe is de-
scribed by a perfect fluid with an energy density r(a) and pressure p(a).
Our next step is to derive the equations of motion which govern the dy-
namics of this metric. For that purpose we can plug our FLRW metric
ansatz Eq. (1.1) into the Einstein-Hilbert action (including the cosmological
constant term �2L and the matter energy density r(a)) and obtain the
so-called minisuperspace action. Varying the action with respect to the lapse
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function N(t) yields the energy constraint equation, which is the celebrated
first Friedmann equation

3M2
PlH

2 = M2
PlL + r(a) � 3M2

Pl
k

a2 . (1.6)

Additionally, the variation of the action with respect to the scale factor
a(t) gives

Ḣ + H2 = � 1
6M2

Pl
(r(a) + 3p(a)) +

L
3

. (1.7)

where we have set N(t) = 1 and defined the pressure as

p(a) = �r(a) � 1
3

a
dr(a)

da
. (1.8)

An important consequence of the diffeomorphism invariance is the auto-
matic conservation of the energy-momentum tensor, given the Einstein field
equations are satisfied. This conservation is given by rµTµn = 0, where rµ

is the covariant derivative compatible with the metric gµn. For the perfect
fluids considered here this equation takes the form ṙ + 3Hr(1 + w) = 0,
where w ⌘ p/r is the equation of state of the considered fluid. From this
simple relation it follows that the energy densities of dark matter with
w = 0, radiation with w = 1/3 and cosmological constant with w = �1
(which are assumed to be non-interacting, hence are conserved separately)
are evolving as

rr = rr(a0)a�4, (1.9)
rm = rm(a0)a�3, (1.10)
rL = rL(a0), (1.11)

where a0 is the present-day value of the scale factor.
Let us note that radiation dilutes away faster than non-relativistic matter,

which means that no matter how subdominant the latter is initially, it will



1.1 the cosmological standard model in a nutshell 9

dominate over radiation at some later stage. Additionally, both radiation
and non-relativistic matter will eventually become subdominant compared
to cosmological constant. This shows that in the LCDM model the uni-
verse asymptotically approaches an epoch described by a constant Hubble
function. This spacetime metric at this epoch is known as the de Sitter metric.

It is also useful to introduce the dimensionless density parameters as

Wr(a) ⌘ rr(a)/3H2M2
Pl, (1.12)

Wm(a) ⌘ rm(a)/3H2M2
Pl, (1.13)

WL(a) ⌘ L/3H2, (1.14)
Wk(a) ⌘ �k/H2a2. (1.15)

In terms of these dimensionless parameters the first Friedmann equation
can be rewritten as

Wm(a) + Wr(a) + WL(a) + Wk(a) = 1. (1.16)

Let us mention that the cosmological observations tightly constrain the
spatial curvature k to be tiny [8]. In this thesis we will mainly assume it
being exactly zero.

Perturbing the FLRW universe

As we mentioned above, the FLRW metric provides a valid description
of the universe on scales larger than O(100) megaparsecs. On smaller
scales, however, the universe is no longer homogeneous and isotropic.
Various observational surveys have particularly seen a web of clustered
matter, known as the cosmic web or cosmic large scale structure (LSS) of the
universe. This means that after specifying the cosmological background, the
next important step is to consider perturbations around it. Of course, in
complete generality one would aim at solving the full Einstein’s equations,
which are, in general, are highly non-linear partial differential equations.
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However, it is a fortunate property of the universe that at large enough
scales the perturbations of the relevant fields are small enough, so we can
make use of the perturbation theory. The starting point for this perturbative
approach is to specify the form of the perturbed metric. Naively, one would
start perturbing all the components of the metric tensor, which would lead
to extremely complicated calculations. However, as we mentioned earlier,
one of the central properties of GR is its invariance under general coordinate
transformations. For a given calculation in the framework of GR we can
choose a particularly suitable coordinate system, where the given problem
is solved the easiest. This coordinate freedom is known as the gauge freedom
of GR, and the particular coordinate choice is often called a gauge choice
for the metric.

In the previous subsection, when deriving the Firedmann equations, we
did not make direct use of the Einstein’s field equations. For deriving the
equations of motion for the perturbed quantities we can proceed similarly
and first derive the action which would then directly lead to the equations
of motion for the desired perturbation variables. For example, if we are
interested in the linear order perturbations, then we would need to ex-
pand the Einstein-Hilbert action to second order in these perturbations.
Such a second order action then would lead to linear equations of motion.
Alternatively, we could derive the full equations of motion and perturb
them to the desired order. In the bulk of this thesis we have used both of
these approaches. Here, in order to demonstrate the main features of the
standard cosmological model at perturbative level, let us make use of the
latter approach.

The starting point are the Einstein’s field equations, derived from Eq. (1.5)
by varying with respect to the metric tensor. They read as

Gµn ⌘ Rµn � 1
2

gµnR =
1

M2
Pl

Tµn, (1.17)
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where Tµn is the energy-momentum tensor of the matter fields defined as

Tµn ⌘ � 2p�g
dSm

dgµn . (1.18)

The first step of our perturbative treatment is to write the metric as

gµn = ḡµn + dgµn, (1.19)

where ḡµn is the FLRW background metric and dgµn is a perturbation
around it. We will then plug it in the left hand side of Eq. (1.17) and keep
only the terms up to first order in dgµn. Such a background-perturbation
splitting is an arbitrary choice, but is perhaps the most intuitive one from
the point of view of a generic observer in a Hubble flow. The most general
form of the metric is

ds2 = �(1 + 2f)dt2 + 2aBidtdxi + a2 �dij � hij
�

dxidxj, (1.20)

where one can show that f, Bi and hij are, respectively, 3�scalar, vector and
tensor. It turns out that the perturbative calculations simplify significantly
if we decompose these perturbations into scalar, vector and tensor degrees
of freedom. For the vectors this decompositions is well known from general
physics. Namely, any 3�vector can be written as

Bi = ∂iB + Si, (1.21)

where B transforms as a 3�scalar, while Si is a divergence-free 3�vector.
Similar decomposition is possible for higher-rank objects, namely for hij:

hij = 2ydij + 2E,ij + Fi,j + Fj,i + h̃ij, (1.22)

where y and E are two additional 3�scalars, Fi is a devergence-free
3�vector and the 3�tensor h̃ij is such that

h̃i
i = 0 = ∂i h̃i

j. (1.23)
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As such, we have decomposed the 10 independent components of the
symmetric 4 ⇥ 4 metric dgµn into 4 scalar functions (namely, f, y, B, E), 4
vector modes (encoded in the 6 components of Bi and Fi and the corre-
sponding divergence-free conditions), and 2 tensor degrees of freedom
(encoded in the 6 components of h̃ij and the corresponding conditions given
in Eq. (1.23)).

The significant advantage of such a decomposition is that it turns out
that the linearized Einstein’s equations lead to decoupled dynamics of these
scalar, vector and tensor sectors. The formation of the large scale structure
of the universe is largely given by the scalar sector of the metric, and now
we will be considering only this sector. Let us mention, however, that the
dynamics of the tensor sector characterizes the propagation of gravitational
waves, and hence, even though not relevant for the large scale structure
formation, contains valuable information by its own.

The most general way to write the scalar-perturbed metric is as follows

ds2 = �(1 + 2f)dt2 + 2a∂iBdtdxi + a2 ⇥(1 � 2y)dij + 2∂i∂jE
⇤

dxidxj. (1.24)

A widely used gauge choice is the Newtonian gauge, specified by E =
0 = B.

Our next step is to include the perturbed energy-momentum tensor Tµn.
The latter for a generic perfect fluid can be written as

Tµn = (r + P)uµun + pgµn, (1.25)

where, uµ is the four-velocity of the fluid element as seen by a comoving
observer, r is its energy density, p - its pressure. Here we will assume any
deviations from the perfect fluid approximation to be exactly zero. The
perturbed sector of the energy-momentum tensor is given by

dT0
0 = �dr, (1.26)

dT0
i = �dTi

0 = (1 + w)r̄vi, (1.27)

dT1
1 = dT2

2 = dT3
3 = c2

s dr. (1.28)



1.1 the cosmological standard model in a nutshell 13

Here we have denoted the spatially averaged energy density as r̄, and the
perturbations around this background are denoted by dr ⌘ r(x) � r̄(t).
Additionally, vi are the components of the three-velocity and c2

s ⌘ dp/dr
denotes the square of the sound speed of the considered fluid.

The linearly perturbed Einstein equations have the following form (see
e.g. Ref. [9])

6H2f � 2
a2 ∂i∂iy + 6Hẏ =

1
M2

Pl
dT0

0, (1.29)

� 2∂i (ẏ + Hf) =
1

M2
Pl

dT0
i , (1.30)

ÿ + 3Hẏ + Hḟ + (3H2 + 2Ḣ)f +
1

3a2 ∂i∂i (f � y) =
1

6M2
Pl

dTi
i, (1.31)

1
a2 ∂i∂j (y � f) =

1
M2

Pl
dTi

j, i 6= j. (1.32)

These equations are more conveniently studied in the spatial Fourier
space, i.e. using the spatial Fourier components of the corresponding vari-
ables. Our convention for Fourier decomposition for a field j(x) is

j(x) =
Z

d3kjkeik·r, (1.33)

where k is the spatial Fourier wavenumber and r is the spatial real-space
coordinate.

Now, going to Fourier space and combining Eqs. (1.29) and (1.30) we
obtain the Poisson equation

k2

a2 y =
1

2M2
Pl

(3H(1 + w)r̄v � dr) , (1.34)

where v is the scalar sector of the matter velocity, i.e. vi ⌘ ∂iv.
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Additionally, for matter sources which have dTi
j = 0 we have an important

relation

f = y. (1.35)

For simplicity in our analysis we will consider only the modes which are
very deep inside the Hubble horizon, i.e. k2/a2 � H2. Additionally, we will
be considering the so-called quasistatic regime, where one assumes that the
cosmological variables can change only at the time scales close to the order
of the Hubble rate, i.e H2dj ⇠ H ˙dj ⇠ ¨dj. In this approximation we have

2k2

a2 y = � 1
M2

Pl
dr (1.36)

Besides the Einstein equations an extra information is contained in the
perturbed conservation equations. The n = 0 and n = i components of the
continuity equation rµTµ

n = 0 in sub-horizon limit, during dark matter
domination, yield

d0 + q = 0, (1.37)
q0 + Hq � k2 �f + c2

s d
�

= 0, (1.38)

where we have now started to use the conformal time, related to the cosmic
time through adt = dt, and primes denote derivatives with respect to
conformal time. Additionally, we have defined q ⌘ ∂ivi and d ⌘ (r(x) �
r̄(t))/r̄(t). From these two equations we then obtain the master equation
for linear structure formation

d00 + Hd0 +

✓
c2

s k2 � 3
2
H2
◆

d = 0. (1.39)

The perturbations will experience a growing force by gravity, but the
growth will be slowed down by the non-zero sound speed (i.e. by pressure).
For cold dark matter the sound speed is negligible, c2

s k2 ⌧ H2, and the
perturbations d will grow as ⇠ t2/3.
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1.2 observations

In the past decades several types of observations have become sufficiently
robust and now serve as the basis for our current understanding of the
cosmological standard model. Let us here briefly discuss the main of these
cosmological observables (see, e.g., [10]). Before doing that, however, it
is important to mention that various distance definitions are used for
interpreting different cosmological observations. Distances between two
points in FLRW spacetime are in fact not uniquely defined, so let us start by
defining various useful distances and give the relationships among them.

• Comoving distance. The comoving distance from us to an object at a
given redshift z is given by

Dcom ⌘ c
a0H0

Z z

0

dz̃
E(z̃)

, (1.40)

where H0 is the value of the Hubble rate at present time, and E(z) ⌘
H(z)/H0.

• Luminosity distance. For a source with an absolute luminosity L,
observed to have a flux F on our detectors, we can define the so-
called luminosity distance to the source

D2
lum ⌘ L

4pF . (1.41)

• Angular diameter distance. For an object of proper size (in the direc-
tion perpendicular to the line of observation) D`, observed to subtend
an angle Dq, we can define the so called angular diameter distance to
the object as

Dang ⌘ D`
Dq

. (1.42)
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For a spatially flat universe the luminosity distance is related to the
comoving cosmic distance by Dlum = (1 + z)Dcom. This expression is rather
generic and holds for almost any cosmology. It should, however, be kept in
mind that it will be violated in a theory where the photon number is not
conserved, for example, due to mixing of photons with some hidden sector.
Additionally, the luminosity distance is related to the angular diameter
distance by Dlum = (1 + z)2Dang.

After this prelude we can start discussing the main cosmological obser-
vations.

Supernovae Type Ia. Perhaps the best-known cosmological constraints
are from Supernovae. The luminosities (or the absolute magnitudes) of
these objects are known to be highly correlated with the widths of their
light-curves. This fact allows for an accurate determination of the absolute
magnitude, given the light-curve observation of a supernova. A key relation
for cosmological purposes is the relation between the distance modulus µ
(the difference between the apparent and absolute magnitudes) and the
luminosity distance

µ = 5 log Dlum/10pc, (1.43)

Having the distance modulus measurements of supernovae, one then can
measure the luminosity distance, and hence constrain a particular cosmo-
logical model.

Cosmic Microwave Background. The Cosmic Microwave Background
(CMB) is one of the major sources of information in cosmology. As we
mentioned earlier, after inflation the universe was filled with a hot photon-
baryon plasma. The baryons tend to cluster through gravitational attraction,
but the photonic pressure stops this clustering. As a result the cosmic
plasma experiences acoustic oscillations. When the universe cools down
sufficiently the photons decouple from baryons and start to free-stream
through the universe. This decoupling happens at redshift zdec ⇡ 1090 and
is known as the decoupling or recombination era. The free-streaming photons
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make up the CMB sky. The fluctuations of the photon temperature are
sensitive to the density perturbations of the relevant energy components at
the decoupling era, their velocities and the gravitational potentials. These
fluctuations, measured as a function of direction n̂, can be decomposed in
spherical harmonics as

dT(n̂)
T

= Ầ Â
m

a`mY`m(n̂), (1.44)

where T is the average temperature of the CMB, a`m’s are the corresponding
angular modes and Y`m(n̂)’s denote the spherical harmonics.

For each mode `, the variance of the a`m modes is known as the angular
power spectrum, given by

C` =
1

2` + 1 Â
m

h|a`m|2i (1.45)

A relatively simple information in the CMB angular power spectrum is
encoded in the scale of acoustic oscillations. The effective sound speed of
the photon-baryon fluid cs determines this scale through

rs(zdec) =
Z •

zdec

dz̃
cs(z̃)
H(z̃)

. (1.46)

The associated angular scale qang(zdec) and the angular diameter distance
to the acoustic scale Dang(zdec) are related with each other by

(1 + zdec)Dang(zdec) =
rs(zdec)

qang(zdec)
. (1.47)

Baryon Acoustic Oscillations (BAO). The acoustic oscillations men-
tioned in the context of CMB affect not only photons but also baryons. Sim-
ilarly to the acoustic scale in Eq. (1.46), there is a similar scale for baryons,
imprinted during the so-called drag epoch, taking place at zdrag ⇡ 1020,
when baryons are decoupled from photons.
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One expects an enhanced galaxy population at the scales of cosmic struc-
ture separated by rs(zdrag). The corresponding angular scale at a particular
redshift z then serves as a useful probe for the cosmic background. The
relevant geometric expression is similar to (1.47) and is given by

(1 + z)qs(z) =
rs(zdrag)

Dang(z)
. (1.48)

Growth of structure An instrumental quantity often employed in LSS
studies is the growth rate f , defined as

f ⌘ dlnd

dlna
. (1.49)

There is a useful fitting formula for this quantity, given by f = Wg
m, where

the power is constant in LCDM and is approximately equal to g ⇠ 0.55.
An observed deviation from this value will be a smoking gun evidence for
beyond LCDM physics.

Weak lensing. One of the striking predictions of any modern theory
of gravity is the light deflection by massive sources. Cosmologists have
come up with a beautiful idea which exploits the gravitational lensing for
measuring the properties of the large scale structure. When a light from a
galaxy is travelling trough the LSS, it gets slightly distorted. The distortions
of this light can be characterized by the gradient ∂qi

source/∂q j, where q j is
the angle under which we observe the given light ray, while qi

source is the
unaltered (unlensed) angle, and the indices (i, j) label two directions on the
sky. In a theory of gravity (not necessarily GR) this gradient is given by

∂qi
source
∂q j � dij ⌘

Z rsource

0
dr̃
✓

1 � r̃
rsource

◆
r̃(f � y),ij, (1.50)

where rsource denotes the comoving distance to the considered galaxy.
This matrix is conventionally written as

∂qi
s

∂q j � dij ⌘
 

�kwl � g1 �g2

�g2 �kwl + g1

!
. (1.51)
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It can be shown that the so-called convergence kwl describes the overall
magnification of the sources, while the components of the shear g1 and g2
describe its distortions. The measurements of these quantities and their
cross-correlations provide valuable cosmological information.

1.3 the inflationary paradigm

In the previous sections of this introduction we have presented the main
ideas of the cosmological standard model. In that discussion we have
taken the observed large-scale homogeneity and isotropy of the universe,
as well as the small value of the spatial curvature, as granted. They are,
however, rather unnatural in the standard FLRW universe with a sequence
of radiation and matter dominated epochs. This has motivated the birth of
the inflationary paradigm.

Let us start our discussion from the so-called flatness problem. In a deceler-
ating universe1 the absolute value of the curvature contribution in Eq. (1.16)
increases, because its denominator aH = ȧ decreases, unless the curvature
of the universe is exactly zero. The observed spatial flatness then suggests
that in the past the universe has experienced a phase of accelerated expan-
sion, known as cosmic inflation (see e.g. [10] for a pedagogical introduction
to inflation).

Another striking issue with the standard cosmological picture is the
overall homogeneity of CMB. It can be estimated that the CMB patches of
more than ⇠ 1 degree apart never would have time to communicate with
each other starting from the time of infinitely small universe (the Big Bang)

1 Notice that both radiation- and matter-dominated epochs are necessarily decelerating
because the second Friedmann equation Eq. (1.7) shows that ä < 0 for any equation of state
satisfying 1 + 3w > 0.
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to the time of recombination [10]2. While the CMB photons were, in fact, in
causal contact after the last scattering, the entire idea of CMB suggests that
they shouldn’t interact, hence they cannot thermalize after decoupling.

The crucial quantity for our discussion here is the comoving particle horizon,
defined as

dH,com ⌘
Z a

0

dã
ã

1
ãH(ã)

, (1.52)

which measures the maximum distance the light could have travelled in
FLRW spacetime between times characterized by scale factors 0 and a. It is
instructive to rewrite dH,com in terms of the comoving Hubble radius (aH)�1

as

dH,com =
Z lna

1

dlnã
ãH(ã)

. (1.53)

The last expression suggests a solution to the horizon problem. If we
could have en epoch during which (aH)�1 is increasing towards the past,
then dH,com could be made larger. What we are seeking for is a mechanism
which would make dH,com much larger than (aH)�1 during the standard
expansion. This is precisely the idea of inflation; make the comoving Hubble
radius larger in the past, so that the entire observable CMB would have
been in causal contact at some point in the past.

It is easy to notice that achieving such a regime does not only resolve the
issue with the horizon, but also resolves the flatness problem. Indeed, the
condition d(aH)�1/dt < 0 implies that ä > 0 and hence, using the second
Friedmann equation, that w < �1/3, which is exactly the condition for the
flat universe to be an attractor under cosmic evolution.

The most common dynamical realization of inflation is through a canoni-
cally normalized scalar field j with a potential V(j). The homogeneous

2 There is, however, a substantial assumption here. In such arguments we assume that the
classical picture of spacetime holds till the very Big Bang. From quantum gravity perspective
this might be seen as an oversimplification.
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and isotropic equation of motion (i.e. taking j(x) to be a function of time
only) of such a field is given by

j̈ + 3H j̇ + V(j),j = 0, (1.54)

where V(j),j ⌘ ∂V(j)/∂j.
Additionally, the energy and momentum of the scalar field can be shown

to be

rj =
1
2

j̇2 + V(j), (1.55)

pj =
1
2

j̇2 � V(j), (1.56)

respectively.
In order this field to be able to successfully drive the inflationary dy-

namics, we need the equation of state of the scalar field to be close enough
to �1, which is the case of the shallow potentials. Additionally, in order
to have long enough inflation, we need the above condition to be satis-
fied for long enough period. These two conditions are formally written
as e ⌘ �Ḣ/H2 ⌧ 1 and h ⌘ ė/He ⌧ 1. The inflationary stage should
be followed by the stage of hot FLRW expansion, which means that the
inflationary stage must end eventually. This additionally means that infla-
tion cannot be realized via a cosmological constant, because in that case
the universe would have no physical clock specifying when the inflation
should end.

While the primary goal of inflationary scenario was to solve the above-
mentioned horizon and flatness problems, it turned out that it can do
much more than that. In fact, inflation is a beautiful mechanism which
transfers the quantum fluctuations of the inflationary scalar field and the
spacetime metric to the classical seeds of the large scale structure. Par-
ticularly, inflation predicts that the power of primordial fluctuations in
matter density, which later seeds the LSS formation, should be nearly scale
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invariant, with a slight tilt characterized by a slope of ns � 1, where ns
is typically referred to as scalar spectral index. Additionally, inflation also
predicts presence of primordial gravitational waves, again from the initial
quantum fluctuations of the metric. The amount of produced primordial
gravitational waves are typically characterized by the ratio of powers in
tensor and scalar fluctuations, referred to as the tensor to scalar ratio, and
denoted by r.

The idea of inflation is summarized in Fig. 1.1. The decreasing comoving
Hubble radius (Ha)�1 makes the particle horizon at the epoch of CMB
formation larger compared to the value in the standard, non-inflationary
scenario. This additionally resolves the flatness problem. Moreover, and
perhaps more importantly, inflation is an elegant mechanism for generating
the observed large scale structure from the primordial quantum fluctuations
of the inflaton field and the spacetime metric.

1.4 beyond the standard model : dynamical dark energy and
modified gravity

Dynamical dark energy Similarly to inflation, one might naturally think
that the present-day accelerated expansion of the universe is not caused by
a cosmological constant but rather by a slowly rolling scalar field. Such a
scenario is known as dynamical dark energy (also referred to as quintessence)
scenario [11, 12]. Unlike the inflationary epoch, the late-universe accelera-
tion does not need to end, hence the cosmological constant explanation is a
completely viable one from this point of view. However, one might argue
that a dynamical scenario is a more elegant explanation for the accelerated
expansion, and it is one of the motivations to study such models in detail.
There is, of course, also a strong theoretical motivation to do this. It turns
out that the low-energy, effective descriptions of the potentially fundamen-
tal theories contain scalar degrees of freedom. This means that if the future
probes detect a deviation from the LCDM scenario, we can potentially
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Figure 1.1: The idea of inflation is to modify the expansion history of the universe in
such a way that the comoving Hubble radius is decreasing before the standard
expansion regime starts.

learn about the fundamental theories. In practice this argument, of course,
is more complicated, as the observational consequences of, for example,
string theory so far are rather ambiguous. An interesting development in
this direction was suggested in [13]. The authors have conjectured that the
scalar field potential for all consistent theories should satisfy the constraint

|rfV|
V

� c , c ⇠ 1 . (1.57)
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This conjecture is in contrast to the string theory landscape scenario [14–19]
(see Ref. [20] for a brief review of related ideas), where it is considered that
string theory describes an enormous number of metastable de-Sitter vacua.

There is no consensus about the theoretical validity of Eq. (1.57) in the
string theory community (see [21] for a review). Moreover, the use of
the conjecture in its current shape for cosmological phenomenology is still
rather ambiguous. Indeed, as the conjecture does not specify the value of the
constant c, it is difficult to confront it with phenomenological studies. The
way forward in this situation is to study the phenomenological implications
of the models presented in [13] which have been served as the primary
support for the conjecture. These models are given in terms of concrete
potentials and therefore their precise phenomenologies can be worked out.
The main result of such an investigation in [22] is that all these considered
models are incompatible with cosmological data. This, perhaps, is difficult
to interpret as a very strong observational challenge for Eq. (1.57) because,
again, in the latter the imprecise nature of c makes it impossible to draw
decisive, quantitative conclusions.

Even if not making the connection to any fundamental theory, the dy-
namical dark energy scenario is still very interesting to study. One of the
interesting motivations to study such alternatives is the so-called coincidence
problem, which is based on the question of why is the universe starting to ac-
celerate exactly at the present time, and not, say, much later in the future. In
this context let us discuss a particularly appealing feature, namely the pres-
ence of the so called scaling fixed points in the phase space of quintessence
models. The model that we will study has a simple exponential potential of
the form V(f) = V0elf. For l2 > 3(wB + 1), with wB being the equation of
state for the background fluid (e.g. dark matter or radiation), the universe
enters a scaling regime where the scalar field mimics the evolution of the
background fluid, with wDE = wB; the dark energy density parameter takes
the form WDE = 3(wB + 1)/l2 (see [23] for a review). This scaling property
is illustrated in the left panel of Fig. 1.2 for a sufficiently large value of l
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(chosen to be
p

750 in this example), where we have shown the evolution of
the quintessence energy density compared to that of dark matter. The figure
shows that the scalar field, after some oscillations, quickly follows the back-
ground and one can achieve a scaling solution during matter domination in
this example. Te horizontal axis here is N ⌘ lna, with N = 0 corresponding
to the present time. Such scaling solutions may indeed provide a solution
to the coincidence problem. Even though these are very interesting features,
the obvious problem, of course, is that a single-exponential potential has
a constant slope, and therefore, once the scaling regime is switched on it
never ends, so there is no dark energy domination.

A particular extension of the considered model is the following two-
exponential potential

V(f) = V1el1f + V2el2f . (1.58)

The phenomenological merit of this double exponential model is that
under certain conditions the scaling solution can gracefully exit to the
desired accelerating phase at late times. This transition can be obtained if
l2

1 > 3(wB + 1) and l2
2 < 3(wB + 1) in the potential (1.58). At early times,

the potential is dominated by the el1f term, for which the scalar field follows
the equation of state of radiation and/or matter, hence scaling solutions.
Later in the evolution of the universe, the el2f term dominates, for which the
evolution is not of the scaling form and the late-time attractor is the scalar
field dominated solution (with WDE = 1). In this scenario, the asymptotic
value of the dark energy equation of state is wDE = �1 + l2

2/3, providing
viable cosmologies, just as for the single exponential with l2 < 3(wB + 1).
The right panel of Fig. 1.2 shows an example of this so-called scaling freezing
scenario with the double-exponential potential, where the transition from
the scaling evolution to the scalar field dominated evolution has been
depicted.

Modifications of gravity. The dynamical dark energy scenario mentioned
above is one interesting way to go beyond the standard LCDM scenario.



26 introduction

-15 -10 -5 0 5 10

10-9

10-7

10-5

10-3

N

ρ D
E/
ρ M

-15 -10 -5 0 5 10

10-8

10-5

0.01

10

104

N
ρ D
E/
ρ M

Figure 1.2: The ratio of the dark energy density rDE to that of matter rM as a function
of N. The left panel demonstrates the scaling solutions of a single-exponential
model V(f) = V0elf with l2 > 3(wB + 1), while the right panel is for V(f) =
V1el1f + V2el2f with l2

1 > 3(wB + 1) and l2
2 < 3(wB + 1).

There is, however, another exciting prospect. As we mentioned earlier,
gravity is the most relevant interaction at the cosmological scales. This
means that cosmology is an ideal playground for testing the underlying
theory of gravity. In order to effectively study the limitations of GR at
cosmological scales, one needs to consider its viable modifications.

GR, in fact, is the unique theory of interacting, massless, spin-2 field (see
[24] for a proof). This immediately suggests that in order to construct an
alternative to GR one can either consider a massive extension of the latter, or
add extra dynamical degrees of freedom, such as additional scalar field(s).

In the second class of modifications a particularly well-studied and un-
derstood class is the scalar-tensor gravity, where the dynamics of GR is
extended with a scalar field. It turns out, however, that many a-priori valid
modifications should be actually discarded based on theoretical arguments.
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A particular problem for a given theory is the presence of unstable solu-
tions. Commonly discussed types of instabilities are the so-called ghost and
gradient instabilities.

Let us start by discussing the gradient instability. It basically originates
from a wrong sign gradient term in the Lagrangian of the theory. For the
simplest possible example let us consider a scalar field theory in Minkowski
spacetime which has a wrong sign spatial gradient term. The equation of
motion for the scalar field j of such a theory in Fourier space is simply
given by

j̈k � k2j = 0, (1.59)

where k is the absolute value of the spatial Fourier wavenumber. Note that
in a healthy theory the second term would have been with an opposite
sign. The solutions of this equation scale as jk(t) ⇠ e±kt, the growing part
of which leads to a gradient instability. The characteristic timescale of the
instability scales with the wavenumber as 1/k.

Another widely encountered type of pathology is the ghost instability. To
understand ghosts it is enough to consider the following, non-gravitational
toy example for two scalar fields c and j

L =
1
2

∂µc∂µc � 1
2

∂µ j∂µ j + V(c, j), (1.60)

where the potential V(c, j) is given by

V(c, j) = �1
2

m2
cc2 � 1

2
m2

j j2 + lc2 j2, (1.61)

with mc and mj being the masses of the fields and l a positive constant.
Note, in particularly, that the two fields have opposite sign kinetic terms.

This is precisely what we mean by a ghost degree of freedom - a field with
a wrong sign kinetic term. As the c field has a negative energy, the vacuum
state can decay into c and j particles and the rate of this decay is in fact
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infinite [25, 26] (assuming the considered theory is valid up to arbitrarily
high energies). This means that the presence of ghosts makes the theory
highly undesirable. Ghost fields are typically present in theories whose
equations of motion contain higher than second order time derivatives [27,
28]. This fact is one of the main locomotives for constructing alternatives to
GR. One of the most well studied class of theories is in fact the Horndeski
theory - the theory of a single scalar field coupled to gravity in such a way
that the resulting equations of motion are second order in time [29, 30].
This last requirement ensures the absence of ghosts.

Horndeski theory is a generalization of scalar-tensor theories known since
a long time ago. One of the first examples is the Brans-Dicke theory [31], the
main idea of which is to promote the gravitational constant to a dynamical
field. In the so called Jordan frame (which means that the matter fields
are minimally coupled to the metric gµn), the Brans-Dicke theory has the
following action

S =
M2

Pl
2

Z
d4x

p
�g


1
2

jR � wBD

2j
rµ jrµ j � V(j)

�
+ Sm(gµn, Yi), (1.62)

where wBD is a constant. The GR limit of this theory is recovered in the
limit of infinitely large Brans-Dicke parameter wBD.

From the point of view of cosmology this theory is an interesting example
of modified gravity because we can clearly see the effects of the additional
scalar degree of freedom on large scale structure. Particularly, the Poisson
equation (which in GR is given by Eq. (1.34)) in this theory, in the quasistatic
limit, is given by

k2

a2 f = �4pGµ(a, k)rmd, (1.63)

where

µ(a, k) ⌘ MPl
j̄

2(2 + wBD) + (j̄/MPl)m2a2/k2

3 + 2wBD + (j̄/MPl)m2a2/k2 , (1.64)
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with j̄ being the homogeneous background sector of the scalar field j,
and m being the mass of the scalar field. As we see, contrary to GR, here
the gravitational strength, which controls the effectiveness of dark matter
clustering, is a function of scale and time.

Additionally, the relation between the two gravitational potentials (which
in GR is given by the simple identity Eq. (1.35)) in the quasistatic limit is
given by:

h(a, k) ⌘ f

y
=

2(1 + wBD) + m2 j̄a2/k2

2(2 + wBD) + m2 j̄a2/k2 . (1.65)

Interestingly, the functional forms of these two new fucntions µ(a, k) and
h(a, k) are generic for the entire class of Horndeski gravity [32]. Particularly,
these can be written as

µ(a, k) = h1(a)
1 + k2h5(a)
1 + k2h3(a)

(1.66)

h(a, k) = h2(a)
1 + k2h4(a)
1 + k2h5(a)

, (1.67)

where hi are functions of background only, and their form is model-specific.
Horndeski gravity is expected to be constrained by several high-precision

large-scale structure surveys. However, the recent detection of the gravi-
tational waves originating from a pair of merging neutron stars and the
simultaneous detection of their electromagnetic counterpart, the LIGO event
GW170817 [33] and its counterpart GRB 170817A [34], have already cut a
large portion out from the Horndeski Lagrangian. This has been achieved
through the strong bounds imposed on the speed of gravitational waves
(which is constrained to be very close to the speed of light in vacuum);
see [35] for a recent review on the topic. Note, however, that the mentioned
bound on the speed of gravitational waves is strictly valid only at the scales
of LIGO events, which is k ⇠ O(10 � 100) Hz. Horndeski gravity, on the
other hand, in the cosmological context is typically used at the scale of
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present-time cosmic expansion rate, H0, which is about 20 orders of magni-
tude smaller than the LIGO scale. This means that for interpreting the LIGO
bounds one might need to include corrections to the considered theories,
which can then naturally bring the speed of gravitational waves in these
theories to be very close to the speed of light.

Let us conclude this section by mentioning that while the Horndeski-
type general approach to Modified Gravity is very fruitful, it still misses
some important classes of theories. Among these modifications to gravity,
the bimetric theory of ghost-free, massive gravity is of particular interest.
It stands out especially because of the strong theoretical restrictions on
the possibilities for constructing a healthy theory of this type. Indeed,
historically it has proven to be difficult to invent a healthy theory of massive,
spin-two field beyond the linear regime. The linearised theory has been
known for a long time [36], while at the fully nonlinear level the theory
has been discovered only recently by constructing the ghost-free theory
of massive gravity [37–46]. This development has also naturally led to the
healthy theory of interacting, spin-2 fields, i.e. the theory of ghost-free,
massive bigravity [47]; see Refs. [48–50] for reviews.

Over the past decade, there has been a substantial effort directed towards
understanding the cosmological behaviour of bimetric models, both theo-
retically and observationally. Particularly, it has been shown that bigravity
admits FLRW cosmologies which perfectly agree with cosmological ob-
servations at the background level (see Ref. [51, 52] for reviews). At the
level of linear perturbations the cosmological solutions have been shown to
suffer from either ghost or gradient instabilities, although the latter can be
pushed back to arbitrarily early times by imposing a hierarchy between the
parameters of the theory [53]. It is also conjectured [54] that the gradient
instability might be cured at the nonlinear level due to the presence of the
Vainshtein screening mechanism (see later in this chapter) in the theory.

The version of the bimetric theory studied in all these works is the
so-called singly-coupled scenario, where the matter sector is assumed to
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couple to only one of the two metrics (spin-2 fields). The metric directly
coupled to matter is called physical metric, and the other spin-2 field, called
reference metric, affects the matter sector only indirectly and through its
interaction with the physical metric.

1.5 screening mechanisms in modified gravity

One of the most well-understood properties of modified gravity theories
is that there is an extra (often referred to as a "fifth") force in addition to
the standard Newtonian force. To understand this effect let us study the
following, quite generic coupling of the matter fields to the scalar field
sector:

S =
Z

d4x
p

�g

"
M2

Pl
2

R � 1
2
rµ jrµ j � V(j)

#
+ Sm(g̃µn, Yi), (1.68)

where

g̃µn ⌘ A(j)gµn. (1.69)

A central equation here is the geodesic equation for a non-relativistic test
particle in the Newtonian limit:

ẍi + Gi
00 = �dlnA

dj
ri j, (1.70)

where G denotes the Christoffel symbol, and xi are the spatial coordinates
of the considered test particle. This equation motivates us to interpret the
right hand side as a fifth force.

This then leads to a problem – gravity is very well tested at small scales,
for example in Solar System, and no fifth forces have been detected [55].
The obvious question then is how to reconcile the modifications of gravity
with the local tests. There are several interesting proposals which allow
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for the fifth force to be screened in an environment-dependent manner. For
demonstrating the main idea behind the common screening mechanisms
let us consider the field equation of motion of the theory given in Eq. (1.68)

⇤j = V(j),j � dlnA
dj

Tr [Tµn] , (1.71)

where Tµn is the Einstein frame metric, ⇤ ⌘ rµrµ is the d’Alambert
operator, and the trace is taken with gµn. For a non-relativistic matter sector,
such as cold dark matter, Tr [Tµn] = �r, with r being the matter density.

This motivates us to define Veff(j; r) ⌘ V(j) + rlnA(j); an effective
potential which reacts to the matter density of the ambient space. Let us
discuss two qualitatively different choices for the A(j) function and the
potential V(j):

• V(j) = Ln+4

jn , A(j) = ej/Mc ,

• V(j) = � 1
2 µ2 j2 + l

4 j4, A(j) = 1 + j2

2M2
s
,

where L (not to be confused with the cosmological constant), µ, l, Mc and
Ms are constants.

The first of these choices is in the class of Chameleon screening mecha-
nisms [56], the idea of which is to enhance the effective mass of the scalar
field, hence rendering the corresponding fifth force to be a short-range
one; see the left panel of Fig. 1.3. The second choice corresponds to the
Symmetron mechanism, [57] the idea of which is to suppress the coupling of
the scalar field to the matter; see the right panel of Fig. 1.3.

Another important mechanism is the Vainshtein mechanism [58, 59],
which relies on the non-linearities of the scalar field induced due to higher
order derivative self-couplings, such us L �⇠ ∂µ j∂µ j⇤j. Vainshtein mech-
anism is central for several interesting theories, including massive gravi-
ty/bigravity discussed above.
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Figure 1.3: Left panel: Demonstration of the Chameleon screening mechanism Right panel:
Demonstration of the Symmetron screening mechanism. See the text for details.

