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A Tutorial on Regularized Partial Correlation Networks

Sacha Epskamp and Eiko I. Fried
University of Amsterdam

Abstract
Recent years have seen an emergence of network modeling applied to moods, attitudes, and problems in the
realm of psychology. In this framework, psychological variables are understood to directly affect each other
rather than being caused by an unobserved latent entity. In this tutorial, we introduce the reader to estimating
the most popular network model for psychological data: the partial correlation network. We describe how
regularization techniques can be used to efficiently estimate a parsimonious and interpretable network
structure in psychological data. We show how to perform these analyses in R and demonstrate the method in
an empirical example on posttraumatic stress disorder data. In addition, we discuss the effect of the
hyperparameter that needs to be manually set by the researcher, how to handle non-normal data, how to
determine the required sample size for a network analysis, and provide a checklist with potential solutions for
problems that can arise when estimating regularized partial correlation networks.

Translational Abstract
Recent years have seen an emergence in the use of networks models in psychological research to explore
relationships of variables such as emotions, symptoms, or personality items. Networks have become partic-
ularly popular in analyzing mental illnesses, as they facilitate the investigation of how individual symptoms
affect one-another. This article introduces a particular type of network model: the partial correlation network,
and describes how this model can be estimated using regularization techniques from statistical learning. With
these techniques, a researcher can gain insight in predictive and potential causal relationships between the
measured variables. The article provides a tutorial for applied researchers on how to estimate these models,
how to determine the sample size needed for performing such an analysis, and how to investigate the stability
of results. We also discuss a list of potential pitfalls when using this methodology.

Keywords: Partial correlation networks, Regularization, Network modeling, Tutorial
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Recent years have seen increasing use of network modeling for
exploratory studies of psychological behavior as an alternative to
latent variable modeling (Borsboom & Cramer, 2013; Schmitt-
mann et al., 2013). In these so-called psychological networks
(Epskamp, Borsboom, & Fried, 2017), nodes represent psycholog-
ical variables such as mood states, symptoms, or attitudes, while
edges (links connecting two nodes) represent unknown statistical
relationships that need to be estimated. As a result, this class of
network models is strikingly different from social networks, in
which edges are known (Wasserman & Faust, 1994), posing novel
problems for statistical inference. A great body of technical liter-
ature exists on the estimation of network models (e.g., Foygel &

Drton, 2010; Friedman, Hastie, & Tibshirani, 2008; Hastie, Tib-
shirani, & Friedman, 2001, 2015; Meinshausen & Bühlmann,
2006). However, this line of literature often requires a more
technical background and does not focus on the unique problems
that come with analyzing psychological data, such as the handling
of ordinal data, how a limited sample size affects the results, and
the correspondence between network models and latent variable
models.

Currently, the most common model used to estimate psycholog-
ical networks based on continuous data is the partial correlation
network. Partial correlation networks are usually estimated using
regularization techniques originating from the field of machine
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learning. These techniques have been shown to perform well in
retrieving the true network structure (Foygel & Drton, 2010;
Friedman et al., 2008; Meinshausen & Bühlmann, 2006). Regu-
larization involves estimating a statistical model with an extra
penalty for model complexity. Doing so leads to a model to be
estimated that is sparse: many parameters are estimated to be
exactly zero. When estimating networks, this means that edges that
are likely to be spurious are removed from the model, leading to
networks that are simpler to interpret. Regularization therefore
jointly performs model-selection and parameter estimation. Regu-
larization techniques have grown prominent in many analytic
methods, ranging from regression analysis to principal component
analysis (Hastie, Tibshirani, & Wainwright, 2015). In this tutorial,
we will only discuss regularization in the context of network
estimation. For an overview of such methods applied more broadly
in psychological methods, we refer the reader to Chapman, Weiss,
and Duberstein (2016).

Regularized network estimation has already been used in a
substantive number of publications in diverse fields, such as
clinical psychology (e.g., Deserno, Borsboom, Begeer, &
Geurts, 2016; Fried, Epskamp, Nesse, Tuerlinckx, & Borsboom,
2016; Jaya, Hillmann, Reininger, Gollwitzer, & Lincoln, 2016;
Knefel, Tran, & Lueger-Schuster, 2016; Levine & Leucht,
2016; van Borkulo et al., 2015), psychiatry (e.g., Isvoranu,
Borsboom et al., 2016, Isvoranu, van Borkulo et al., 2016;
McNally, 2016), personality research (e.g., Costantini, Ep-
skamp et al., 2015; Costantini, Richetin et al., 2015), and health
sciences (e.g., Kossakowski et al., 2015; Langley, Wijn, Ep-
skamp, & Van Bork, 2015). What these articles have in com-
mon is that they assume observed variables to causally influ-
ence one another, leading to network models consisting of
nodes such as psychopathology symptoms (e.g., sad mood,
fatigue, and insomnia), items of personality domains like con-
scientiousness (e.g., impulse-control, orderliness, and industri-
ousness), or health behaviors (e.g., feeling full of energy, get-
ting sick easily, and having difficulties performing daily tasks).
From this network perspective, correlations among items stem
from mutual associations among variables, which differs from
the traditional perspective where latent variables are thought to
explain the correlation among variables (Schmittmann et al.,
2013). Psychological networks thus offer a different view of
item clusters: syndromes such as depression or anxiety disorder
in the realm of mental disorders (Borsboom, 2017; Cramer,
Waldorp, van der Maas, & Borsboom, 2010; Fried et al., 2017),
personality facets or domains such as extraversion or neuroti-
cism in personality research (Cramer et al., 2012; Mõttus and
Allerhand, 2017), health domains like physical or social func-
tioning in health research (Kossakowski et al., 2015), and the
g-factor in intelligence research (Van Der Maas et al., 2006,
2017). Important to note is that one does not have to adhere to
this network perspective (i.e., network theory) in order to use
the methods described in this tutorial (i.e., network methodol-
ogy): psychological networks can be powerful tools to explore
multicollinearity and predictive mediation, and can even be
used to highlight the presence of latent variables.

We are not aware of concise and clear introductions aimed at
empirical researchers that explain regularization. The goal of
this article is thus (a) to provide an introduction to regularized
partial correlation networks, (b) to outline the commands used

in R to estimate these models, and (c) to address the most
common problems and questions arising from analyzing regu-
larized partial correlation networks. The methodology intro-
duced in this tutorial comes with the assumption that the cases
(the rows of the spreadsheet) in the data set are independent,
which is usually the case in cross-sectional data. Applying these
methods to time-series data does not take temporal dependence
between consecutive cases into account. We refer the reader to
Epskamp, Waldorp, Mõttus, and Borsboom (2017) to a discus-
sion of extending this framework to such temporally ordered
data sets. While this tutorial is primarily aimed at empirical
researchers in psychology, the methodology can readily be
applied to other fields of research as well.

This tutorial builds on the work of two prior tutorials:
Costantini, Epskamp et al. (2015) focused on psychological
networks in the domain of personality research, described dif-
ferent types of networks ranging from correlation networks to
adaptive lasso networks (Krämer, Schäfer, & Boulesteix, 2009;
Zou, 2006), and introduced basic concepts such as centrality
estimation in Epskamp, Borsboom et al. (2017) introduced
several tests that allow researchers to investigate the accuracy
and stability of psychological networks and derived graph-
theoretical measures such as centrality, tackling the topics of
generalizability and replicability. The present tutorial goes be-
yond these articles in the following ways:

• Costantini, Epskamp et al. (2015) estimated the network
structure using a different form of regularization (adaptive
lasso; Zou, 2006), a different method for estimating the
parameters (node-wise regressions; (Meinshausen & Büh-
lmann, 2006), and a different method for selecting the
regularization tuning parameter (cross-validation; Krämer
et al., 2009). While an acceptable method for estimating
regularized partial correlation networks, this procedure
can lead to unstable results due to differences in the
cross-validation sample selection (see section 2.5.6 of
Costantini, Epskamp et al., 2015) and is not capable of
handling ordinal data. We estimate regularized partial
correlation networks via the Extended Bayesian Informa-
tion Criterion (EBIC) graphical lasso (Foygel & Drton,
2010), using polychoric correlations as input when data
are ordinal. We detail advantages of this methodology, an
important one being that it can be used with ordinal
variables that are very common in psychological research.

• We offer a detailed explanation of partial correlations and
how these should be interpreted. Especially since the work
of Costantini, Epskamp et al. (2015), researchers have
gained a better understanding of the interpretation of par-
tial correlation networks and their correspondence to mul-
ticollinearity and latent variable modeling. We summarize
the most recent insights in these topics.

• We provide a state-of-the-art FAQ addressing issues that
researchers regularly struggle with—including power analy-
sis and sample size recommendations that have been called
for repeatedly (Epskamp, Borsboom et al., 2017; Fried &
Cramer, 2017)—and offer novel solutions to these
challenges.

The following sections are structured as follows. First, we
introduce partial correlation networks and their estimation, pro-
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viding detailed information on how these networks can be
interpreted. Second, we explain regularization, an integral step
in the estimation of partial correlation networks to avoid spu-
rious relationships among items. Third, we explain how to best
deal with non-normal (e.g., ordinal) data when estimating par-
tial correlation networks. Fourth, we show researchers how to
estimate partial correlation networks in R using an empirical
example dataset. The fifth section covers replicability and
power analysis for partial correlation networks. In this section,
we present the simulation tool netSimulator, which allows
researchers to determine the sample size that would be required
to successfully examine a specific network structure. We also
summarize post hoc stability and accuracy analyses that are
described in detail elsewhere (Epskamp, Borsboom et al.,
2017). Finally, we conclude with solutions to the most com-
monly encountered problems when estimating network models
and cover supplemental topics such as comparing networks
given unequal sample sizes, unexpected negative relationships
among items, very strong positive relationships, or empty net-
works without any edges.

Partial Correlation Networks

The most commonly used framework for constructing a psy-
chological network on data that can be assumed to be multi-
variate normal is to estimate a network of partial correlation
coefficients (Borsboom & Cramer, 2013; McNally et al., 2015).
These coefficients range from �1 to 1 and encode the remain-
ing association between two nodes after controlling for all other
information possible, also known as conditional independence
associations. Partial correlation networks have also been called
concentration graphs (Cox & Wermuth, 1994) or Gaussian
graphical models (Lauritzen, 1996), and are part of a more
general class of statistical models termed pairwise Markov
random fields (see, e.g., Koller & Friedman, 2009 and Murphy,
2012 for an extensive description of pairwise Markov random
fields). The interpretation of partial correlation networks has
recently been described in the psychological literature (e.g.,
conceptual guides are included in Costantini, Epskamp et al.,
2015 and the online supplementary materials of Epskamp, Bors-
boom et al., 2017; an extensive technical introduction is in-
cluded in Epskamp, Waldorp et al., 2017). To keep the present
tutorial self-contained, we succinctly summarize the interpre-
tation of partial correlations below.