1.6 the era of precision cosmology

Before summarizing the content of this thesis let us present a comment
on how fast the presion of cosmological observations grows. The quality
of modern cosmological datasets posits very high standards in front of
cosmological model building initiatives. As a striking demonstration of this
let us examine Fig. 1.4, which shows the current observational constraints on
inflationary models by the CMB data given by the Planck collaboration [60]
alongside with the same constraints from a decade-old WMAP collaboration
[61]. We see that many interesting models, e.g. the polynomial inflationary
models with potential fk with k = 2, 4/3, 1, 2/3, are now disfavored or
ruled out by date. All these models were inside the 95% sweet spot of
the data in 2009 provided by the WMAP collaboration, as one can see in
Fig. 1.4, while they are now either outside or close to the boundary of the
95% confidence region of the Planck 2018 data.

This demonstrates that in the theoretical analysis of the data, it is no
longer possible to perform a parametric, order of magnitude analysis as it was
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Figure 1.4: Evolution of precision in inflationary parameters over a decade, from
WMAP [61] to Planck [60]. The reconstructed Planck constraints correspond to
the combination TT,TE,EE+lensing+BK14+BAO provided in [60]. One can look,
for example, at the area between ns = 0.95 and ns = 0.98. Although both of
these values were inside the 68% contour back in 2009, they are now strongly
disfavored with more than 95% confidence.

normal in the past, especially in string theory phenomenology. The same
concerns such expressions as "parametrically small", or "parametrically
large". We can see examples in Fig. 1.4 showing that reducing the bound on
r from ⇠ 0.08 to ⇠ 0.04 has made various theoretical ideas either supported
or ruled out by the precision data in cosmology.

Similarly, the constraints on dark energy become more and more pre-
cise. For example, 15 years ago the constraints on the parameter l in the
exponential potential e±lf for quintessence, allowed l = 1.6 [62, 63]. Mean-
while, in the discussion of the quintessence models supporting the recent
swampland conjecture [13] it was necessary to pay full attention to a small
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difference between numbers such as l < 1 and l < 1.4. Indeed, models
with l > 1 are ruled out by cosmological observations with more than
99.7% confidence, whereas the condition l < 1 is not satisfied by the string
theory models of [13].

1.7 this thesis

• Chapter 2 is dedicated to a study of a new class of inflationary models
known as cosmological a-attractors. We promote these models towards
a unified framework describing both inflation and dark energy. We
construct and study several phenomenologically rich models which
are compatible with current observations. In the simplest models, with
vanishing cosmological constant L, one has the tensor to scalar ratio
r = 12a

N2 , with N being the number of e-folds till the end of inflation,
and the asymptotic equation of state of dark energy w = �1 + 2

9a .
For example, for a theoretically interesting model given by a = 7/3
one finds r ⇠ 10�2 and the asymptotic equation of state is w ⇠ �0.9.
Future observations, including large-scale structure surveys as well
as Cosmic Microwave Background B-mode polarization experiments
will test these, as well as more general models presented here. We
also discuss the gravitational reheating in models of quintessential
inflation and argue that its investigation may be interesting from the
point of view of inflationary cosmology. Such models require a much
greater number of e-folds, and therefore predict a spectral index ns
that can exceed the value in more conventional models of inflationary
a-attractors by about 0.006. This suggests a way to distinguish the
conventional inflationary models from the models of quintessential
inflation, even if the latter predict w = �1. This chapter is based on
Ref. [64].
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• The topic of Chapter 3 is the theory of massive bigravity, where one
has two dynamical tensor degrees of freedom. We consider an inter-
esting extension where both of the metrics are coupled to the matter
sector, which is known as the doubly-coupled bigravity. The main aim
of this chapter is the study of gravitational-wave propagation in this
theory. We demonstrate that the bounds on the speed of gravitational
waves imposed by the recent detection of gravitational waves emitted
by a pair of merging neutron stars and their electromagnetic coun-
terpart, events GW170817 and GRB170817A, strongly limit the viable
solution space of the doubly-coupled models. We have shown that
these bounds either force the two metrics to be proportional at the
background level or the models to become singly-coupled (i.e. only
one of the metrics to be coupled to the matter sector). The mentioned
proportional background solutions are particularly interesting. In-
deed, it is shown that they provide stable cosmological solutions with
phenomenologies equivalent to that of LCDM at the background
level and at the level of linear perturbations. The nonlinearities, on
the other hand, are expected to show deviations from LCDM. This
chapter is based on Ref. [65].

• In Chapter 4 we study the first cosmological implications of a novel
massive gravity theory, recently proposed by Chamseddine and
Mukhanov, known as the mimetic theory of massive gravity. This is
a theory of ghost-free massive gravity, which additionally contains a
so-called mimetic dark matter component. In an echo of other modified
gravity theories, there are self-accelerating solutions which contain a
ghost instability. In the ghost-free region of parameter space, the effect
of the graviton mass on the cosmic expansion history amounts to an
effective negative cosmological constant, a radiation component, and
a negative curvature term. This allows us to place constraints on the
model parameters—particularly the graviton mass—by insisting that
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the effective radiation and curvature terms be within observational
bounds. The late-time acceleration must be accounted for by a sepa-
rate positive cosmological constant or other dark energy sector. We
impose further constraints at the level of perturbations by demanding
linear stability. We comment on the possibility of distinguishing this
theory from LCDM with current and future large-scale structure
surveys. This chapter is based on Ref. [66].

• The final Chapter 5 is dedicated to the study of the effects of screening
mechanisms in modified gravity on the dynamics of the spherical
collapse of dark matter. In particular, we investigate the splashback
scale in Symmetron modified gravity. The splashback radius rsp has been
identified in cosmological N-body simulations as an important scale
associated with gravitational collapse and the phase-space distribution
of recently accreted material. We employ a semi-analytical approach,
namely the self-similar spherical collapse framework, to study the
spherical collapse of dark matter halos in Symmetron gravity. We
provide, for the first time, insights into how the phenomenology
of splashback is affected by modified gravity. The Symmetron is a
scalar-tensor theory which exhibits a screening mechanism whereby
higher-density regions are screened from the effects of a fifth force.
In this model, we find that, as over-densities grow over cosmic time,
the inner region becomes heavily screened. In particular, we identify
a sector of the parameter space for which material currently sitting
at the splashback radius rsp, during its collapse has followed the
formation of this screened region. As a result, we find that for this part
of the parameter space the splashback radius is maximally affected
by the Symmetron force and we predict changes in rsp up to around
10% compared to its General Relativity value. Because this margin
is within the precision of present splashback experiments, we expect
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this feature to soon provide constraints for Symmetron gravity on
previously unexplored scales. This chapter is based on Ref. [67].

Other papers of the author include Refs. [22, 68–75].
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2
D A R K E N E R G Y, a - AT T R A C T O R S , A N D L A R G E - S C A L E
S T R U C T U R E S U RV E Y S

This chapter is dedicated to a study of a new class of inflationary models
known as cosmological a-attractors. We promote these models towards a uni-
fied framework describing both inflation and dark energy. We construct and
study several phenomenologically rich models which are compatible with
current observations. In the simplest models, with vanishing cosmological
constant L, one has the tensor to scalar ratio r = 12a

N2 , with N being the num-
ber of e-folds till the end of inflation, and the asymptotic equation of state of
dark energy w = �1 + 2

9a . For example, for a theoretically interesting model
given by a = 7/3 one finds r ⇠ 10�2 and the asymptotic equation of state
is w ⇠ �0.9. Future observations, including large-scale structure surveys as
well as Cosmic Microwave Background B-mode polarization experiments
will test these, as well as more general models presented here. We also
discuss the gravitational reheating in models of quintessential inflation and
argue that its investigation may be interesting from the point of view of
inflationary cosmology. Such models require a much greater number of
e-folds, and therefore predict a spectral index ns that can exceed the value
in more conventional models of inflationary a-attractors by about 0.006.
This suggests a way to distinguish the conventional inflationary models
from the models of quintessential inflation, even if the latter predict w = �1.

41
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2.1 introduction

In this chapter we are going to construct viable dynamical dark energy
models in the context of recent progress achived in cosmological applica-
tions of supergravity. We particularly will be using some novel ideas which
have been discovered in inflationary cosmology. More concretely, recent
investigations have found a broad class of theories, known as cosmological
a-attractors, which are based on models where the kinetic term of a scalar
field has a pole [76–81]. In such theories, the potential has a plateau shape,
exponentially rapidly approaching a constant at large values of the inflaton
field j. These models, to be described in section 2.2 of this chapter, are
favored by the recent inflation-related cosmological observations [82].

Because of the extreme flatness of the potential in a-attractors, these
models can be suitable not only for describing inflation but also to describe
dark energy, see e.g. Refs. [83–88]. Moreover, it may also be possible to find
a-attractor models which can simultaneously describe inflation and dark
energy [84, 87, 88] in the context of the quintessential inflation [89].

In this chapter, we extend the investigation of the quintessential inflation
models based on a-attractors. We study models with arbitrary L, relax some
of the assumptions made in Refs. [84, 87, 88], and consider a much more
general class of theories. In particular, we describe the a-attractor version of
the simplest linear dark energy model, a model with exponential potential
with two shoulders proposed in Ref. [90], and a generalized version of the
model studied in Refs. [84, 88].

The asymptotic value w• of the parameter w in the equation of state
p = wr for quintessential inflation depends on the limiting value of the
quintessence potential. If this value is negative, the universe eventually
collapses, but under certain conditions it may pass through a temporary
but long stage of acceleration. Here we call w• the asymptotic value of
w for dark energy, to distinguish it from the time-dependent dark energy
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equation of state wDE and the observable "all-inclusive" effective equation
of state weff.

If the potential V of the quintessential inflation models asymptotically
vanishes (i.e. if the cosmological constant is zero), the value of w• in the
simplest models is given by

w• = �1 +
2

9a
. (2.1)

Interestingly, the difference between w• and the equation of state w = �1
for the cosmological constant is inversely proportional to a, whereas the
tensor to scalar ratio is directly proportional to it,

r =
12a

N2 , (2.2)

where N corresponds to the remaining number of e-folds from the end of
inflation at the moment of generation of perturbations studied by WMAP
and Planck. This may help us either to rule out, or to confirm theories of
that type by a combination of searches for B-modes and investigation of
dark energy.

Note that this result is valid only if the cosmological constant is zero,
which provides us with an intriguing possibility to test this hypothesis.
Meanwhile in the theories with a negative cosmological constant, the uni-
verse eventually collapses. However, in some cases one may have a pro-
longed state of accelerated expansion, just as in the model proposed in
Ref. [91].

If the asymptotic value of the potential is positive (i.e. if the cosmological
constant is positive), and the quintessence field slowly rolls towards infinity,
the universe asymptotically approaches a de Sitter regime with

w• = �1 . (2.3)
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This is the most general regime that is relatively easy to achieve in the su-
pergravity constructions discussed here. Of course, if these models correctly
describe our world, the observations looking for deviations of quintessence
from the cosmological constant will not bring us anything exciting. But
there may be a silver lining here.

Indeed, the process of reheating in the models of quintessential inflation
is non-standard, and it can be very inefficient. In that case, the inflaton field
after the end of inflation may enter a long stage when its energy density
is dominated by the kinetic energy with w = +1. This simple fact affects
the number of e-folds N [84]. Indeed, as we will show, the number of e-
folds in the a-attractor models of quintessential inflation with gravitational
reheating can be greater than the corresponding number in the conventional
(non-quintessential) versions of a-attractors and in the Starobinsky model
by DN ⇠ 10. This is a significant difference, which may have important
observational consequences.

In particular, the general prediction of a attractors for ns is

ns = 1 � 2
N

. (2.4)

One can easily check that the difference between ns for conventional a-
attractors with N ⇠ 50 and a-attractor models of quintessential inflation
with N ⇠ 60 is about 0.006, which coincides with 1s error bar in the Planck
2015 results [82]. This increase in the value of ns and N is not very easy to
achieve otherwise, see e.g. Refs. [92, 93].

This suggests that future observations may be able to differentiate be-
tween the regular versions of inflationary a-attractors and their quintessen-
tial generalizations. More generally, we might be able to differentiate,
though somewhat indirectly, the cosmological constant and quintessence
without relying on extreme accuracy in measuring w. This is a rather
intriguing byproduct of the present investigation.

In this chapter we will also describe the models which involve two
different fields with a-attractor potentials. The first of these two fields (or
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the combination of the two) will be responsible for inflation, and the second
field will be responsible for quintessence. The resulting models are very
flexible; they are close in spirit to the models of multi-field cascade inflation
proposed in Ref. [94].

In addition to the current cosmic microwave background (CMB) experi-
ments, such as WMAP [95], Planck [96], ACTPol [97] and SPT-Pol [98], as
well as the Stage III CMB experiments like AdvACT [99] and SPT-3G [100],
and the future CMB Stage IV ground [101] and space based experiments
such as LiteBIRD [102, 103], aiming at more precise measurements of the
CMB B-modes, arguably the next leading cosmological probes are the large-
scale structure surveys, measuring baryon acoustic oscillations (BAO) and
the growth of structure through redshift-space distortions (RSD), as well
as weak gravitational lensing. There is a classification of the LSS surveys
similar to that of the CMB experiments. This includes Stage III experiments
currently taking data and continuing to do so for the next two or three
years, as well as Stage IV experiments that are currently being designed and
constructed to provide a large amount of high quality data in the next five
to ten years. The Stage III experiments include, for example, the Canada-
France Hawaii Telescope Lensing Survey (CFHTLenS) [104, 105], the Kilo
Degree Survey (KiDS) [106, 107], the Extended Baryon Oscillation Spectro-
scopic Survey (eBOSS) [108], and the Dark Energy Survey (DES) [109–111].
We however expect an exciting time to come when the Stage IV LSS surveys
start to deliver data. These include several ground based experiments such
as the Dark Energy Spectroscopic Instrument (DESI) [112, 113], the Large
Synoptic Survey Telescope (LSST) [114, 115], and the Square Kilometre
Array (SKA) [116–121], as well as the space based experiments Euclid [122,
123] and the Wide Field InfraRed Survey Telescope (WFIRST) [124, 125]. A
synergy of all these various probes of both early- and late-time observables
will provide invaluable information about the models of inflation and dark
energy.
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In this chapter, we perform an analysis of our a-attractor models of dark
energy in view of their implications for the current and future large-scale
structure surveys. We do not intend here to perform a comprehensive
comparison of our models to the current data or a detailed forecast analysis
of the models for the future LSS experiments (such a study is currently
ongoing). For some models, we base our discussions solely on simple
numerical computations of cosmic histories as well as dark energy and
effective equations of state, without going through a detailed comparison
to observations, to see whether these models can potentially provide viable
cosmologies. For some others, though, we perform a statistical analysis and
compare their predictions to geometrical constraints on the cosmic history
using a combination of current observational data, which we believe can
provide a sufficiently good understanding of our models and their viability.
We also discuss the implications of our findings for future cosmological
surveys and in particular ask the question of whether the more precise
measurements of dark energy properties will enable us to test our models
against LCDM. Here we similarly do not perform a detailed forecast
analysis of the models and are interested only in a rough estimate of the
testability of the models using future data.

2.2 asymmetric cosmological a-attractors

There are several different ways to introduce the theory of a-attractors, see
Refs. [76–81]. On a purely phenomenological level, the main features of all
of these models can be represented in terms of a single-field model with
the Lagrangian [80, 81]

1p�g
L =

R
2

�
(∂µf)2

2
�
1 � f2

6a

�2 � V(f) . (2.5)
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Here f(x) is the scalar field, and we use units where MPl = 1. The origin
of the pole in the kinetic term can be explained in the context of hyper-
bolic geometry of the field-space manifold. These geometries are natural
in extended supergravity, although they may also describe cosmological
models unrelated to supergravity. The parameter a can take any positive
value in the minimal N = 1 supergravity, but recent developments based
on extended supergravity, M-theory, and string theory favor 7 particular
choices: 3a = 1, 2, 3, ..., 7 [94, 126, 127].

In the limit a ! • this model coincides with the standard chaotic
inflation with a canonically normalized field f and the inflaton potential
V(f) [128]. However, for any finite value of a, the field f in (2.5) is not
canonically normalized, and must satisfy the condition f2 < 6a.

Instead of the variable f, one can use a canonically normalized field j by
solving the equation ∂f

1� f2
6a

= ∂j, which yields

f =
p

6a tanh
jp
6a

. (2.6)

The full theory, in terms of the canonical variables, becomes

1p�g
L =

R
2

�
(∂µ j)2

2
� V

�p
6a tanh

jp
6a

�
. (2.7)

Note that in the limit f ! 0 the variables f and j coincide; the main
difference appears in the limit f2 ! 6a: In terms of the new variables, a
tiny vicinity of the boundary of the moduli space at f2 = 6a stretches and
extends to infinitely large |j|. We will assume that the potential V(f) and
its derivatives are non-singular for f2  6a. In that case, generic potentials
V(f) = V(

p
6a tanh jp

6a
) at large |j| approach two infinitely long plateaus

with the heights corresponding to the values of V(f) at the two boundaries,

V± ⌘ V(f)|f=±
p

6a . (2.8)
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The simplest example of such a theory is given by the model with V(f) =
m2f2/2. In terms of the canonically normalized field j, the potential is
given by

V(j) = 3am2 tanh2 jp
6a

. (2.9)

This is the simplest representative of the so-called T-models, with the
T-shaped potential shown in Fig. 2.1.
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Figure 2.1: The potential V(j) = 3am2 tanh2 jp
6a

for a = 1, shown in units of 3m2, with j

in Planck units. For 1/3 < a < 10 one has ns ⇠ 0.965 and the tensor to scalar
ratio r is in the range from 3 ⇥ 10�2 to 10�3, providing a good match to the
Planck data.

For any values of a . 10, the amplitude of the inflationary perturbations,
the prediction for the spectral index ns, and the tensor to scalar ratio r
match observational data under a single condition [129]

V±
a

⇠ 3m2 ⇠ 10�10 . (2.10)

To understand what is going on in this class of theories for general potentials
V(f), let us consider, for definiteness, positive values of f and study a small



50 dark energy, a-attractors , and large-scale structure surveys

vicinity of the point f =
p

6a, which becomes stretched to infinitely large
values of the canonical field j upon the change of variables f ! j. If the
potential V(f) is non-singular at the boundary f =

p
6a, we can expand it

in series with respect to the distance from the boundary,

V(f) = V+ + (f �
p

6a) V 0
+ + O

⇣
(f �

p
6a)2

⌘
, (2.11)

where we have introduced V 0
+ ⌘ ∂fV|f=+

p
6a.

In the vicinity of the boundary f =
p

6a, the relation (2.6) between the
original field variable f and the canonically normalized inflaton field j is
given by

f =
p

6a
⇣

1 � 2e�
p

2
3a j
⌘

, (2.12)

up to the higher order terms O
�
e�2

p
2

3a j
�
. At j �

p
6a, these terms are

exponentially small as compared to the terms ⇠ e�
p

2
3a j, and the potential

acquires the following asymptotic form

V(j) = V+ � 2
p

6a V 0
+ e�

p
2

3a j . (2.13)

The constant 2
p

6a V 0
+ in this expression can be absorbed into a redefinition

of the field j. This is the reason of the universal inflationary predictions,
given the inflation takes places at large j �

p
a.

In particular, the parameters ns and r describing the spectrum of infla-
tionary perturbations are given by

r =
12a

N2 , ns = 1 � 2
N

. (2.14)
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These results depend only on a and the number of e-folds N remaining
to the end of inflation since the moment when quantum fluctuations were
generated. Meanwhile, the amplitude of scalar perturbations for a-attractors
generated at the upper plateau of the potential (2.13) is given by

PR(k) =
N2

18p2
V+

a
. (2.15)

Thus the COBE/Planck normalization constrains the ratio V+/a [129].
Taking the value (2.208 ± 0.075) ⇥ 10�9 [130, 131] for PR and N ⇠ 60 e-
folds for inflation, we find the constraint on the height of the inflationary
plateau,

V+

a
⇠ 10�10 . (2.16)

These results were explained in Refs. [76, 78] and formulated in a partic-
ularly general way in Ref. [80]; the kinetic term in this class of models has
a pole at the boundary of the moduli space. If inflation occurs in a vicinity
of such a pole, and the potential near the pole has a finite first derivative,
all other details of the potential V(f) and of the kinetic term far away from
the pole are not important for making cosmological predictions. That is
why these models are called cosmological attractors.

The simplest model V(f) = m2f2/2 considered above is symmetric with
respect to the change f ! �f. However, this is not a universal property.
Consider, for example, its generalization [90] with the potential

V =
m2

2(1 + c)2 (f + c
p

6a)2 . (2.17)

In terms of the canonically normalized field j, the potential becomes

V =
3am2

(1 + c)2

�
tanh

jp
6a

+ c
�2 . (2.18)
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The coefficient (1 + c)�2 is introduced to preserve the height of the infla-
tionary plateau at j ! •.
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Figure 2.2: The potential (2.17) shown in units of am2 for a = 1, and c = 0 (blue), 0.3
(orange), 1 (red), and 1.9 (green).

For |c| < 1 this potential has a minimum and two asymptotically flat
shoulders of different heights, as shown by the orange curve in Fig. 2.2.
For c = 1 the minimum of the potential disappears and the left shoulder
describes a potential which exponentially decreases to zero at large, negative
values of j. Finally, for c < �1, the potential at large, negative j approaches
a constant value of V� = 3am2(c � 1)2/(c + 1)2. One can further modify
the potential by adding to it a constant of any sign, which is absolutely
legitimate from the point of view of the string theory landscape.

Historically, the first versions of a-attractor models have been developed
in Refs. [76–81] in the supergravity context, where the potentials could
be represented as f 2(f), where f (f) is a real holomorphic function of
the argument. That is why we started the discussion of a-attractors with
presenting models with a quadratic potential V(f). However, recently a
more general approach to a-attractors in supergravity has been developed
[94, 132], which allows us to describe models with arbitrary potentials
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V(f), including the simplest linear dark energy potential V(f) = gf + L
proposed as early as in Ref. [91].

In this chapter, we study V(j) at very large, negative j. Therefore we
will often identify L not with V(0), but with V�, the height of the potential
in this limit of large, negative j. This can be achieved by representing the
linear potential as V(f) = gf + g

p
6a + L. In terms of the canonically

normalized field j, this potential is given by

V(j) = g
p

6a(tanh
jp
6a

+ 1) + L , (2.19)

where L = V� is now the asymptotic value of the potential at j ! �•.
We illustrate the shape of this potential for various values of its parame-

ters in Fig. 2.3.
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Figure 2.3: The potential (2.19) has two plateaus, with V = V±. We illustrate its values for
V+ = 1 and V� = L = �0.1 (blue), 0 (green), and +0.1 (red).

At j �
p

6a the potential is given by

V = V+ � 2g
p

6a e�
p

2
3a j , (2.20)
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whereas at j ⌧ �
p

6a one has

V = V� + 2g
p

6a e
p

2
3a j . (2.21)

In general, the asymptotic behavior of asymmetric potentials V(j) at
large, negative values of the field, j ⌧ �

p
6a, is given by an expression

similar to (2.13),

V(j) = V� + 2
p

6a V 0
� e

p
2

3a j , (2.22)

where V 0
� ⌘ ∂fV|f=�

p
6a. Thus, as long as V 0

� is non-singular and does
not vanish,1 all such potentials have the same universal asymptotic behav-

ior at large, negative j: up to a shift j ! j �
q

3a
2 log(2

p
6a V 0

�) and a

redefinition
q

2
3a ! l, they can be represented in a more familiar way,

V(j) = L + elj . (2.23)

This general asymptotic expression will be very helpful in evaluation of
a-attractors as dark energy candidates.

To explain the basic idea, let us first consider the simplest case of L = 0.
Then we will have an exponential potential 2

V(j) = elj , (2.24)

1 If one fine-tunes the potential V(f) to have a minimum, or maximum, at one of the
boundaries f = ±

p
6a, the first derivative V0

� in (2.22), or V0
+ in (2.13), vanishes. This affects

the asymptotic behavior of the potential. For example, in the theory with the quadratic
potential (2.17) with c = 1, the asymptotic behavior at j ! �• is governed by the higher
exponent e2

p
2

3a j, which is equivalent to making a four times smaller.
2 The related effective models of accelerated expansion in string theory were proposed in

Ref. [133], and they lead to wDE < �1/3.
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where

l =

r
2

3a
. (2.25)

This potential vanishes in the limit j ! �•. For l ⌧ 1, the potential is
flat, the energy density of normal matter decreases faster than V, and the
system eventually enters the asymptotic regime of power-law inflation with
(see for example the review [134])

w• = �1 +
l2

3
= �1 +

2
9a

. (2.26)

It is interesting to compare this result with the inflationary predictions of
a-attractors (2.14): ns = 1 � 2

N , r = 12a
N2 . Thus, in this scenario, inflationary

predictions, as well as the value of w•, are determined by the parameter
a. In particular, for L = 0, and a = 7/3 (i.e. l ⇠ 0.53), which is one of the
values advocated in Refs. [94, 126, 127], the asymptotic equation of state of
dark energy is given by

w• = �0.905 . (2.27)

Note, however, that in the derivation of (2.26) we assumed that L = 0. This
assumption, which simplifies the investigation, is very hard to justify in the
supergravity framework. For any positive L one has

w• = �1 , (2.28)

but for large a the transition from w = �1 + 2
9a to w = �1 may take a long

time. On the other hand, while in the models with L < 0, the universe
eventually collapses, if l ⌧ 1 and |L| ⌧ 10�120, there is a very long
interval, potentially longer than the present age of the universe, during
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which w is very close to �1 [135]. Also, our universe may be very far from
the asymptotic regime discussed above. Therefore, one should keep the
estimate (2.26) in mind, but perform a more detailed analysis of different
dark energy models, as we will do in this chapter.

2.3 a-attractors and supergravity

2.3.1 General formulation, geometry, and special values of a

One of the nice features of all cosmological a-attractor models which we
will study here is that they can be easily embedded into the string theory
motivated supergravity where the scalar fields are complex. The most
advanced version of these models [94] is based on anti-D3-brane induced
geometric models — here we review these models in the simple case where
a bosonic model has a single inflaton-quintessence field.

There is one complex scalar Z, a coordinate of the Poincaré disk with the
following geometry

ds2 = 3a
dZdZ̄

(1 � ZZ̄)2 . (2.29)

Advanced formulations of a-attractors in supergravity also contain a
nilpotent superfield S such that S(x, q)2 = 0, whose Kähler geometry
represents the interaction between the anti-D3-brane and the background
fields, including the inflaton-quintessence field Z. The scalar component of
it, S(x), vanishes on the inflationary trajectory, since in this Volkov-Akulov
multiplet the scalar is not independent but is a bilinear of fermions. It is
convenient to use the geometric Kähler function formalism [94], where

G ⌘ K + log W + log W , V = eG(Gab̄GaGb̄ � 3) , (2.30)
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G = ln W2
0 � 3a

2
log

(1 � ZZ̄)2

(1 � Z2)(1 � Z̄2)
+ S + S̄ +

W2
0

|FS|2 + f (Z, Z̄)
SS̄ , (2.31)

and f (Z, Z̄) is an arbitrary, real function of Z and Z̄. This employs the
Kähler frame that has a manifest inflaton shift symmetry [136]. The potential
has a stable minimum at Z = Z̄. Its value along the inflaton direction
Z = Z̄ = tanh jp

6a
is given by

V|Z=Z̄ = f (Z, Z̄)|Z=Z̄ + L = f (tanh
jp
6a

) + L . (2.32)

Here, the cosmological constant L can take arbitrary values determined by
the choice of FS and W0:

L = F2
S � 3W2

0 . (2.33)

The choice of the Kähler potential for Z was made in Ref. [94] such that

K(Z, Z̄)|Z=Z̄ = �3a

2
log

(1 � ZZ̄)2

(1 � Z2)(1 � Z̄2)
|Z=Z̄ = 0 , KZ(Z, Z̄)|Z=Z̄ = 0 .

(2.34)

This Kähler frame leads to a simple relation between the inflaton potential
(2.32) and the S-field geometry gSS̄ = W2

0
|FS|2+ f (Z,Z̄)

. It also provides stabiliza-
tion of the sinflaton field Z � Z̄ at Z � Z̄ = 0.

In the disk geometry (2.29) 3a = R2 is a geometric parameter defining
the radius square of the Poincaré disk of the hyperbolic geometry of the a-
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attractor models, since by change of variables Z0 = Z
p

3a one can represent
the metric in the form

ds2 =
dZ0dZ̄0
�
1 � Z0Z̄0

3a

�2 , |Z0|2 < 3a . (2.35)

The parameter a also defines a curvature of the corresponding Kähler
manifold, RK = � 2

3a . Finally, one can return to the variables used in the
previous section by representing the real part of Z0 as fp

2
=

p
3a tanh jp

6a
.

The asymptotic freedom of the interactions of the field j with all other
fields protects the asymptotic flatness of the potential for any a. Thus, in
general quantum field theory models, as well as in N = 1 supergravity,
there are no constraints on a, it can take any value a > 03.

From the point of view of maximal supergravity, string theory, and
M-theory, the most interesting values of a are [94, 126, 127]

3a = 1, 2, 3, 4, 5, 6, 7 . (2.36)

An interpretation of this family of models is rather interesting. These models
describe 7 unit size Poincaré disks with 3a = 1 for seven different fields Zi.
The basic choice of a = 1/3 corresponds to a single unit size disk model
with Z1Z̄1 < 1. If all other fields are stabilized and cannot move, one has a

3 One should distinguish the general theoretical constraints on a and the model-dependent
cosmological constraints. In Ref. [84], the authors assumed 0.03 < a < 1/3. In a subsequent
paper [88], they noted that these conditions did not lead to a satisfactory dark energy model
in their scenario, and instead picked the range 1.5 < a < 4.2. However, they admitted
that the constraint a < 4.2 is not firmly motivated because of the asymptotic freedom
of the field j in a-attractors [137]. Meanwhile, we find that the condition a > 1.5 is
excessive, and it completely disappears in the models with a positive cosmological constant,
see section 2.5.3.2. In particular, in section 2.5.1 we will present a model with a positive
cosmological constant where one can have quintessential inflation for a . 10�2.
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single attractor with a = 1/3, where the corresponding field f1 can change
from �

p
2 to +

p
2. If all seven of them interact and are forced dynamically

to move together [94, 127], then each of them also moves from �
p

2 to +
p

2,
but the combination of these fields changes from �

p
14 to +

p
14, along the

diagonal of a 7-dimensional cube.
The choice of a = 1 describes a-attractor formulations of the Starobinsky

model and Higgs inflation. The fibre inflation model, which is based on
the large volume compactification in string theory, corresponds to a = 2
[138, 139]. The choice of a = 7/3, which we will sometimes use in various
examples, corresponds to the maximally symmetric realization of the 7-disk
M-theory model [94, 126, 127].

2.3.2 Suppressing the fifth force

There is a well known issue with quintessence regarding the fifth force
problem. This problem appears if the masses of particles in the standard
model depend on the quintessence field f.

Consider first an unrealistic example and assume that the electron mass
me receives a contribution Dme = g f. Then (in addition to electromagnetic
interactions) electrons would attract each other through the gravitational
force ⇠ (me+gf)2

r2 , as well as through an additional fifth force F5 ⇠ g2

r2 due to
the interactions via the nearly massless quintessence field f. This force will
have the same dependence on r as the gravitational attraction, but it will
not be proportional to m2

e, which would violate the equivalence principle.
An obvious way to avoid this problem is to suppress the interaction of

the standard model fields with quintessence. For example, as was already
observed in Ref. [88], the asymptotic freedom of the field j in a-attractors
[137] allows to exponentially suppress this coupling even if it were present.
However, the suppression of the fifth force should be extremely strong,
which may require very large values of j. In the a-attractor models to be
discussed in this paper, this may not be a problem since we do not introduce
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any direct coupling between f and electrons or quarks, which would lead
to the force F5 ⇠ g2

r2 discussed above.
However, one may wonder whether this coupling may appear in super-

gravity even if the field j belongs to the hidden sector, without a direct
coupling to the standard model fields. Fortunately, there is a specific feature
of our underlying supergravity models which helps to avoid the fifth force
issues. The coupling of the inflationary sector to matter in these models has
been studied in Ref. [140]. The inflaton-quintessence field is Z, and there is
also a nilpotent superfield S, as explained above. It has been found how to
construct the interaction between matter and the inflationary sector so that
the presence of the matter fields does not affect a successful inflationary
evolution and that there are no tachyons in the matter sector during and
after inflation.

One of the most important features of this class of models is the require-
ment of the flatness of the Kähler potential for the inflaton-quintessence
field Z, shown in Eq. (2.34). In particular, since the field Z � Z̄ orthogonal to
the inflaton direction is heavy and is stabilized at the inflaton-quintessence
trajectory Z = Z̄, one finds that

eK(Z=Z̄) = 1 , (2.37)

and there is no dependence of the mass of the matter fields on the inflaton
field via the Kähler potential since

KZ(Z = Z̄) = 0 . (2.38)

These features of the Kähler potential have been discussed in Ref. [141]
as the reason for the fifth force problem to be alleviated in supergravity.
Our models, which were constructed with the purpose of stabilization of
the sinflaton field Z � Z̄ during the cosmological evolution, just satisfy the
properties required from the Kähler potentials in Ref. [141].
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Moreover, according to Ref. [140] one can construct satisfactory cosmo-
logical models where the mass of the matter field U does not depend on
the inflaton-quintessence field Z. Examples of such models in Ref. [140]
include the following Kähler potential and superpotential:

K(Z, Z̄) = �3a

2
log

(1 � ZZ̄)2

(1 � Z2)(1 � Z̄2)
+ SS̄ + UŪ , (2.39)

W = g(Z) + S f (Z) +
m
2

U2. (2.40)

For our purposes, we need to assume that g(Z) has a negligible dependence
on Z or is completely Z-independent, and the same for the parameter m in
the superpotential. The mass eigenvalues of the scalar field U are

µ2 = V + |g|2 ± |g|m + m2 . (2.41)

The value of the potential V during the quintessence stage is negligible,
V ⇠ 10�120. The rest of the mass formula is Z-independent by the choice of
the parameters in the superpotential. The situation with fermions is similar,
their masses are Z-independent (see Ref. [140] for more details). This means
that with a proper embedding of the standard model in our theory, matter
fields decouple from quintessence. Such models do not suffer from the fifth
force problem.

2.4 single-field quintessential inflation models

2.4.1 Inflationary dynamics, late-time evolution, and cosmic acceleration

In this section, we focus on several interesting models where a single scalar
field f is responsible for both inflation and dark energy. The action for



62 dark energy, a-attractors , and large-scale structure surveys

these single-field, a-attractor, quintessential inflation models has the general
structure

S =
1
2

Z
d4x

p
�gR �

Z
d4x

p
�g

 
∂µf∂µf

2
�
1 � f2

6a

�2 + V(f)

!
+ Smatter[gµn, Y]

(2.42)

where the scalar field f has a potential V(f). Here Smatter is the matter
action where matter fields are denoted collectively by Y. Note that we have
absorbed any cosmological constant term L into the potential. This action
can be rewritten in terms of the canonical field j, as discussed earlier.

Before we discuss specific models, defined by assuming specific forms
for the potential V(f), we briefly review the general dynamical equations
and some important quantities for the studies of cosmic histories, during
inflation and after that.

During inflation, matter and radiation are both negligible, and the dy-
namics of our system is given by

3H2 =
1
2

j̇2 + V(j) , (2.43)

j̈ + 3H j̇ +
d

dj
V(j) = 0 , (2.44)

where H ⌘ ȧ
a is the Hubble parameter, and a dot denotes derivatives with

respect to cosmic time. It is useful to work with the number of e-folds
N ⌘ ln a as a time coordinate. Denoting a derivative with respect to N by a
prime, we have dj

dt = j0H. Introducing slow-roll parameter as

e ⌘ � H0

H
, (2.45)
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we will have

H2 =
V(j)

3 � 1
2 j02

, (2.46)

j00 + (3 � e)j0 +
1

H2
d

dj
V(j) = 0 , (2.47)

e =
1
2

j02 . (2.48)

Note that here we have not made any slow-roll approximation for e, and
all the expressions are exact. The second slow-roll parameter h has the
form,4

h ⌘ e0

e
. (2.50)

One can solve Eqs. (2.46)-(2.48) numerically to obtain the evolution of j,
H, e, and h during inflation, as we will do for our quintessential inflation
models in this chapter. In addition, given e and h, we can compute two
other important inflationary quantities, namely the spectral index for scalar
perturbations ns and the tensor-to-scalar ratio r — assuming the approximate
relations between these quantities we have

4 Note that here we have adopted the definition of h from e.g. Ref [142]. There exists another
definition for this second slow-roll parameter, namely [143]

h̃ ⌘ � j̈

H j̇
= �

d ln |H,j|
dN

= 2
H,jj

H
=

d ln |j̇|
dN

, (2.49)

where H,j ⌘ d
dj H and H,jj ⌘ d

dj H,j. h̃ is related to our h by h̃ = e � 1
2 h. The spectral index

ns now has the form ns ⇡ 1 + 2h̃ � 4e, and since e ⇡ ev and h̃ ⇡ h̃v � ev, where ev and h̃v
are the slow-roll approximations to e and h̃, respectively, we have that ns ⇡ 1 + 2h̃v � 6ev.
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ns ⇡ 1 � 2e � h , (2.51)
r ⇡ 16e . (2.52)

Later in this paper, we will discuss several observational constraints on
the parameters of the quintessential inflation models that we consider in
this work, and for that we will scan over the parameters of the models and
compare their theoretical predictions to the data. It is therefore important
to have an idea for theoretical priors on the values of the parameters
in the potential, for a given model, which can provide viable inflation.
This can be achieved by applying the approximate constraint placed on
the inflationary potentials from the requirement that the power spectrum
of curvature fluctuations after inflation should match the COBE/Planck
normalization, as discussed in section 2.2. Assuming a slow-roll regime for
inflation, i.e. neglecting the terms including j0 and j00 in Eqs. (2.46) and
(2.47), respectively, the equations simplify to

H2 =
1
3

V(j) , (2.53)

3j0 +
1

H2
d

dj
V(j) = 0 . (2.54)

In this slow-roll regime, the potential is related to the power spectrum
of primordial curvature perturbations PR(k) through the COBE/Planck
normalization equation,

V(j)3

(dV(j)/dj)2 = 12p2PR(k) , (2.55)

see e.g. Ref. [144]. By solving these equations in the slow-roll approximation,
one finds that in the large N approximation the results for ns, r, and the
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amplitude of perturbations for a attractors are given by Eqs. (2.14), (2.15)
and (2.16).