Drawing partial correlation networks. After partial corre-
lations have been estimated, they can be visualized in a
weighted network structure. Each node represents a variable
and each edge represents that two variables are not independent
after conditioning on all variables in the dataset. These edges
have a weight, edge weights, which are the partial correlation
coefficients described below. Whenever the partial correlation
is exactly zero, no edge is drawn between two nodes, indicating
that two variables are independent after controlling for all other
variables in the network. Several different software packages
can be used to visualize the network. For example, one could
use the freely available software packages cytoscape (Shannon
et al., 2003), gephi (Bastian et al., 2009), or R packages qgraph
(Epskamp, Cramer, Waldorp, Schmittmann, & Borsboom,
2012), igraph (Csardi & Nepusz, 2006), Rgraphviz (Gentry et

al., 2011), or ggraph (Pedersen, 2017). The qgraph package has
commonly been used in psychological literature as it automates
many steps for drawing weighted networks and includes the
estimation methods discussed in this article. When drawing a
network model, the color and weight of an edges indicates its
magnitude and direction. Using qgraph, red lines indicate neg-
ative partial correlations, green (using the classic theme), or
blue (using the colorblind theme) lines indicate positive partial
correlations, with wider and more saturated lines indicating
stronger partial correlations (Epskamp et al., 2012).

Obtaining partial correlation networks. While multiple ways
exist to compute partial correlation coefficients (Cohen, Cohen,
West, & Aiken, 2003), we focus on two commonly used methods
that have been shown to obtain the partial correlations quickly.
First, the partial correlations can be directly obtained from the
inverse of a variance–covariance matrix. Let y represent a set of
item responses, which we can assume without loss of generality to
be centered. Let � (sigma) denote a variance–covariance matrix.
Then, the following states that we assume y to have a multivariate
normal distribution:

y � N(0, �).

Let K (kappa) denote the inverse of �, also termed the precision
matrix:

K � ��1,

then, element �ij (row i, column j of K) can be standardized to
obtain the partial correlation coefficient between variable yi and
variable yj, after conditioning on all other variables in y, y�(i,j)

(Lauritzen, 1996):

Cor(yi, yj | y�(i,j)) � �
�ij

��ii��jj

.

An alternative way to obtain the partial correlation coefficients
is by using node-wise regressions (Meinshausen & Bühlmann,
2006). If one was to perform a multiple regression in which y1 is
predicted from all other variables:

y1 � �10 � �12y2 � �13y3 � . . . � ε1,

followed by a similar regression model for y2:

y2 � �20 � �21y1 � �23y3 � . . . � ε2,

and similarly for y3, y4, etc., then, the same partial correlation
coefficient between yi and yj is proportional to either the regression
slope predicting yi from yj or the regression slope predicting yj

from yi (Pourahmadi, 2011):

Cor(yi, yj | y�(i,j)) �
�ijSD(εj)

SD(εi)
�

�jiSD(εi)
SD(εj)

,

in which SD stands for the standard deviation. Obtaining a partial
correlation coefficient by standardizing the precision matrix or
performing node-wise regressions will lead to the exact same
estimate.

Interpreting partial correlation networks. Partial correla-
tion networks allow for several powerful inferences. These points
are a summary of a more detailed and technical introduction by
Epskamp, Waldorp et al. (2017):
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• Partial correlation networks allow one to model unique
interactions between variables. If A correlates with B, and
B correlates with C, then we would naturally expect A to
correlate with C. An unconditional correlation of zero
between A and C would be unexpected as only few causal
structures would lead to such a correlational pattern.1 If
the data are normal, partial correlations can be interpreted
as pairwise interactions,2 of which we only need two to
model the correlational pattern: an interaction between A
and B and an interaction between B and C. This model will
contain one degree of freedom and thus leads to a testable
hypothesis (Epskamp, Rhemtulla, & Borsboom, 2017).
Such a point of view is akin to loglinear modeling of
categorical data (Agresti, 1990; Wickens, 1989), which is
structurally comparable to the partial correlation network
(Epskamp, Maris, Waldorp, & Borsboom, 2018).

• The partial correlation network maps out multicollinearity
and predictive mediation. As shown above, partial corre-
lations are closely related to coefficients obtained in mul-
tiple regression models: When an independent variable
does not predict the dependent variable, we would not
expect an edge in the network. The strength of the partial
correlation is furthermore directly related to the strength of
the regression coefficient. The edges connected to a single
node therefore show the researcher the expected result of
a multiple regression analysis. Unlike what can be seen
from a multiple regression analysis of a single dependent
variable, however, the network also shows which variables
would predict the independent variables. By linking sep-
arate multiple regression models, partial correlation net-
works allow for mapping out linear prediction and multi-
collinearity among all variables. This allows for insight
into predictive mediation: a network in which two vari-
ables are not directly connected but are indirectly con-
nected (e.g., A � B � C) indicates that A and C may be
correlated, but any predictive effect from A to C (or vice
versa) is mediated by B.

• Partial correlations can be indicative of potential causal
pathways. Conditional independence relationships, such as
those encoded by partial correlation coefficients, play a
crucial role in causal inference (Pearl, 2000). When all
relevant variables are assumed to be observed (i.e., no
latent variables), a partial correlation between variables A
and B would only be expected to be nonzero if A causes B,
B causes A, there is a reciprocal relationship between A
and B, or both A and B cause a third variable in the
network (Pearl, 2000; Koller & Friedman, 2009). To this
end, partial correlation networks are thought of as highly
exploratory hypothesis-generating structures, indicative of
potential causal effects. While exploratory algorithms ex-
ist that aim to discover directed (causal) networks, they
rely on strong assumptions such as acyclity (a variable
may not eventually cause itself (e.g., A ¡ B ¡ C ¡ A),
and are more strongly influenced by latent variables caus-
ing covariation (latent variables would induce directed
edges between observed variables implying a strong
causal hypothesis). Additionally, these models are not
easily identified or parameterized: Many equivalent di-
rected models can fit the data equally well, all differently

parameterized. Partial correlation networks, on the other
hand, are well identified (no equivalent models) and easily
parameterized using partial correlation coefficients. As
such, exploratively estimating undirected networks offer
an attractive alternative to exploratively estimating di-
rected networks, without the troublesome and poorly iden-
tified direction of effect.3

• Clusters in the network may highlight latent variables.
While partial correlations aim to highlight unique variance
between two variables, they retain shared variance due to
outside sources that cannot fully be partialed out by con-
trolling for other variables in the network. As a result, if a
latent variable causes covariation between two or more
variables in the network, it is expected that all these
variables will be connected in the network, forming a
cluster (Golino & Epskamp, 2017). Such clusters can thus
be indicative of latent variables (Epskamp, Waldorp et al.,
2017). We discuss the relationship between networks and
latent variable models in more detail at the end of this
article.

Lasso Regularization

Limiting spurious edges. As shown above, partial correla-
tions can readily be estimated by inverting the sample variance–
covariance matrix or by performing sequential multiple regres-
sions and standardizing the obtained coefficients. Estimating
parameters from data, however, always comes with sampling
variation, leading to estimates that are never exactly zero. Even
when two variables are conditionally independent, we still obtain
nonzero (although typically small) partial correlations that will be
represented as very weak edges in the network. These edges are
called spurious or false positives (Costantini, Epskamp et al.,
2015). In order to prevent overinterpretation and failures to repli-
cate estimated network structures, an important goal in network
estimation is to limit the number of spurious connections. One way
to do so is to test all partial correlations for statistical significance
and remove all edges that fail to reach significance (Drton &
Perlman, 2004). However, this poses a problem of multiple testing,
and correcting for this problem (e.g., by using a Bonferroni cor-
rection) results in a loss of power (Costantini, Epskamp et al.,
2015).4

The lasso. An increasingly popular method for limiting the
number of spurious edges—as well as for obtaining more inter-
pretable networks that better extrapolate to new samples—is to use
statistical regularization techniques. An especially prominent

1 Two possible options are if B is a common effect of A and C or if two
orthogonal latent variables cause covariation between A and B and between
B and C.

2 Not to be confused with interaction effects of two variables on an
outcome variable.

3 A partial correlation network should not be interpreted to equate the
skeleton of a causal model (a directed network with arrowheads removed),
as conditioning on a common effect can induce an edge in the partial
correlation network. In addition, latent variables can induce edges in both
directed and undirected networks. We discuss both common effects and
latent variables in detail below.

4 Unregularized partial correlations can also be seen to already reduce
spurious edges in a network comprised of marginal correlation coefficients
(Costantini, Epskamp et al., 2015).
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method of regularization is the least absolute shrinkage and se-
lection operator (lasso; Tibshirani, 1996), which, unlike other
regularization techniques, can lead to parameter estimates of ex-
actly zero. In essence, the lasso limits the sum of absolute partial
correlation coefficients; as a result, all estimates shrink, and some
become exactly zero. More technically, if S represents the sample
variance–covariance matrix, lasso aims to estimate K by maximiz-
ing the penalized likelihood function (Friedman et al., 2008):

log det(K) � trace(SK) � � �
�i,j	

| �ij |

Alternatively, lasso regularization can be applied on the indi-
vidual regression models if a network is estimated using node-wise
regressions (Meinshausen & Bühlmann, 2006).5 Using the lasso
results in a sparse network in which likely spurious edges are
removed (Epskamp, Kruis, & Marsman, 2017). The lasso utilizes
a tuning parameter � (lambda) that controls the level of sparsity.
As can be seen above, � directly controls how much the likelihood
is penalized for the sum of absolute parameter values. When the
tuning parameter is low, only a few edges are removed, likely
resulting in the retention of spurious edges. When the tuning
parameter is high, many edges are removed, likely resulting in the
removal of true edges in addition to the removal of spurious edges.
The tuning parameter therefore needs to be carefully selected to
create a network structure that minimizes the number of spurious
edges while maximizing the number of true edges (Foygel &
Drton, 2010; Foygel Barber & Drton, 2015).

Selecting the lasso tuning parameter. Typically, several net-
works are estimated under different values of � (Zhao & Yu,
2006). The different � values can be chosen from a logarithmically
spaced range between a maximal � value for which no edge is
retained (when � equals the largest absolute correlation; Zhao et
al., 2015), and some scalar times this maximal � value.6 Thus, the
lasso is commonly used to estimate a collection of networks rather
than a single network, ranging from a fully connected network to
a fully disconnected network. Next, one needs to select the best
network out of this collection of networks. This selection can be
done by optimizing the fit of the network to the data by minimizing
some information criterion. Minimizing the Extended Bayesian
Information Criterion (EBIC; Chen & Chen, 2008) has been shown
to work particularly well in retrieving the true network structure
(Foygel & Drton, 2010; Foygel Barber & Drton, 2015; van
Borkulo et al., 2014), especially when the generating network is
sparse (i.e., does not contain many edges). Lasso regularization
with EBIC model selection has been shown to feature high spec-
ificity all-around (i.e., not estimating edges that are not in the true
network) but a varying sensitivity (i.e., estimating edges that are in
the true network) based on the true network structure and sample
size. For example, sensitivity typically is less when the true net-
work is dense (contains many edges) or features some nodes with
many edges (hubs).