In order to see whether a model of quintessential inflation is able to
describe the dynamics of the universe after inflation, we need to add matter
and radiation to the system of equations (2.46)-(2.48). In this case, the
equations are modified as

H2 =
V(j) + rM + rR

3 � 1
2 j02

, (2.56)

j00 + (3 � e)j0 +
1

H2
d

dj
V(j) = 0 , (2.57)

e =
1
2
�

j02 � r0
M + r0

R
3H2

�
, (2.58)

where rM and rR are the energy densities of matter and radiation, respec-
tively. They can be written as

rM = 3H2
0 WMe�3N , (2.59)

rR = 3H2
0 WRe�4N , (2.60)

with WM and WR being the present values of density parameters for matter
and radiation, respectively, and H0 is the present value of the Hubble
parameter. We can solve the set of Eqs. (2.56)-(2.60) numerically and obtain
the cosmic evolution in terms of H for a specific model and for a set of
parameters. This can then be compared to the cosmological measurements
of H and therefore constrain the model. We should however note that
one important ingredient in solving the evolution equations is the initial
conditions for the field j. This is set by the reheating mechanism after
inflation, as we will discuss in section 2.4.2 below.
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At this stage it is useful to remember about two quantities. The first one
is the equation of state wDE of the scalar field:

wDE ⌘ pDE

rDE
=

1
2 j02H2 � V(j)
1
2 j02H2 + V(j)

, (2.61)

where rDE and pDE are the dark energy density and pressure, respectively,
and V(j) is again the dark energy potential (which, as we discussed, can
in principle contain a piece from the cosmological constant L). wDE for a
pure L is �1.

Similarly to the slow-roll quantity e for inflation, a useful quantity for
late-time evolution of the universe is the so-called effective equation of state
weff, defined as

weff ⌘ �1 � 2
3

Ḣ
H2 = �1 +

2
3

e . (2.62)

During radiation and matter domination epochs, weff becomes 1/3 and 0,
corresponding to e = 2 and 3/2, respectively. In LCDM, the dark energy
domination epoch corresponds to weff = �1 (e = 0).

We can study in more detail the behavior of dark energy in a given model
by parameterizing the dark energy equation of state wDE in terms of the
two so-called Chevallier-Polarski-Linder (CPL) [145, 146] parameters w0
and wa through

wDE(z) = w0 + waz/(1 + z), (2.63)

where z is the redshift. This parameterization is however valid only near the
present time (i.e. in the range �1 . N . 0, with N = 0 corresponding to
today). However, even though Eq. (2.63) cannot be used to fit the equation
of state at early times or in the future, it gives a rough idea of how much
the models deviate from LCDM at present time. w0 and wa are also the
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parameters used in the definition of the figure of merit for the upcoming Stage
IV large-scale structure surveys to quantify how well they can distinguish
dark energy and modified gravity models from LCDM. We will therefore
compute also w0 and wa for our models below.

It is important to note that it is weff (and not wDE) which is used in direct
comparison of the dynamics of the universe in a given model to the cosmo-
logical data, and one cannot directly constrain wDE without parametrizing
it. Even though parametrizations of wDE are helpful in comparison of a
model to the data, a detailed statistical analysis is always required in order
to test and constrain the model.

2.4.2 Gravitational reheating versus instant preheating

The conventional mechanism of reheating after inflation is associated with
a period of oscillations of the inflaton field at the minimum of its potential.
In quintessential inflation, where the inflaton field does not oscillate, this
mechanism does not work, and is replaced by gravitational reheating [89,
147, 148], which occurs due to particle production in changing gravitational
background [149–151], and instant preheating [152–154]. Out of these two
mechanisms, the gravitational reheating is the least efficient but the most
general one, so we start with describing it here, limiting ourselves to simple
estimates.

Inflationary quantum fluctuations of a light scalar field produced during
inflation have the energy density of r ⇠ 3H4

8p2 [155]. When inflation stops,
some of this energy converts to the energy of scalar particles. This is an
oversimplified way to describe the effect of particle production during
inflation, but it shows a special role of the light scalar particles in this
process. For example, massless vector particles are not produced, massless
fermions are not produced, massive particles with masses much greater
than H are not produced. Following Refs. [89, 147], and ignoring factors of
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O(1), one can estimate the energy of the produced particles at the end of
inflation as

rgr ⇠ 10�2H4
end ⇠ 10�3r2

end ⇠ 10�2V2
end . (2.64)

Here H4
end and rend ⇠ 2Vend are, respectively, the Hubble constant and the

inflaton energy at the end of inflation, which happens at some field j end
when the kinetic energy of the field approaches Vend and the universe stops
accelerating.

The energy density rgr subsequently decreases as a�4 due to the expan-
sion of the universe, as long as the produced particles have masses much
smaller than H, which is the case for the flat quintessence potentials.

If the potential after inflation is very steep, as is the case in the single-field
models to be considered below, soon after inflation the scalar field falls
down and almost all of its energy proportional to V becomes converted to
its kinetic energy rkin = 1

2 j̇2. Thus in the first approximation rkin ⇠ V. This
kinetic energy corresponds to the equation of state w = +1, and decreases
as a�6.

Thus, shortly after inflation the universe enters the regime of kinetic
energy domination, which is sometimes called kination, but this regime
ends when rkin ⇠ renda�6 becomes smaller than rgr ⇠ 10�3r2

enda�4. This
happens at a2 ⇠ 103r�1

end, when the energy density of radiation produced by
reheating was rreh ⇠ 10�9 r4

end. The energy density scale rend at the end of
inflation in a-attractors is typically in the range close to rend ⇠ 10�10 in the
Planck density units. In that case one finds rreh ⇠ 10�49 in Planck density
units, or, equivalently rreh ⇠ (106GeV)4.

After that, the field j continues rolling towards its large negative values
until it freezes at some value jF due to the famous Hubble friction term
3H j̇ in its equation of motion. Eventually, after the densities of radiation
and cold dark matter become sufficiently small, the field j starts rolling
down again. The final results of the investigation of the equation of state of
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all matter in the universe depend on the value of jF. This value has been
estimated in Ref. [84], with the final result that in realistic models with
gravitational preheating one may expect

|Dj| = |jF � jend| ⇠ 43 . (2.65)

Note that this does not necessarily mean |jF| ⇠ 43 as stated in Ref. [84],
where the authors have considered the case with a ⌧ 1 rendering jend
negligible. Meanwhile for a = 7/3 the end of inflation in the model studied
in Ref. [84] occurs not at jend ⇠ 0, but at jend ⇠ 8, which implies jF ⇠ �35.

The value of |jF| may become much smaller if one takes into account the
possibility of instant preheating [152–154]. This effect occurs if we consider
interactions of the field j with some other fields.

For example, one may add to the original theory (2.5) a massless field
s interacting with f as g2

2 f2s2. When the field f moves through the point
f = 0 with velocity ḟ0, it creates particles s in the small vicinity of the
point f = 0, with the width |Df| ⇠

p
ḟ0/g. The value of ḟ0 in our problem

is always smaller than p
rend . 10�5. Therefore, for sufficiently large g

one has
p

ḟ0/g <
p

6a. In that case, particle production occurs in a small
region where f ⇡ j, and the old results of Refs. [152–154] derived for the
canonical field j apply. These results show that the density of massless
particles s, created when the field j passes through the point j = 0 is
given by

ns =
(gḟ0)3/2

8p3 . (2.66)

Then the field f continues rolling further, giving each particle s a mass
g|f|. This creates a gas of particles s with the energy density

rs =
(gḟ0)3/2

8p3 g|f| . (2.67)
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This potential grows in both directions away from f = 0. For sufficiently
large g, this may lead to a temporary trapping of the field f near f = 0 [154].
The field continues oscillating near this point until it loses some energy, par-
ticle production becomes inefficient, and the previously produced particles
become diluted either by cosmic expansion or through their decay. Then the
field f resumes its rolling downhill. If instead of a single interaction term
considered above one considers a more general interaction Â g2

i
2 (f � fi)2s2

with |fi| ⌧
p

6a, one may have a chain of particle production events at
each point f = fi [154, 156].

It is not our goal here to study all the regimes that are possible due to
instant preheating; see Refs. [88, 152–154, 156] for a discussion of other
possibilities. The efficiency of this process is controlled not only by the
values of the couplings gi, but also by the possibility of the decay of particles
s. This suggests that by a proper tuning of this scenario one may achieve
freezing of the field j much earlier than in the gravitational reheating
scenario. Therefore, in our subsequent analysis we will examine a broad
range of possible values of jF.

2.4.3 Spectral index: Comparison with the non-quintessence scenario

The calculation of the inflationary parameters ns and r in quintessential
inflation have some distinguishing features. As we will show shortly, extend-
ing the results of Refs. [84, 88, 157], predictions for ns and r in quintessential
inflation may differ rather significantly from the ones in the more traditional
versions of a-attractors, which do not have a stage of kination where the
energy density of the universe is for a long time dominated by the kinetic
energy of the inflaton field. This may give us a novel possibility to test
quintessential inflation with gravitational reheating and a long stage of
kination.
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Let us remember that the values of ns and r for a-attractors are given by

ns = 1 � 2
N

, r =
12a

N2 , (2.68)

where N is the number of e-folds corresponding to the moment of produc-
tion of the perturbations with momentum k⇤ generated when the potential
was equal to V⇤ = V(j⇤).

We use the standard equation for the required number of e-folds, see Eq.
(47) and a description of the notations in Ref. [82]:

N ⇡ 67 � ln
✓

k⇤
a0H0

◆
+

1
4

ln

 
V⇤

M4
Pl

!
+

1
4

ln
✓

V2
⇤

rend

◆
(2.69)

+
1 � 3wint

12(1 + wint)
ln
✓

rreh
rend

◆
� 1

12
ln(gth) . (2.70)

Using this equation, one can calculate the required number of e-folds N for
any model based on a-attractors. Unless one studies models with extremely
large or extremely small a, one has rend ⇠ V⇤ = O(10�10), with some
variations which typically do not affect too much the value of the term
1
4 ln

⇣
V2

⇤
rend

⌘
. The main difference between N for different a-attractors can be

attributed to the term DN = 1�3wint
12(1+wint)

ln
⇣

rreh
rend

⌘
.

In the simplest a-attractor models, as well as in the Starobinsky model,
which can be represented as an a-attractor with a = 1, after inflation
one typically has wint = 0, i.e. DN = 1

12 ln
⇣

rreh
rend

⌘
. In supergravity-based

a-attractors and in the simplest versions of the Starobinsky model one often
encounters an inefficient reheating with the reheating temperature Treh ⇠
109 � 1011 GeV. For Treh ⇠ 1010 GeV and assuming O(100) different types
of particles in thermal equilibrium after reheating, one finds DN ⇠ �4.

Meanwhile, in the quintessential a-attractors with gravitational reheating
and a long stage of kinetic energy domination, one has DN = � 1

12 ln
⇣

rreh
rend

⌘
.
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Notice the important sign change. Using the numerical estimates made in
section 2.4.2, one finds DN = +7.5. This particular number is rather sensi-
tive to various assumptions on the energy scale of gravitational reheating,
but let us take it at its face value. It shows that the required number of
e-folds N in the quintessential a-attractor models can be greater than the
one in the more conventional a-attractors or in the Starobinsky model by
DN ⇠ 10.

As a result, the value of ns in quintessential a-attractors with gravitational
reheating is typically greater than in more traditional models by about 0.006.
This number coincides with one standard deviation in the Planck results
[82]. Thus, by a more precise determination of ns, which can be achieved in
the future, we may be able to distinguish quintessential a-attractors with
gravitational reheating from other models with more efficient reheating
and without a long stage of kinetic energy domination. This result may
become quite interesting for development of inflationary models if more
precise observations shift ns towards greater values as compared to the
Planck 2015 results [82]. Moreover, further improvement of the accuracy
of the measurement of ns may help us to distinguish the conventional
inflationary models with the cosmological constant from the models of
quintessential inflation, even if the equation of state of dark energy almost
exactly coincides with w = �1.
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2.5 examples of single-field models of quintessential infla-
tion

2.5.1 Linear potential

We begin with the a-attractor version of the simplest linear dark energy
potential [91]

V(f) = gf + L . (2.71)

In terms of the canonically normalized field j, this potential is given by

V(j) = g
p

6a(tanh
jp
6a

+ 1) + L . (2.72)

At j � +
p

6a and L ⌧ g
p

6a the potential is given by

V(j) = 2g
p

6a(1 � e�
p

2
3a j) , (2.73)

whereas at j ⌧ �
p

6a one has

V(j) = L + 2g
p

6a e
p

2
3a j . (2.74)

From the COBE/Planck normalization (2.16), we find a constraint

gp
a

⇠ 2 ⇥ 10�11 . (2.75)

One could expect that the simplest linear model (2.71) with L = 0 can
be used as a model of quintessential inflation if one takes a & 1; see e.g.
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Figure 2.4: Linear potential V = 1
2
p

6a
(
p

6a + f) + L = 1
2 (1 + tanh jp

6a
) + L for a = 10�2

and L ⇠ 10�120. The tiny cosmological constant L is crucial for the validity of
our scenario, but L is so small that it is invisible in this figure.

(2.26) and (2.27) for a = 7/3. However, one can check that in this model
with a > 1/3 the inflationary slow-roll parameter e always remains smaller
than 1 and inflation never ends.

This problem can be solved by using a ⌧ 1, for example a = O(10�2),
and adding a small cosmological constant L ⇠ 10�120, see Fig. 2.4. In that

case, inflation does end in a vicinity of j = 0, at jend ⇡
q

3a
8 ln 1

3a ⇠ 0.2.
Then the field j rolls down until it freezes at some value j = jF depending

on the efficiency of reheating, see section 2.4.2. If |jF| >
q

3a
2 ln L

2g
p

6a
, then

the potential (2.72) is dominated by the positive cosmological constant L.
In that case, at the moment when the field starts moving again, the universe
gradually enters the stage of expansion dominated by the cosmological
constant L with the equation of state wDE = �1.

To go beyond the simple estimates given above and in order to determine
the range of possible values of jF required in this scenario, we performed a
numerical analysis for two different values of a = O(10�2). Figs. 2.5 and 2.6
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show the effective equation of state weff (thick, blue curves), as well as the
equation of state of dark energy wDE (thick, orange curves) for this linear
potential and for two illustrative choices of a = 0.02 and a = 0.005, and for
different choices of jF. In both cases, L has been set to 0.7rc, with rc ⌘ 3H2

0
being the present value of the critical density, providing a total dark energy
density today in agreement with observational data. The value of g

p
6a

has been set to 2.57 ⇥ 10�12 and 6.4 ⇥ 10�13 for a = 0.02 and a = 0.005,
respectively, in order to obtain a correct inflationary scale; see (2.15) and
(2.75). In addition, we have presented weff for LCDM in each case (thin,
black curves) for comparison.
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Figure 2.5: Evolution of the equation of state as a function of the number of e-folds N
after reheating for the linear potential g

p
6a(tanh jp

6a
+ 1) + L with L = 0.7rc

and a set to 0.02. The panels in the clockwise direction, starting from the top
left, correspond to jF = �43, jF = �36, and jF = �33, respectively. The blue
and orange curves in each case correspond to weff and wDE, respectively, and
we have also shown weff for LCDM with a thin, black curve for comparison.
N = 0 corresponds to the present time.
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For a = 0.02, we have plotted three cases with jF = �43 (top left panel),
jF = �36 (top right panel), and jF = �33 (bottom panel). Looking first
at weff for jF = �43 we see that the desired cosmic history has been
recovered although the evolution of weff shows a small difference from the
LCDM model at around N = �2. wDE in this scenario, however, shows a
significant difference compared to the standard model — wDE is not �1
always, contrary to a pure L, and has a bump at late times. For jF = �36,
we see that although the late-time behavior of weff is almost identical to
that of LCDM, it shows a difference at early times (N . �10), and wDE
is drastically different from a pure L dark energy. By increasing jF to
�33, we now see that the times earlier than N ⇠ �8 (corresponding to the
matter-radiation equality in LCDM) are strongly affected by the dynamics
of the scalar field. We no longer recover a radiation domination epoch as
in LCDM, and weff goes all the way to +1 back in time rather than 1/3
for radiation. This can be understood by looking at how wDE behaves at
early times. The inflaton is in a kination phase at N . �5, and is dominant
over matter and radiation at N . �8, hence the effective equation of state
follows mainly the contribution from the inflaton and takes the value of
⇠ +1 at early times. Note that in this case the model does not give an early
dark energy as wDE is ⇠ +1 and not ⇠ �1.

Having this observation, let us systematically study different scenarios
depending on the value of jF. Our numerical investigation of the model
with a = 0.02 reveals three different possibilities:

• �43 6 jF . �34: jF ⇡ �43 is the lowest value that jF is allowed to
take due to the reheating constraints, see section 2.4.2. For the entire
range of [�43, �34] we obtain a dark energy which, while provides
viable cosmologies over the entire history, it predicts deviations from
a pure L that are detectable by future observations. For example,
for the two ends of the range, jF = �43 and jF = �34, we obtain
w0 ⇠ �0.936 and wa ⇠ 0.192, and w0 = �0.956 and wa = 0.119,
respectively, which both should be detectable by the future Stage IV
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large-scale structure surveys, see section 2.5.3.2. In addition, for this
range we recover radiation and matter domination epochs which are
very similar to those of LCDM, with some small distortions due to
the fact that the scalar field is not completely subdominant at early
times; the larger the value of jF, the larger the distortions. weff and
wDE for another example of jF in this range are presented in Fig. 2.5
(top right panel) for jF = �36 with w0 ⇠ �0.956 and wa ⇠ 0.119.
Note that in this case we are dealing with a tracking solution, with
wDE mimicking the equation of state of the dominating background
fluid.

• �34 . jF . �32: In this case, the model is viable from the point of
view of late-time cosmology, with a L-like dark energy at late times
(w0 ⇠ �1 and wa ⇠ 0), the reason being that the L term is dominant
over the scalar field during this period. The very early times (N . �8)
in this range are however strongly affected by the scalar field, and
behave significantly differently from that of LCDM, i.e. we do not get
radiation domination at early times, but a domination by the inflaton
in a kination phase. The model therefore gives viable cosmologies
from the point of view of late-time observations, but we obtain no
radiation domination epoch at early times. An example of this case
has been presented in Fig. 2.5 (bottom panel) for jF = �33.

• �32 . jF: By increasing jF to values larger than ⇠ �32 the scalar
field stays in the kination phase for a longer period of time, and is also
dominant over matter and radiation for a longer period, resulting in
an extended epoch of weff = +1 at early times. Increasing jF to �30.5
already extends the domination of the scalar field with wDE = +1 all
the way to N ⇡ �5, which is the beginning of matter domination. The
more we increase jF, the longer the period of dark energy domination
(with wDE = +1), so that the model will give predictions that are in
clear contradiction with observations. Of course, for any values of jF
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the energy density of dark energy will eventually be dominated by
the cosmological constant with w = �1, but our numerical studies
show that this happens later and later in time when jF increases, and
the L domination eventually happens only in the future.

In summary, our analysis shows that the linear model with a = 0.02
provides viable cosmologies as long as jF remains in the relatively broad
range of ⇠ [�43, �34], while predicting detectable deviations from LCDM
that are sufficiently large for the model to be tested against LCDM. One
should note that larger values of jF all the way to about �32 can also
provide viable late-time cosmologies and only affect the epoch of radiation
domination in the early universe.

Let us now decrease a to 0.005. Fig. 2.6 shows the evolution of wDE and
weff for this scenario, but for three choices of jF = �22.5 (top left panel),
jF = �18 (top right panel), and jF = �16 (bottom panel). We see that for
jF = �22.5, the model already behaves almost identically to LCDM, with
wDE being �1 for the entire history. Clearly, for jF < �22.5 all the way to
our lower bound of �43, the model will remain like LCDM. Let us now
increase jF from �22.5 to �21.5 (not shown in Fig. 2.6). Our numerical
analysis gives w0 ⇠ �0.983 and wa ⇠ 0.050 in this case. This shows that the
deviations from a pure L increases by increasing jF. Increasing jF further
to ⇠ �16 still gives viable cosmologies, while the values larger than ⇠ �16
will make the early times (N . �8) completely affected by the kination
domination of the inflaton over radiation, and radiation domination will
be lost; the model, however, behaves like a pure cosmological constant
at late times, i.e. with w0 ⇠ �1 and wa ⇠ 0. An example of how weff
and wDE behaves for the range [�21.5, �16] is presented for jF = �18
(with w0 ⇠ �0.989 and wa ⇠ 0.030) in Fig. 2.6 (top right panel), while the
behavior of weff and wDE for jF = �16 is given in the bottom panel of the
figure. We see that dark energy for jF = �18 shows an evolution similar
to the previous case of a = 0.02 with jF = �36. For values of jF larger
than �16 we see a behavior similar to the case of �32 . jF for a = 0.02, i.e
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the epoch of dark energy domination in the kination phase gets extended
to later times, making the model more and more unviable by increasing
jF. We therefore conclude that the linear model with a = 0.005 provides
viable cosmologies for jF 2 [⇠ �21.5, ⇠ �16] with w0 and wa showing
deviations from LCDM, and for jF . �21 with dark energy behaving
almost identically to a pure L. The deviations for the range [�21.5, �16]
are not as large as the ones we obtained for a = 0.02, but might still be
detectable by the Stage IV LSS surveys.
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Figure 2.6: The same as in Fig. 2.5 but for a = 0.005. The panels in the clockwise direction,
starting from the top left, now correspond to jF = �22.5, jF = �18, and
jF = �16, respectively.

In conclusion, we have found a realistic model of quintessential inflation
based on the a-attractor model with a linear potential. This model requires

gp
a

⇠ 2 ⇥ 10�11, a . 0.02, and a cosmological constant in the anthropically
allowed range of L ⇠ 10�120. The smaller the value of a, the larger the
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range of jF for which viable cosmic histories exist, although deviations from
LCDM are expected to become less and less likely in the limit a ⌧ 0.01.

This is the simplest model of quintessential inflation based on a-attractors,
so let us pause here a little, before turning to other, more complicated
models. The linear potential V(f) = gf + L is the simplest potential ever,
and yet it was never used in inflationary theory until now, for a good reason:
This potential is unbounded from below, so unless g is extraordinarily
small, it leads to a rapid instability and a collapse of the universe. A linear
potential was used in Ref. [91] for describing dark energy and solving the
cosmological constant problem, but it required an extremely small constant
g . 10�120 to avoid the collapse of the universe within 14 billion years.

In our new model described in this section, we have gp
a

⇠ 2 ⇥ 10�11

(2.75), which is the standard inflationary requirement for the COBE/Planck
normalization. Thus g can be 110 orders of magnitude greater than in the
quintessence model of Ref. [91]. And nevertheless, we do not have any
vacuum instability, because in the context of a-attractors the potential is
defined only in the finite range |f| <

p
6a. The lower part of the potential

in this range becomes an infinite, exponentially flat plateau in canonical
variables.

By modifying the value of a and the strength of interaction of the field j
with matter, one can control the parameter w. One may also increase the
value of the inflationary spectral index ns by about one standard deviation
of the Planck 2015 results for ns. The only additional fine-tuning required
in this model, as compared to the more conventional models of inflationary
a-attractors, is the condition a . 0.02. It would be nice to find consistent
versions of such models with a = O(1), and especially with a = 1/3, ..., 7/3,
which are better motivated in extended supergravity, M-theory, and string
theory [94, 126, 127]. However, N = 1 supergravity does not impose any
constraints on a. From a purely phenomenological point of view, the re-
quirement a . 0.02 is not an unreasonable price to pay for a simple, unified
description of inflation and dark energy.
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2.5.2 Two-shoulder model with exponential potential

The next example to consider is the exponential two-shoulder potential
introduced in Ref. [90],

V(f) = M2e�2g
�
e

gfp
6a � 1

�2 . (2.76)

In the canonical variables, one finds

V(j) = M2e�2g
�
eg tanh jp

6a � 1
�2 . (2.77)

The potential has a minimum at j = 0. The general shape of such potentials
is illustrated by Fig. 2.7 for a toy model with M = 1, a = 1/3, and g = 2.
In realistic models, we need to take g � 1. In this limit, the right shoulder
has the height V+ = M2, and the left shoulder has the height V� = M2e�g.
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Figure 2.7: The potential (2.77) shown for a toy model with M = 1, g = 4, and a = 1/3. It
illustrates the main feature of the models of this class: two shoulders with an
exponentially large difference in their heights.
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An advantage of this model is that it can easily incorporate the exponen-
tially large hierarchy e2g between the inflationary energy scale V+ = M2 ⇠
10�10 and the dark energy scale V� = M2e�2g ⇠ 10�120. For a = O(1),
M ⇠ 10�5, and g ⇠ 126, this model fits all the inflationary data, and de-
scribes the present stage of acceleration driven by the effective cosmological
constant V� ⇠ 10�120. It is difficult to show the right and the left plateaus
in one figure, because the height of the right shoulder is 110 orders of
magnitude greater than the height of the left one. Therefore, we show only
the left shoulder of the potential and a small vicinity of its minimum in
Fig. 2.8.

-0.30 -0.25 -0.20 -0.15 -0.10 -0.05 0.00
φ

5.×10-121

1.×10-120

1.5×10-120

2.×10-120
�

Figure 2.8: The potential (2.77) shown in Planck energy density units for M ⇠ 10�5,
g ⇠ 126, a = 1/3 (blue curve), 1 (yellow curve), and 7/3 (red curve). Inflation
begins at the right shoulder of this potential, which is not shown here because
it is 110 orders of magnitude higher. After that, the field rolls to the left
plateau, which almost immediately becomes flat. That is why it is practically
indistinguishable from the cosmological constant.
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The shape of the left plateau shown in Fig. 2.8 is determined by the
following asymptotic expression for V(j) at large negative j:

V = M2e�2g
⇣

1 � 4ge�ge
p

2
3a j
⌘

. (2.78)

The potential approaches V� = M2e�2g ⇠ 10�120, and the asymptotic
deviation from this value at large, negative j is suppressed not only by
the factor e

p
2

3a j, but also by an extra factor e�g ⇠ 10�55. This means that
the potential is extremely flat everywhere outside a small vicinity near
j = 0. One can check, for example, that the slow-roll parameter eV in this
model is smaller than 10�25 for j < 1. The simplest way to understand
it is to note that even the potential (2.76) in terms of the original variable
f is exponentially flat at the boundary of the moduli space f =

p
6a for

g � 1, and the transition to the canonical variables leads to an additional
flattening. As a result, a generic prediction for dark energy in this model is
w = �1.

In general, one may add an arbitrary constant L to the potential (2.77).
By adding a negative constant one may decrease the required value of
the parameter g. As one can see from Fig. 2.9, one can easily tune the
asymptotic value of the potential to be L = V� ⇠ 10�120 in accordance
with anthropic considerations.

Since we generically obtain w = �1 in this model, one may wonder
whether it has any merit over the simple LCDM. In fact, the model pre-
sented here demonstrates that one can easily construct a family of infla-
tionary models in which inflation ends without any need to stabilize the
inflaton field at the minimum of its potential. Even in the models where
the potential has an anti-de Sitter minimum with a negative cosmological
constant at j = 0, as in Fig. 2.9, one can safely live in a de Sitter-like state
on an exponentially flat low plateau. The flatness of the potential in this
model, just as in all other models considered in this paper, is protected by
the geometric origin of a-attractors.
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Figure 2.9: In the asymmetric potential with a minimum at V < 0 one can achieve ex-
ponential hierarchy of the heights V+ and V� with smaller values of g. For
illustration, in this figure we used M = 1, g = 1, a = 1/3, and added a constant
V0 = �0.047. By taking a slightly smaller value of V0, one can easily make the
asymptotic value of the potential L = V� ⇠ 10�120, as required by anthropic
considerations.

As we have already mentioned, further improvement of the accuracy
of the measurement of ns may help to distinguish this model and other
models of quintessential inflation from the more conventional a-attractors,
even if the equation of state of dark energy in quintessential inflation
almost exactly coincides with w = �1, see section 2.4.3. The possibility of
having a somewhat larger value of ns due to the long stage of kination in
this scenario may become very welcome in the future, depending on the
observational data.

2.5.3 Exponential potential

Let us now assume a simple exponential form for the non-canonical po-
tential V(f) where a free cosmological constant term L is also (implicitly)
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included. We will later fix L to specific values in order to construct two
specific working models with this potential.

The total potentials of our single-field, quintessential inflation models
have the structure

V(f) = M2eg( fp
6a

�1)
+ V0 , (2.79)

which, again with f =
p

6a tanh jp
6a

, gives

V(j) = M2eg (tanh jp
6a

�1)
+ V0 . (2.80)

At large, positive j this potential tends to the inflationary plateau with
V+ = M2 + V0, and at large, negative j it tends to the cosmological constant
L = V� = M2e�2g + V0. Instead of making a general investigation for
arbitrary V0 (or L), we concentrate here on two particular cases, which we
call Exp-model I and Exp-model II:

• Exp-model I: The constant V0 is set to zero. In this case the potential
for dark energy is solely the exponential one,

V = M2eg
�

tanh jp
6a

�1
�

. (2.81)

At large, positive j this potential tends to V+ = M2. Its asymptotic
value at large, negative j is given by the cosmological constant L =
V� = M2e�2g.

• Exp-model II: The constant V0 is set to �M2e�2g [84]. In this case
the potential for dark energy is

V = M2e�2g
⇣

eg
�

tanh jp
6a

+1
�

� 1
⌘

. (2.82)
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At large, positive j in the large g limit it reaches M2, as before, up to
an exponentially small correction �M2e�2g. It vanishes asymptotically
for large, negative j, i.e. L = V� = 0.

The ratio of V� to V+ in Exp-model I is given by

V�
V+

= e�2g ⇡ 10�110 ⇡ e�252 . (2.83)

An analogous relation should be valid for Exp-model II, but instead of V�
one should have the present value of dark energy Vtoday ⇠ 10�120. One can
view this property of our quintessential inflation models as a drawback,
since our potentials have a huge number built in. This is however the
price to pay for having one plateau of the model for the early universe at
about 10�10 in Planck density units, and another one for the current and
future acceleration at about 10�120. In the context of a phenomenological
model, however, we may view this as a parameter which is determined
observationally,

g ⇡ ln
H infl

H DE
. (2.84)

In such a case, we still have to find the working models which show a
consistent deviation from the cosmological constant dynamically.

Clearly, scenarios with other choices of V0 (and the resulting cosmological
constant L) are also possible in general, but as we will discuss later, our
Exp-models I and II are of particular interest, and capture all the interesting
features of the exponential potential. The two potentials for our Exp-models
I and II are shown in Fig. 2.10. Exp-model I (orange curve) has a constant,
nonzero asymptotic value for large, negative j, while Exp-model II (blue
curve) decreases to zero when j ! �•.
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Figure 2.10: The two quintessential inflation models with an exponential potential studied

in this work: Exp-model I (orange curve) with the form M2eg(tanh jp
6a

�1), and
a constant, nonzero asymptotic value for j ! �•, and Exp-model II (blue

curve) with the form M2e�2g
⇣

eg
�

tanh jp
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+1
�
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and a vanishing asymptotic
value.

2.5.3.1 Inflationary and late-time dynamics

Fig. 2.11 shows an example of the evolution of the inflationary quantities e
and h, introduced in section 2.4.1, for Exp-model II and for a typical set of
parameters with viable cosmologies. The parameters chosen for the plots
are the best-fit ones found through the comparison of the model to the
current late-time cosmological observations as described in section 2.5.3.2
below. In particular, a has been set to 7/3. The results for Exp-model I are
very similar and we do not present them here.

In each panel, the red, vertical line shows the end of inflation (i.e. when
e becomes unity), and N is the number of e-folds before that, such that the
end of inflation is at N = 0. Both e and h have very small values during
the inflationary period. N ⇡ 63 corresponds to the moment at which the
cosmological scales observed by the CMB experiments had left the horizon.
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Fig. 2.11 shows that e at the beginning of the last 63 e-folds has a value
very close to zero, and stays almost vanishing for a long period (which is a
necessary condition for slow-roll inflation), and then suddenly increases
and becomes of O(1); this ends inflation. The transition of e from almost
zero to 3 corresponds to a transition from slow roll (where the potential
dominates) to a kination period (where the kinetic energy dominates over
the potential). This transition is required for inflation to end, and in order
to enter a reheating phase. The second slow-roll parameter, h, is also small
during inflation and becomes of O(1) at the end of inflation. For both e
and h we have computed their exact values over time, i.e. Eqs. (2.45) and
(2.50), whereas the slow-roll values for these two quantities, which can be
written in terms of the potential and its derivatives, are valid only during
the inflationary period and not in general. The values of e and h measured
by the CMB are the ones at N ⇠ 63.
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Figure 2.11: Evolution of the slow-roll parameters e and h as functions of the number
of e-folds N before the end of inflation for Exp-model II and for a typical
set of parameters which give viable late-time cosmological histories. In each
panel, the red, vertical line depicts the end of inflation (i.e. when e becomes
of O(1)), and N = 63 corresponds to the moment at which the cosmological
scales observed by the CMB experiments had left the horizon.
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We can also solve the set of Eqs. (2.56)-(2.60) numerically and obtain the
cosmic evolution in terms of H for a given set of the free parameters WM, WR,
M2, and g. This can then be compared to the cosmological measurements
of H and therefore constrain the models. We should however note that
one important ingredient in solving the evolution equations is the initial
conditions for the field j. The initial value of j is the freezing value jF set
by the reheating mechanism after inflation, see section 2.4.2.

Let us recap the story. As discussed in section 2.4.2, the field takes
positive values during inflation, and rolls down the potential with its value
reducing with time and approaching zero. Around this time, and when
j ⇠ +8, reheating takes place and matter particles are produced. In case
the only reheating at work is gravitational particle production, which is
not a very efficient mechanism, the field continues rolling down to values
around �35 and then freezes. In case other reheating mechanisms, such as
instant preheating [152–154], are at work in addition to gravitational particle
production, reheating will be more efficient and the field will freeze earlier,
to values that can be much larger than �35; we call this value of the field
after reheating jF, at which j is frozen. The field remains frozen at jF for
some time after reheating until the Hubble friction becomes so low that the
field starts rolling down its potential again. The evolution of the field after
reheating and starting from the value jF determines the evolution of the
universe and cosmic histories at late times, i.e. from radiation domination
all the way to the present time.

Fig. 2.12 depicts an example of the evolution of the scalar field j as a
function of the number of e-folds N for the entire history of the universe
from inflation to late times, for both Exp-models I (left panel) and II (right
panel). These have been computed for the same set of parameters as the
ones used for computing the inflationary quantities of Fig. 2.11, providing
viable late-time cosmological histories. We have set the value of jF to �10
in both cases.



90 dark energy, a-attractors , and large-scale structure surveys

The vertical, red bands depict the period after the end of inflation and
before the time at which the scalar field freezes, separating the inflationary
and late-time periods. Note that this period starts with a kination phase,
followed by radiation domination, after the occurrence of reheating. Since
the exact behavior of the field depends on the details of reheating, we have
shown this period of kination plus the start of the radiation domination by
a red band. The details of this period are not important for our numerical
and statistical analysis later, as long as we have the required information on
the initial conditions of the field for our late-time investigation. This boils
down to the values of jF used in our analysis, which we have ensured to
be achievable through our reheating mechanisms. The red bands should
therefore be considered only as a sketch for illustrative purposes, while the
inflationary evolution and the late-time dynamics shown in Fig. 2.12 are
the results of precise numerical computations. Note how the field behaves
differently in the future (N > 0) for the two models.

The evolutions of the effective equation of state weff as well as the equation
of state of dark energy wDE as functions of the number of e-folds N are
presented in Fig. 2.13 for both Exp-models I (upper panel) and II (lower
panel). The set of parameters used are the same as in Figs. 2.11 and 2.12
with viable late-time cosmological histories. The blue and green curves
depict, respectively, weff and wDE, and for comparison we have also shown
the effective equation of state for the LCDM cosmology (orange curve).
N = 0 corresponds to the present time. For computing these quantities,
and for both models, we have again set j to �10 and j0 to 0 initially.
These initial values have been set at N = �15, i.e. well inside the radiation
domination epoch.