Choosing the EBIC hyperparameter. The EBIC uses a hy-
perparameter7 � (gamma) that controls how much the EBIC pre-
fers simpler models (fewer edges; Chen & Chen, 2008; Foygel &
Drton, 2010):

EBIC � �2L � E log (N) � 4
E log (P),

in which L denotes the log-likelihood, N the sample size, E the
number of nonzero edges, and P the number of nodes. This

hyperparameter � should not be confused with the lasso tuning
parameter �, and needs to be set manually. It typically is set
between 0 and 0.5 (Foygel & Drton, 2010), with higher values
indicating that simpler models (more parsimonious models with
fewer edges) are preferred. Setting the hyperparameter to 0 errs on
the side of discovery: More edges are estimated, including possible
spurious ones (the network has a higher sensitivity). Setting the
hyperparameter to 0.5, as suggested by Foygel and Drton (2010),
errs on the side of caution or parsimony: fewer edges are obtained,
avoiding most spurious edges but possibly missing some edges
(i.e., the network has a higher specificity). Even when setting the
hyperparameter to 0, the network will still be sparser compared to
a partial correlation network that does not employ any form of
regularization; setting � to 0 indicates that the EBIC reduces to the
standard BIC, which still prefers simple models.

Many variants of the lasso have been implemented in open-
source software (e.g., Krämer et al., 2009; Zhao et al., 2015). We
suggest the variant termed the graphical lasso (glasso; Friedman et
al., 2008), which is specifically aimed at estimating partial corre-
lation networks by inverting the sample variance–covariance ma-
trix. The glasso algorithm has been implemented in the glasso
package (Friedman, Hastie, & Tibshirani, 2014) for the statistical
programming language R (R Core Team, 2016). A function that
uses this package in combination with EBIC model selection as
described by Foygel and Drton (2010) has been implemented in
the R package qgraph (Epskamp et al., 2012), and can be called via
the bootnet package (Epskamp, Borsboom et al., 2017). The glasso
algorithm directly penalizes elements of the variance–covariance
matrix, which differs from other lasso network estimation methods
which typically aim to estimate a network structure by penalizing
regression coefficients in a series of multiple regression models
(Meinshausen & Bühlmann, 2006). We suggest using this routine
because it can be engaged using simple input commands and
because it only requires an estimate of the covariance matrix and
not the raw data, allowing one to use polychoric correlation ma-
trices when the data are ordinal (discussed below).

To exemplify the above-described method of selecting a best-
fitting regularized partial correlation network, we simulated a
dataset of 100 people and eight nodes (variables) based on the
chain graph shown in Figure 1. Such graphs are particularly
suitable for our example because the true network (the one we
want to recover with our statistical analysis) only features edges
among neighboring nodes visualized in a circle. This makes spu-
rious edges—any edge that connects non-neighboring nodes—
easy to identify visually. We used the qgraph package to estimate
100 different network structures, based on different values for
�, and computed the EBIC under different values of �. Figure 2
depicts a representative sample of 10 of these networks. Networks
1 through 7 feature spurious edges and err on the side of discovery,

5 In regularized node-wise regressions, partial correlations obtained
from the regression model for one node might slightly differ from partial
correlations obtained from the regression model for another node. A single
estimate can then be obtained by averaging the two estimated partial
correlations.

6 Current qgraph package version 1.4.4 uses 0.01 as scalar and estimates
100 networks by default.

7 A hyperparameter is a parameter that controls other parameters, and
usually needs to be set manually.
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while Networks 9 and 10 recover too few edges and err on the side
of caution. For each network, we computed the EBIC based on �
of 0, 0.25, and 0.5 (the hyperparameter the researchers needs to set
manually). The boldface values show the best fitting models,
indicating which models would be selected using a certain value of
�. When � � 0 was used, Network 7 was selected that featured
three weak spurious edges. When � was set to 0.25 or 0.5 (the
latter being the default in qgraph), respectively, Network 8 was
selected, which has the same structure as the true network shown
in Figure 1. These results show that in our case, varying � changed
the results only slightly. Importantly, this simulation does not
imply that � � 0.5 always leads to the true model; simulation work
has shown that 0.5 is fairly conservative and may result in omitting
true edges from the network (Foygel & Drton, 2010). In sum, the
choice of the hyperparameter is somewhat arbitrary and up to the
researcher, and depends on the relative importance assigned to
caution or discovery (Dziak, Coffman, Lanza, & Li, 2012). Which
of these � values work best is a complex function of the (usually
unknown) true network structure.

A note on sparsity. It is important to note that although lasso
regularization8 will lead to edges being removed from the network,
it does not present evidence that these edges are, in fact, zero
(Epskamp, Kruis et al., 2017). This is because lasso seeks to
maximize specificity; that is, it aims to include as few false
positives (edges that are not in the true model) as possible. As a
result, observing an estimated network that is sparse (containing
missing edges), or even observing an empty network, is in no way
evidence that there are, in fact, missing edges. Lasso estimation
may result in many false negatives, edges that are not present in the

estimated network but are present in the true network. This is
related to a well-known problem of null hypothesis testing: Not
rejecting the null-hypothesis is not evidence that the null hypoth-
esis is true (Wagenmakers, 2007). We might not include an edge
either because the data are too noisy or because the null hypothesis
is true; lasso regularization, like classical significance testing,
cannot differentiate between these two reasons. Quantifying evi-
dence for edge weights being zero is still a topic of future research
(Epskamp, 2017; Wetzels & Wagenmakers, 2012).

Non-Normal Data

Common challenges to estimating partial correlation networks re-
late to the assumption of multivariate normality. The estimation of
partial correlation networks is closely related to structural equation
modeling (Epskamp, Rhemtulla et al., 2017), and, as such, also
requires multivariate normal distributions. Not only does this mean
that the marginal distributions must be normal, all relationships be-
tween variables must also be linear. But what do we do with non-
normal (e.g., ordered categorical) data that are common in psycho-
logical data? Several solutions proposed in the structural equation
modeling literature may offer solutions to network modeling as well.

The assumption of normality can be relaxed by assuming that the
observed data are a transformation of a latent multivariate normally
distributed system (Liu, Lafferty, & Wasserman, 2009). Figure 3,
Panel (a) shows an example of such a model. In this model, squares
indicate observed variables, circles indicate normally distributed la-
tent variables and directed arrows indicate monotone (every value is
transformed into one unique value, keeping ordinality intact; higher
values in the original scale are also higher on the transformed scale)
transformation functions. Note that we do not assume measurement
error, which could be included by having multiple indicators per latent
variable (Epskamp, Rhemtulla et al., 2017). Here, we assume every
observed variable indicates one latent variable (Muthén, 1984).

The most common two scenarios are that the observed variables are
continuous, or that they consist of ordered categories. When observed
variables are continuous, but not normally distributed, the variables
can be transformed to have a marginal normal distribution. A pow-
erful method that has been used in network estimation is to apply a
nonparanormal transformation (Liu et al., 2009). This transformation
uses the cumulative distributions (encoding the probability that a
variable is below some level) to transform the distribution of the
observed variable to that of the latent normally distributed variable.
Figure 3, Panel (b) shows a simplified example on how two distribu-
tions can be linked by their cumulative distribution. Suppose X is
normally distributed, and Y is gamma distributed (potentially
skewed). Then, values of X can be mapped to the cumulative distri-
bution by using the probability function (in R: pnorm). These cumu-
lative probabilities can then be mapped to values of the gamma
distribution by using the quantile function (in R: qgamma). In prac-
tice, however, the distribution of Y (top right panel) is not known. The
density and cumulative density of X (left panels), on the other hand,
are known, and the cumulative distribution of Y can be estimated by
computing the empirical cumulative distribution function (in
R: ecdf). Thus, to map values of Y to values of the normally
distributed variable X, one needs to estimate a smooth transformation

8 These arguments apply for other frequentist model selection methods
as well, such as removing edges based on statistical significance.

Figure 1. True network structure used in simulation example. The network
represents a partial correlation network: nodes represent observed variables
and edges represent partial correlations between two variables after condition-
ing on all other variables. The simulated structure is a chain graph in which all
absolute partial correlation coefficients were drawn randomly between 0.3 and
0.4. See the online article for the color version of this figure.
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function between the bottom two panels. This is the core of the
nonparanormal transformation, which aims to map every unique
outcome of a variable (e.g., 1, 2, or 3) to one unique outcome of a
standard normal variable (e.g., �1.96, 0, 1.65). The huge.npn
function from the huge package (Zhao et al., 2015) can be used to this
end. Important to note is that this transformation assumes smoothly
increasing cumulative distributions, and will therefore not work when,
only a few possible answering options are present (such as in Likert
scales). When the data are binary, the transformed data will still be
binary, just using different labels than 0 and 1.

When only few item categories are available and the answer
options can be assumed to be ordinal (Stevens, 1946), one can make
use of threshold functions (Muthén, 1984) as the data transforming
functions. Now, the observed score is again assumed to be reflective
of a latent normally distributed score, but correlations between items
can directly be estimated without having to transform the data. An
example of such a threshold function is shown in Figure 3, Panel (c).
In this panel, three thresholds are estimated to accommodate four
answering categories (0, 1, 2, or 3). The normal distribution corre-
sponds to the latent item score and vertical bars correspond to the
thresholds; a person with a latent score below the first would score a
0, a person with a latent score between the first and second threshold
would score a 1, and so forth. After the thresholds are estimated, the
correlations between latent variables can be estimated pairwise. These
are termed polychoric correlations when both variables are ordinal
(Olsson, 1979), or polyserial correlations when only one of the two
variables is ordinal (Olsson, Drasgow, & Dorans, 1982). The lavCor
function from the lavaan package (Rosseel, 2012) can be used to
compute polychoric and polyserial correlations, which can subse-
quently be used as input to the glasso algorithm (Epskamp, 2016).
Regularized partial correlations using glasso with EBIC model selec-
tion based on polychoric correlations has become standard when
estimating psychopathology networks due to the high prevalence of
ordered-categorical data. An important limitation is that these meth-

ods rely on an assumption that the latent variables underlying the
observed ordinal variables are normally distributed, which might not
be plausible. For example, some psychopathological symptoms, such
as suicidal ideation, might plausibly have a real “zero” point—the
absence of a symptom. Properly handling such variables is still a topic
of future research (Epskamp, 2017).

When data are binary, one could also use tetrachoric and biserial
correlations (special cases of polychoric and polyserial correla-
tions, respectively). However, these data would not be best han-
dled using partial correlation networks because of the underlying
assumption of normality. When all variables are binary, one can
estimate the Ising Model using the IsingFit R package (van
Borkulo & Epskamp, 2014). The resulting network has a similar
interpretation as partial correlation networks, and is also estimated
using lasso with EBIC model selection (van Borkulo et al., 2014).
When the data consist of both categorical and continuous vari-
ables, the state-of-the-art network model is termed the mixed
graphical model, which is implemented in the mgm package (Hasl-
beck & Waldorp, 2016), also making use of lasso estimation with
EBIC model selection.

Example

In this section, we estimate a network based on the data of 221
people with a subthreshold posttraumatic stress disorder (PTSD)
diagnosis. The network features 20 PTSD symptoms. A detailed
description of the dataset can be found elsewhere (Armour, Fried,
Deserno, Tsai, & Pietrzak, 2017), and the full R code for this
analysis can be found in the supplementary materials.9

The following R code performs regularized estimation of a
partial correlation network using EBIC selection (Foygel &

9 We performed these analyses using R version 3.5.0, bootnet version
1.0.1 and qgraph version 1.4.4, using OSX version 10.11.6.