First of all, the figures show that the evolutions of weff for both Exp-
models I and II closely follow the one for LCDM in the past, while there
are deviations in the future (N > 0). weff for Exp-model I approaches �1
asymptotically (when N ! +•), just as in LCDM, while its asymptotic
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Figure 2.12: Left panel: Evolution of the scalar field j as a function of the number of e-folds
N over the entire history of the universe for Exp-model I and for the same
set of parameters used for computing the inflationary variables shown in
Fig. 2.11 with a viable late-time cosmological history. The vertical, red bands
depict the period after the end of inflation and before the time at which the
scalar field freezes, separating the inflationary and late-time periods. This
period includes kination and reheating. Note that the field rolls down during
inflation and kination (not shown), and then freezes after reheating (to �10
in this example), for almost the entire history until very recently when it
unfreezes again and starts rolling its potential; this is the onset of dark energy
domination. N = 0 corresponds to the present time. Right panel: The same
as in the left panel, but for Exp-model II. Note the different dynamics for j
compared to Exp-model I in the future (N > 0).

value in Exp-model II differs from �1. This asymptotic value w• for Exp-
model II is

w• = �1 +
2
3

1
3a

, (2.85)

which is a universal result that does not depend on the values of M2 and
g; it depends only on the value of a. It is this interesting situation, already
mentioned earlier in this chapter, where one geometric parameter a defines
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Figure 2.13: Upper panel: Evolution of the equation of state as a function of the number of
e-folds N after reheating for Exp-model I and for the same set of parameters
used in Figs. 2.11 and 2.12 with a viable late-time cosmological history. The
blue and green curves show, respectively, the effective equation of state weff
and the equation of state of dark energy wDE. For comparison, the effective
equation of state for LCDM is also presented as an orange curve. N = 0
corresponds to the present time. Lower panel: The same as in the left panel,
but for Exp-model II.



2.5 examples of single-field models of quintessential inflation 93

the deviation of w• from �1, as well as the level of primordial gravity
waves from inflation, see Eqs. (2.1) and (2.2).

Another interesting observation in Fig. 2.13 is the behavior of the dark
energy equation of state wDE, shown by green curves for both models.
Clearly, in both cases, wDE today deviates from the equation of state for L,
and is also different from its asymptotic value w• in the case of Exp-model
II. We will discuss this in more detail in the next section.

2.5.3.2 Comparison to observations, and constraints on parameters

We perform a statistical MCMC analysis of Exp-models I and II in order
to understand whether the models are cosmologically viable, how much
their parameters are constrained by cosmological observations, and to
which extent we expect deviations from the standard model. This will also
tell us whether the models can be distinguished from LCDM using the
current and upcoming cosmological surveys. For that, as mentioned in
section 2.1, we consider geometrical constraints on the cosmic history at the
background level using a combination of the redshift-luminosity relation of
supernovae [158], the observed angular scales of the CMB anisotropies [130],
measurements of the baryon acoustic oscillations (BAO) [159–163], and the
local measurements of the Hubble constant H0 [164].

Our aim in the present work is not an exhaustive and detailed comparison
of the models to observations, and the primary goal is to reach a qualitative
understanding of the models, their cosmological viability, and their dif-
ferences in terms of the observational implications. Additionally, contrary
to models of modified gravity for cosmic acceleration, minimally coupled
quintessence models (including ours) affect observations only through their
impacts on the background dynamics, and they do not directly affect cluster-
ing and growth of structure as well as other LSS observables such as weak
lensing. For these reasons we believe that the geometrical measurements
of the cosmic history on their own should provide sufficiently good con-
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straints on our models; we leave an extensive and detailed analysis of the
models using all the available cosmological observations, including those
involving the constraints from the full CMB temperature and polarization
power spectra, as well as galaxy clustering and weak lensing, for future
work where a perturbative analysis of the models will be performed and the
models will be implemented in a numerical Boltzmann code. Additionally,
here we do not perform detailed forecasts for future galaxy surveys using
for example a Fisher matrix approach.

Here, therefore, we use only a simple and rough criterion for a model to
be testable against LCDM: We assume a point in the parameter space of
the model to be distinguishable from LCDM if the corresponding w0 and
wa are different from the LCDM values of �1 and 0 by more than ⇠ 2%
and ⇠ 4%, respectively. These numbers are clearly only rough estimates,
and can be different depending on the specific experiments and probes
that are being considered. However, we believe that they are good (and
perhaps optimistic) estimates of what one will be able to reach using the
combination of various probes from the upcoming Stage IV large-scale
structure surveys and CMB experiments; see e.g. Ref. [122] for the values
that are targets of one of these experiments. In addition, the situation is
more subtle than using only the separate errors on w0 and wa, for example
because of possible correlations between the two parameters — in fact
a more proper way of using these errors is through the 2-dimensional
confidence contours for w0 and wa. However, since we do not intend to
perform a detailed statistical analysis in this chapter, and are concerned
more with a qualitative analysis of the models, we leave these subtle issues
to be addressed in future work.

Before we present and discuss the results of our statistical analysis based
on the cosmological data described above, let us use the expression (2.55) for
the COBE/Planck normalization discussed in section 2.4.1 and see which
constraints we can obtain on the values of the parameters in our potentials
solely from early-time (inflationary) physics. We will shortly see that the
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COBE/Planck normalization indeed provides us with an approximate
but a quite strong constraint on the two potentials M2eg(tanh jp

6a
�1) and

M2e�2g
⇣

eg
�

tanh jp
6a

+1
�

� 1
⌘

, for Exp-models I and II.
We should first note that on the tails of the potentials for large and

positive j, where we assume inflation to take place, the form of the effective
potential is approximated by the expression

V(j) = M2(1 � 2ge� 2jp
6a ) + V0 + O(e� 4jp

6a ) , (2.86)

where we have left the cosmological constant undetermined. Note that
even for Exp-model II with a nonvanishing V0, its contribution M2e�2g to
the potential (2.86) is exponentially small compared to the leading term
M2, by a factor of e�2g. We will see later that we need g to be ⇠ 125 in
order to obtain viable cosmic histories for both models, and therefore the
contribution from V0 to the inflationary potential (2.86) is negligible and
we can ignore it.

Integrating the slow-roll equations of motion over an arbitrary interval
[N1, N2] during the inflationary epoch we will get

Z j2

j1

V(j)
Vj(j)

dj = �
Z N2

N1

dN , (2.87)

where j1 and j2 are the values of the field at N1 and N2, respectively.
Assuming that both j1 and j2 are sufficiently large, we can use the approx-
imate expression (2.86) and arrive at

p
6a

4g

⇣p
6a

2
�
e

2j2p
6a � e

2j1p
6a
�
� 2g(j2 � j1)

⌘
= N1 � N2 . (2.88)

Now, choosing N1 to be the moment of horizon crossing Ncrossing for the
observable modes and N2 to correspond to the end of inflation Nend we
arrive at the approximate expression

e
2j⇤p

6a =
4

3a
gN , (2.89)
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where j⇤ is the value of the field at the horizon crossing, and N ⌘ Nend �
Ncrossing is the number of e-folds corresponding to the duration of inflation
since the moment at which the observable perturbations left the horizon
until the end of inflation. In order to obtain Eq. (2.89) we have assumed
that the field has travelled at least a few Planck units between the horizon
crossing and the end of inflation, and therefore the term proportional to

e
2j1p

6a on the left-hand side of Eq. (2.88) is the dominant one; we ignore all the
other terms. For g ⇠ 125, and assuming N ⇡ 63, Eq. (2.89) gives j⇤ ⇠ 15.74
for a = 7/3, which is in full agreement with our numerical analysis; note
that jend ⇠ +8.

Let us now plug the asymptotic expression for our potential (2.86) into
the COBE/Planck normalization equation (2.55). Using Eq. (2.89) we arrive
at

M2 =
144p2aN

(2N � 3a)3 PR(k) . (2.90)

Taking into account that V+ ⇡ M2 and considering the limit N � a, we see
that this equation reproduces the previously mentioned general a-attractor
result (2.15).

Thus the COBE/Planck normalization constrains the ratio M2/a [129].
Assuming N ⇡ 63, using (2.90), and applying the measured value of PR,
we find that

M2

a
⇠ 10�10 . (2.91)

This means that this early-universe condition does not constrain M2 and/or
a separately, and the two parameters are degenerate as far as the COBE/-
Planck normalization is concerned. We will see later that this degeneracy
will be broken when the late-time cosmological data are used.
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Let us first focus on a = 7/3, which is an interesting case. In that case
M2 ⇠ 3 ⇥ 10�10. We will later discuss the dependence of our results on
a, as well as the constraints on a itself. We first scan over all the free
parameters of Exp-models I and II, i.e. M2, g, WM, and WR, as well as
the initial value of the field, jF, comparing the models to the (late-time)
cosmological observations described above. Note that although we do not
impose the COBE/Planck constraint in our numerical scans, we scan over a
range of log M2 around the value given by the COBE/Planck normalization
(2.91). Additionally, as we argued before, we expect jF for this potential to
be in the range [�35, +8], depending on the reheating mechanism — this is
the range we choose for our numerical analysis. We will see, however, that
because of the steepness of the potential for large values of jF, the effective,
viable range for jF will be ⇠ [�35, �5]. With all these, we scan over the
parameters and compare the cosmic histories with observations. Fig. 2.14
shows the obtained MCMC samples of log M2 and g (upper panels), as
well as of the two CPL parameters w0 and wa (lower panels) introduced in
Eq. (2.63). The color assigned to each point corresponds to the value of jF
and wa for the upper and lower panels, respectively, and the vertical, red
lines depict the value of log M2 given by the COBE/Planck constraint. The
figure shows that the constraints on g are quite tight for Exp-model I (left)
compared to Exp-model II (right).

We first focus on Exp-model II, which gives a wider region for g. The
color clearly shows that lower values of g correspond to larger |jF|. The
cut from below comes therefore from the fact that we imposed an upper
bound of 35 on |jF| in our scans, i.e. we did not allow jF to become smaller
than �35 due to gravitational reheating. (This means that in principle there
would be no lower bound on g if |jF| were allowed to take arbitrarily large
values.) The upper bound on g, on the other hand, comes from the fact that
if the field does not sufficiently roll down its potential after inflation and
before freezing, the model will not provide a viable cosmic history.
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Figure 2.14: Upper panels: Cosmological MCMC samples of log M2 and g for Exp-model
I (left panel) and Exp-model II (right panel) in term of jF, when it is allowed
to vary between �35 and +8. log M2 has been scanned over only in a range
around the COBE/Planck normalization value depicted by the vertical, red
lines. Lower panels: CPL parameters w0 and wa for the dark energy equation
of state, for Exp-models I (left panel) and II (right panel) as functions of jF.
The points cluster around w0 = �1 (model I) and w0 ⇠ �0.96 (model II) for
large, negative values of jF.

Focusing now on the left, upper panel in Fig. 2.14 for Exp-model I, we see
that the lower bound on g, for a given value of log M2, seems to be highly
strict and even increasing |jF| will not decrease g. This can be understood
if we remember again that Exp-model I possesses a cosmological constant
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limit. Increasing |jF| moves the field more and more on the tail of the
potential, and the model becomes more and more like LCDM. There is
however no possibility of decreasing the total potential energy of the field
further, as the scalar field only contributes with a positive energy on top
of the cosmological constant. Note that the g � log M2 degeneracy in these
plots can be understood by looking at the j ! �• limit of the models:

Exp � modelI : V(j) = M2e�2g(1 + 2ge2 jp
6a ) , (2.92)

Exp � modelII : V(j) = M2e�2gge2 jp
6a . (2.93)

The lower panels of Fig. 2.14 show how the CPL parameters w0 and wa
vary with jF in both models. First note that the viability regions are quite
thin, and already tight as far as the constraints from the cosmological data
are concerned. We have checked that by imposing the full COBE/Planck
constraint (2.91) these regions become only slightly thiner, which means that
the late-time data are quite constraining on their own, independently of the
strong constraint on the model imposed by the COBE/Planck normalization.
Second, we can clearly see that the models deviate more and more from
LCDM by increasing jF to less and less negative values, as illustrated
by the deviations in w0 and wa from �1 and 0, respectively. Note that all
the points shown in Fig. 2.14 are cosmologically viable, and therefore, by
having a sufficiently efficient reheating to stop the field from rolling too
much after inflation, we can expect a relatively large deviation from LCDM,
detectable by future cosmological surveys. The deviations are already quite
large around jF = �8 so that we do not obtain viable cosmologies for
larger values of jF. In addition, it is important to note that for Exp-model II,
the model does not predict the asymptotic value of w• = �1 + 2

9a (⇠ �0.9
in this case for a = 7/3) for the present value of the dark energy equation
of state. The closest value to w• it can reach is ⇠ �0.96 for large, negative
jF, and deviates more and more from it when jF increases.
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Let us now restrict ourselves to specific values of jF to see how much
deviation from LCDM we can expect for Exp-models I and II by decreasing
|jF|. This is interesting because specific, observed deviations from w0 = �1
and wa = 0 may constrain the initial value of the field after reheating,
and therefore in turn constrain the reheating mechanism itself within the
framework of these models.

The upper panel of Fig. 2.15 shows the results of our scans of Exp-
model I when jF has been fixed to three values �10 (red contours), �10.5
(blue contours), and �11 (green contours). Each set of contours shows
1s, 2s, and 3s confidence regions. The shaded, grey regions indicate the
planned sensitivity of the upcoming Stage IV large-scale structure surveys
in combination with the CMB measurements, which are expected to detect
deviations of up to ⇠ 2% and ⇠ 4% in w0 and wa, respectively, from the
LCDM values; see the discussion earlier in this section.

We first notice that the three sets of contours are extremely tight and
w0 and wa are strongly constrained, even though M2 in these numerical
scans is not set to the exact COBE/Planck normalization value, and the
range is relatively large. The constraints are already quite strong that even
though constraining M2 to the COBE/Planck-normalization value makes
the contours even smaller, it will not affect the results significantly. Our
results show that |jF| of around 10 or smaller will be detectable by future
LSS experiments. It is also interesting to note that the changes in w0 and
wa are highly sensitive to the value of jF; we do not expect to detect any
deviations from LCDM for |jF| larger than ⇠ 10.5 in Exp-model I using
the next generation of the LSS surveys. Our analysis also shows that for
values smaller than ⇠ 10, on the other hand, it becomes difficult to obtain
viable late-time cosmologies.

The upper panel of Fig. 2.15 shows the same as the lower panel, but for
Exp-model II, where red, blue, green, and orange contours correspond to
�10, �10.5, �11, and �12 for jF, respectively. The deviations from LCDM
in this model are generically larger compared to Exp-model I, and are
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Figure 2.15: Upper panel: Constraints on w0 and wa for Exp-model I, and for three cases of
jF = �10 (red contours), jF = �10.5 (blue contours), and jF = �11 (green
contours). The shaded, grey regions indicate a rough estimate of the target
sensitivity for Stage IV large-scale structure surveys in combination with CMB
experiments, expected to detect deviations of up to ⇠ 2% and ⇠ 4% in w0
and wa, respectively, from the LCDM values. Lower panel: The same as in the
left panel, but for Exp-model II. Here, red, blue, green, and orange contours
correspond to jF = �10, jF = �10.5, jF = �11, and jF = �12, respectively.
Note that all these cases for Exp-model II show detectable deviations from
LCDM.
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therefore more easily detectable by upcoming surveys; note how all four
contours are located outside the shaded, grey regions.

It is interesting to see what happens with Fig. 2.15 when the inflationary
constraints on M2 are relaxed. Fig. 2.16 shows the results of our scans
for Exp-model I when jF is fixed to the same three values of �10 (red
contours), �10.5 (blue contours), and �11 (green contours) as before. First
of all, the figure shows that the deviations can be as large as about 10% for
both w0 and wa if |jF| is allowed to take values as low as about 10. More
importantly, since here we have not imposed any inflationary constraints on
M2, the contours are continuously connected to the LCDM values w0 = �1
and wa = 0. We find similar results for Exp-model II, with the only main
difference that in that case the contours are no longer connected to the
LCDM point, as expected; we do not show them here for brevity.

�0.090�0.075�0.060�0.045�0.030�0.015 0.000

wa

�1.00

�0.98

�0.96

�0.94

�0.92

w
0

Figure 2.16: The same as in Fig. 2.15, but by fully relaxing the power spectrum normaliza-
tion.

Finally, we study the effects of varying a in our two exponential models I
and II, by leaving it as a free parameter. We have chosen a representative
value for jF and have fixed it to �10. The results are presented in Fig. 2.17;
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Figure 2.17: The dependence of w0 and wa on a for Exp-model I (left panel) and Exp-
model II (right panel). Here the inflationary power spectrum normalization
has been imposed as M2 ⇡ 10�10a and jF has been fixed to �10.

the left panel corresponds to Exp-model I, and the right panel corresponds
to Exp-model II. For Exp-model I, we now see that there is an upper
bound of ⇠ 4 on a in order for the model to provide cosmic histories
consistent with current data; a can however take any values smaller than
this bound. Exp-model II, on the other hand, now allows only values of a
in the approximate range of [0.5, 3.5] when jF is fixed to �10. In addition,
it is interesting to see that both w0 and wa show different behavior in terms
of a for the two models. The left panel of Fig. 2.17 shows that increasing a
enhances the deviation from LCDM in Exp-model I, while the right panel
shows that for Exp-model II both w0 and wa are extremized around some
intermediate values of a ⇠ 1.5, below and above which the deviations from
LCDM are larger.
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2.6 2-field quintessential inflation models

2.6.1 Dark energy and exponential potentials

As we discussed in section 2.2, the asymptotic expression for the a-attractor
potential at large negative j, Eq. (2.22), after a change of variables and a

redefinition
q

2
3a ! l can be represented in a more familiar way V(j) =

L + elj. These models with a vanishing cosmological constant L = 0 were
among the first candidates for the role of dark energy, see e.g. Refs. [165,
166]. However, unlike the dark energy model with the linear potential,
which was proposed a year earlier [91], the original models with exponen-
tial potentials discussed in Refs. [165, 166] did not provide a solution to
the cosmological constant problem. Some progress in this direction was
achieved only much later, in the models with the potential (2.23) and L < 0
[135]. Even though the models considered in Ref. [135] described single
field exponential potentials, the context of this theory was similar to the
linear model of Refs. [91, 167], which presumed the prior stage of inflation
driven by another field. Therefore, before discussing dark energy in the
context of two-field a-attractors, we describe and generalize the results of
Ref. [135], in the light of the string theory landscape developments.

Let us first consider the simplest case of L = 0. For l ⌧ 1 (a � 1/3), the
potential is flat, the energy density of normal matter decreases faster than
V, and the system eventually enters the asymptotic regime of power-law
inflation with

w• = �1 +
l2

3
= �1 +

2
9a

. (2.94)

Meanwhile in the models with a dS plateau, L > 0, the asymptotic value of
w is �1, but for large a the transition from w = �1 + 2

9a to w = �1 may take
a long time. In the models with L < 0, the universe eventually collapses,
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but if l ⌧ 1 and |L| ⌧ 10�120, there is a very long interval, longer than the
present age of the universe, when life as we know it can exist, and w is very
close to �1 [135]. Thus, one could argue that exponential potentials, as well
as a-attractors, can easily provide us with viable dark energy models with
w very close to �1, but still noticeably different from it. However, a more
detailed investigation shows that the situation is much more nuanced.

First of all, models with exponential potentials cannot simultaneously
describe inflation and quintessence. They support inflation for l ⌧ 1,
but then inflation never ends. A way around it is to assume, along the
lines of Ref. [91], that the potential of the dark energy field j is given by
V(j) ⇠ elj + L, but inflation is driven by some other field. Then, because of
inflationary fluctuations of the ultra-light field j, after inflation the universe
becomes divided into exponentially many exponentially large parts where
j takes different values, so that its potential energy V(j) takes all possible
values of L, including values many orders of magnitude higher than 10�120.
In each of these parts, the field j is locally very homogeneous. Thus, just
as in the linear model of Ref. [91], the universe becomes divided into many
parts with different values of the effective cosmological constant L + elj.
Therefore all values of the field j with L + elj � 10�120 are anthropically
forbidden.

Indeed, in the parts of the post-inflationary universe models with l ⌧ 1
and |L| ⌧ 10�120, the scalar field starts moving (very slowly, because
V 0 ⇠ lV ⌧ V) when the density of cold (and hot) matter of the universe,
which rapidly decreases during its expansion, becomes smaller than V(j).
If the field was frozen and starts moving at V(j) � 10�120, the universe
enters the regime of quasi-exponential expansion too early, which disrupts
galaxy formation.

If L is negative, but the initial value of V(j) ⇠ elj + L was positive,
the universe in these models may enter the stage of accelerated expansion
which may continue for a few billion years after that, until the universe
collapses [135]. However, this regime is possible only for l . 1, and only in
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some finite (l-dependent) range of L < 0 and post-inflationary values of
the field j [135].

On the other hand, if L is small but positive, L ⇠ +10�120, the universe
may enter the stage consistent with the presently available data for any
value of l, and for an infinitely large range of post-inflationary values of
the field j such that elj . 10�120. Only in a finite part of this range of
j does one have elj ⇠ L and w close to -1 but distinctly different from
it. Meanwhile in the infinitely large range of j, all the way down to �•,
one has elj ⌧ L. Therefore, for any given l, the anthropically viable
“phase space” of L and j is dominated by positive L ⇠ +10�120 and by
indefinitely large negative j, where dark energy is indistinguishable from
the cosmological constant, and the equation of state is given by w = �1
with an exponentially good accuracy. A similar conclusion was reached in
Ref. [168] for a broad class of dark energy models, though some exceptions
from this rule are possible, see e.g. Refs. [169, 170].

2.6.2 Non-interacting a-attractors

A similar conclusion can be reached in many models of two-field a-
attractors, if one assumes, as we did before, that the potential of the field f
responsible for dark energy is very small, and inflation is driven by some
other field c, not interacting with the field f. To illustrate this possibility,
we consider here a toy model of two non-interacting fields.

Let us consider an extended version of the a-attractor model, adding to
it a scalar field s with a non-canonical kinetic term:

1p�g
L =

R
2

�
(∂µf)2

2(1 � f2

6a )2
�

(∂µs)2

2(1 � s2

6b )2
� m2

2
s2 � gf � V0 . (2.95)
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As before, one can represent this theory in terms of two canonically nor-
malized fields,

f =
p

6a tanh
jp
6a

, s =
p

6b tanh
cp
6b

. (2.96)

The inflaton potential in terms of the canonically normalized fields j and c
becomes

V(j, c) = 3bm2 tanh2 cp
6b

+ g
p

6a tanh
jp
6a

+ V0 . (2.97)

We illustrate the general structure of this potential for a = b = 1 and some
particular (non-realistic) values of parameters such that 3bm2 � g

p
6a, and

V0 ⇡ g
p

6a, see Fig. 2.18. In that case the term 3bm2 tanh2 jp
6b

is responsi-

ble for inflation in this model, the dark energy potential g
p

6a tanh jp
6a

+ V0

is very shallow, and it approaches a small cosmological constant V� =
V0 � g

p
6a in the limit j ! �•, and V+ = V0 + g

p
6a in the limit j ! •.

Figure 2.18: The shape of the potential V(j, c) (2.97) for a = b = 1, 3bm2 � g
p

6a, and
V0 ⇡ g

p
6a.
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Inflation begins at the plateau with V(j, c) = 3bm2 � V+. This plateau is
almost exactly flat, so inflation may begin with an equally large probability
at any point of the plateau with c �

p
6b [171]. It ends when the field

c falls down to the dark energy valley with c = 0. Since the field j at
the beginning of inflation can take any value with (almost exactly) equal
probability because of a (nearly exact) shift symmetry of the potential in the
j direction, all values of the field j after inflation will be equally probable
as well.

In that case, one can use the same argument as the one we used for the
theory with exponential potential: After inflation, the fields roll down either
to the right plateau, or to the left plateau, but it is most probable that it
will end up extremely far from j = 0. By a proper choice of parameters,
including adjustment of the parameter V0, one can easily have the regime of
acceleration at the time t ⇠ 1010 years. However, with an overwhelmingly
large probability the absolute value of the field j after inflation will be
extremely large, and therefore this stage will be indistinguishable from the
pure cosmological constant with w = �1.

The same conclusion is valid for most of the dark energy models based
on the a-attractors with V(j) much smaller than the energy density of
the inflaton field c during inflation. Indeed, for most of such models the
asymptotic behavior of the potential V(j) in the limit |j| ! • is given by
one of the two asymptotic expressions (2.13) or (2.22). The asymptotic values
of the cosmological constant L along the two shoulders of the potential
is given either by V� or by V+. By adding a constant to the potential, one
can adjust at least one of these parameters to belong to the anthropic range
|L| . 10�120. Then all arguments given above apply.

Thus we see that one can easily obtain a viable dark energy model in any
model of a-attractors, with a very broad range of parameters and potentials,
as long as the value of dark energy potential V(j) is sufficiently small. But
the observational consequences of these models for the most general class
of initial conditions are practically indistinguishable from the predictions
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of the simplest cosmological constant models. This is good news from the
point of view of generality of the predictions, but perhaps not very good
news from the point of view of observers.

However, these conclusions were obtained under the conditions some of
which can be relaxed. For example, consider the same model as before, but
instead of the regime with 3bm2 � g

p
6a we may investigate an opposite

regime 3bm2 ⌧ g
p

6a. The potential in this case is shown in Fig. 2.19.

Figure 2.19: The shape of the potential V(j, c) (2.97) for a = b = 1, 3bm2 ⌧ g
p

6a, and
V0 ⇡ g

p
6a.

In this model, the potential at the first stage of inflation is dominated
by the quintessence potential V(j) = g

p
6a tanh jp

6a
+ V0, falling from the

high (red) plateau. Depending on initial conditions, inflationary scenario
can be realized in two distinct ways. In the first scenario, the initial value
of the field c is extremely large, and its potential is very flat. In that case,
the fields will first roll in the j direction and fall from the cliff to the
yellow plateau determined by the term 3bm2 tanh2 cp

6b
. Then there will

be a second stage of inflation driven by the field c, which ends at c = 0.
We call this scenario "cascade inflation" [94]. The value of the field j at the
end of inflation will be determined by the initial conditions, and by the two
stages of cascade inflation, including (for some initial conditions) a stage of
eternal inflation.
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On the other hand, if the initial value of the field c is relatively small,
and the field j is very large, then in the beginning of inflation, the field c
rolls down the valley with c = 0, and the subsequent stage of inflation and
quintessential evolution will be determined by the single field evolution of
the field j.

In the next section we will briefly describe a simple model of two inter-
acting attractors; as we will see taking into account interactions may open
many other possibilities.

2.6.3 Interacting a-attractors

Now we add an interaction term g2f2s2 to the potential of the model (2.95),

1p�g
L =

R
2

�
(∂µf)2

2(1 � f2

6a )2
�

(∂µs)2

2(1 � s2

6b )2
� m2

2
s2 � g2f2s2 � gf � V0. (2.98)

The inflaton potential in terms of the canonically normalized fields j and c
becomes

V(j, c) = 36abg2 tanh2 jp
6a

tanh2 cp
6b

+ 3bm2 tanh2 cp
6b

+ g
p

6a tanh
jp
6a

+ V0. (2.99)

We will take the parameters such that 36abg2 � 3bm2 � g
p

6a, V0. In
that case, the potential can be illustrated (not to scale) by Fig. 2.20. Inflation
begins at one of the high red plateaus of the height approximately given
by 36abg2. The blue valley describes the a-attractor inflationary potential
V(c) = 3bm2 tanh2 cp

6b
+ V0. The green valley corresponds to the dark

energy potential g
p

6a tanh jp
6a

+ V0.
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Figure 2.20: The shape of the potential V(j, c) (2.99) for a = b = 1 and 36abg2 �
3bm2 � g

p
6a, V0. The green valley corresponds to quintessence with the

linear potential V = gf + V0 = g
p

6a tanh jp
6a

+ V0.

One can show that about half of all inflationary trajectories starting at
the red plateau describe the fields falling directly to the dark energy valley.
We assume that 3bm2 ⇠ 10�10 and 36abg2 is much greater, possibly even
as large as O(1) in Planck units, then the inflationary trajectories falling
directly to the dark energy valley produce parts of the universe with too
large perturbations of density, which make such parts of the universe
anthropically disfavored.

Another half of all inflationary trajectories starting at the red plateau
describe the fields falling towards the blue inflationary valley. Then the
inflaton field c rolls along this valley, which generates perturbations of
the proper magnitude in accordance with the a-attractor scenario. The
process of reheating occurs due to oscillations of the field c near the point
j = c = 0. At this point, the potential has a tiny slope which pushes the



112 dark energy, a-attractors , and large-scale structure surveys

dark energy field j towards its large negative values, but this field does
not start rolling until the density of particles produced by reheating drops
down substantially. When this happens, the field j starts moving towards
j ! �•.

Consider the simplest case of V0 = g
p

6a ⇠ 10�120. Then the dark
energy potential g

p
6a tanh jp

6a
+ V0 is given by V0 ⇠ 10�120 at j = 0,

and vanishes in the limit j ! �•. To give a particular example, one may
consider a = 7/3. Then, just like in the theory with exponential potential,
the asymptotic value of w for dark energy will be about 0.905, but its initial
value at the moment when the field j starts moving down will be given
(almost) exactly by -1. By taking V0 slightly greater than g

p
6a, one can

make w much closer to �1. This model represents a simple a-attractor
version of the dark energy model with the linear potential proposed in
Ref. [91].

2.6.4 Quintessence with a linear potential

Inspired by our discussions in the previous section, let us now consider a
concrete example of the 2-field, interacting, a-attractor scenario where the
simplest linear potential for the quintessence field f has the form given in
Eq. (2.19), i.e.

V(j) = g
p

6a(tanh
jp
6a

+ 1) + L , (2.100)

in terms of the canonical field j, with L being a constant. We additionally
assume 36abg2 � 3bm2 � g

p
6a, L. As discussed in the previous section,

we further assume that the inflationary trajectory starts at the red plateau
of Fig. 2.20 at large values of the field c, and then the fields j and c fall
towards the blue inflationary valley at j = 0. The inflaton field c then rolls
along the valley, and reheating occurs through the oscillations of c near the
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point f = c = 0. At this point, the tiny slope in the dark energy potential
pushes the quintessence field j towards its negative values. As stated before,
in this scenario inflation is not driven by j, and it only sets the value of j
to something around 0 as the initial value of the dark energy field for the
late-time evolution of the universe, contrary to the quintessential inflation
models, studied in section 2.4, which could accommodate a wide range of
initial conditions for the quintessence field j that was also responsible for
inflation.

Now we consider the case with both g
p

6a and L being of O(10�120).
Note that the potential approaches a cosmological constant V� = L for
large, negative j, and therefore L = 0 corresponds to a potential with a
vanishing asymptotic value in the limit j ! �•. The potential has been
shown in Fig. 2.21 for L = 0 (left panel) and L = g

p
6a (right panel);

we have set a = 7/3 for both cases. The figure shows that the potential
monotonically decreases for L = 0 and takes an asymptotic, constant value
for L = g

p
6a at large, negative j. The value of g has been chosen such

that the asymptotic value of the potential gives 10�120.
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Figure 2.21: The shape of the potential V(j) = g
p

6a(tanh jp
6a

+ 1) + L for L = 0 (left

panel) and L = g
p

6a (right panel). Here we have set g
p

6a to 10�120 and a
to 7/3. The values of the potentials on the y-axes are normalized to 10�120.
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The asymptotic value for the equation of state of dark energy, wDE, in
this model can be obtained by assuming a slow-roll approximation. As we
discussed before, this asymptotic value for L = 0 is

w• = �1 +
2

9a
, (2.101)

which depends only on a. The asymptotic value for L 6= 0 is �1.
Let us now study the time evolution of weff as well as wDE for a few values

of L and for a = 7/3. The results have been presented in Fig. 2.22 for L = 0,
10�2 ⇥ g

p
6a, and 10�1 ⇥ g

p
6a. Note that weff is almost identical in the

past (N < 0) for all the cases (blue curve), and shows different behavior
for the future (N > 0). Note also that weff is different from wDE in the past,
and becomes identical to it in the future, when the field j dominates. In
addition, as expected, the figure shows that the deviation from LCDM is
maximal when L = 0, and decreases when L increases. For the specific
case of L = 0, w has an asymptotic value of ⇠ �0.905, in full agreement
with our analytical expression (2.101), while for any other values of L the
asymptotic value is �1.

2.6.5 Comparison to observations, and constraints on parameters

With the qualitative discussions of the previous section, let us now study
our 2-field, interacting, a-attractor model in a rigorous way and through the
comparison of the late-time predictions of the model to the observations.
The potential is of the form given in Eq. (2.100). We scan over the parameters
of the model, i.e. g, a, and L, and compare the evolution of the background
cosmological observables to the data. We set jF to 0 in all our scans.

The upper panels of Fig. 2.23 present our results for g versus a (left panel)
and L (right panel). Note that the values of g and L are given in units of
the critical density today. For the left panel, where a is kept free, the value
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Figure 2.22: Evolution of the equation of state as a function of the number of e-folds N
after reheating for the linear potential V(j) = g

p
6a(tanh jp

6a
+ 1) + L in the

framework of the interacting, 2-field a-attractors. The three yellow-to-orange
curves show the dark energy equation of state wDE for L = 0, 10�2 ⇥ g

p
6a,

and 10�1 ⇥ g
p

6a, respectively. The effective equation of state weff is almost
identical for all values of L in the past (shown collectively by a blue curve), is
different from wDE in the past, and becomes identical to it in the future when
the field j becomes dominant. N = 0 corresponds to the present time, g

p
6a

has been set to 10�120, and a has been set to 7/3 for all the cases.

Figure 2.23: Constraints on g, a and L for the linear, interacting, a-attractor model with
the linear potential V(j) = g

p
6a(tanh jp

6a
+ 1) + L, when L is fixed to 0

(left) and when a is fixed to 7/3 (right). Note that both g and L are presented
in units of the critical density today. The samples are color-coded with the
value of w0.
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of L has been set to 0, while for the right panel, with L being scanned over,
a has been fixed to 7/3. The value of g is correlated with both a and L. In
order to see this correlation clearly, let us first focus on the left panel with
L being fixed to 0, i.e. when the potential is V(j) = g

p
6a(tanh jp

6a
+ 1).

The figure shows that g increases by decreasing a. When a becomes very
small, we know that the potential rapidly decreases and the tanh jp

6a
piece

in the potential drops quickly to ⇠ �1. This will be largely cancelled by the
constant piece g

p
6a, and one therefore would need an enormous value of

g to compensate for that and to obtain the required amount of dark energy
given by observations. This may mean that we should in principle be able to
obtain good fits to the data for very small a with very large g. However, the
figure tells us that even though g indeed seems to be increasing at small a,
very small a (. 0.3) are disfavored by our analysis. This can be understood
by looking at the color-code of the left panel of the figure, which shows the
values of w0. This shows that reducing a corresponds to larger deviations
form LCDM. This illustrates why a cannot be smaller than ⇠ 0.3 for this
L = 0 case, as the model predicts an equation of state for dark energy
with present values that deviate too much from the observed values, and
the number of viable points is therefore almost vanishing for very small a.
Therefore, even though the required amount of dark energy can be provided
by the model for small a, it does not produce the correct behavior for the
dark energy equation of state. Clearly, by increasing L to nonzero values,
which is equivalent to adding a cosmological constant to the potential,
small a can also provide viable models of dark energy.

Let us now investigate the effect of changing L on the predictions of
the model, by focusing on the right panel of Fig. 2.23, where a has been
fixed to 7/3 and L has been allowed to vary. The figure shows that the
larger the value of L, the smaller the value of g. This behavior is easily
understood, as the total dark energy in our model is a combination of the
j-dependent piece and the cosmological constant L, and by increasing L
the contribution from the j-dependent piece should reduce in order for
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the model to produce the correct, total amount of dark energy consistent
with observations, i.e. to provide WDE ⇡ 0.7. WDE in general includes two
pieces, one from the dynamics of the scalar field (i.e. the field-dependent
part of the potential plus the kinetic energy of the field), and one from the
cosmological constant L. Here therefore, by increasing the contribution
from the cosmological constant the contribution from the field needs to
drop in order to have the total amount of WDE ⇡ 0.7. Decreasing g to zero
in the right panel of Fig. 2.23 will make L take a value of ⇡ 0.7 in units of rc,
which is what we expect. Note also that, as expected, increasing L makes
w0 closer to its LCDM value, which is consistent with our illustration in
Fig. 2.22.

Our conclusion, based on these results, is that this class of 2-field, inter-
acting models, can provide interesting cosmological evolutions perfectly
consistent with the current data. The deviations from the LCDM model
depend however on the value of a. For relatively large a, such as 7/3,
the deviations are not large enough to be detected by the next generation
of the LSS experiments, as w0 and wa are not sufficiently different from
the LCDM values, but (depending on the value of L) decreasing a can
make the deviations larger and potentially detectable. This class of models,
therefore, has predictions that in some cases can be tested, verified, or ruled
out by the future cosmological surveys.

2.7 conclusions

In this chapter we constructed several viable models of dark energy based
on the theory of a-attractors, using the flexibility of choosing the cosmolog-
ical constant provided by the string theory landscape. We studied a broad
variety of the models, such as the models of quintessential inflation, where
a single field j plays the double role of the inflaton and the quintessence.
The simplest of these models is the a-attractor version of the theory with
a linear potential described in section 2.5.1. We also performed a detailed
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investigation of the models with exponential potential in sections 2.5.2 and
2.5.3.