Figure 2. Ten different partial correlation networks estimated using lasso regularization. Setting the lasso
tuning parameter � that controls sparsity leads to networks ranging from densely connected to fully unconnected.
Data were simulated under the network represented in Figure 1. The fit of every network was assessed using the
EBIC, using hyperparameter � set to 0, 0.25 or 0.5. The bold-faced EBIC value is the best, indicating the network
which would be selected and returned using that � value. See the online article for the color version of this figure.
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Drton, 2010). This methodology has been implemented in the
EBICglasso function from the qgraph package (Epskamp et al.,
2012), which in turn utilizes the glasso package for the glasso
algorithm (Friedman et al., 2014). A convenient wrapper around
this (and several other network estimation methodologies such
as the Ising model and the mixed graphical model) is imple-
mented in the bootnet package (see Epskamp, Borsboom et al.,
2017 for an extensive description), which we use here in order
to perform (a) model estimation, (b) a priori sample size anal-
ysis, and (c) post hoc accuracy and stability analysis. This code
assumes the data is present in R under the object name data.

library(�bootnet�)
results <- estimateNetwork(

data,

default = “EBICglasso”,
corMethod = “cor_auto”,
tuning = 0.5)

In this code, library(�bootnet�) loads the package into
R, and the default = �EBICglasso� specifies that the
EBICglasso function from qgraph is used. The corMethod =
�cor_auto� argument specifies that the cor_auto function from
qgraph is used to obtain the necessary correlations. This function
automatically detects ordinal variables (variables with up to seven
unique integer values) and uses the lavaan package (Rosseel, 2012) to
estimate polychoric, polyserial, and Pearson correlations. Finally, the
tuning = 0.5 argument sets the EBIC hyperparameter, �, to 0.5.
After estimation, the network structure can be obtained using the
code:

Figure 3. Methods for relaxing the assumption of multivariate normality. (a) Observed variables (squares) assumed
to be transformations of multivariate normal latent variables (circles). (b) Visualization on how marginal distributions
can be used to transform a variable to have a normal marginal distribution. (c) Visualization of a threshold model, used
in polychoric and polyserial correlations. See the online article for the color version of this figure.
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results$graph

and the network can be plotted using the plot method of bootnet
using the code:
plot(results)

This function uses the qgraph function from the qgraph pack-
age to draw the network (Epskamp et al., 2012).10 By default,
edges are drawn using a colorblind-friendly theme (blue edges
indicate positive partial correlations and red edges indicate nega-
tive partial correlations). Nodes are placed using a modified ver-
sion of the Fruchterman-Reingold algorithm (Fruchterman & Re-
ingold, 1991) for weighted networks (Epskamp et al., 2012). This
algorithm aims to place nodes in an informative way by position-
ing connected nodes close to each other. A downside of the
Fruchterman-Reingold algorithm is that it can behave chaotically:
every input will lead to one exact output, but small differences in
the input (e.g., a difference of 0.01 in an edge weight or using a
different computer architecture) can lead to an entirely different
placement of nodes (nodes will likely be placed about the same
distance from one-another, but might be placed on a different side
of the plotting area). Thus, the eventual placement cannot be
interpreted in any substantial way, and might differ substantially
between two networks even when there are only very small dif-
ferences in the network structures. To compare two networks, one
should constrain the layout to be equal for both networks. One way
to do so is by using averageLayout from the qgraph package,
which was used in drawing Figure 4.11

Figure 4 shows the resulting network estimated under three
different values of �: 0, 0.25, and 0.5. Table 1 shows the descrip-
tion of the nodes. As expected, the network with the largest
hyperparameter has the fewest edges: the networks feature 105
edges with � � 0, 95 edges with � � 0.25, and 87 edges with � �
0.5.

We can further investigate how important nodes are in the
network using measures called centrality indices. These indices
can be obtained as followed:

centrality(results)

This code provides three commonly used centrality indices:
node strength, which takes the sum of absolute edge weights
connected to each node, closeness, which takes the inverse of the
sum of distances from one node to all other nodes in the network,
and betweenness, which quantifies how often one node is in the
shortest paths between other nodes. A more extensive overview of
these measures and their interpretation is described elsewhere
(Costantini, Epskamp et al., 2015; Epskamp, Borsboom et al.,
2017; Opsahl, Agneessens, & Skvoretz, 2010). All measures indicate
how important nodes are in a network, with higher values indicating
that nodes are more important. Figure 5 is the result of the function
centralityPlot and shows the centrality of all three networks
shown in Figure 4. For a substantive interpretation of the network
model obtained from this dataset we refer the reader to Armour et
al. (2017).

Sample Size Selection and Replicability

An increasingly important topic in psychological research is the
replicability of results (Open Science Collaboration, 2015). High-
dimensional exploratory network estimation, as presented in this
tutorial article, lends itself to generating many different measures

(e.g., edge weights, network structures, centrality indices) that may
or may not replicate or generalize across samples. Recent work has
put the importance of replicability in network modeling of psy-
chological data in the spotlight (Epskamp, Borsboom et al., 2017;
Fried & Cramer, 2017; Fried et al., in press; Fried et al., 2017;
Forbes, Wright, Markon, & Krueger, 2017, but see also Borsboom
et al., 2017). However, in is not easy to determine the replicability
of an estimated network. Many factors can influence the stability
and accuracy of results, such as the sample size, the true network
structure and other characteristics of the data.12 Even when a
network is estimated stably, measures derived from the network
structure (e.g., graph theoretical measures such as centrality met-
rics) might still not be interpretable. For example, all nodes in the
true network shown in Figure 1 have exactly the same betweenness
(0, all shortest paths do not go via third nodes). Thus, any differ-
ences in betweenness in estimated networks are due to chance,
regardless of sample size.

We therefore recommend sample size analyses both before and
after collecting the data for analysis. A priori sample size analyses
let researchers know if the sample size is appropriate for the
expected network structure, and post hoc stability analyses provide
researchers with information about the stability of their results. We
describe a priori sample size analysis in detail in the next section,
which has not been done before in the psychological network
literature, and then summarize post hoc stability analyses that are
explicated in detail elsewhere (Epskamp, Borsboom et al., 2017).