The asymptotic flatness of the plateau potential in a-attractors and the
possibility to avoid the fifth force problem, see section 2.3.2, make these
models particularly suitable candidates for the role of dark energy. In
several different models with the asymptotically vanishing height of the
potential V� = L = 0, we have a universal a-dependent prediction relating
to each other the tensor-to-scalar ratio r and the asymptotic value of the
equation of state w•:

r =
12a

N2 , w• = �1 +
2

9a
; (2.102)

see Eqs. (2.1) and (2.2). This is a rather interesting correlation between r and
w•, which may seem to be suggesting a possible way to test these models
using a combination of the upcoming Stage IV cosmological experiments
aiming at measuring both the B-mode polarization of the CMB and the
growth and evolution of large-scale structure in the universe. One should
however note that, as we have shown in this paper for various models of
quintessential inflation, w• is only the ultimate value of the dark energy
equation of state parameter and not its present value. This means that w•
cannot be used directly to test the models, and one needs a detailed analysis
in order to compare the predictions of the models to the cosmological
observations.

Moreover, if one accepts the simplest interpretation of the predictions of
the string theory landscape, one is free to add to the potential any constant
that keeps the effective value of L within the anthropically allowed range
of |L| . 10�120. If, for example, one adds a positive cosmological constant
L . 10�120, the last prediction in (2.102) changes to w• = �1, without
altering the prediction for r and the spectral index ns. In other words, by
combining quintessential inflation with the string theory landscape, we
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have a possibility to describe a broad range of outcomes for w without
altering the inflationary predictions of the models.

We also studied a-attractor models where inflaton and quintessence are
described by two different fields. From the point of view of model building,
these models described in section 2.6 can be quite simple, but they allow
much greater flexibility, which deserves a more detailed investigation.

An interesting byproduct of our investigation of a-attractors is the re-
alization that their universal prediction ns = 1 � 2/N may give distinctly
different numerical results for the quintessential a-attractors as compared
to the usual a-attractors with a conventional reheating mechanism. We
noticed that for some of the quintessential a-attractors with gravitational
reheating, the required number of inflationary e-folds N can be greater than
the required number of e-folds in more conventional models by DN ⇠ 10,
which increases the value of ns by about 0.006. This increase coincides with
the Planck 1s error bar for ns [82]. Therefore with the future improvement
in the accuracy of CMB observations we might be able to distinguish the
conventional inflationary models where the field after inflation oscillates
and relaxes at the minimum of its potential, from the simplest models of
quintessential inflation, even if these models predict w = �1.
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C O N S T R A I N S D O U B LY- C O U P L E D B I G R AV I T Y

The topic of this chapter is the theory of massive bigravity, where one
has two dynamical tensor degrees of freedom. We consider an interesting
extension where both of the metrics are coupled to the matter sector, which
is known as the doubly-coupled bigravity. The main aim of this chapter is
the study of gravitational-wave propagation in this theory. We demonstrate
that the bounds on the speed of gravitational waves imposed by the recent
detection of gravitational waves emitted by a pair of merging neutron stars
and their electromagnetic counterpart, events GW170817 and GRB170817A,
strongly limit the viable solution space of the doubly-coupled models. We
have shown that these bounds either force the two metrics to be propor-
tional at the background level or the models to become singly-coupled (i.e.
only one of the metrics to be coupled to the matter sector). The mentioned
proportional background solutions are particularly interesting. Indeed, it is
shown that they provide stable cosmological solutions with phenomenolo-
gies equivalent to that of LCDM at the background level and at the level of
linear perturbations.

This chapter is based on: Y. Akrami, Ph. Brax, A.-C. Davis, V. Vardanyan,
Neutron star merger GW170817 strongly constrains doubly-coupled bigravity,
Phys. Rev. D 97 (2018) 124010, arXiv:1803.09726.
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3.1 introduction

In the introduction of this thesis we have briefly discussed the theories
of massive gravity and their natural extension to bimetric gravity. We
particularly had discussed the so-called singly-coupled regime of the theory,
where only one of the metrics is coupled to the matter sector.

However, in the absence of any theoretical mechanism that forbids the
coupling of the matter fields directly to the reference metric, it is natural to
go beyond the singly-coupled scenarios and study doubly-coupled models,
where the two metrics couple to matter either directly or through a compos-
ite metric constructed out of the two spin-2 fields. This generalisation might
look even more natural since the gravity sector of ghost-free bigravity is
fully symmetric in terms of the two metrics, and it might feel unnatural to
impose the matter sector to break this symmetry by coupling only to one
metric.1 Theories of doubly-coupled massive gravity and bigravity, and in
particular their cosmologies, have also been extensively studied [172–194].
It has been shown, particularly, that the dangerous Boulware-Deser (BD)
ghost [195] re-emerges almost always if the same matter fields couple to
both metrics. One interesting exception has been proposed in Ref. [177],
where an acceptable doubly-coupled theory of bimetric gravity has been
constructed with matter coupled to a composite metric of the form

geff
µn = a2gµn + 2abgµg(

q
g�1 f )g

n + b2 fµn , (3.1)

with gµn and fµn being the two metrics of the theory, and a and b being
two arbitrary constants. Clearly, setting b to zero (a to zero) turns the
doubly-coupled theory into a singly-coupled one with gµn ( fµn) being the

1 Note also that such theories do not necessarily violate the equivalence principle, and if they
do, this may not be an issue. For discussions on the violation of the equivalence principle in
theories with both metrics minimally coupled to matter, see Refs. [172, 173]. For theories
with a composite metric coupled to matter the (weak) equivalence principle is not violated,
as all particles move along the geodesics of the composite metric.
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physical metric. Even though in this case the BD ghost is not completely
removed from the theory, it is effective only at high energies, above the
cutoff scale of the theory,2 making it a valid effective field theory at low
energies.

This doubly-coupled theory has been shown to provide viable and in-
teresting cosmological solutions at the background level [179, 189], with
linear perturbations that are stable at least around specific cosmological
backgrounds [196] (see also Refs. [185, 192–194]). In particular, in contrast
to the singly-coupled theory, this double coupling admits combinations of
proportional metrics at the background level, and interestingly, the effec-
tive metric always corresponds to the massless fluctuations around such
backgrounds, i.e. it satisfies the linearized Einstein equations. This means
that around proportional backgrounds the theory is equivalent to general
relativity at the background level as well as for linear perturbations, and
differences from general relativity are expected only at the nonlinear level,
at least in the sector coupled to matter. The immediate implication of this
feature is that doubly-coupled bigravity admits viable and stable cosmolo-
gies at least for proportional metrics, which are potentially distinguishable
from standard cosmology in the nonlinear regime.3 As we show in this

2 This cut-off scale for massive gravity, corresponding to the strong-coupling scale, is L3 ⌘
(m2 MPl)

1/3, where m is the graviton mass and MPl is the Planck mass. The cut-off scale can
be higher for bigravity [53].

3 The linear cosmological perturbations for doubly-coupled bigravity around proportional,
FLRW backgrounds separate into two decoupled sectors. The first (visible) sector coupled
to matter is equivalent to general relativity. The second (hidden) sector is decoupled from
matter and is not free from some instabilities. The most dangerous one [192, 196] occurs
for vectors, which have a gradient instability in the radiation era. This may jeopardise the
perturbativity of the models very early on in the Universe. On the other hand, however, the
doubly-coupled models with a mass m ⇠ H0 are expected to have an ultraviolet (UV) cut-off
scale of order L3 = (H2

0 MPl)
1/3, which is low and prevents any reliable description of the

physics of bigravity when the horizon scale becomes smaller than L�1
3 . Strictly speaking,

for bimetric theories L3 is the cut-off scale in the decoupling limit, and the cut-off scale for
the full theory can be higher, contrary to massive gravity. However, since the decoupling
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chapter, proportional metrics are extremely interesting also from the point
of view of gravitational waves (GWs), as they are the only cases that survive
after the recent measurements of the speed of gravity in addition to the
singly-coupled models. This provides us with a unique class of bimetric
models that are healthy and compatible with all cosmological observations
as well as gravitational wave constraints.

GWs in bigravity have been studied in Refs. [193, 197–205], although they
have been investigated for the doubly-coupled models only in Ref. [193].
In the literature, bigravity models are often considered to be on the safe
side with respect to the bounds placed by current observations of GWs.
While this holds for singly-coupled models, we show in this chapter that
the bounds on the speed of GWs severely constrain the parameter space of
the doubly-coupled scenarios. We particularly show that the models which
survive the bounds from current gravitational wave observations are the
ones for which the two background metrics are proportional, or for the
choices of the parameters of the model that render it singly-coupled.

We first derive, analytically, the conditions under which bimetric models
are safe in terms of the gravitational wave measurements. We then perform
a Markov Chain Monte Carlo (MCMC) analysis of the parameter space
of doubly-coupled bigravity by imposing the constraints from geomet-
rical measurements of cosmic history, now taking into account also the
constraints from gravitational wave observations. We illustrate that this
numerical analysis confirms our analytical arguments.

The chapter is organised as follows: In section 3.2 we summarise the
basics of doubly-coupled bigravity and its cosmology, and present the
equations necessary for studying the background cosmological evolution.

limit is not well defined above L3, we expect the entire theory to need modifications. The
L3 scale happens at a redshift of order 1012 which is just before Big Bang Nucleosynthesis.
The unknown UV completion of doubly-coupled bigravity would certainly affect the early-
Universe instability. In the late Universe as we consider here, no instability is present and
the decoupled sector can be safely ignored for proportional backgrounds.
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Section 3.3 discusses the evolution equations and the speed of GWs in the
theory and presents the cosmological conditions that result in the speed
equal to the speed of light. Section 3.4 provides the results of our MCMC
scans, and our conclusions are given in section 3.5. Finally, in Appendix 3.6
we derive the cosmological evolution equations for tensor modes in detail,
at the level of the field equations as well as the action.

3.2 cosmology of doubly-coupled bigravity

The theory of doubly-coupled bigravity can be formulated in terms of an
action of the form [177, 179]

S = �
M2

eff
2

Z
d4x

p
�gRg �

M2
eff

2

Z
d4x

p
� f R f

+ m2M2
eff

Z
d4x

p
�g

4

Â
n=0

bnen(
q

g�1 f ) + Smatter[geff
µn, Y] , (3.2)

where gµn and fµn are the two metrics of the theory with determinants g
and f , respectively, and standard Einstein-Hilbert kinetic terms. Meff plays
the role of the Planck mass,4 en are the elementary symmetric polynomials
of the matrix

p
g�1 f (see Ref. [47] for their detailed definitions), and the

quantities bn (n = 0, ..., 4) are five free parameters determining the strength
of the possible interaction terms. The parameter m sets the mass scale of
the interactions and is not an independent parameter of the theory as it can
be absorbed into the bn parameters; m needs to be of the order of H0, the
present value of the Hubble parameter H, in order for the theory to provide

4 It should be noted that the theory can be formulated in terms of two separate Planck
masses Mg and Mf corresponding to the g and f sectors, respectively. As has been shown
in Ref. [179], the effective metric in this case will not include any free parameters and will
have the fixed form gµn + 2gµg(

p
g�1 f )g

n + fµn. We have chosen the formulation in terms
of Meff with a and b being present explicitly since it shows the singly-coupled limits of the
theory more clearly.
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self-accelerating solutions consistent with observational data. Matter fields
have been shown collectively by Y, which couple to the effective metric geff

µn

defined in Eq. (3.1) in terms of gµn and fµn and the two coupling parameters
a and b.

In order to study the cosmological implications of the theory, we assume
the background metrics gµn and fµn to have the FLRW forms

ds2
g = �N2

gdt2 + a2
gdxidxi , (3.3)

ds2
f = �N2

f dt2 + a2
f dxidxi , (3.4)

where t is the cosmic time, Ng and Nf are the lapse functions for gµn and
fµn, respectively, and ag and a f are the corresponding scale factors, all
functions of t only.

Using the forms (3.3) and (3.4) for the background metrics gµn and fµn,
Eq. (3.1) fixes the form of the effective metric geff

µn to

ds2
eff = �N2dt2 + a2dxidxi , (3.5)

where [179]

N ⌘ aNg + bNf , (3.6)
a ⌘ aag + ba f , (3.7)

are the lapse and the scale factor of the effective metric, respectively. The
dynamics of gµn and fµn are governed by their Friedmann equations, which
take the forms
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3H2
g =

a

M2
eff

r
a3

a3
g

+ H2
0(b0 + 3b1r + 3b2r2 + b3r3) , (3.8)

3H2
f =

b

M2
eff

r
a3

a3
f
+ H2

0(
b1

r3 + 3
b2

r2 + 3
b3

r
+ b4) , (3.9)

where

Hg ⌘
ȧg

Ngag
, Hf ⌘

ȧ f

Nf a f
, (3.10)

are the Hubble parameters for gµn and fµn, respectively, r is the energy
density of matter and radiation, the dot denotes a derivative with respect
to t, and

r ⌘
a f

ag
(3.11)

is the ratio of the two scale factors a f and ag. We have also fixed m to H0
in the two Friedmann equations, as we are interested in self-accelerating
solutions for which m ⇠ H0.

In addition to the two Friedmann equations (3.8) and (3.9), the consistency
of the theory requires the Bianchi constraint [179]

Nf

Ng
=

ȧ f

ȧg
! Hg = rHf (3.12)
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to be satisfied.5 Having introduced the effective lapse and scale factor N
and a, one can naturally introduce an effective Hubble parameter associated
with the effective metric geff

µn,

H ⌘ ȧ
Na

, (3.13)

which satisfies its own effective Friedmann equation [179],

H2 =
r

6M2
eff

(a + br)(a +
b

r
) + H2

0
B0 + r2B1

6(a + br)2 , (3.14)

where we have also introduced

B0 ⌘ b0 + 3b1r + 3b2r2 + b3r3 , (3.15)

B1 ⌘ b1

r3 + 3
b2

r2 + 3
b3

r
+ b4 . (3.16)

Eq. (3.14) is obtained by adding the two Friedman equations (3.8) and (3.9),
and applying the Bianchi constraint (3.12). The effective Hubble parameter
H can be written in terms of Hg or Hf as

H =
Hg

a + br
=

rHf

a + br
. (3.17)

In addition to the Friedmann equation for H, by again using the Bianchi
constraint (3.12) and now subtracting the two Friedmann equations (3.8)
and (3.9) we arrive at the algebraic condition

r

M2
eff

(a + br)3(a � b

r
) + H2

0(B0 � r2B1) = 0 . (3.18)

5 Note that the Bianchi constraint gives two branches of solutions. The one we consider here
is the so-called dynamical branch. See Refs. [179, 189] for the discussion of the second,
algebraic branch.
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The energy-momentum tensor for matter and radiation is covariantly
conserved with respect to the effective metric, which means that the energy
density r satisfies the continuity equation

ṙ + 3
ȧ
a
(r + p) = 0 . (3.19)

This motivates us to introduce x ⌘ ln a, the number of e-folds in terms
of the effective scale factor a, as a time coordinate. In terms of x, we can
recover the usual behaviour of the matter and radiation energy densities

rM = r(0)
M e�3x , rR = r(0)

R e�4x , (3.20)

assuming that these two components are conserved separately. Here, r(0)
M

and r(0)
R are the current values of the energy densities of matter and radia-

tion, respectively.
It is easy to show that the coupling parameters a and b affect observables

only though their ratio b/a, as we can assume a 6= 0 without loss of
generality6 and then rescale M2

eff by a factor of 1/a4. Later in this chapter,
when discussing the constraints, we will use this rescaling freedom and
introduce a new parameter

g ⌘ b

a
, (3.21)

which will play the role of the only extra parameter for doubly-coupled
models compared to the singly-coupled ones. Identifying the effective
Planck mass Meff with the usual Planck mass MPl, our doubly-coupled
bimetric model now possesses six free parameters, bn with n = 0, ..., 4, and
g. For now, however, let us keep both a and b explicit as it allows us to see

6 This is indeed the case because the singly-coupled bigravity theories with either of the
metrics being coupled to matter are completely equivalent.
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explicitly the duality properties of the background dynamics equations as
well as the equations governing the propagation speed of the GWs.

Before we proceed with our studies of gravitational waves in the next sec-
tions, let us emphasise an important property of the cosmological evolution
equations that we presented in this section. As can be seen easily at the level
of the action, the theory is symmetric under the simultaneous interchanges
gµn $ fµn, bn ! b4�n and a $ b (or g ! 1/g), and therefore all the dy-
namical equations remain unchanged [179]. More concretely, let us consider
two sets of parameters {b0, b1, b2, b3, b4, a, b} = {v0, v1, v2, v3, v4, v5, v6}
and {b0, b1, b2, b3, b4, a, b} = {v4, v3, v2, v1, v0, v6, v5}, where v0,...,6 are some
particular values of the parameters. It is easy to show that the solution
of Eq. (3.18) for r with the first set of parameter values is identical to the
solution for the quantity r̃ ⌘ 1/r with the second set of parameter values.
Now if we rewrite Eq. 3.14 in terms of r̃ (note that we do not make an
actual interchange r ! 1/r, and we only rewrite the equations in terms of
r̃) then for the two distinct sets of parameter values given above the two
Friedmann equations are precisely the same. This, for example, implies that
when scanning the single-parameter submodel with all the bn parameters
turned off except b1 the space of all the cosmological solutions that we
obtain is fully equivalent to the one for the submodel with only b3 turned
on (given that we leave a and b, or equivalently g, free). This is a useful
observation and will help us reduce the number of cases studied in the next
sections.

3.3 the speed of gravitational waves

The spectrum of bimetric theories of gravity contains two gravitons, one
massive and one massless, with five and two degrees of freedom, respec-
tively. In order to study the properties of gravitational waves one needs
to focus only on tensor modes, i.e. the helicity-2 modes of the gravitons.
Massless and massive gravitons have two helicity-2 modes each. It is impor-
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tant to note that in general the two metrics of the theory, gµn and fµn, each
contain a combination of massive and massless modes, and therefore the
evolution equations for the g and f tensor modes do not represent directly
the evolution of the tensor modes for massive and massless modes. Indeed,
it is not possible in general to diagonalise the spectrum of spin-2 perturba-
tions into mass eigenstates, and therefore the notion of mass does not make
sense around arbitrary backgrounds [181]. One can specifically show [181]
that mass eigenstates can be defined only around proportional metrics
by computing the spectrum of linear perturbations and comparing their
equations with those of linearised general relativity. Proportional metrics
are therefore extremely interesting from this point of view, as the notion
of spin-2 mass eigenstates does not exist for other types of backgrounds.
As we mentioned in section 3.1, contrary to the theory of singly-coupled
bigravity, the doubly-coupled theory admits proportional backgrounds
(both in vacuum and in the presence of matter). It can be shown addition-
ally that the effective metric of the theory, geff

µn, corresponds exactly to the
massless mode around such backgrounds, while the massive mode is fully
decoupled [181]. This immediately implies that the speed of GWs around
proportional backgrounds measured by any detectors must be equal to
the speed of light since the detectors only "see" the effective metric. Such
solutions are therefore safe regarding the bounds from the GW observations.
We will show later in this chapter that, in addition to the singly-coupled
corner of the theory, proportional backgrounds are indeed the only solutions
that survive the bounds from GWs.

As detailed in Appendix 3.6, the propagation equations for the g and f
tensor modes hg and h f around the cosmological backgrounds are
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h00
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h00
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N2 a2B(hg+/⇥ � h f +/⇥) = 0 . (3.23)

Here, the prime denotes a derivative with respect to the conformal time
corresponding to the effective metric, heff, which is defined through

dh2
eff = dt2N2/a2. (3.24)

With this time coordinate the background effective metric reads

ds2
eff = a2(�dh2

eff + dx2) . (3.25)

First note that we have written the equations in terms of the time coordinate
corresponding to the effective metric and not gµn or fµn, because the effective
metric is the one that couples to matter and therefore plays the role of the
physical spacetime metric, used for measuring distances and time intervals.
In addition, we chose to work with the conformal time because in this
coordinate light rays travel as in a Minkowski spacetime, making heff a
particularly useful time coordinate for identifying the propagation speeds
of the gravitational waves.
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We can now read off from Eqs. (3.22) and (3.23) the propagation speeds
cg and c f for the gravitational waves hg and h f , respectively, as7

c2
g =

N2
g

N2 (a + br)2 , (3.26)

c2
f =

N2
f

N2 (a
1
r

+ b)2 . (3.27)

The ratio of the two speeds is a coordinate-independent quantity and is
given by

c f

cg
= b ⌘ 1

r
Nf

Ng
=

1
r

ȧ f

ȧg
. (3.28)

As we will see, the quantity b will play a crucial role in the rest of the
discussions in this chapter.

One should note again that in doubly-coupled bigravity one measures
neither hg nor h f separately. The tensor modes measured by gravitational
wave detectors are the ones corresponding to the effective metric geff

µn. These

observable modes can be written in terms of h(g)
ij and h( f )

ij , the tensor modes
of the g and f metrics respectively, as

dg(eff)
ij = a

⇣
ah(g)

ij + bh( f )
ij

⌘
, (3.29)

where

7 Note that since we are interested in bigravity solutions with the interaction scale m ⇠ H0 in
order to explain cosmic acceleration, the effects of the graviton mass on the speed of the
gravitational waves are several orders of magnitude smaller than the sensitivity of current
GW detectors. We therefore fully ignore the direct contributions from the mass terms to the
speed.
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h(I)
11 = aIhI+ , (3.30)

h(I)
12 = aIhI⇥ = h(I)

21 , (3.31)

h(I)
22 = �aIhI+ , (3.32)

with I 2 {g, f } (see Appendix 3.6 for details).
The recent measurements of the GWs from neutron star mergers have

imposed incredibly tight constraints on the speed of gravitons. The relative
difference between the speed of GWs and that of light must be smaller than
⇠ 10�15, which is practically zero. Let us therefore assume that the speed
of GWs is exactly the same as the speed of light, and study its implications.

The mentioned bound on the speed of GWs tells us that at least one of
the quantities cg and c f should be unity (note that c = 1 in our units). The
reason for this is that at least one of the g or f graviton modes should have
traveled with the speed of light when arriving at the detector. Keeping this
in mind let us first assume that

• we are in a truly doubly-coupled regime (i.e. a 6= 0 and b 6= 0) ,

• r is a finite and nonzero quantity,

• Nf and Ng are finite and nonzero.

Let us further set N = 1 and write the two speeds cg and c f as

c2
g =

(a + br)2

(a + brb)2 , (3.33)

c2
f =

(a 1
r + b)2

(a 1
br + b)2

. (3.34)
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Now it is clear that, first of all, when b = 1, both cg and c f become unity.
Moreover, when either cg or c f is unity, we will necessarily have b = 1. This
then tells us very strongly that in the case of finite and nonzero Nf , Ng and
r, and under the assumption of a 6= 0 and b 6= 0, b = 1 is the necessary and
sufficient condition for compatibility with the GW experiments.

Let us now discuss the validity of the assumptions that we made above.
From the Friedmann equation (3.14) we see that both infinite and zero
values of r lead to singularity in the observable Hubble function H unless
either a or b is zero, i.e. the theory is singly-coupled. This means that for
physical solutions in the doubly-coupled regime r is necessarily finite and
nonzero. Additionally, if Nf = 0 while Ng is finite and nonzero, we see that
c2

f = 0 while c2
g = (1 + gr)2,8 which is not equal to unity unless we are in

the singly-coupled regime of b = 0. In exactly the same way the case of
Ng = 0 while simultaneously Nf being finite and nonzero is excluded. In
principle one should also consider the cases with one of the lapse functions
Ng, f going to infinity while their ratio is fixed9. Note however that such
cases will not only produce unphysical propagation speeds in both g and
f sectors, but they will also remove the second-order time-derivatives in
the tensor propagation equations, hence rendering the initial data from the
past lost at one particular instant in time (when the divergence happens).
Based on these considerations we can conclude that the cases with b = 0 or
b ! • are excluded.

Finally, as it is expected, in the singly-coupled case (say, b = 0 and
a = 1), we have Ng = 1 and c2

g = 1, which is the only observationally
important speed in this limit. It is very important to note that in such a
singly-coupled limit r ! 0 or r ! • are not necessarily dangerous since
the potentially singular terms containing 1

r (as well as the terms containing
r, which are dangerous when r ! •) are multiplied by both a and b and
therefore vanish in the either case of a = 0 or b = 0. Putting all these

8 Here we have used the expression for the effective lapse function 1 = aNg + bNf
9 Otherwise, obviously, they cannot satisfy the gauge fixing condition N = 1.
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discussions together we arrive at an important statement: the propagation
of gravitational waves in doubly-coupled bigravity is viable if and only if
b = 1 or we are in a singly-coupled regime.

It is important to note that the current bounds on the speed of GWs have
been placed through the observations at very low redshifts (z ⇡ 0), i.e. at
almost the present time. This means that, strictly speaking, the viability
conditions we discussed above are required to hold only at z ⇡ 0, including
the condition b = 1. Let us for now assume that the constraint on the speed
of GWs is valid not only in the present epoch but it applies also to the
earlier epochs of the universe, i.e. we assume b = 1 at all times. Later on,
when we discuss our numerical analysis, we will show a rather vigorous
feature of the theory that imposing b|z⇡0 = 1 will force b to be unity at all
redshifts.

Imposing b(z) = 1 at all times tells us that the two background metrics
gµn and fµn should be proportional. This can easily be seen by setting
b(z) = 1 in Eq. (3.28) and noting that r = a f /ag, resulting in

a f (z)
ag(z)

= C =
Nf (z)
Ng(z)

, (3.35)

with C being some (constant) proportionality factor. In order to understand
under which circumstances these proportional solutions exist, let us con-
sider the early-time and late-time asymptotic limits of Eq. (3.18). By taking
the future asymptotic limit, with r ! 0, we obtain

b3r4
•+(3b2�b4)r3

•+3(b1�b3)r2
•+(b0�3b2)r•�b1 =0 (3.36)

for the value of r in the far future, r•. Note that r• being a solution of
this time-independent equation means that it is a constant. This in turn
means that the two metrics are necessarily proportional in the far-future
limit. Additionally, the early-universe limit of Eq. (3.18) fixes the value of r
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to either g or �g. The latter does not give viable cosmologies [179], and
therefore r ! r�• = g is the only viable early-time limit. Restricting to the
solutions for which r does not exhibit any singular behaviour [179], one can
show that r should monotonically evolve between r = r�• and r = r• over
the history. The monotonicity of r implies that when the two limiting values
r�• and r• coincide, i.e. when r• = g, we have constant r over the entire
history of the universe and hence the background metrics are proportional
in that case.
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Figure 3.1: Behaviour of r, the ratio of the scale factors of the two metrics, as a function
of the number of e-folds x, with x = 0 corresponding to the present time.
The evolution of r has been shown with blue and orange curves for two
different values of g, both for a single-interaction-parameter model with only
b1 being turned on. The blue curve corresponds to a case where g does not
satisfy the special tuning condition for proportional metrics. The curve exhibits
two constant-r epochs of r�• = g and r• = 1/

p
3, with the latter being

the solution of Eq. (3.36) regardless of the value of b1. The orange curve
corresponds to a case where g is chosen such that it is the solution of Eq. (3.36),
i.e. g = r• = 1/

p
3.

Based on the discussions above, we can now formulate the necessary and
sufficient conditions for the two background metrics to be proportional:
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1. Background solutions are proportional iff r is given by r = g at all
times, where g ⌘ b/a. Note that one does not need to check whether
this condition holds at all times; as we argued above, because of the
monotonicity of r, having r = g even at one instant in time, other
than the asymptotic past, is sufficient for the condition to be satisfied
at all times.

2. Equivalently, the background solutions are proportional iff the pa-
rameters of the model solve the algebraic equation

b3g4+(3b2�b4)g3+3(b1�b3)g2+(b0�3b2)g�b1 =0 . (3.37)

We demonstrate these conditions in Fig. 3.1 by plotting the dependence
of r on the number of e-folds x, with the present time given by x = 0,
for a single-interaction-parameter scenario where only b1 is turned on
while b0,2,3,4 = 0. The blue curve corresponds to a case where g does not
satisfy the special tuning condition for proportional metrics. The curve
exhibits two constant-r epochs. The far-past epoch corresponds to r = g
(the horizontal, thin, black line), while the far-future limit is given by the
solution of Eq. (3.36) for which r• = 1/

p
3 regardless of the value of b1.

The orange curve corresponds to a case where g is chosen such that it is the
solution of Eq. (3.36), i.e. g = r• = 1/

p
3. The value of b1 is not relevant

for the arguments here because in this case the asymptotic value r• is
independent of the value of b1 (the value of r�• is always independent of
the values of bn parameters). In order to illustrate our arguments, we have
chosen two different values of b1 for producing the two curves (blue and
orange). As expected, they agree in the far-future limit, even though the
values of b1 are different for the two curves.

As we will see in the next section, bigravity models for which only one of
the b0,1,2,3,4 parameters is turned on are particularly interesting. For those
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cases the proportional background solutions correspond to the following
values of the parameter g:

1. b0 or b4 only: g = r• = 0 ,

2. b1 only: g = r• = 1p
3

,

3. b2 only: g = r• = 1 ,

4. b3 only: g = r• =
p

3 .

Note that g and therefore r• in these cases are independent of the value
of the corresponding bn parameter. Note also that, as we discussed in the
previous section, the single-parameter models with only b1 or b3 turned on
are identical, as long as r $ 1/r (or equivalently g $ 1/g), justifying the
values 1/

p
3 and

p
3 for r• in these models. In addition, it is interesting to

notice that for the b0 and b4 only models, proportional backgrounds do not
exist, as in those cases g is forced to be vanishing, and therefore the theory
becomes singly-coupled.

All these cases of proportional background metrics with only one of
the b1,2,3 parameters being nonzero can be verified easily by applying the
Bianchi constraint Hg = rHf to the Friedmann equations (3.8) and (3.9),
obtaining

3H2
g =

1
M2

eff
r(1 + gr)3 + H2

0(b0 + 3b1r + 3b2r2 + b3r3) , (3.38)

3H2
g =

g

M2
eff

r
(1 + gr)3

r
+ H2

0(
b1

r
+ 3b2 + 3b3r + b4r2) . (3.39)

In general, we have two dynamical variables ag and a f , which are deter-
mined by the two independent, dynamical equations (3.38) and (3.39). Now,
if the two metrics are proportional, this means that ag and a f are also
proportional, and r is a constant. We will then have effectively only one
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dynamical variable, ag or a f , and the two dynamical equations (3.38) and
(3.39) must be identical. This means that the right-hand sides of the two
equations should be identically the same. Now, setting all the parameters
bn to zero, except for either of b1, b2, or b3, we immediately arrive at the
values for r• and g presented above for these three cases.

Now turning back to the condition for the speed of the gravitational
waves to be identical to the speed of light, we argued that what is strictly
needed is to have b|z⇡0 ⇡ 1, as the speed of GWs has been measured only
at the present epoch z ⇡ 0. If, additionally, the parameters of the model
giving b|z=0 = 1 satisfy the algebraic equation (3.37) then they lead to
proportional background solutions and b = 1 condition is satisfied at all
times, implying necessarily that cg = c f = 1 at all times. The question of
whether a set of parameters giving b|z=0 = 1 (hence cg|z=0 = c f |z=0 = 1)
while not satisfying Eq. (3.37) can happen in our doubly-coupled bigravity
models cannot be answered based on our analytical arguments here, and
needs a numerical scanning of the parameter space. In principle it could be
possible that the two background metrics would not be proportional whilst
b would become unity at the present epoch simply as a coincidence for a
specific combination of the parameters. We will however demonstrate later
that for all the models that we study in this paper the cosmologically viable
solutions with b|z=0 = 1 also satisfy Eq. (3.37), implying b = 1 at all times,
and therefore the proportionality of the background metrics.

3.4 mcmc scans and observational constraints

In this section we present the results of a set of MCMC scans of the parame-
ter space of doubly-coupled bigravity when different sets of parameters are
allowed to vary while the rest are fixed to zero. We should first emphasise
that we do not intend here to perform a detailed parameter estimation of
the model using cosmological observations. This has been done in Ref. [179]
using the geometrical constraints on cosmic histories at the background
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level.10 We are rather interested in studying the impact of the constraints
from the measurements of gravitational waves and the bounds on their
speed on the cosmologically viable regions of the parameter space. We first
perform MCMC scans of the models using similar cosmological datasets as
those used in Ref. [179]. The geometrical constraints that we consider are a
combination of the observed angular scales of the cosmic microwave back-
ground anisotropies [130], the supernovae redshift-luminosity relation [158],
the measurements of the baryon acoustic oscillations (BAO) [159–163], and
the local measurement of the Hubble constant H0 [164]. Our scans provide
a set of points in the parameter space of the models all of which are in
good agreement with cosmological observations. We have checked that our
results are in perfect agreement with the results of Ref. [179] for the cases
studied in that paper. We then explore the implications of imposing the
GW constraints on the points, and investigate whether and how strongly
the cosmologically viable regions are affected by the GW observations.

Our full bigravity model contains seven free parameters, as far as our
MCMC scans are concerned. These include the five bn parameters for the
interaction terms, the ratio of the couplings of the two metrics to matter g,
and the present value of the matter density parameter W0

M, defined as

W0
M ⌘ r0

M
3M2

effH
2
0

. (3.40)

Note that one should not necessarily expect to obtain a value for W0
M similar

to the best-fit one in the standard model of cosmology, LCDM, for a bigrav-
ity model that fits the data well, even for proportional backgrounds where
the interaction terms contribute with a L-like constant to the Friedmann
equation. The reason, as explained in Ref. [179] in detail, is the extra factor

10 Note, however, that the MCMC scans presented in Ref. [179] include only single-bn models,
while in the current paper we consider also the cosmological constraints on two-parameter
models.
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appearing in the matter density term of the Friedmann equation. We will
see below that indeed in some cases the viable points in the parameter
space give values for W0

M that are significantly smaller than the LCDM
value of ⇠ 0.3.

For each point in the parameter space of the theory we also output the
corresponding values of r, b, cg and c f , all evaluated at the present time.
These will allow us to check which parts of the parameter space agree with
the observational constraint cg ⇡ 1 (or c f ⇡ 1), and to verify explicitly the
conditions on b and r. We will particularly use the quantity (c2

g � 1)(c2
f � 1)

as a measure of how fit a point is to the observational constraints on the
speed of GWs.

We perform our MCMC scans for various submodels, namely the single-
parameter11 models of b0, b1, and b2 (with other bn being set to zero in
each case), and the two-parameter models of b0b1, b0b2, b1b2, and b1b3.
One should note that, as we discussed before, the single-parameter models
of b3 and b4 are identical to the b1 and b0 models, respectively, because
of the duality properties of the theory. In addition, for the same reason,
each one of the other two-parameter models is equivalent to one of the
two-parameter models considered here, and their phenomenologies are
therefore already captured. Our objective in this chapter is not to perform
a detailed and extensive statistical analysis of the entire parameter space
of doubly-coupled bigravity, and we are mainly interested in a qualitative
understanding of the implications of the GW observations for the viability
of the theory, which can very well be captured in the studies of single-
parameter and two-parameter cases. We therefore do not discuss three- or
higher-parameter models. As we will see, although the constraints are quite
strong for most of these cases, the parameter space in some models still
allows viable cosmologies, and clearly, by increasing the number of free
parameters one expects to enlarge the number of possibilities for finding

11 This is only a terminological convention here, and strictly speaking, our single-parameter
models have two free parameters, as g is always a free parameter of the models.
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viable scenarios within the model. We leave a detailed statistical analysis of
the full model for future work.

3.4.1 One-parameter models

• b0b0b0 model: Let us first emphasise that, contrary to singly-coupled bigravity,
in the doubly-coupled theory the parameters b0 and b4 are no longer the
explicit cosmological constants corresponding to the two metrics gµn and
fµn. The reason is that matter couples to the effective metric geff

µn, which is
a combination of gµn and fµn. This can be seen explicitly by looking at the
effective Friedmann equation (3.14) and comparing it with Eqs. (3.8) and
(3.9). In addition, in the singly-coupled theory, where matter couples to, say,
gµn, b0 behaves as the matter vacuum energy in the action of the theory, as it
appears in the interaction terms as b0

p�g (note that e0 = 1). In the doubly-
coupled theory, however, all the interaction parameters bn directly receive
contributions from quantum matter loops, and the definition of vacuum
energy is more subtle than in the singly-coupled theory. It is therefore
interesting to study a single-parameter, doubly-coupled model with only
b0 turned on, while all the other parameters bn are set to zero — for the
singly-coupled case this will be nothing but LCDM. The cosmology of
this b0 model in doubly-coupled bigravity has been studied in Ref. [179].
As a cross check of our results with the latter paper we show the g � W0

M
posterior in Fig. 3.2, which is in a good agreement with the corresponding
result of Ref. [179]. Note that g = 0 corresponds to the singly-coupled
scenario, which reduces to LCDM for this b0-only model.

Fig. 3.3 demonstrates the interdependence of r, b, the quantity (c2
g �

1)(c2
f � 1) (capturing the deviations of the g and f gravitational wave

speeds from the speed of light), and g. Note that cg, c f , b, and r are all
computed at z = 0.

Let us concentrate on the right panel of Fig. 3.3, where the present value
of (c2

g � 1)(c2
f � 1) has been depicted versus g. This plot shows that in
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Figure 3.2: The plot shows the cosmologically viable samples in the g � W0
M parameter

plane of the doubly-coupled b0 model, where all the interaction parameters bn
are set to zero except for b0, which is allowed to vary. The contours show the
68% and the 95% CLs.

order for the model to be cosmologically viable and simultaneously predict
gravitational waves with the speed equal to the speed of light (i.e. for at
least one of the two quantities cg and c f to be unity), g is required to be
zero, which in turn implies that the model needs to be singly-coupled. In
this case r is forced to be vanishing, although r is no longer a meaningful
quantity as there is no interaction between gµn and fµn, and fµn completely
decouples from the theory. This all tells us that b0-model satisfies the
cosmological and gravitational-wave constraints only in its singly-coupled
limit, which is equivalent to LCDM. We do not see any cases of proportional
metrics in this model, as such cases should also give GWs consistent with
observations. Let us take a closer look at this and understand why such a
situation does not happen in b0-model by looking again at the condition for
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Figure 3.3: MCMC samples showing all the cosmologically viable points in the parameter
space of the doubly-coupled b0 model. The plots particularly demonstrate
the interdependence of r (the ratio of the scale factors of the two metrics gµn

and fµn), b ⌘ 1
r

Nf
Ng

, the quantity (c2
g � 1)(c2

f � 1) (capturing the deviations of

the g and f gravitational wave speeds from the speed of light), and g ⌘ b
a .

Note that cg, c f , b, and r are all computed at z = 0. In this b0 model, the only
part of the parameter space that is left after imposing cg = 1 or cg = 1 is the
singly-coupled submodel characterised by g = 0.

proportional background metrics. As we argued in the previous section, for
proportional backgrounds g must satisfy Eq. (3.37), while r• = g. Setting
all bn parameters to zero except for b0, we arrive at g = r• = 0. First
of all, this is exactly what we see in the left panel of Fig. 3.3 for r and g.
Additionally, we are back to the condition g = 0 that corresponds to a single
coupling. This means that b0-model does not admit any sets of (nontrivial)
proportional backgrounds, unless we consider fµn to be proportional to
gµn with a vanishing proportionality factor. The fact that this is a peculiar
case can also be seen by looking at the middle panel of Fig. 3.2, which
shows b versus g. b is always negative, which means that the condition for
proportional backgrounds, b = 1, can never be satisfied.

• b1b1b1 model: Here we turn on only the b1 parameter and set to zero all
the other interaction parameters b0,2,3,4. Similarly to the b0 case, in Fig. 3.4
we show the g � W0

M posterior, again, in agreement with the corresponding
result of Ref. [179].
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Figure 3.4: The same as in Fig. 3.2, but for the b1 model.

Additionally, in Fig. 3.5 we demonstrate the interdependences of r, b,
the quantity (c2

g � 1)(c2
f � 1), and g. From our discussions in the previous

section, we expect this submodel to give the speed of gravity waves equal to
the speed of light for the cases with r• = g = 1/

p
3, where the background

metrics are proportional, as well as for the singly-coupled corners with g =
0. The right panel of Fig. 3.5 presents the dependence of (c2

g � 1)(c2
f � 1)|z=0

on the value of g as a result of our numerical scans. We first notice that
no viable combinations of the parameters provide cg and c f both larger
or smaller than the speed of light, as (c2

g � 1)(c2
f � 1) is always negative

or zero. The plot also shows two points with (c2
g � 1)(c2

f � 1) = 0, one of
which being the obvious limit of single coupling with g = 0, and the other
one, as expected, corresponding to the case of proportional backgrounds
with g = 1/

p
3, depicted by the vertical, red line. This becomes more

clear by looking at the left and the middle panels of Fig. 3.5, showing r
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and b versus g. The red lines in the plots show that indeed g = 1/
p

3
corresponds to r = 1/

p
3 and b = 1, as expected. Also note that b is always

positive for all the cosmologically viable points in the parameter space of
this model. Although most of the original, cosmologically viable points are
now excluded and the model is highly constrained, our results show that
there still remain some freedom in choosing b1 for the fixed g = 1/

p
3.

It is also interesting to note that the preferred values of W0
M are smaller

than the LCDM value of ⇠ 0.3. In summary, as expected, the viable points
in the parameter space of the model correspond to the scenarios which
do not represent the full dynamics of the doubly-coupled model. One
remaining region is the singly-coupled limit, and the other one corresponds
to the cases where the background metrics are proportional, and we again
effectively have only one dynamical metric at work. In this latter case, the
model is effectively equivalent to LCDM, at the level of the background
(and linear perturbations [181]).

Figure 3.5: The same as in Fig. 3.3, but for the doubly-coupled b1 model where all the
interaction parameters bn are set to zero except for b1. In this case, the only
parts of the parameter space that are left after imposing (c2

g � 1)(c2
f � 1) = 0

are the singly-coupled submodel characterised by g = 0, and the solutions with
the two background metrics being proportional, with g = 1/

p
3, illustrated by

the red lines in the plots.

• b2b2b2 model: Fig. 3.6 shows the g � W0
M posterior for the b2 model.

Fig. 3.7 additionally demonstrates the viable samples for the b2 model in
r � g, b � g, and (c2

g � 1)(c2
f � 1) � g planes. All the panels clearly show
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Figure 3.6: The same as in Fig. 3.2, but for the b2 model.

that the singly-coupled subset of the parameter space (with g = 0) is not
viable cosmologically as there are no points with g = 0 that fit the data.
This is in agreement with the results of Ref. [206]. The model, however,
provides excellent fits to the data for g & 0.3. Looking now at the right
panel of Fig. 3.7, we see that the only points in the parameter space that
are consistent with (c2

g � 1)(c2
f � 1) = 0 today, i.e. with the bounds from

the GW observations, are the ones for which g = 1, meaning that the
metrics are proportional. These points correspond to b = 1 (see the middle
panel). This is in agreement with our findings in the previous section for
the b2 model, with r• = g = 1 for proportional metrics. For all the other
cosmologically viable points the tensor modes of one of the two metrics gµn

and fµn travel faster and the other ones travel slower than light.
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Figure 3.7: The same as in Figs. 3.3 and 3.5, but for the doubly-coupled b2 model where
all interaction parameters bn are set to zero except for b2. In this case, the only
part of the parameter space consistent with (c2

g � 1)(c2
f � 1) = 0 is the one

corresponding to the two background metrics being proportional, with g = 1.

3.4.2 Two-parameter models

Let us now turn on two of the interaction parameters bn and let them vary.
As we argued earlier, many of these submodels are physically equivalent
because of the symmetry of the theory. We therefore study four represen-
tative cases of b0b1, b0b2, b1b2, and b1b3 models. Note that even though
for example the model with only b1 turned on is identical to the model
with only b3 turned on, when the two parameters are both nonzero the
resulting two-parameter model can in general be very different from the
single-parameter ones, with generally richer phenomenologies. The reason
is that the two parameters can take two different values, making the model
different from the cases with only one of the parameters left free.

The results of our MCMC explorations for these models are presented
in Fig. 3.8, where r computed at the present time is given in terms of the
coupling ratio g. The colour code shows the values of log10|(c2

g � 1)(c2
f � 1)|.

• b1b2b1b2b1b2 and b1b3b1b3b1b3 models: Looking at the two upper panels of Fig. 3.8 for
these models, we observe an interesting feature. The points in the parameter
space of both models for which |(c2

g � 1)(c2
f � 1)| is small, seem to be resid-

ing on a diagonal line. All the other points are excluded by gravitational
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Figure 3.8: Results of the MCMC explorations for the two-parameter models b0b1, b0b2,
b1b2 and b1b3. All the cosmologically viable points are shown in the r � g
plane, and the colour in each panel shows the values of log10|(c2

g � 1)(c2
f � 1)| as

a measure for how fit the points are to the bounds on the speed of gravitational
waves. Here, r and log10|(c2

g � 1)(c2
f � 1)| are all computed at z = 0.
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waves, although they give good fits to the cosmological observations. Let
us try to understand this favoured, thin region. We argued in the previous
section that if r becomes equal to g, even at one point over the history (in
addition to the far in the past), the two background metrics of the model
should be proportional at all times. This means that in particular if a point
in the parameter space requires r = g at the present time, that point should
correspond to proportional metrics. Now looking at the plots of r versus
g for both b1b2 and b1b3 models, we see that the very thin, line-like part
of the favoured region is indeed the r = g line. This therefore shows that
one main region with (c2

g � 1)(c2
f � 1) ⇡ 0 corresponds in fact to the cases

with proportional backgrounds. The other tiny region with (c2
g � 1)(c2

f � 1)
being very small is the one in the vicinity of g = 0. The plots are therefore
consistent with our analytical arguments in the previous section that only
singly-coupled submodels or the ones with the two background metrics
being proportional are consistent with the speed of gravitational waves
being the same as the speed of light. The observations of gravitational waves
therefore highly constrain these two bigravity models as it was the case also
for the single-parameter models. Note that the upper cuts in the plots are
the result of the finite ranges which we have chosen in our MCMC scans
for the bn parameters. We have checked that by increasing these ranges the
cuts on the plots systematically move upwards, but the main features do
not change — the thin, favoured regions only extend to larger g and r.

• b0b1b0b1b0b1 and b0b2b0b2b0b2 models: Let us now investigate the two b0b1 and b0b2
models, by studying the two lower panels of Fig. 3.8. Overall, the same
features as in the previous models of b1b2 and b1b3 can be seen here,
especially that proportional backgrounds survive the bounds on the speed
of gravitational waves. This can be seen again as a thin r = g line. There
is however an interesting difference in these two models compared to the
previous ones.

The parameters b1 and b2 being zero in each case while g is also set to
zero corresponds to LCDM, with b0 playing the role of the cosmological
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constant. We may therefore expect a large concentration of cosmologically
viable points in the g ⇡ 0 region. Even though this region does exist, as
is better visible for the b0b1 model, the majority of the viable points seem
to be clustering around large g, especially for the b0b2 model. In order to
understand this, let us look at Figs. 3.2 and 3.6 for the single-parameter,
b0 and b2 models. It is clear from these figures that the models act in
opposite ways. While the b0 model favours small g, b2-model does not
admit g smaller than ⇠ 0.3. Although we may expect the entire range
of g to be covered by turning on both of the parameters, our numerical
investigations show that the points in the parameter space of the b0b2
model fit the cosmological observations better when b0 is not zero and g
is large. That is why the density of the points in the figures is higher at
large g, where the model deviates significantly from the singly-coupled
scenario. The same holds for the b0b1 model, although in that case the
singly-coupled submodel is less disfavoured. This can be understood by
looking at Fig. 3.4 for the single-parameter, b1 model, where the plots show
that small g are cosmologically viable, contrary to the b2 model.

3.4.3 Further remarks

Before we end the discussions of our numerical investigation, let us present
the results of our MCMC scans for all the two-parameter models of b1b2,
b1b3, b0b1, and b0b2, as well as the single-parameter models of b1 and b2,
now in terms of the speed of the gravitational waves corresponding to the
two metrics of the theory, gµn and fµn. These have been shown in Fig. 3.9.
In order to see how far each cosmologically viable point in the parameter
space is from the proportional backgrounds, we colour-code the points by
the value of |b � 1|. All the quantities cg, c f , and b have been computed at
the present time, i.e. at z = 0.

First of all, the plots confirm our analytical arguments in the previous
section that having cg = 1 (c f = 1) automatically implies c f = 1 (cg = 1),
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Figure 3.9: MCMC samples showing the values of the speed of gravitational waves for
the tensor modes corresponding to the two metrics gµn and fµn for the two-
parameter models of b1b2, b1b3, b0b1, and b0b2, as well as the single-parameter
b1 and b2 models. The colour shows the value of |b � 1| at each point in the
parameter space, as a measure of the deviation from proportional backgrounds
(with b = 1). The red, vertical and horizontal lines show cg = 1 and c f = 1,
respectively. Again, all the quantities have been computed at the present time
(z = 0).
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unless the theory is singly-coupled. In addition, the plots also show that
c f = cg = 1 is equivalent to b = 1, i.e. it corresponds to proportional
backgrounds, as expected. These can clearly be seen in all the panels. Let
us first focus on the single-parameter cases of b1 and b2, i.e. the first two
upper panels of Fig. 3.9. The intersections of the cg = 1 and c f = 1 lines
in both models correspond to the proportional backgrounds, as b = 1 at
those points. In addition, for the b1 model we see that there are points for
which c2

g = 1 while c2
f takes larger values (⇠ 2.3). This is fully consistent

with our previous discussions that the b1 model admits cosmologically
viable singly-coupled solutions — these are the points with cg = 1 and
therefore consistent with the GW observations. The b2 model, on the other
hand, does not allow singly-coupled models consistent with cosmological
observations, and we therefore do not see any points in the b2 panel of
Fig. 3.9 with cg = 1 and c f 6= 1. Note that in our analysis where we work
with g instead of a and b, the singly-coupled models are captured only
by gµn being the physical metric, as we fix a to unity and therefore g = b.
That is why we do not see any points with c f = 1 and cg 6= 1 for the b1
model. Let us now focus on the two-parameter models. As we discussed
above, the b0b1 and b0b2 models do not favour singly-coupled solutions,
and that is why we do not see many points in the corresponding panels of
Fig. 3.9 with cg = 1 and c f 6= 1. Out of the two other two-parameter models
of b1b2 and b1b3, we see that in the latter case there is a concentration of
cosmologically favoured samples along the vertical line of c2

g = 1 even with
c2

f 6= 1 in the b1b2 and b1b3 panels of Fig. 3.9. This is again consistent with
our findings above that singly-coupled bigravity is not disfavoured in the
b1b3 model.

3.5 conclusions

In this chapter we have extensively studied the implications of the recently
detected gravitational waves from a neutron star merger and their elec-
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tromagnetic counterpart on the viability of the doubly-coupled theory of
bimetric gravity. As a result we have identified the regions of the parameter
space that are consistent with both cosmological observations and gravita-
tional wave measurements. We have been interested in models that provide
an alternative explanation for the late-time acceleration of the Universe, and
therefore require an interaction (or mass) scale of the order of the present
value of the Hubble parameter (i.e. m ⇠ H0). Our studies have been based
on both an analytical investigation of cosmic evolution and propagation
of tensor modes in the theory, as well as a numerical exploration of the
parameter space of the models using MCMC inference. We have demon-
strated that the only regions of the parameter space that survive both the
cosmological and gravitational wave constraints are those with the two
background metrics being proportional or the singly-coupled submodels.
Our findings therefore demonstrate that the theory is strongly constrained
by the bounds on the speed of gravity waves if it is considered as the
mechanism behind cosmic acceleration.

The cases with proportional backgrounds are particularly interesting for
various reasons [181]. First of all, the background evolution of the Universe
as well as linear perturbations mimic those of the LCDM model, and the
model is therefore consistent with all the existing cosmological observations.
This also means that the model does not suffer from any ghost or gradient
instabilities, which are the typical drawbacks of singly-coupled cosmological
scenarios, in the (visible) sector where the cosmological perturbations are
coupled to matter. The model is however expected to deviate from general
relativity, and therefore LCDM, at the nonlinear level and in the early
Universe such as the radiation era, where a vector instability in the (hidden)
sector decoupled from matter would have to be cured by an as yet unknown
UV completion. The expected nonlinear deviations from general relativity in
the late Universe open up an interesting route for further tests of the theory
using the observations of structure formation and evolution at nonlinear
scales. In addition, graviton mass eigenstates can be diagonalised only
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around the proportional backgrounds, and therefore the notion of spin-2
mass makes sense only in those cases — singly-coupled bigravity does not
admit proportional metrics in the presence of matter. Moreover, the effective
metric of the doubly-coupled theory, which is the one that couples to matter,
corresponds to the massless modes at the linear level, while the massive
modes are fully decoupled; the massive and massless modes however mix
at the nonlinear level.

We therefore conclude that the recent, tight constraints on the speed of
gravitational waves leave us with a highly constrained corner of bigravity
which is theoretically healthy at low energies12 and observationally viable.
It remains to be seen whether the model will also fit the cosmological
observations at the nonlinear level, or will be ruled out; we leave the
investigation of this interesting question for future work.

3.6 appendix : tensor modes

Here we present the detailed derivation of tensor perturbations and their
propagation equations in doubly-coupled bimetric gravity. We present the
calculations in the metric formalism at the level of the equations of motion,
as well as at the action level, both in metric and vierbein formalisms.

Derivation from equations of motion. — Here our starting point is the
full (modified) Einstein equations for the two metrics gµn and fµn, which
are given by (see Ref. [181] for details)

12 These models are valid below the cut-off scale L3 and are therefore well suited for a
description of the late-time Universe.
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where Gµn
g and Gµn

f are the Einstein tensors for gµn and fµn, respectively,
Tµn is the stress-energy tensor corresponding to the effective metric geff

µn,
and the square-root matrices X and X�1 are defined through

X
µ

aXa
n ⌘ gµb fbn , (3.43)

(X�1)µ
a(X�1)a

n ⌘ f µbgbn . (3.44)

Now, the linear metric perturbations for g and f tensor modes hg+/⇥ and
h f +/⇥ can be written as

ds2
g = �N2

gdt2 + a2
g[(1 + hg+)dx2 + (1 � hg+)dy2

+ dz2 + 2hg⇥dxdy] , (3.45)
ds2
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+ dz2 + 2h f ⇥dxdy] . (3.46)



160 doubly coupled bigravity and the gw170817 event

Plugging these into Eqs. (3.43) and (3.44) we find
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and
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for the square-root matrices at the linear order.
Having these expressions for X and X�1, the nonvanishing parts of the

tensor sector of the effective metric can be shown to be

dgeff
11 = �dgeff

22 ⌘ a2heff+ = a
�
aaghg+ + ba f h f +

�
, (3.49)

dgeff
12 = dgeff

21 ⌘ a2heff⇥ = a
�
aaghg⇥ + ba f h f ⇥

�
. (3.50)

By using Eqs. (3.47) and (3.48) in the field equations we recover Fried-
mann equations at the background level, while at the linear order we obtain
the propagation equations for the tensor modes hg+/⇥ and h f +/⇥,
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with p here being the pressure of the matter sector.
It should be noted that these two propagation equations can be written

in a form that manifestly shows the symmetry of the interaction terms
(i.e. the symmetry of the mass matrix). This can be seen by rewriting the
propagation equations as
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d
dt
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where now the same factor of a3
gNg A appears in front of h f +/⇥ in the first

equation and in front of hg+/⇥ in the second equation.

Derivation of the quadratic action. — In order to facilitate the compar-
ison with the results of Refs. [192, 193] let us also present the calculation
of the graviton mass matrix at the level of the action. In this analysis we
ignore the matter sector, i.e. we study a fully dark energy dominated epoch.

First of all, by varying the background part of the action with respect to
the lapses and scale factors we recover the background equations of motion

3H2
g = m2B0 , 3H2

f = m2B1 , (3.57)
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Our objective here is to obtain the mass terms of the gravitational waves.
In principle, the calculation of the quadratic action is straightforward, but
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the subtle point here is that besides the potential terms of bigravity, also
the two Einstein-Hilbert terms contribute with additional terms quadratic
in hg+/⇥ and h f +/⇥. Let us exemplify this by looking at the kinetic term
of the g-sector. First of all, there is a contribution from the volume factor,
which reads as

S(2) � �
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eff
2

Z
d4x
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2
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g⇥ + h2
g+)

!
R̄g , (3.60)

where R̄g is the background part of the Ricci scalar, which is given by

R̄g = 6
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g
. (3.61)

Additional contributions come from some of the terms in the perturbed
part of the Ricci scalar, namely from
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The corresponding contributions to the mass matrix are given by
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2

(h2
g+ + h2

g⇥) . (3.64)



164 doubly coupled bigravity and the gw170817 event

Note that we needed to divide by a factor of 2 in the last expression, because
in the original terms only the variations with respect to the fields under
the time derivatives could contribute to the mass terms in the equations of
motion.

These contributions should be added to the contributions from the poten-
tial terms. In order to find the latter we also need the second-order piece of
the X

µ
n matrix, the nonvanishing components of which are found to be

d(2)X1
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2
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Combining all the potential terms and dropping an overall factor of 1/2
from the action we obtain the graviton mass terms
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MI JhI?hJ? , (3.67)

where the mass matrix is found to be
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Note particularly that we have recovered the same interaction terms as in
Eqs. (3.55) and (3.56).

In Refs. [192, 193] the interaction sector has been written in terms of the
constrained metric vierbeins as
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where the tetrad fields (or vierbeins) are defined through

gI
µn = habea

Iµeb
In . (3.70)

Here I labels the two metrics, I = {g, f }, µ and n are the covariant indices,
and a and b are the indices in the local Lorentz frame. The interaction
matrix mI JKL is fully symmetric and its components in terms of the b0,...,4
parameters are given by

mgggg =
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24
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with the other components being trivially related to the ones above due to
the total symmetry of the mI JKL matrix.

In order to derive the mass sector of the quadratic action in the vierbein
formalism we first derive the tensor perturbations of the vierbeins by
linearising Eq. (3.70). As a result, for the ea

Iµ matrix we have
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The total mass matrix is built up from two different parts of the action as
before.

The first (diagonal) contribution comes from the Einstein-Hilbert terms
in the action, and is given by
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where we have found that
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Here F(t) and f (t) are the same functions as in Eq. (3.63).
The second part comes from the expansion of the potential term (3.69) to

second order in the gravitons. Direct calculation gives
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Adding the two sectors, making use of the background equations of motion
(3.57), (3.58), and (3.59), and dropping an overall factor of 1/2 from the
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action, we retrieve the action (3.67) with the mass matrix given exactly by
(3.68).

The massless and massive modes. — The dynamics of the two gravitons
can be better understood by switching to the canonically normalised basis

hI? = DIh̄I? , (3.81)

where ? = +/⇥ and we have defined
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In this new basis the mass matrix reads
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where M2 = Mgg. In this basis the graviton equations read
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where we have identified the speeds of the waves in the effective conformal
time (for which photons have a normalised speed cg = 1):

cI =
aNI

aI N
. (3.85)

It is easy to see that this mass matrix always has a massless and a massive
eigenmodes given by
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with eigen-mass-square being

M2a2 = M2(D2
g + D2

f ) , (3.87)

where the factor of a2 has been included to comply with the usual definition
for the mass of graviton in FLRW space-times. In the case of proportional
metrics, when r = g, the above mass-eigenvectors reduce to

V0 =

 
1
g

!
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1

�g�1
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which guarantees that one can diagonalise the system of dynamical equa-
tions (3.84) by simply adding linear combinations of the two propagation
equations with constant coefficients.

Now, one can see that the canonically normalised massless eigenmode
is associated to the effective graviton modes. Indeed, first of all, from
Eqs. (3.49) and (3.50) we see that heff = aD(h̄g + gh̄ f ), with D ⌘

p
N/a3.

The canonically normalised version of this field is the massless mode
h̄0 ⌘ h̄g + gh̄ f . The massive mode, on the other hand, corresponds to the
difference h̄m = h̄g � h̄ f /g.

Combining the equations of motion in (3.84) appropriately, we obtain

¨̄h0? � r2h̄0? � ä
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h̄0? = 0 , (3.89)

¨̄hm? � r2h̄m? + (M2a2 � ä
a
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Here we have used the fact that for the proportional backgrounds we have
DI = a�1

I if we pick the lapses as NI = aI . Moreover, recalling that

ag =
a

a2 + b2 a , a f =
b

a2 + b2 a , (3.91)
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we see that DId2
⇣

D�1
I

⌘
/dt2 = ä/a. The first of these dynamical equations

is the propagation equation of gravitons in general relativity, with the
gravitons being massless but receiving a "pseudo"-mass of the form �ä/a.
The second one is the propagation equation for a massive graviton of mass
M. Notice that for both modes the speed of propagation is one, and that
(3.91) implies that the light cones for gravitons and photons coincide.
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M I M E T I C M A S S I V E C O S M O L O G Y

In this chapter we study the first cosmological implications of a novel
massive gravity theory, recently proposed by Chamseddine and Mukhanov,
known as the mimetic theory of massive gravity. This is a theory of ghost-free
massive gravity, which additionally contains a so-called mimetic dark matter
component. In an echo of other modified gravity theories, there are self-
accelerating solutions which contain a ghost instability. In the ghost-free
region of parameter space, the effect of the graviton mass on the cosmic
expansion history amounts to an effective negative cosmological constant, a
radiation component, and a negative curvature term. This allows us to place
constraints on the model parameters—particularly the graviton mass—by
insisting that the effective radiation and curvature terms be within obser-
vational bounds. The late-time acceleration must be accounted for by a
separate positive cosmological constant or other dark energy sector. We
impose further constraints at the level of perturbations by demanding linear
stability. We comment on the possibility of distinguishing this theory from
LCDM with current and future large-scale structure surveys.

This chapter is based on: A. Solomon, V. Vardanyan, Y. Akrami,
Massive mimetic cosmology,
Phys. Lett. B 794 (2019) 135, arXiv:1902.08533.
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4.1 introduction

Chamseddine and Mukhanov have recently proposed [207, 208] a novel
ghost-free theory of massive gravity in which one of the four Stückelberg
scalars is constrained in the same way as in the mimetic theory of dark
matter [209], spontaneously breaking Lorentz invariance. In this chapter,
we study the immediate implications of this mimetic massive gravity for
cosmological theory and observation.

From a field-theoretic perspective, general relativity is the unique theory
(in four spacetime dimensions) of a massless spin-2 particle, or graviton.
It is therefore natural to ask whether it is possible to endow the graviton
with a non-zero mass, and what sort of theoretical structures would result
[36]. A closely related line of inquiry asks whether it is possible for two
or more gravitons to interact [210]. Most nonlinear realizations of such
theories suffer from the so-called Boulware-Deser ghost instability [195].
As we have discussed earlier, the past decade has seen the construction
of models which avoid this instability, allowing for the construction of
ghost-free theories of massive gravity [37, 38, 40, 43–45, 211] and bimetric
and multimetric gravity [44, 46, 47]. We refer the reader to the reviews
[48, 49] on massive gravity and [51, 52] on bimetric gravity. The theory of
mimetic massive gravity proposed in [207, 208] takes a new and alternative
path to a ghost-free nonlinear theory of massive gravity.

A generic theory of massive gravity propagates six degrees of freedom,
which should be thought of as the five helicity states of a massive gravi-
ton plus an additional, ghostly scalar. The easiest way to understand the
degrees-of-freedom counting is to observe that a graviton mass breaks dif-
feomorphism invariance. This is a gauge symmetry and so can be restored
by the addition of four Stückelberg scalars FA, which propagate in addition
to the two (now potentially massive) tensor modes of general relativity.

As an illustration, consider a Lorentz-invariant theory of massive gravity.
In order to construct non-trivial, non-derivative interactions for the metric,
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one requires a second "reference" metric. The simplest choice for this metric
is that of flat space, hµn, but the addition of this prior geometry breaks
diffeomorphism invariance; for instance, there are preferred coordinate
systems in which hµn = diag(�1, 1, 1, 1). But diffeomorphism invariance is
simply a redundancy in description, and can be restored by the addition
of redundant variables, i.e., replacing hµn ! hAB∂µFA∂nFB, where hAB =
diag(�1, 1, 1, 1) and the four fields FA transform as spacetime scalars. One
can always, by means of a diffeomorphism, choose the unitary gauge in
which FA = xA, and we recover the original description of the theory in
terms of a symmetry-breaking reference metric. Generic interaction terms
for the graviton, e.g., generic functions of gµahAB∂aFA∂nFB, will lead to
dynamics for each of these four scalars, in addition to the two modes of
general relativity, for a total of six degrees of freedom.

At the linear level, i.e., linearizing the metric about flat space in unitary
gauge, gµn = hµn + hµn and FA = xA, we find that one of the six degrees
of freedom leads to a ghost instability unless we specifically arrange the
mass term into the Fierz-Pauli form, Lmass ⇠ h2

µn � h2, in which case the
dynamics of the ghostly mode take the form of a total derivative. Continuing
this procedure at higher orders in perturbation theory—i.e., continually
packaging ghostly operators into total derivative structures—leads uniquely
to the non-linear massive gravity theory of de Rham, Gabadadze, and Tolley
(dRGT) [37, 38].

The recent proposal of Chamseddine and Mukhanov takes a novel al-
ternative approach to eliminating the dangerous ghostly mode [207, 208].
Noticing that the ghost can be associated to the F0 Stückelberg mode, they
propose imposing the constraint gµn∂µF0∂nF0 = �1. This is motivated
by a similar construction known as mimetic gravity [209], in which the
constrained scalar winds up behaving like dark matter.1 Mimetic massive
gravity takes this constrained scalar to be one of the Stückelberg modes

1 For an earlier construction in which a constrained scalar mimics dark matter and dark
energy, see [212].



174 mimetic massive cosmology

of a massive graviton, eliminating the ghost. They propose the following
action, designed to ensure stability at the linear level (notice that the mass
term is not of the Fierz-Pauli form),
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Tµn � 2l

M2
pl

∂µF0∂nF0

+
m2

2

✓
h̄AB � 1

2
h̄hAB

◆✓
∂µFA∂nFB � 1

4
h̄ABgµn

◆
, (4.3)

0 = rµ

"
2l

M2
pl

∂µF0d0
A � m2

2

✓
h̄AB � 1

2
h̄hAB

◆
∂µFB

#
, (4.4)

X = �1. (4.5)

The last of these aligns Ḟ0 with the lapse of gµn. An upshot of this construc-
tion is that the constrained mode behaves as a pressureless fluid, i.e., this
theory provides a natural (mimetic) dark matter candidate [207, 208].3

2 Note the sign differences between the right-hand side of the Einstein equations and the
corresponding equation in [207], which is due to the mostly positive metric convention we
employ.

3 One should note that the phenomenology of mimetic dark matter is still in the early
stages of development compared to traditional particle dark matter models such as weakly
interacting massive particles (WIMPs) or axions, and it is premature to consider mimetic
gravity as a serious alternative to those models. For example, since the mimetic dark matter
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We end this section by making a connection with the existing literature on
Lorentz-violating massive gravity and demonstrating the absence of certain
well-known features of Lorentz-invariant massive gravity, namely the van
Dam-Veltman-Zakharov (vDVZ) discontinuity [214, 215] and the Higuchi
bound [216]. The vDVZ discontinuity refers to the failure of linearized
Lorentz-invariant massive gravity to reduce to general relativity in the
massless limit; this requires nonlinear effects in order to restore general
relativity in the Newtonian limit [58, 59]. The Higuchi bound is a stability
bound for massive gravity on de Sitter space, placing a lower bound on the
graviton mass, m2 � 2H2, with H the Hubble rate. It is well-known that
breaking Lorentz invariance changes both of these conclusions dramatically
[217, 218].

At the level of linear perturbations around flat space, the general SO(3)-
invariant mass term in unitary gauge (FA = xA) can be written as [217]

Lmass =
1
8

M2
pl

⇣
m2

0h2
00 + 2m2

1h2
0i � m2

2h2
ij + m2

3h2
ii � 2m2

4h00hii

⌘
. (4.6)

The linearized mass term in (4.1) in unitary gauge is (treating l as first-
order)

Lmass =
m2M2

pl

8

✓
�1

2
h2

00 + 2h2
0i � h2

ij +
1
2

h2
ii � h00hii

◆
+ lh00. (4.7)

only interacts gravitationally with the Standard Model, we do not expect to have a thermal
production mechanism, in contrast to many traditional dark matter scenarios such as WIMPs.
Indeed, when the theory is shift-symmetric in F0, the energy density of this component is
set entirely by an integration constant and so is determined by initial conditions. It may
also be necessary to tune the parameters of the model in order to obtain the right values
of the dark matter density over the entire cosmic history, and higher-derivative effective
field theory corrections play an important role [213]. We refer the reader to, e.g., [213] for
discussions of the constraints that early-universe considerations place on the properties and
evolution of mimetic dark matter throughout cosmic history.
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The l equation of motion sets h00 = 0, which we can impose in the action4

to find

m2
0 = m2

4 = 0, m2
1 = m2

2 = 2m2
3 = 1. (4.8)

This allows us to easily make contact with the existing literature on Lorentz-
violating massive gravity. The analysis of [217] shows that for these mi
parameters, the Newtonian limit is the usual one, while the vDVZ disconti-
nuity is absent. The analogue of the Higuchi bound in Lorentz-violating
massive gravity was derived in [218], and for our values of the mi parame-
ters, it reduces simply to H2 > 0, which is trivially satisfied.

4.2 flat-space perturbations

In this section, we briefly review the behavior of perturbations about flat
space in mimetic massive gravity, as discussed in [207, 208]. This will place
stability conditions on the theory which will be relevant when we move to
cosmological solutions.

The equations of motion (4.3)–(4.5) in vacuum are solved by5

gµn = hµn, FA = xA, l = 0. (4.9)

4 This is justified because, on shell, the h00 equation of motion simply sets the value of l,
while h00 drops out of the hij equations of motion. The dynamics are therefore equivalent.

5 This is the only solution that is manifestly invariant under rotations, i.e., with gµn =

diag(�1, 1, 1, 1) and FA =
n

j(t), bxi
o

. A priori it may be possible to have flat solutions with

inhomogeneous Stückelbergs FA, or equivalently solutions with FA = xA and gµn = hµn

with hµn written in a nonstandard coordinate system, but we do not consider these here.
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We expand the action (4.1) to quadratic order around the Minkowski solu-
tion, focusing on scalar modes,

g00 = �(1 + 2f), (4.10)
g0i = ∂iB, (4.11)
gij = (1 � 2y)dij + 2∂i∂jE, (4.12)

FA = xA +
n

p0, ∂ip
o

, (4.13)

l = dl. (4.14)

Three of these fields—f, B, and dl—are auxiliary, as they appear without
time derivatives in the action, and so can be integrated out using their
equations of motion. Note that the auxiliary structure is precisely the same
as in general relativity, since the mass term and Lagrange multiplier do not
introduce any derivatives of the metric.

We can use diffeomorphism invariance to remove a further two modes.
When gauge fixing at the level of the action, one must take care to only elim-
inate variables whose equations of motion are contained in the equations of
motion of the remaining variables, otherwise we will lose information after
picking a gauge. Following the procedure of [219], we see that we can safely
take p0 and one of (E, p) to vanish. Picking unitary gauge, p0 = p = 0, we
obtain the flat-space quadratic action (in Fourier space),

d2S =
Z

dtM2
pl

⇣
� ~̇X TK ~̇X + ~X T �k2G + m2M

�
~X
⌘

, (4.15)
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where ~X ⌘ (y, k2E) and the matrices K, G, and M are given by

K =

 
3 + 4k2

m2 1
1 0

!
, (4.16)

G =

 
1 0
0 0

!
, (4.17)

M =
1
4

 
3 1
1 �1

!
. (4.18)

As described in [208], this system can be diagonalized by replacing y
with the Lagrange multiplier dl, which we had previously integrated out
using

dl =
M2

pl

4
⇥
(4k2 + 3m2)y + k2m2E

⇤
, (4.19)

to find

d2S =
Z

dt
1

4k2 + 3m2


k4m2M2

pl
�
Ė2 � (k2 + m2)E2�

� 1
M2

pl

✓
16
m2

˙dl
2 � 4dl2

◆ �
. (4.20)

If we take m2 > 0, we can canonically normalize,

dlc ⌘ 4

mMpl

q
2k2 + 3

2 m2
dl, (4.21)

Ec ⌘
mMplk2

q
2k2 + 3

2 m2
E, (4.22)
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to obtain the final action,

d2S =
Z

dt


1
2

Ė2
c � 1

2
(k2 + m2)E2

c � 1
2

˙dl
2
c +

1
8

m2dl2
c

�
. (4.23)

The only dynamical degree of freedom here is Ec, which is healthy and
has mass m. The field dlc has the wrong sign on both its kinetic and mass
terms, but does not propagate due to the absence of a gradient term; its
equation of motion,

d̈lc +
m2

4
dlc = 0, (4.24)

leads to a dispersion relation w2 = m2/4 and is solved simply by [208]

dlc = C(~x) sin
✓

mt
2

◆
+ D(~x) cos

✓
mt
2

◆
, (4.25)

where C and D are space-dependent constants of integration. The authors
of [208] identify this mode with the mimetic dark matter.6

When we discuss cosmology in the next section, we will find ourselves
tempted by the possibility of taking m2 < 0. A priori this is merely a
parameter choice, but the flat-space analysis shows why this would be a
poor decision. By looking at the action (4.20), we see that, for negative
m2, the overall sign in front of the action flips depending on whether
k2 > 3|m2|/4 or k2 < 3|m2|/4, a sign of pathological behavior. In particular,
for scales k2 > 3|m2|/4, upon canonically normalizing we find the action
(4.23) with an overall minus sign, so that the dynamical mode Ec is a ghost.

6 See [208] for an argument for why this mode is not a ghost, despite having an overall
wrong-sign action. In principle, one might worry that when quantizing or considering
nonlinearities, a coupling will be induced between dlc and other fields which will lead to
an Ostrogradski instability. On the other hand, due to the lack of a gradient term this mode
is not a propagating degree of freedom in the usual sense. We will remain agnostic about
this question and limit ourselves to considerations of classical, linear stability, which this
system clearly satisfies for m2 > 0. See, e.g., [220, 221] for detailed discussions of classical
and quantum properties of modes lacking a gradient term.
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4.3 cosmological solutions

In this section we investigate the FLRW cosmological solutions of mimetic
massive gravity. Consider the homogeneous and isotropic ansatz

gµn = diag(�1, a(t)2dij), (4.26)

FA =
n

j(t), bxi
o

. (4.27)

In principle one could allow b to depend on time, but this breaks homo-
geneity and isotropy as it induces ~x-dependent terms in the stress-energy
tensor of the Stückelberg fields. Note that on-shell, the Lagrange multiplier
enforces j = t (up to a constant). We will include a general matter sector
with density r and pressure p. We will find this sector needs to contain a
cosmological constant, much like in general relativity, but does not need to
include dark matter, as this role can be played by the mimetic dark matter
(which is an exactly pressureless perfect fluid).

The Einstein and scalar equations of motion are

3H2 =
r

M2
pl

� 2l

M2
pl

� 3m2

16

✓
b4

a4 � 6
b2

a2 + 5
◆

, (4.28)

2Ḣ + 3H2 = � p
M2

pl
� m2

16

✓
3 � b4

a4 � 2
b2

a2

◆
, (4.29)

0 =
d
dt

(
a3

"
3m2

4

✓
1 � b2

a2

◆
+

2l

M2
pl

#)
. (4.30)

We can solve for l by integrating the F0 equation of motion (4.30), finding

� 2l

M2
pl

=
C
a3 +

3m2

4

✓
1 � b2

a2

◆
, (4.31)
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where C is an integration constant. Plugging this into the Friedmann equa-
tion (4.28), we obtain

3H2 =
r

M2
pl

+
C
a3 � 3m2

16

✓
1 � b2

a2

◆2

. (4.32)

Note that the contribution from l exactly cancels out that from the last
term of the Einstein equation (4.3), so the very simple form for rj ⌘
�3m2M2

pl(1 � b2/a2)2/16 is entirely due to the term proportional to gµn in
the stress tensor. The integration constant provides a dust-like contribution
to the Friedmann equation, which is to be expected as this is a theory of
mimetic dark matter.

We can get a better sense of the physical picture by expanding out
the Friedmann equation and absorbing the mimetic dark matter C into r,
finding

3H2 =
r

M2
pl

� 3m2

16

✓
b4

a4 � 2b2

a2 + 1
◆

. (4.33)

For m2 > 0 (m2 < 0), we see that the mass term generates an effective
negative (positive) cosmological constant, an effective negative (positive)
curvature, and an effective radiation component with negative (positive)
energy density. Note that these add on to any cosmological constant, ra-
diation, and curvature already present cosmologically; for example, while
we have assumed a flat cosmology as our ansatz, observational bounds on
spatial curvature will constrain the sum of any pre-existing curvature and
the curvature-like term generated by the graviton mass.

Note that for m2 < 0 we have late-time acceleration, with Leff = 3|m2|/16.
However, as discussed in the previous section, we need m2 > 0 in order to
avoid a ghost around flat space. This is reminiscent of the situation in the
Dvali-Gabadadze-Porrati (DGP) model [222], where one branch of solutions
has self-accelerating cosmological expansion [223, 224] but is plagued by a
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ghost [225, 226], while the other branch is healthy but cannot account for
cosmic acceleration.

Let us assume that the energy density r in (4.33) contains dust (including
the mimetic dark matter), radiation, and dark energy components. Then, in
terms of the density parameters,

Wi,0 =
ri,0

3M2
plH

2
0

, (4.34)

the components of the Friedmann equation which are modified by mimetic
massive gravity are

WL,0 = W̄L,0 � m2

16H2
0

(4.35)

WK,0 =
m2

8H2
0

b2, (4.36)

Wr,0 = W̄r,0 � m2

16H2
0

b4, (4.37)

where W̄L,0 and W̄r,0 are the densities associated to dark energy and Stan-
dard Model radiation. Using observational bounds on the curvature and
radiation densities, we can place constraints on the model parameters m2

and b. We will not consider any bounds coming from the presence of the
effective cosmological constant, even though it contributes a negative and
potentially large (if m2 � H0) amount to WL,0. Particle physics also predicts
a large (and potentially negative) vacuum energy, and since we are not
worrying about that, it seems inconsistent to worry about the contribution
from mimetic massive gravity. One might expect that whatever solves the
former problem will also solve the latter.7

7 See [227] for a proposed solution to the cosmological constant problem in the context of
Lorentz-violating massive gravity, which is closely related to mimetic massive gravity.
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We will use observational constraints on WK,0 and Wr,0 to bound our two
free parameters, m2 and b. Planck 2018 constrains WK,0 = 0.0007 ± 0.0019,
which we parametrize as |WK,0| < dK, with dK ⇠ 0.003 [8]. We will take this
to be a constraint on the contribution from mimetic massive gravity alone,

m2

8H2
0

b2 < dK. (4.38)

We remind the reader that what we are really bounding is the sum of the
mimetic massive gravity contribution and any “bare" curvature, but unless
there is significant tuning between these two, we can simply take this as a
constraint on the mimetic massive gravity piece alone.

To bound the mimetic contribution to the radiation density, we will use
constraints from big bang nucleosynthesis (BBN). At the time of BBN,
radiation dominates. The exact value of the Hubble rate at the time of
nucleosynthesis, which depends on the radiation density, determines the
freeze-out abundance of neutrons and therefore the primordial abundance
of helium-4, which is subject to tight observational bounds. The constraints
are conveniently phrased in terms of the "speed-up factor" z ⌘ H/H̄, where
H and H̄ are the Hubble rate and its expected value, respectively, at the
time of BBN. The difference between the observed and predicted helium-4
abundance, |DYP|, is related to the speed-up factor by [228]

DYP = 0.08(z2 � 1). (4.39)

Current observational bounds imply [229]

|DYP| . 0.01. (4.40)

Comparing the Friedmann equation (4.33) with and without the mimetic
radiation contribution, and focusing on radiation domination, we find

z2 � 1 = � m2b4

16W̄r,0H2
0

, (4.41)
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where the value for the present-day radiation density associated to photons
and neutrinos, W̄r,0 ⇠ 10�4, is determined entirely by the CMB temperature
and the effective number of neutrino species and is therefore not dependent
on our modification of gravity.8 Combining this with (4.40) we arrive at the
constraint

m2

16H2
0

b4 < dr, (4.42)

where

dr ⌘ max(|DYP|)W̄r,0

0.08
⇡ O(10�5). (4.43)

We can rewrite our constraints (4.38) and (4.42) as inequalities for m/H0
and b alone in two different régimes,

m
H0

<

8
><

>:

p
8dK
b , b <

q
2dr
dK

4
p

dr
b2 , b >

q
2dr
dK

.
(4.44)

These are plotted in 4.1.
Finally, we note that the strong-coupling scale for this theory is of order

L2 =
p

mMpl [208]. If m is of order the present-day Hubble scale, m ⇠
10�33 eV, then the strong coupling scale is L2 ⇠ meV, i.e., the theory
breaks down slightly below the millimeter scale. As we see from (4.44), for
sufficiently small b, m could potentially be much larger than H0, leading to
a correspondingly larger strong-coupling scale.

4.4 cosmological perturbations

As we have seen, at the background level, cosmological solutions in mimetic
massive gravity do not differ appreciably from LCDM. We therefore pro-
ceed to study cosmological perturbations around the FLRW background.

8 See [230] for a measurement of the CMB temperature.
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Figure 4.1: Upper limits on m/H0 and b for (dK, dr) = (0.003, 10�5).

This will tell us how cosmological large-scale structure (LSS) evolves in
this theory in comparison to LCDM. Since mimetic massive gravity differs
from general relativity, we would expect modifications to the gravitational
Poisson equation and the slip relation, which could in principle allow for
observational tests of this alternative model against LCDM and distinguish
the two using the current and future LSS surveys. However, as we will
see, stability of cosmological perturbations and the bounds (4.44) place
strong constraints on the model which suggest that this theory should be
observationally indistinguishable from GR in the linear regime.

4.4.1 Stability bound

We begin by studying the stability of cosmological perturbations using the
second-order action formalism. Since, as discussed in 4.3, this theory does
not possess ghost-free self-accelerating solutions, we include a cosmological
constant, although it will not affect any of the results in this section. Since
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the theory already contains a pressureless fluid, namely the mimetic dark
matter, we need not introduce an additional matter field. Our analysis is
therefore valid for all times after matter-radiation equality.

We define the linearized metric, Stückelberg fields, and Lagrange multi-
plier as

ds2 = �(1 + 2f)dt2 + 2a∂iBdtdxi

+ a2 ⇥(1 � 2y)dij + 2∂i∂jE
⇤

dxidxj, (4.45)
F0 = t + p0, (4.46)

Fi = b
⇣

xi + ∂ip
⌘

, (4.47)

l = l̄ + dl, (4.48)

where we are restricting ourselves to scalar perturbations, and l̄ is the
background value given in (4.31). The calculation of the quadratic action
proceeds analogously to the flat-space case discussed in section 4.2. Ex-
panding the action (4.1) (with a cosmological constant) to quadratic order
in perturbations, we find that the variables f, B, and dl are auxiliary—that
is, they appear without time derivatives—and can therefore be integrated
out using their equations of motion. To safely fix a gauge at the level of
the action, we again follow the procedure of [219], finding that we can
eliminate one each of (y,p0) and (E,p). We will choose to work in unitary
gauge, p0 = p = 0, so that FA = (t, bxi) is unperturbed. The final action,
in Fourier space and after integrations by parts, is

d2S =
Z

dtM2
pla

3
✓

� ~̇X TK ~̇X + ~X T
✓

k2

a2 G + m2M

◆
~X
◆

, (4.49)
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where ~X ⌘ (y, k2E) and the matrices K, G, and M are given by

K =

0

@3 � 8a2

b2�3a2
k2

m2b2 1

1 0

1

A (4.50)

G =

 
1 0
0 0

!
(4.51)

M =
1
8

b2

a2

✓
1 +

b2

a2

◆ 
3 1
1 �1

!
(4.52)

Since we are interested in the implications of mimetic massive gravity for
the growth and properties of large-scale structure in the late Universe, let
us focus on subhorizon scales (i.e., k2 � a2H2) and assume the quasi-static
(QS) approximation. In order to use this approximation, we first need to
ensure that fluctuations in this regime are stable. Ignoring time variation
in a(t), which will be subdominant in the limit k2 � a2H2, and assuming
solutions of the form ~X = ~X0eiwt, the equations of motion following from
the action (4.49) are

✓
�w2K +

k2

a2 G + m2M

◆
~X = 0. (4.53)

We can then derive stability conditions from the dispersion relations, ob-
tained by solving

0 = det
✓

�w2K +
k2

a2 G + m2M

◆

=
w4

a2 + b2 � w2k2

a2(3a2 � b2)
� 5w2m2b2

8a4 +
k2m2b2

8a6 +
m4b4(a2 + b2)

16a8

(4.54)

for w2.
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The dispersion relations arising from (4.54) are complicated, but simplify
significantly in the limit k � aH when we take into account the constraints
(4.44) on m/H0, which we obtained by requiring that the radiation and
curvature densities generated by the mass term not exceed observational
bounds. Consider replacing m and b in (4.54) with the following two
parameters,9

e1 ⌘
✓

mb

k

◆2
, e2 ⌘

✓
mb2

ka

◆2

. (4.55)

We proceed to show that the bounds (4.44) imply that each of these is much
smaller than unity on subhorizon scales for all times after matter-radiation
equality.

For both e1 and e2 we can put upper bounds on the numerators and
lower bounds on the denominators. Let us start with the numerators. For
e1, multiply each side of (4.44) by b. We see there is a strict upper bound
on the combination mb,

mb 
p

8dK H0 ⇡ 0.15H0 (4.56)

where we have taken dK ⇠ 0.003 as a representative value. We can similarly
find a bound on the numerator of e2 by multiplying both sides of (4.44) by
b2, finding

mb2  4
p

dr H0 ⇡ 10�2H0 (4.57)

for dr ⇠ 10�5.
Now we move on to the denominators. The subhorizon limit is given

by k � aH. For the sake of argument let us be conservative and assume
that k is only slightly subhorizon, k/a ⇡ O(1)H.10 At any given time

9 To do this replacement, first replace m ! p
e1b/k, and then replace any remaining factors

of b with b !
p

e2/e1a.
10 Of course, the deeper in the subhorizon regime k is, the smaller e1 and e2 become.
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from matter-radiation equality to the present, where we can trust our
analysis, the Hubble rate H is related to its present-day value H0 by H =
H0
p

WL,0 + Wm,0a�3. Putting this together with the bounds we have derived
on mb and mb2, we find

e1 .
0.02

WL,0a2 + Wm,0a�1 ⌧ 1, (4.58)

e2 .
10�4

WL,0a4 + Wm,0a
⌧ 1 for z . 3000. (4.59)

Note that while the upper bound on e1 is always much smaller than unity
for 0 < a  1, the upper bound on e2 in fact grows as a�1 at early times.
However, it grows slowly and has a factor of 10�4 to compete with, so that
max(e2) does not reach unity until z ⇠ 3000, right around matter-radiation
equality. Therefore in principle there might be a handful of modes—right
around the horizon scale and at the earliest moments of matter domination—
for which terms going as e2 affect the subhorizon dispersion relation, if
mb2 takes the largest value allowed by the constraints. We will continue
to take e2 ⌧ 1, with the understanding that if this particular situation is
realized, then at those very early times we are only considering modes with
k & 10aH, for which e2 is certainly smaller than unity.

Dropping terms subdominant in e1 and e2, the dispersion relation (4.54)
becomes

0 ⇡ w4

a2 + b2 � w2k2

a2(3a2 � b2)
+

k2m2b2

8a6 . (4.60)

Solving for w2, and again dropping terms subleading in e1 = (mb/k)2, we
find the dispersion relations for our two modes,

w2 ⇡ k2

a2
a2 + b2

3a2 � b2 , (4.61)

w2 ⇡ m2b2

8a2

✓
3 � b2

a2

◆
. (4.62)
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Each of these implies the same stability condition,

b2

a2 < 3. (4.63)

This tells us that no matter what the value of b is, our cosmological solutions
are unstable at sufficiently high redshifts,

z >
p

3b�1 � 1. (4.64)

This early time instability can however be safely pushed back to unob-
servably early times by taking the parameter b to be sufficiently small.11

Because we are assuming matter and dark energy domination, we can trust
our stability condition as far back as matter-radiation equality at zeq ⇡ 3400.
Demanding stability from zeq onward, we find a constraint on b,12

b . 5 ⇥ 10�4. (4.65)

4.4.2 Cosmological tensor mass

Another possible cosmological bound on the parameters m and b comes
from constraints on the graviton mass. The tightest bounds currently come
from LIGO, mT  7.7 ⇥ 10�23 eV [231].13 To compute the mass of tensor

11 This is similar to massive bimetric gravity, which possesses an early-time instability that can
be rendered safe in the limit where the ratio of the two Planck masses becomes small [53].

12 It is plausible that the result (4.63) holds, at least on an order-of-magnitude basis, through
radiation domination as well (see, again, the example of bigravity [53]). In this case, we
should demand that the instability be pushed back to before big bang nucleosynthesis, with
zBBN ⇡ 3 ⇥ 108, which would imply a stronger constraint of b . 10�8. We do not have
much observational handle on the presumably radiation-dominated era before BBN, and
therefore should not demand that the instability be absent then; indeed, a mild enough
instability might have interesting consequences, such as the formation of primordial black
holes.

13 See [232] for a helpful summary of bounds on the graviton mass from a variety of experi-
ments and observations.
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fluctuations on a cosmological background, we linearize the Einstein equa-
tion (4.3) around gµn = ḡµn + hµn, with ḡµn = diag(�1, a2dij), h00 = 0, and
hij transverse and traceless, i.e., hii = ∂ihij = 0. The Einstein equation is

ḧij + 3Hḣij �
r2

a2 hij + m2
Thij = 0 (4.66)

with the tensor mass given by

m2
T ⌘ m2

2
b2

a2

✓
1 +

b2

a2

◆
(4.67)

The structure of the Einstein equation is such that m2
T/m2 has to be a

(quadratic) polynomial in b2/a2. What is non-trivial is that the degree-
zero term in that polynomial cancels out, i.e., the expression for m2

T/m2

starts at order b2/a2. This means that gravitational waves propagating over
cosmological distances (at low redshift, i.e., a ⇠ O(1)) do not depend on
m alone; instead they involve the combinations mb and mb2 which, as we
have seen, are strongly constrained by the cosmological background. In
particular, recalling that m2b2 . 10�2H2

0 and m2b4 . 10�4H2
0 , we see that

mT at the present era is at most of order 10�1H0 ⇠ 10�34 eV, far below the
LIGO bounds. Moreover, our stability condition (4.65) has no bearing on
mT. No matter how tiny b is, the constraints (4.44) place a constant upper
bound on mb, so that the smaller b is, the larger m is allowed to be, leaving
mT ⇡ mb/(

p
2a) fixed. It is interesting to note that, without demanding

that this model provide cosmic acceleration, the tensor mass is nevertheless
forced to be smaller than the Hubble scale. Finally, we note that around a
flat background, the tensor mass is simply m, so local tests of gravity might
be able to place constraints on m that are not possible with gravitational
waves that propagate over cosmological distances.
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4.4.3 Quasistatic limit

Finally, let us comment on the testability of mimetic massive gravity using
near-future LSS surveys. We will find it convenient to work in Newtonian
gauge, B = E = 0. Linearizing the Einstein equations (4.3), and leaving in a
generic stress-energy tensor Tµn for completeness, we obtain

6H2f � 2
a2 ∂i∂iy + 6Hẏ =

1
M2

pl
dT0

0 + 2
dl

M2
pl

� m2

4
b2

a2 Q1

⇣
3y + ∂i∂ip

⌘
, (4.68)

� 2∂i (ẏ + Hf) =
dT0

i
M2

pl
+

2l̄

M2
pl

∂ip
0 +

m2

4
Q1
�
∂ip

0 � b2∂iṗ
�

, (4.69)

6
⇥
ÿ + 3Hẏ + Hḟ + (3H2 + 2Ḣ)f

⇤
+

2
a2 ∂i∂i (f � y) =

1
M2

pl
dTi

i �
m2

4
b2

a2 Q2

⇣
3y + ∂i∂ip

⌘
, (4.70)

1
a2 ∂i∂j (y � f) =

1
M2

pl
dTi

j +
m2

2
b2

a2 Q2∂i∂jp, i 6= j, (4.71)

where Q1 ⌘
⇣

3 � b2

a2

⌘
and Q2 ⌘

⇣
1 + b2

a2

⌘
.

Moving to Fourier space, specializing to a pressureless fluid without
anisotropic stress, and taking the quasistatic limit, Ẍ ⇠ HẊ ⇠ H2X ⌧ k2X
for any perturbation X, Eqs. (4.68), (4.70) and (4.71) become

2k2

a2 y =
1

M2
pl

(2dl � r̄d) � m2

4
b2

a2 Q1
�
3y � k2p

�
, (4.72)

2k2

a2 (f � y) =
m2

4
b2

a2 Q2
�
3y � k2p

�
, (4.73)

1
a2 (f � y) = �m2

2
b2

a2 Q2p, (4.74)
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where r̄ and d are the background density and overdensity of the dust
component. Note that these are degenerate with the mimetic dark matter,
as expected.

Combining these equations, we obtain the modified Poisson equation
and the slip relation,

�k2y = 4pGµ(a, k)a2(dr � 2dl), (4.75)
y = h(a, k)f, (4.76)

where the modified-gravity parameters µ and h are given by

µ(a, k) =
1

1 + 1
2

m2b2

k2

⇣
3 � b2

a2

⌘ , (4.77)

h(a, k) =
1

1 + 1
2

m2b2

k2

⇣
1 + b2

a2

⌘ . (4.78)

These parametrize observable deviations from general relativity, in which
µ = h = 1.

The constraints we have already derived on m and b preclude µ and h
from deviating from unity at a level accessible to near-future observations.
The stability constraint (4.63) requires the terms in parentheses to be O(1),
while the background constraint (4.56) sets m2b2 . 0.02H2

0 , so that

µ � 1 ⇠ h � 1 ⇠ O
✓

m2b2

k2

◆
. 10�2

✓
H0

k

◆2
. (4.79)

It is therefore highly unlikely that cosmological observations will be able to
test this model against LCDM in the linear and subhorizon regime.

4.5 conclusions

In this chapter we have studied the first cosmological implications of the
recently-proposed theory of mimetic massive gravity. We find that the
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theory is unable to self-accelerate without introducing a ghost. Its effects on
Friedmann-Lemaître-Robertson-Walker cosmological backgrounds are to
introduce effective radiation, curvature, and cosmological constant terms,
as well as a dust-like mimetic dark matter component. We place constraints
(4.44) on the theory parameters by demanding that the effective radiation
and curvature terms be within observational bounds. In the ghost-free
region of parameter space, m2 > 0, the effective cosmological constant
is negative-definite, so a separate dark energy sector, which we take to
be a positive cosmological constant, is required to explain the late-time
acceleration of the Universe.

We further studied the behavior of cosmological perturbations in the sub-
horizon, quasistatic limit. The model generically suffers from an instability
at early times. However, since our analysis only included a pressureless
dust component (in addition to a cosmological constant), the calculation
can only be trusted as far back as matter-radiation equality. This allowed us
to place a further constraint on the theory parameters by insisting that the
instability be absent throughout matter domination. With these constraints,
the deviations from LCDM in the linear, subhorizon regime are likely too
small to be observable.

Not surprisingly, since this is a theory of massive gravity, it predicts mas-
sive tensor modes. We have calculated the tensor mass around cosmological
backgrounds and found that, taking into account the constraints imposed
by the cosmological background, this mass must be at least an order of
magnitude below the Hubble scale, far outside the currently-available con-
straints on the graviton mass. Unlike other theories of massive gravity, in
which the graviton mass is comparable to the Hubble scale in order to
provide late-time acceleration, this bound on the graviton mass is solely
due to the requirement that the effective radiation and curvature terms in
the Friedmann equation not be too large.

What are the remaining prospects for cosmological tests of mimetic
massive gravity? We emphasize that our analysis does not apply in two
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important regimes: horizon-size scales and nonlinear scales. One or both of
these may possess signatures which could be used to distinguish mimetic
massive gravity from LCDM, or otherwise to rule out additional regions
of parameter space. One expects that nonlinear scales will require N-body
simulations, while at horizon-size scales we cannot apply the quasistatic
approximation and would need to solve the perturbation equations nu-
merically, as in other theories of modified gravity [233]. For the latter, we
note that the mass scales appearing in the action (4.49) for cosmological
perturbations are not simply m, which can be arbitrarily large (in the limit
of small b), but rather mb and mb2, which we have shown must both be
at least an order of magnitude smaller than the Hubble scale. It therefore
might be difficult for this theory to produce effects at horizon scales that
are larger than cosmic variance. Note that scales k ⇠ mb and k ⇠ mb2 are
super-horizon and therefore not observable.
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S P L A S H B A C K R A D I U S I N S Y M M E T R O N G R AV I T Y

In this final chapter we have studied the effects of screening mechanisms in
modified gravity on the dynamics of the spherical collapse of dark matter. In
particular, we investigate the splashback scale in symmetron modified gravity.
The splashback radius rsp has been identified in cosmological N-body simu-
lations as an important scale associated with gravitational collapse and the
phase-space distribution of recently accreted material. We employ a semi-
analytical approach, namely the self-similar spherical collapse framework,
to study the spherical collapse of dark matter haloes in symmetron gravity.
We provide, for the first time, insights into how the phenomenology of
splashback is affected by modified gravity. The symmetron is a scalar-tensor
theory which exhibits a screening mechanism whereby higher-density re-
gions are screened from the effects of a fifth force. In this model, we find
that, as over-densities grow over cosmic time, the inner region becomes
heavily screened. In particular, we identify a sector of the parameter space
for which material currently sitting at the splashback radius rsp, during its
collapse has followed the formation of this screened region. As a result,
we find that for this part of the parameter space the splashback radius
is maximally affected by the symmetron force and we predict changes in
rsp up to around 10% compared to its General Relativity value. Because
this margin is within the precision of present splashback experiments, we
expect this feature to soon provide constraints for Symmetron gravity on
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previously unexplored scales.

This chapter is based on: O. Contigiani, V. Vardanyan, A. Silvestri,
Splashback radius in symmetron gravity,
Phys. Rev. D 99 (2019) 064030 , arXiv:1812.05568.
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5.1 introduction

Gravity, one of the fundamental forces of nature, plays a crucial role in
inferring our model of the cosmos as well as all the precision constraints
placed on fundamental physics through cosmology. The theory of Gen-
eral Relativity (GR) introduced by Einstein a century ago [7], provided
a coherent theoretical framework within which to study all gravitational
phenomena. While it is arguably one of the most successful theories of mod-
ern physics, having passed a host of empirical phenomena, there remain
regimes of curvature and scale where GR has yet to be accurately tested. Its
theoretical and phenomenological limitations are being fully explored, with
an endeavour which is carried out at virtually all energy scales, ranging
from the ultraviolet properties of the theory, down to energy scale of H0,
associated to the present-day expansion rate of the Universe [1].

Upcoming large scale structure (LSS) surveys will provide unprecedented
constraints on gravity on cosmological scales, allowing to discriminate
among many theories alternative to GR. The phenomenology of theories
of modified gravity (MG) on linear cosmological scales is fairly well un-
derstood, and it is commonly characterized in terms of modifications in
the relation between matter density contrast and, respectively, the lensing
and Newtonian potential [234–236]. On the other hand, it is well known
that non-linear mechanisms in MG theories "screen away" the effects of
additional degrees of freedom in high-density regions. This ensures that
any fifth force is suppressed and MG reduces to GR in regions where it has
been tested with remarkable accuracy [55].

A natural regime of interest is the intermediate range, between the
screened and unscreened regimes, e.g. the regions of space at the boundaries
of dark matter haloes. To this extent, a feature that is gaining prominence
is the so-called splashback, which corresponds to an observable steepening
of dark matter halo density profile close to the boundary [237]. Locally,
the position of this steepening contains interesting information about the
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clustering of dark matter shells and it can be understood as the dividing
radius of single-stream and multistream sectors of the dark matter phase
space. This feature has already been noticed in the self-similar spherical
collapse framework developed and studied in [238, 239], and generalized
to 3D collapse in [240]. Self-similarity, however, is fully operational in a
universe without a characteristic scale, such as the Einstein-de Sitter (EdS)
universe with Wm = 1. Even though realistic applications of the same
principle to LCDM universe are possible [241], in this chapter we will focus
on the collapse in EdS scenario and will leave more realistic scenarios for
future work.

The profiles of the largest dark matter haloes in the Universe, where
galaxy clusters reside, can be mapped by measuring the deformation of
background sources [242, 243]. This technique, known as lensing, has been
used to measure the splashback feature around clusters [244, 245]. It should
be noted however that the most stringent constraints are obtained using the
distribution of subhaloes traced by the cluster galaxy members [246–249].
In this case, the interpretation is nevertheless not straightforward and an
accurate comparison with N-body LCDM simulations is required.

In this chapter we consider the splashback radius in MG scenarios,
investigating the microscopic effects of alternative theories of gravity on
the dark matter shells accreting into the halo. Since we aim at gaining
insight on the physical details, we do not resort to numerical simulations,
but rather employ a semi-analytical method based on the framework of
self-similar spherical collapse of [238]. We focus on the class of theories
of gravity that display the Symmetron screening mechanism [250]. While
we present an overview of the Symmetron gravity in the main text, let
us mention here that our analysis can be easily extended to other types
of screening mechanisms, e.g. to Chameleon screening exhibited by f (R)
models [251, 252], where the density dependence is explicitly in the scalar
field mass, rather than the field couplings.
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We have organized our presentation as follows. In section 5.2 we have
presented the basics of the standard spherical collapse framework. In sec-
tion 5.3 have brought necessary details about the self-similar solutions and
have presented the relevant equations of motion for the collapsing shells.
We have additionally obtained the self-similar density profile used later
in the chapter. In section 5.3 we discuss the basics of Symmetron gravity
and present the relvant equation. In section 5.5 we present our numerical
methods and demonstrate the effect of the Symmetron force on the phase
space of the dark matter halo and the shift in the splashback radius. Finally,
we discuss the implications of our findings and suggest potential further
studies in section 5.6.

5.2 spherical collapse

In the introduction of this thesis we have presented the basics of the cos-
mological perturbation theory in the linear regime. This framework already
predicts the overall large scale structure of the universe. However, the
gravitational interactions force the small overdensities to decouple from
the Hubble expansion and form higher density structures, known as dark
matter halos. Here the density contrast (our small perturbation variable in
the linear perturbation theory) is not in the perturbative regime anymore.
Much of the progress in understanding these structures has been achieved
through numerical simulations. Interestingly, it is now acknowledged that
dark matter halos have quite universal properties. They are phenomenolog-
ically very rich structures and are supposed to be sensitive to the various
aspects of the cosmological model, and, particularly, to the underlying the-
ory of gravity. Given our overall motivation in this thesis, namely exploring
various observables in the universe which can be used to constrain the
fundamental properties of the cosmological theories, it would have been
rather unfair to dismiss the possibility of exploiting the collapsed non-linear
structure in the universe for our purposes.
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With this motivation in mind, let us try to understand the basic properties
of the collapse in a simple approximation of spherical symmetry. Let us
start with a discussion in Einstein-de-Sitter universe, which is a flat model
with Wm = 1. Consider a small tophat overdensity of mass M(tin) at some
high redshift zin. The outer shells of matter evolve following their equations
of motion

r̈ = �GNM(r; ti)
r2 , (5.1)

where the left-hand side is the Newtonian force FN(r) proportional to
Newton’s gravitational constant GN.

It is useful to define the density contrast as d ⌘ (ar0/r)3 � 1, where r0
is the initial radius of the considered shell. Inverting this and plugging in
Eq. (5.1) we will obtain a differential equation for d, which will be useful
for obtaining the linear solution. However, the point of considering the
spherical collapse is to explore the situations where the density contrast is
not very small and is governed by the non-linear dynamics of the collapse.
For that purpose it is more convenient to work directly with Eq. (5.1), which
can be easily integrated once to yield

ṙ2 = 2
GNM(r; ti)

r
� C. (5.2)

Here C is a positive integration constant given by C = 8pGNr̄inr2
inDin/3,

with the index "in" denoting the quantities at the initial time tin, and D being
the fractional mass contrast (compared to the homogeneous background)
within the shell, at the given time.

We can present the solution of this equation in a parametric form as
r = GNM(1 � cos q)/C and t = GNM(q � sin q)/C3/2, with q being an
angle in the range [0, 2p]. The radius of the shell reaches its maximum
when q = p, and is known as the "turn-around radius". For our case of
Einstein-de-Sitter universe we obtain

dtotal =
9
2

(q � sin q)2

(1 � cos q)3 . (5.3)
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Additionally, in the linear regime we have

dlin =
3
5

✓
3
4
(q � sin q)

◆2/3
. (5.4)

At the turn-around, dtotal = (3p/4)2 ⇡ 4.6 and dlin ⇡ 1.063. Additionally,
when q = 2p, the full density contrast becomes singular, while the linear
one is dlin ⇡ 1.686. Of course, for a realistic collapse the shells will virialize
at some point, and the collapse will not be singular. We will not go to all
these complications here, but let us just note that as the velocities of the
shells are the smallest at their turn-around, they are supposed to spend most
of the evolution near the turn-around radius. It is therefore a reasonable
first approximation to assume that the mass enclosed within the radius
at a fixed fraction of the turnaround scale is the same as the initial mass
enclosed within that shell. This is what is assumed in the seminal paper
Ref. [253]. Particularly, let as assume that the initial overdensity scales with
radius as din ⇠ r�3e

in ⇠ M�e (the case of the top-hat overdensity considered
above is given by e = 0). The given shell is at turn-around at the epoch
given by tta ⇠ d3/2

in (this follows from the parametric solutions found above).
Therefore the mass growth of the halo scales as M ⇠ t2/3e ⇠ a1/e.

If we could work out how the turn-around radius depends on the mass
enclosed in it, i.e. finding the functional form of rta(M), we could deduce
the shape of the density profile. This is possible to do by comparing the
total energies at the initial time and at turnaround. The result is that
rta ⇡ rin/din ⇠ r1+3e

in ⇠ M(3e+1)/3. From here we then immediately obtain
the mass profile as M(r) ⇠ r3/(3e+1) and the density profile as

r(r) ⇠ r� 9e
3e+1 . (5.5)

The crucial assumption here was the conservation of mass within a
particular spherical shell. This is assumption is known to fail - the shells
cross each other and the mass within them is dynamically changing during
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the collapse. To take into account the shell crossing phenomenon one needs
to either rely on more advanced analytical modelling, or on numerical
simulations. We are going to discuss an elegant approach in the next
section, where we will be able to gain important insights on the collapse
phenomenon with shell-crossing.

5.3 self-similar spherical collapse

Here we are going to discuss the self-similar solutions in the problem of
spherical collapse. In this context, the idea of self-similarity was introduced
for the first time in [238], where it was shown that around EdS backgrounds,
where the scale factor scales as a power-law of cosmic time, a(t) µ t2/3, the
spherical collapse equations admit self-similar and self-consistent solutions.
The basic idea is that when written in an appropriately rescaled coordinates,
the trajectories of different dark matter shells can be shown to be identical.
For our spherically symmetric problem our aim will be to rewrite all the
observable quantities as

q(r, t) = Q(t)Q(r(t)/R(t)), (5.6)

where the functions Q(t) and R(t) should be power-laws on t (see e.g.
Ref. [254]).

The material surrounding a scale-free perturbation initially coupled to the
Hubble flow eventually reaches turn-around and collapses onto a central
overdensity. We denote by R(t) and M(r, t) the position of the turn-around
radius at a time t and the mass contained within the radius r, respectively.
The mass within the turn-around radius can be written as a function of
scale factor as:

M(R, t) µ a(t)s, (5.7)
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where the parameter s ⌘ 1/e is referred to as the accretion rate. In this
model, M(R, t) and R(t) are related to each other through

4p

3
R(t)3rb(t) =

✓
4

3p

◆2
M(R, t), (5.8)

where rb(t) is the EdS background density at time t. This additionally
implies that the position R as a function of time also depends on s:

R(t) µ a(t)1+s/3. (5.9)

Notice that s and the mass of the present-day perturbation are the only free
parameters of this model. In this work, we choose a fixed value of s = 1.5 for
the accretion rate, known to be representative for the low-redshift Universe
in numerical simulations [237, 255].

While before the turn-around the mass within a shell is manifestly con-
stant, afterwards this is not true. Indeed, as multiple shells start orbiting
the halo, their trajectories start intersecting. This phenomenon is known as
shell-crossing and it is the principal reason why integrating Eq. (5.1) is not
straightforward.

If we label each shell of material by its turn-around time t⇤ and radius r⇤,
such that R(t⇤) = r⇤, the trajectory for each shell is found to be independent
of these quantities when self-similarity is satisfied. This can be verified by
rewriting the equation of motion for the given shell in terms of the rescaled
variables

l =
r
r⇤

, t =
t
t⇤

; (5.10)

and by enforcing the mass profile M(r) to be of the form:

M(r, t) = M(R, t)M(r/R). (5.11)

Notice that, from Eq. (5.9) it follows that the rescaling of the local turn-
around radius L = R(t)

r⇤
can be also written as a function of t alone:

L(t) = t2/3+2s/9. (5.12)
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The system is then evolved through the following self-similarity equations
for l(t) and M (l/L):

d2l

dt2 = �p2

8
t2s/3

l2 M
✓

l

L(t)

◆
, (5.13)

M(y) =
2s
3

Z •

1

dt

t1+2s/3 H
✓

y � l(t)
L(t)

◆
, (5.14)

where H is the Heaviside step function. The turn-around initial conditions
for l(t) are l(t = 1) = 1, dl/dt(t = 1) = 0. Notice that because these
two equations are coupled to each other, they should be solved jointly to
obtain self-consistent solutions for the orbits and the mass profile. This
is done by starting from an initial guess for M(y) and then evaluating
numerically the trajectories l(t) using Eq. (5.13). The corresponding M(y),
evaluated using Eq. (5.14), is then taken as an initial guess for the next
iteration. This is repeated until convergence is reached and a final result for
M(r, t) is obtained. The corresponding density profile is then simply

r(r, t) =
1

4pr2
dM
dr

(r, t). (5.15)

Notice in particular that its time-dependence is completely described by
rb(t) and R(t).

In Fig. 5.1 we show the trajectories of the rescaled shells for different
values of e, obtained through the integration of Eq. (5.13).

This figure particularly demonstrates the fact that as time passes the shells
get buried deeper and deeper into the halo and their oscillation amplitudes
decay with time. Note particularly that as expected qualitatively, this decay
is more pronounced for larger values of the accretion rate.

Given the time evolution of the shells, it is now useful to look at the
corresponding phase space snapshots of all the shells. In Fig. 5.2 we have
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Figure 5.1: The evolution of the shell positions in the rescaled coordinates. We
present the evolution for two values of accretion rate s.

computed the present-day phase-space positions of the shells for the same
two values of the accretion rate as in Fig. 5.1. The colorbar indicates the
redshift when the given shell has been at turnaround. It is particularly note-
worthy that the radius separating the multi-stream/single-stream region
(two dashed, vertical lines in both of the panels), also referred to as the
splashback radius rsp of the halo, is smaller in the case of the larger accre-
tion rate. The corresponding values in the units of present-day turn-around
radius are re=0.2

sp /R(t0) = 0.12 and re=2/3
sp /R(t0) = 0.31.

Finally, as mentioned above, an important outcome of this analysis is
the matter density profile of the halo, which we present in Fig. 5.3. Note
particularly the presence of the non-physical sharp caustic peak, which
in a more realistic scenario would have been smoothed out by additional
physical phenomena, such as matter inhomogeneities and non-radial orbits
of the shells, not considered here.
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Figure 5.2: The snapshots of the shell phase spaces for the same values of the
accretion rates as in Fig. 5.1. The snapshots are taken at the present time.
The colorbar indicates the redshift when the given shell has been at
turnaround. It is particularly noteworthy that the radius separating the
multi-stream/single-stream region (two dashed, vertical lines in both of
the panels), also referred to as the splashback radius rsp of the halo, is
smaller in the case of the larger accretion rate. The corresponding values
in the units of present-day turn-around radius are re=0.2

sp /R(t0) = 0.12
and re=2/3

sp /R(t0) = 0.31.
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Figure 5.3: Prescription for the spherical halo density profile. The red dotted line
is a smoothed version of the self-consistent profile which removes the
non-physical sharp caustic.
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It can be useful to note that the framework considered here can be applied
in other configurations. Particularly, it can be applied to other 1-dimensional
configurations, such as planar and cylindrical collapse. Additionally, in
Ref. [240] the problem of tri-axial self-similar collapse is considered. For the
sake of interest let us present the results for the case of self-similar planar
collapse. The correspodning equation of motion in this case is (see [238])

d2l

dt2 =
4
9

l

t2 � 4
3

t2s/3�4/3M
✓

l

L(t)

◆
, (5.16)

with

L(t) = t2/3+2s/3. (5.17)

Fig. 5.4 demonstrates the shell trajectory for the case of e = 0.6. Note the
qualitative difference compared to the spherical trajectories.

Analogously to the spherical case, in Fig. 5.5 we present the correspond-
ing phase space snapshot of the shells for the same value of the accretion
rate as in Fig. 5.4. Here z is the relevant coordinate, i.e. the distance from
the plane of symmetry. The distance from the plane of symmetry separating
the multi-streaming region from the single-streaming one is given by two
dashed, vertical lines. The corresponding values in the units of present-day
turn-around distance are ze=0.2

sp /Z(t0) = 0.08.

5.4 symmetron gravity

In this section, we provide a brief overview of Symmetron gravity and
introduce the framework needed to study its effects on spherical collapse.

We consider a scalar-tensor theory of the form

S = Sj + SM
�

g̃µn, Y
�

, (5.18)
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Figure 5.4: The evolution of the shell positions in the rescaled coordinates in the
case of planar collapse.

with

Sj =
Z p

�g d4x

"
M2

Pl
2

R � 1
2
rµ jrµ j � V(j)

#
, (5.19)

MPl being the Planck mass, and SM the action for the matter fields. The
scalar field j couples to the Einstein frame metric gµn with Ricci scalar
R, while matter fields (collectively represented by Y) couple to the Jor-
dan frame metric g̃µn. The two metrics are assumed to be related by the
transformation

g̃µn = A2(j)gµn. (5.20)

Notice that such model is fully specified by the functions A(j) and V(j).
Varying the action with respect to j gives us the equation of motion:

⇤j = V,j � A3(j)A,j(j)r ⌘ Ṽ,j(j), (5.21)
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Figure 5.5: The phase space snapshot of the shells for the same value of the accre-
tion rate as in Fig. 5.4. The snapshot is taken at the present time. The
distance from the plane of symmetry separating the multi-streaming
region from the single-streaming one is given by two dashed, vertical
lines. The corresponding values in the units of present-day turn-around
distance are ze=0.2

sp /Z(t0) = ±0.08.
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where r is the trace of the matter stress-energy tensor, equal to the local
matter density, and Ṽ(j) is an effective potential. The fifth force per unit
mass exerted by the field j and experienced by a matter test particle can
then be written as:

Fj = �r log A(j). (5.22)

In this chapter we will focus on a realization of such a theory, namely the
Symmetron model specified by the functions:

V(j) = �1
2

µj2 +
1
4

lj4, (5.23)

A(j) = 1 +
1
2

j2

M2 , (5.24)

and effective potential:

Ṽ(j) =
1
2

⇣ r

M2 � µ2
⌘

j2 +
1
4

lj4. (5.25)

In this parametrization, the Symmetron naturally assumes the form of an
Effective Field Theory with j ! �j symmetry.

In high-density regions, where the condition

r > rssb ⌘ M2µ2 (5.26)

is satisfied, the effective potential Ṽ(j) has only one minimum in j = 0
and the field is driven towards it, resulting in a null fifth force. In other
words, high-density regions are screened. In low-density environments, on
the other hand, the minimum is not located at zero. For example, for r = 0
the vacuum expectation value is given by j0 = µ/

p
l.

The fifth force can be constrained by local tests of gravity; to see in detail
how local limits translate into bounds on the mass scale M and the Mexican
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hat parameters µ, l we refer the reader to [250], for a general overview, and
to the introduction of [256], for a more recent analysis.

In an EdS background, the average matter density as a function of redshift
z is

rb =
1

6pGt2 µ (1 + z)3. (5.27)

As the Universe expands, the Symmetron can undergo spontaneous sym-
metry breaking (SSB) when rb(zssb) = rssb. For more details about the
cosmological evolution of the Symmetron field and the allowed expansion
histories, we refer the reader to [57, 257]. Let us stress however that we are
not interested in the possibility of using the field j to drive the late-time
expansion of the Universe, but we are only interested in the additional fifth
force and its effects on spherical collapse.

In this paper we will work in terms of the dimensionless field c = j/j0
and Symmetron parameters composed by the average matter density at
symmetry breaking rssb, the vacuum Compton wavelength

l0 =
1p
2µ

, (5.28)

and the dimensionless coupling

b =
j0MPl

M2 . (5.29)

Using these parameters, the fifth force sourced by the Symmetron field can
be written as:

Fj = �16pGb2l2
0rssb crc. (5.30)

5.5 spherical collapse with the symmetron

Having introduced the Symmetron, let us now go back to the original goal
of this chapter, i.e. study spherical collapse in Symmetron gravity with a
particular focus on splashback.
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The splashback radius is commonly defined as the point where the
density profile r(r) is at its steepest. While this steepening is noteworthy
because it can be detected as a departure from an equilibrium profile, this
definition is clearly not suited for our study, where we assume a predefined
density profile. Fortunately, the splashback radius is also known to be
connected to the apocenter of recently accreted material and the location of
the latest caustic visible in the density profile. Here we study the effects of
the Symmetron force on splashback by using this latter definition.

Our simulation is based on a system of equations that includes the spher-
ical collapse equations, as discussed in Sec. 5.3, coupled to the equation for
the Symmetron field profile, discussed in Sec. 5.4. We start by presenting
our numerical method to compute both the Symmetron field profile and the
additional fifth force for the assumed density profile. We then proceed to in-
tegrate the shell equation to predict the fractional change in the splashback
position in the presence of the Symmetron force.

5.5.1 Field profile

Assuming the temporal evolution of the field to be very fast compared to
the other time-scales of the problem, i.e. the Hubble timescale and that of
the clustering of matter, the dimensionless field profile c(r) sourced by a
density profile r(r, t) satisfies the following equation:

d2c

dr2 +
2
r

dc

dr
=

1
2l2

0

✓
r(r, t)

rssb
� 1
◆

c + c3
�

. (5.31)

This quasi-static approximation is common in the literature [258–260] and
has been tested in the context of N-body simulations [261, 262]. In order
to provide a rough, order of magnitude justification for this assumption,
let us just mention that the timescale associated with the field dynamics in
vacuum is given by ⇠ l0/c. It is clear that in order for the Symmetron field
to be relevant for the dynamics of the spherical collapse, this l0 should be
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of the same order of magnitude as the scale of the cluster itself. The latter,
of course, is several orders of magnitude smaller than c/H0.

The static Symmetron equation of motion (5.31) is a non-linear elliptical
boundary value problem, for which we set the standard boundary condi-
tions of vanishing spatial gradient of the field at r = 0 and r ! •. We use
a one-dimensional version of the Newton-Gauss-Seidel relaxation method
for the numerical integration of the equation. This is a standard method
used for obtaining the scalar field profiles in N-body simulations with
modifications of gravity mentioned above.

In practice, we discretize our 1D static Symmetron equation of motion
on a regular grid of size h and use a second order discretization scheme for
all the derivatives.1 The resulting equation takes the form

L[ci+1, ci�1; ci] = 0, (5.32)

where

L[ci+1, ci�1; ci] ⌘ DK[ci+1, ci�1; ci] � DP[ci, ri] (5.33)

contains the discretization of the Laplace operator

DK ⌘ ci+1 + ci�1 � 2ci
h2 +

2
ri

ci+1 � ci�1

2h
(5.34)

and the effective potential:

DP =
1

l2
0

✓✓
ri

rssb
� 1
◆

ci + c3
i

◆
. (5.35)

The basic idea of the relaxation methods is to find a field profile from
this equation which is closer to the real solution than a randomly chosen

1 We have tested some outputs of our integrator against the results of version where higher
order discretization schemes are employed. For our particular problem we did not encounter
significant differences in performance of the integrator and performed the main analysis
with the version which employs the second order scheme.
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initial guess. This step is iterated over multiple (improved) guesses labelled
cn(i) until convergence is reached.

At a given step we define an improved (new) field profile:

cnew(i) = cn(i) � L(c(i))
∂L(c(i))/∂c(i)

����
c(i)=cn(i)

. (5.36)

Then we use a part of this new c as the field profile for our next relaxation
iteration:

cn+1(i) = wcnew + (1 � w)cn, (5.37)

where 0 < w 6 1 is a weight parameter with, in principle, a problem-
dependent optimal value.

We employ two intuitive convergence diagnostics, where at each step
we terminate the iteration if a certain parameter is within a predefined
threshold. The first parameter is the residual function:

R1 ⌘
r

Â
i

L[c(i + 1), c(i � 1); c(i)]2, (5.38)

and the second one is the all-mesh average of the fractional change in the
field profile.

R2 ⌘
r

Â
i
(cnew(i) � cold(i))2. (5.39)

To validate our integrator and convergence thresholds we compare the
numerical solution to a known analytic solution. Below we present two
different configurations.

For the first example let’s first note that we can always plug a non-zero
field profile in Eq. (5.31) and reconstruct a unique density profile which
serves as a source for the mentioned field profile. As an example, we can
choose a particular c ⇠ tanh(r) field profile. The gray line in the left panel
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Figure 5.6: The gray line in the left panel is a chosen, non-zero field profile. The
right panel demonstrates the corresponding reconstruction obtained by
plugging the gray line from the left panel into Eq. (5.31). The red dots
in the left panel are the result of the numerical integration using the
density profile from the right panel as an input source.

of Fig. 5.6 is the chosen field profile. Thr right panel of the same figure
demonstrates the corresponding reconstruction obtained by plugging the
gray line from the left panel into Eq. (5.31). The red dots in the left panel
are the result of the numerical integration using the density profile from the
right panel as an input source. As one can see, the numerical integration
successfully matches the expected analytical field configuration.

As our second example we consider the configuration of two parallel
plates with infinitely high density, separated by a vacuum gap. Let the
coordinate perpendicular to the plates be z with the gap width being
Dz and the plate surfaces being placed at �Dz/2 and +Dz/2. The field
equation of motion in this setup is given by

d2c

dẑ2 =
1

2l2
0

⇥
(r̃(ẑ) � 1) c + c3⇤ , (5.40)
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where we have additionally defined ẑ ⌘
p

2zl0 and r̃(ẑ) ⌘ r(ẑ)/M2µ2.
We can integrate this equation once in a z-interval where the density is
constant. Choosing two subsequent intervals being (0, Dẑ/2) and (Dẑ/2, •)
we can show that the value of the field on the plate surface cs is zero up to
negligible corrections of order of the ratio of the vacuum matter density to
the plate density. Then, choosing an interval (0, ẑ) with ẑ < Dẑ/2 we obtain

ẑ =
1q

1 � c2
g

2

"
F

 
p/2,

s
c2

g

2 � c2
g

!
� F

 
sin�1 c

cg
,

s
c2

g

2 � c2
g

!#
, (5.41)

where F is the elliptic integral of the first kind, and cg is the field value
in the middle of the gap. Fixing ẑ to Dẑ/2 and setting c = 0 we can
numerically solve for cg. Having the latter we will then have c as a function
of ẑ in the gap (written in terms of the Jacobi elliptic function).

We solve the Symmetron equation of motion Eq. (5.40) in the gap subject
to boundary conditions c(�Dẑ/2) = 0 = c(+Dẑ/2). In Fig. 5.7 we compare
this with the numerical solution of Eq. (5.41).

For both of the considered examples the solver has been demonstrated to
be able to converge to the correct solution with sub-percent level accuracy.
The convergence has been checked to be robust against several numerical
details, such as the grid resolution.

When solving for the density profile plotted in Fig. 5.3, we numerically
evaluate the equation of motion in the range [0, 2] for r/R(t), where the
density profile for r � R(t) is assumed to be constant. We make sure that
the arbitrary choice of the upper limit has no effect on our results by testing
larger values.

5.5.2 Splashback

Once the Symmetron field profiles are found as a function of time, the
present-day phase-space distribution of recently accreted material can be



222 splashback radius in symmetron gravity

Figure 5.7: The field profile in the vacuum region between two infinitely dense par-
allel plates. The gray line is obtained by numerically solving Eq. (5.41).
The red dots are the numerical solutions of the Symmetron equation of
motion Eq. (5.40).
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Figure 5.8: Effects of the Symmetron force on the splashback location for b =
3, zssb = 2 and l0/R(t0) = 0.05. On the left panel we show the phase-
space distribution of shells around a spherically symmetric halo, where
the shells are color-coded by their turn-around redshift. The dotted
line shows how this distribution is affected by the presence of the
Symmetron force. The arrows on the bottom point to the inferred
splashback radius in the two cases. On the right panel we display the
ratio between the Symmetron and the Newtonian force profiles, FS

FN
,

for different instants in time. At high redshifts, when the innermost
material is accreted, the Symmetron force is ten times smaller than its
peak value today.
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obtained by integrating numerically the equation of motion (5.1) with added
fifth force (5.30) for different collapse times.

We find that after imposing self-similarity, the collapse equations can be
written only as a function of three dimensionless Symmetron parameters:
the redshift of symmetry breaking zssb, the dimensionless coupling b, and
the ratio l0/R(t0) between the vacuum Compton wavelength l0 and the
present-day turn-around radius R(t0). An important combination of these
parameters is

f = (1 + zssb)
3b2 l2

0
R2(t0)

, (5.42)

which explicitly sets the strength of the Symmetron force according to
Eq. (5.30).

From our testing, we found that values l0/R(t0) 2 [0.02, 0.1] offer non-
trivial cases. For l0 ⇠ R(t0) we always obtain thin-shell-like solutions, while
for l0 ⌧ R(t0) the field is heavy and simply relaxes onto the minimum of
the potential Ṽ(c) in Eq. (5.25).

In Fig. 5.8 we illustrate our method and show how the Symmetron force
modifies the phase-space configuration of the latest accreted orbits (left
panel). We find that the splashback position is significantly affected for
parameter values f ⇠ 1, zssb ⇠ 2 and l0/R(t0) ⇠ 0.1. These values imply
M . 10�3MPl, which is in agreement with local tests of gravity [250].

From the same figure (right panel), it is clear that the innermost regions
of the overdensity are screened from the effects of the fifth force at all times
and this becomes relevant in the outer regions only for z ⌧ zssb. Past this
point, the force profile slowly transitions from a thick-shell to a thin-shell
like behaviour, where the force gets progressively concentrated around the
surface of the screened region [263]. Due to the sudden drop in density
associated with splashback, this surface is delimited by the splashback
radius.
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A systematic exploration of the Symmetron effects on this feature as a
function of all parameters is presented in Fig. 5.9, which represents our
main result. A clear trend with zssb is visible. Notice that the fractional
change on the splashback position has an optimal peak as a function of
zssb that is independent of f . If we call zsp the accretion redshift of the
shell currently sitting at the splashback position after its first pericenter,
i.e. the splashback shell, we see that the effect is maximized when zsp ' zssb.
This is easily explained by studying the profile of the fifth force over time.
For zsp � zssb, the selected shell collapses when the Symmetron is in its
symmetric phase and the material spends the rest of its trajectory in a
screened region, away from the effects of the fifth-force; for zsp ⌧ zssb, the
thin shell has had time to form before zsp and the shell feels the effects
of the fifth force only during a small fraction of its trajectory. Between
these two limiting cases there is an efficient zssb for which the splashback
shell has time to follow the formation of the thin shell and it is optimally
positioned near the peak of the force profile for most of its trajectory. In our
figure, we show how this peak still has a dependence on l0, introduced by
the presence of this factor on the Symmetron equation of motion (5.31).

To conclude this section, we point out that the smoothness of the density
profile as plotted in Fig. 5.3 has little impact on our results and no impact on
the trends discussed above. Differences between the two prescriptions exist
only for l0 ⌧ R(t0), when the field profile becomes susceptible to the small-
scale features of the profile. However, since we expect the sharp caustic to
be smoothed by gravitational instabilities, for the main results we chose
not to use the discontinuous profile and assumed instead its smoothed
version. Notice also that considering such high-resolution scenarios would
introduce additional caveats (e.g. the presence of sub-structure) that are not
the focus of this chapter.
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Figure 5.9: Percentage change in the splashback position in Symmetron gravity as
a function of Symmetron parameters: the dimensionless force strength
f and the SSB redshift zssb. The spread of the different curves is given
by variations of the third parameter, the vacuum Compton wavelength
of the field l0. We emphasize in particular the cases l0/R(t0) = 0.1
(dashed line) and l0/R(t0) = 0.02 (solid line), where R(t0) is the
present-day turn-around radius.
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5.6 discussion and conclusion

In this chapter, we have explored how Symmetron gravity affects the splash-
back feature at the edges of cosmological haloes. In our approach, we
assume a self-similar mass distribution motivated by spherical collapse
in an EdS Universe, where the shape of the spherically symmetric matter
distribution is assumed to be only a function of r/R(t). This allows us
to easily solve for the corresponding Symmetron fifth force and estimate
its effects on the splashback feature by studying the changed phase-space
distribution of recently accreted shells.

The main limitation of our study is the lack of a fully consistent frame-
work where the density profile, the turn-around physics and the phase-
space distribution are solved for in conjunction with the newly introduced
Symmetron equation of motion. As an example, we would expect a consis-
tent framework to take into account the back-reaction of the scalar field on
the density profile.

While deriving self-consistent solutions is outside the scope of this paper
and more suited to N-body simulation studies, we find it useful to discuss
the impact of our assumptions on the results. Changes to the turn-around
physics are commonly studied through the use of different approximations,
like a scale-dependent Newton’s constant [264–268]. In our case, if we
maintain the assumptions of self-similarity and power-law accretion in
Eq. (5.7), the main change to our formalism will come in the form of
upgrading the numerical constant appearing in Eq. (5.8) to a function of
the perturbation scale and cosmic time.

Previous works have estimated these corrections to be of the order of a
few percentage points at z ' 0; see [263] for results in Symmetron gravity
and [268] for similar results in f (R) theory. In particular, we expect our as-
sumption to first break at a redshift z such that the condition Fj(r) ⇠ FN(r)
is satisfied at the turnaround radius r = R(t). In our analysis, however, we
have seen that the effects on splashback are maximized when the collapse
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redshift of the splashback shell zsp is equivalent to this transition redshift.
After this point, the splashback shell is confined in the inner region and we
expect its trajectory to be unaffected by the turn-around physics. Therefore,
we consider our results around the peak of Fig. 5.9 to be robust against this
assumption. For the same reason, however, we expect to lose predictability
for higher values of zssb, since the initial condition of the splashback shell
will differ from what we have assumed.

Notice that the argument presented above also implies that our results
can be extended to a standard LCDM scenario. The present-day splashback
shell is expected to have collapsed in the matter-dominated era and to
have followed a trajectory mostly unaffected by the late-time expansion,
especially for low values of the accretion rate s like the one considered here
[241].

Effects of modified gravity on the structure of dark matter halos are
usually presented in the form of changes in the small-scale power spectra
[258, 260, 269, 270] and two-point correlation functions [271] or the whole
phase-space distribution [272, 273]. In this analysis, we focused instead on a
particular scale, the splashback radius, and showed that up to a 10% change
can be induced (Fig. 5.9). It should be pointed out that [274] was the first
work to explore how modified gravity affects the splashback position. We
stress, however, that our work differs from theirs in three major aspects.
First, here we focus on Symmetron gravity which displays a different
screening mechanism from the chameleon or k-mouflage explored in [274] .
Second, while their results based on N-body simulations represent more
realistic predictions, they do not allow for a simple exploration of the theory
parameter space. Third, with our semi-analytical approach, we are able
to gain insight by obtaining quantitative results as a function of multiple
theory parameters and provide an explanation for the visible trends. All
this said, it also should be mentioned that the quantitative estimation of
the modelling uncertainties will still resort on N-body simulations. This is
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an interesting aspect and we leave its systematic investigation to a future
work.

Observationally, splashback can be measured predominantly around
galaxy clusters, for which the present-day turn-around radius R(t0) is of
the order of a few Mpc. Our results, therefore, imply that this feature can
be used to constrain fifth forces with vacuum Compton wavelength l0 just
below the Mpc scale. Because the measurements of splashback in the galaxy
distributions around clusters have already achieved a precision below the
size of our predicted effect [246–249], we expect to soon be able to constrain
not only the Symmetron, but other fifth force models on similar scales.

Note in particular that, while other works have explored the possibility
of constraining Symmetron gravity on Mpc scales [275, 276], the range
considered here for l0 is unconstrained for this model. Thus we expect a
measurement based on splashback to naturally complement other results
based on laboratory experiments [277, 278], stellar and compact astrophysi-
cal objects [279, 280] or galactic disks and stellar clusters [256, 281, 282].

As the physics of splashback matures into a new cosmological observ-
able, we expect it to play a powerful role in testing modifications of gravity,
complementary to already established techniques such as those for large
scale structure.
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[183] A. Emir Gümrükçüoğlu, Lavinia Heisenberg, and Shinji Mukohyama.
“Cosmological perturbations in massive gravity with doubly coupled
matter.” In: JCAP 1502 (2015), p. 022. doi: 10.1088/1475-7516/2015/
02/022. arXiv: 1409.7260 [hep-th].

[184] Lavinia Heisenberg. “Quantum corrections in massive bigravity and
new effective composite metrics.” In: Class.Quant.Grav. 32.10 (2015),
p. 105011. doi: 10.1088/0264-9381/32/10/105011. arXiv: 1410.4239
[hep-th].
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S U M M A RY

In the last several decades our understanding of cosmology has evolved
enormously. We now have a phenomenologically self-consistent model,
known as the Cosmological Standard Model or LCDM, which is able to fit the
huge amount of observational data with only a few free parameters. Modern
cosmological research is now largely driven by the studies exploring the
possible extensions of, and alternatives to, this standard picture. This is
motivated, first of all, by a few theoretical puzzles in the Cosmological
Standard Model. Indeed, while we can effectively describe the observational
data, we are still lacking a consistent theoretical picture of the so-called dark
sector, namely dark energy, which drives the present-day cosmic acceleration,
and dark matter, which is responsible for the Large Scale Structure formation
of the universe.

However, even if we dismiss these important puzzles, considering them to
be too complicated to be tackled with our current knowledge, the study of
alternative cosmological models is important given the fact that the quality
of cosmological data is progressively evolving forward. This will give us
a chance to test many of our current theoretical ideas and to find new
directions to move forward. An informative example is the study of gravity.
Cosmological observations are able to teach us a lot about the underlying
theory of gravity and we might be able to find deviations from the General
Theory of Relativity at cosmological scales. Therefore, while being largely
motivated as an explanation of cosmic acceleration, such investigations of
alternative gravity theories at cosmological scales can also be considered
independently from the problem of cosmic acceleration.
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With this big picture in mind, the topic of the present thesis is the
investigation of phenomena beyond the cosmological standard model in
various regimes of interest. Below we briefly summarize the content of the
dissertation.

• Chapter 1 sets the stage for the entire thesis. In this chapter we
introduce the main concepts of modern cosmology. We present a very
short review of cosmological perturbation theory and discuss the
essential observations. We also give short introductions to the topics
of dynamical dark energy/quintessence, modifications of gravity and
screening mechanisms.

• Chapter 2 is dedicated to a study of a new class of inflationary models
known as cosmological a-attractors. We promote these models towards
a unified framework describing both inflation and dark energy. We
construct and study several phenomenologically rich models which
are compatible with current observations. In the simplest models, with
vanishing cosmological constant L, one has the tensor to scalar ratio
r = 12a

N2 , with N being the number of e-folds till the end of inflation,
and the asymptotic equation of state of dark energy w = �1 + 2

9a .
For example, for a theoretically interesting model given by a = 7/3
one finds r ⇠ 10�2 and the asymptotic equation of state is w ⇠ �0.9.
Future observations, including large-scale structure surveys as well
as Cosmic Microwave Background B-mode polarization experiments
will test these, as well as more general models presented here. We
also discuss the gravitational reheating in models of quintessential
inflation and argue that its investigation may be interesting from the
point of view of inflationary cosmology. Such models require a much
greater number of e-folds, and therefore predict a spectral index ns
that can exceed the value in more conventional models of inflationary
a-attractors by about 0.006. This suggests a way to distinguish the
conventional inflationary models from the models of quintessential
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inflation, even if the latter predict w = �1. This chapter is based on
Ref. [64].

• The topic of Chapter 3 is the theory of massive bigravity, where one
has two dynamical tensor degrees of freedom. We consider an inter-
esting extension where both of the metrics are coupled to the matter
sector, which is known as the doubly-coupled bigravity. The main aim
of this chapter is the study of gravitational-wave propagation in this
theory. We demonstrate that the bounds on the speed of gravitational
waves imposed by the recent detection of gravitational waves emitted
by a pair of merging neutron stars and their electromagnetic coun-
terpart, events GW170817 and GRB170817A, strongly limit the viable
solution space of the doubly-coupled models. We have shown that
these bounds either force the two metrics to be proportional at the
background level or the models to become singly-coupled (i.e. only
one of the metrics to be coupled to the matter sector). The mentioned
proportional background solutions are particularly interesting. In-
deed, it is shown that they provide stable cosmological solutions with
phenomenologies equivalent to that of LCDM at the background
level and at the level of linear perturbations. The nonlinearities, on
the other hand, are expected to show deviations from LCDM. This
chapter is based on Ref. [65].

• In Chapter 4 we study the first cosmological implications of a novel
massive gravity theory, recently proposed by Chamseddine and
Mukhanov, known as the mimetic theory of massive gravity. This is
a theory of ghost-free massive gravity, which additionally contains a
so-called mimetic dark matter component. In an echo of other modified
gravity theories, there are self-accelerating solutions which contain a
ghost instability. In the ghost-free region of parameter space, the effect
of the graviton mass on the cosmic expansion history amounts to an
effective negative cosmological constant, a radiation component, and
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a negative curvature term. This allows us to place constraints on the
model parameters—particularly the graviton mass—by insisting that
the effective radiation and curvature terms be within observational
bounds. The late-time acceleration must be accounted for by a sepa-
rate positive cosmological constant or other dark energy sector. We
impose further constraints at the level of perturbations by demanding
linear stability. We comment on the possibility of distinguishing this
theory from LCDM with current and future large-scale structure
surveys. This chapter is based on Ref. [66].

• The final Chapter 5 is dedicated to the study of the effects of screening
mechanisms in modified gravity on the dynamics of the spherical
collapse of dark matter. In particular, we investigate the splashback
scale in symmetron modified gravity. The splashback radius rsp has been
identified in cosmological N-body simulations as an important scale
associated with gravitational collapse and the phase-space distribution
of recently accreted material. We employ a semi-analytical approach,
namely the self-similar spherical collapse framework, to study the
spherical collapse of dark matter haloes in symmetron gravity. We
provide, for the first time, insights into how the phenomenology
of splashback is affected by modified gravity. The symmetron is a
scalar-tensor theory which exhibits a screening mechanism whereby
higher-density regions are screened from the effects of a fifth force.
In this model, we find that, as over-densities grow over cosmic time,
the inner region becomes heavily screened. In particular, we identify
a sector of the parameter space for which material currently sitting
at the splashback radius rsp, during its collapse has followed the
formation of this screened region. As a result, we find that for this part
of the parameter space the splashback radius is maximally affected
by the symmetron force and we predict changes in rsp up to around
10% compared to its General Relativity value. Because this margin
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is within the precision of present splashback experiments, we expect
this feature to soon provide constraints for symmetron gravity on
previously unexplored scales. This chapter is based on Ref. [67].





S A M E N VAT T I N G

In de laatste decennia is ons begrip van de kosmologie sterk toegenomen.
Wij hebben tegenwoordig een fenomenologisch intrinsiek consistent model,
bekend als het "Cosmological Standard Model" of "LCDM", dat erin slaagt
de enorme hoeveelheid waarnemingen te interpreteren met slechts een paar
vrije parameters. Hedendaags kosmologisch onderzoek is voornamelijk
gericht op de studie naar de mogelijke uitbreiding van of alternatieven voor
dit standaardmodel. Dit wordt in eerste instantie gemotiveerd door enkele
theoretische problemen in het Kosmologisch Standaard Model. Hoewel we
inderdaad de waarnemingen effectief kunnen beschrijven, ontbreekt nog
steeds een consistent theoretisch beeld van de zogenaamde donkere sector,
d.w.z. de donkere energie die de huidige kosmische versnelling aandrijft
en de donkere materie die verantwoordelijk is voor de vorming van de
grote-schaalstructuur van het universum.

Zelfs als we deze belangrijke problemen negeren, met de veronderstelling
dat ze te ingewikkeld zijn om met onze huidige kennis aangepakt te worden,
is de studie van alternatieve kosmologische modellen belangrijk gezien het
feit dat de kwaliteit van kosmologische gegevens voortdurend beter wordt.
Deze ontwikkeling geeft ons een kans om veel van onze huidige theoretische
ideeën te testen en nieuwe richtingen te vinden om naartoe te werken. Een
informatief voorbeeld is de studie van de zwaartekracht. Kosmologische
waarnemingen kunnen ons veel leren over de onderliggende theorie van
de zwaartekracht, en mogelijkerwijs kunnen we op kosmologische schalen
afwijkingen vinden van de algemene relativiteitstheorie. Daarom is dergelijk
onderzoek van alternatieve zwaartekrachttheorieën, hoewel grotendeels
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gemotiveerd met het oog op een verklaring voor kosmische versnelling, ook
onafhankelijk van dit vraagstuk van belang.

Het onderwerp van dit proefschrift is, met dit bredere beeld in het
achterhoofd, het onderzoek van fenomenen voorbij het kosmologische
standaardmodel in verschillende interessante richtingen. Hieronder geven
we een korte samenvatting van de inhoud van het proefschrift.

• Hoofdstuk 1 biedt een inleiding op het proefschrift. In dit hoofdstuk
zullen we de belangrijkste concepten van de moderne kosmologie
introduceren. We presenteren een beknopt overzicht van de kosmo-
logische storingstheorie en bespreken de essentiële waarnemingen.
We geven ook korte inleidingen op de onderwerpen van dynamis-
che donkere energie/kwintessens, modificaties van zwaartekracht en
afschermingsmechanismen.

• Hoofdstuk 2 is gewijd aan de bestudering van een nieuwe klasse
van inflatoire modellen bekend als kosmologische a-attractoren. We
brengen deze modellen naar voren als een gemeenschappelijk kader
voor de beschrijving van zowel inflatie als donkere energie. Wij con-
strueren en bestuderen een aantal fenomenologisch rijke modellen die
compatibel zijn met de huidige waarnemingen. In de eenvoudigste
modellen, met een kosmologische constante L naar nul, heeft men
de tensor-to-scalar ratio r = 12a

N2 , waarbij N het aantal e-foldings is tot
het einde van de inflatie, en de asymptotische toestandsvergelijking
van donkere energie w = �1 + 2

9a . Bijvoorbeeld, voor een theoretisch
interessant model gegeven door a = 7/3 vindt men r ⇠ 10�2 en
de asymptotische toestandsvergelijking is w ⇠ �0.9. Toekomstige
waarnemingen, inclusief zowel opnamen van de grote-schaalstructuur
als experimenten betreffende de B-mode polarisatie van de kosmis-
che achtergrondstraling, zullen deze testen, evenals meer algemene
modellen die hier worden gepresenteerd. Wij bespreken ook de gravi-
tationele verhitting in modellen van kwintessentiële inflatie en stellen
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dat het onderzoek daarvan interessant kan zijn vanuit het oogpunt van
inflatoire kosmologie. Dergelijke modellen vereisen een veel groter
aantal e-foldings en voorspellen daarom een spectraalindex ns die de
waarde in meer conventionele modellen van inflatoire a-attractoren
kan overtreffen met ongeveer 0.006. Dit suggereert een manier om
de modellen van kwintessentiële inflatie te onderscheiden van de
conventionele inflatoire modellen, zelfs als de eerstgenoemde w = �1
voorspelt. Dit hoofdstuk is gebaseerd op Ref. [64].

• Het onderwerp van hoofdstuk 3 is de theorie van "massive bigrav-
ity" waar twee dynamische tensorvrijheidsgraden aanwezig zijn. We
beschouwen een interessante uitbreiding waarbij beide metrieken
gekoppeld zijn aan de materie-sector die bekend staat als "doubly-
coupled bigravity". Het voornaamste doel van dit hoofdstuk is de
bestudering van de voortplanting van zwaartekrachtsgolven in deze
theorie. We tonen aan dat de snelheidsgrenzen van de zwaartekrachts-
golven opgelegd door de recente detectie van zwaartekrachtsgolven
uitgestraald door een tweetal samenvoegende neutronensterren en
hun elektromagnetische tegenhanger, gebeurtenissen GW170817 en
GRB170817A, de mogelijke oplossingsruimte van de dubbelgekop-
pelde modellen aanzienlijk verkleinen. We hebben laten zien dat deze
snelheidsgrenzen ofwel de twee metrieken dwingen evenredig te zijn
op het achtergrondniveau ofwel de modellen om enkelvoudig gekop-
peld te worden (d.w.z. alleen één van de metrieken is gekoppeld aan
de materie-sector). Ook is aangetoond dat de genoemde proportionele
oplossingen stabiele kosmologieën bieden die fenomenologisch gelijk
zijn aan de oplossing van LCDM op het niveau van de achtergrond
en het niveau van lineaire verstoringen. Aan de andere kant zullen de
niet-lineariteiten naar verwachting afwijkingen van LCDM vertonen.
Dit hoofdstuk is gebaseerd op Ref. [65].
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• In hoofdstuk 4 bestuderen we de eerste kosmologische implicaties van
een nieuwe zwaartekrachttheorie, recent voorgesteld door Chamsed-
dine en Mukhanov, bekend als de "mimetic theory of massive grav-
ity". Dit is een theorie van "ghost"-vrije massieve zwaartekracht, die
bovendien een zogenaamde mimetische donkere materie component
bevat. Net als in andere gemodificeerde zwaartekrachttheorieën zijn
er zelfversnellende oplossingen die een "ghost"-instabiliteit bevatten.
In het "ghost"-vrije gebied van de parameterruimte komt het effect
van de gravitonmassa op de geschiedenis van de kosmische expansie
overeen met een effectieve negatieve kosmologische constante, een
stralingscomponent, en een negatieve krommingsterm. Hiermee kun-
nen we grenzen opleggen aan de modelparameters, met name de
gravitonmassa, door te eisen dat de effectieve stralings- en kromteter-
men binnen waarnemingsgrenzen liggen. De kosmische versnelling
moet worden verklaard door een afzonderlijke positieve kosmolo-
gische constante of een andere donkere energiesector. Door lineaire
stabiliteit te eisen leggen we op het niveau van verstoringen verdere
beperkingen op. Met het oog op huidige en toekomstige opnamen
van de grote-schaalstructuur bespreken we ook de mogelijkheid om
deze theorie te onderscheiden van LCDM. Dit hoofdstuk is gebaseerd
op Ref. [66].

• Hoofdstuk 5, het laatste, is gewijd aan de studie van de effecten van
afschermingsmechanismen in gemodificeerde zwaartekrachttheorie
en op de dynamiek van de sferische instorting van donkere materie.
We onderzoeken in het bijzonder de zogenoemde "splashback scale"
in "symmetron modified gravity". De "splashback"-straal rsp is in kos-
mologische N-body simulaties vastgesteld als een belangrijke schaal
geassocieerd met zwaartekrachtinstorting en de faseruimteverdeling
van recent samengetrokken materie (accretie). We maken gebruik van
een semi-analytische benadering, namelijk het kader van de zelfgeli-
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jkvormige sferische instorting, om de sferische instorting van donkere
materiehalo’s in symmetrongravitatie te bestuderen. Wij bieden voor
het eerst inzicht in hoe de fenomenologie van "splashback" wordt beïn-
vloed door gemodificeerde zwaartekracht. De symmetron is een scalar-
tensor theorie die een afschermingsmechanisme vertoont waarbij ge-
bieden met hogere dichtheid worden afgeschermd van de effecten
van een vijfde kracht. In dit model vinden we dat als overdichtheden
groeien in de kosmische tijd, het binnengebied zwaar afgeschermd
wordt. In het bijzonder identificeren we een sector van de parameter-
ruimte waarvoor materie die momenteel op de "splashback"-straal zit
tijdens de instorting de vorming van dit afgeschermde gebied gevolgd
heeft. Daarbij hebben wij ontdekt dat voor dit deel van de parame-
terruimte de "splashback"-straal maximaal beïnvloed is door de sym-
metronkracht, en we voorspellen veranderingen in rsp tot ongeveer
10% in vergelijking met zijn algemene relativiteitswaarde. Aangezien
deze marge binnen de precisie van huidige "splashback"-experimenten
valt, verwachten we dat deze straal binnenkort randvoorwaarden zal
bieden voor symmetrongravitatie op voorheen onontgonnen schalen.
Dit hoofdstuk is gebaseerd op Ref. [67].
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