A Priori Sample Size Analysis

An important consideration for any statistical analysis is the
sample size required for an analysis, which is often referred to as
power analysis (Cohen, 1977). To perform such an analysis, one
needs to have a prior expectation of the effect size—the expected
strength of the true effect. In network modeling, the analogy to an
expected effect size is the expected weighted network: a high-
dimensional interplay of the network structure (zero and nonzero
edges) and the strength of edges (the weight of the nonzero edges).
For a partial correlation network of P nodes, one needs to have a
prior expectation on P(P � 1)/2 parameters (edges) to estimate
how well edges or any descriptive statistics derived from the
network structure, such as centrality indices, can be estimated
stably given a certain sample size.13

When estimating a network structure, three properties are of
primary interest (van Borkulo et al., 2014):

10 Any argument used in this plot method is used in the underlying
call to qgraph. The bootnet plot method has three different default
arguments than qgraph: (a) the cut argument is set to zero, (b) the
layout argument is set to �spring�, and (c) the theme argument is set
to �colorblind�. For more details on the these arguments and other
ways in which qgraph visualizes networks we refer the reader to
Epskamp et al. (2012) and the online documentation at https://
CRAN.R-project.org/package=qgraph.

11 See online supplemental materials for exact R codes.
12 For example, Borsboom et al. (2017) show how data-imputation

strategies can lead to unstable edge parameters even at large sample size.
13 Other network models, such as the Ising model, also require a prior

expectation for the P intercepts. The partial correlation network does not
require intercepts as data can be assumed centered.
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• Sensitivity: Also termed the true-positive rate, the propor-
tion of edges present in the true network that were detected
in the estimated network.

• Specificity: Also termed the true-negative rate, the propor-
tion of missing edges in the true network that were also
detected correctly to be absent edges in the estimated
network.

• The correlation between edge weights of the true network
and edge weights of the estimated network, or between
centrality estimates based on the true network and central-
ity estimates based on the estimated network.

A researcher wants sensitivity to increase with sample size and
preferably to be high (although a moderate sensitivity can be
acceptable as that at least indicates the strongest edges are discov-
ered). When specificity is low, the estimation procedure mistak-
enly detects many edges that are not present in the true network
(false positives). As a result, we argue that researchers always
want high specificity. Finally, the correlation indicates how well
the true network structure and the estimated network structure

mimic one-another. Especially when a researcher is interested in
analyzing the network structure as a whole (e.g., for shortest paths
analyses), the researcher wants this to be high. In addition to this
correlation, the correlation between between centrality indices of
the true network and the estimated network might also be of
interest, which can be low even though the edge weights are
estimated accurately (e.g., when centrality does not differ in the
true network, such as betweenness in Figure 1).

Simulation studies have shown that lasso regularized network
estimation generally results in a high specificity, while sensitivity
and correlation increases with sample size (Epskamp, 2016; Foy-
gel & Drton, 2010; van Borkulo et al., 2014). This means that
whenever lasso regularization is used, one can interpret edges that
are discovered by the method as likely to represent edges in the
true network, but should take into account that the method might
not discover some true edges. Unfortunately, the precise values of
sensitivity, specificity and different correlations are strongly influ-
enced by the expected network structure, similar to how the
expected effect size influences a power analysis. As a result,
judging the required sample size is far from trivial, but has been
called for multiple times in the recent literature (Epskamp, Bors-
boom et al., 2017; Fried & Cramer, 2017).

We recommend three ways forward on this issue: (a) more
research estimating network models from psychological data will
make clear what one could expect as a true network structure,
especially if researchers make the statistical parameters of their
network models publicly available; (b) researchers should simulate
network models under a wide variety of potential true network
structures, using different estimation methods; (c) researchers
should simulate data under an expected network structure to gain
some insight in the required sample size. To aid researchers in (b)
and (c), we have implemented the netSimulator function in
the bootnet package, which can be used to flexibly set up simula-
tion studies assessing sample size and estimation methods given an
expected network structure.

The netSimulator function can simulate data under a given
network model and expected network structure. Because partial
correlation networks feature many parameters, and the field of
estimating these models is still young, researchers cannot be ex-
pected to have strong theoretical expectations on the network
structure. One option is to simulate data under the parameters of a
previously published network model, which can be obtained by

Table 1
Description of Nodes Shown in Figure 4

Node Description

1 Intrusive thoughts
2 Nightmares
3 Flashbacks
4 Emotional cue reactivity
5 Psychological cue reactivity
6 Avoidance of thoughts
7 Avoidance of reminders
8 Trauma-related amnesia
9 Negative beliefs

10 Blame of self or others
11 Negative trauma-related emotions
12 Loss of interest
13 Detachment
14 Restricted affect
15 Irritability/anger
16 Self-destructive/reckless behavior
17 Hypervigilance
18 Exaggerated startle response
19 Difficulty concentrating
20 Sleep disturbance

Figure 4. Partial correlation networks estimated on responses of 221 subjects on 20 posttraumatic stress
disorder (PTSD) symptoms, with increasing levels of the lasso hyperparameter � (from left to right: (a) � � 0,
(b) � � 0.25, (c) � � 0.5). See the online article for the color version of this figure.
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reanalyzing the data of the original authors or, if the data are not
available, asking the original authors to send the adjacency matrix
encoding the edge weights. Below, we will conduct such a simu-
lation study by using the estimated network structure in Figure 4,
Panel (c) as the simulation baseline. Simulating data under lasso
regularized parameters, however, poses a problem in that these
parameters will be biased toward zero due to shrinkage, and
therefore might imply a weaker effect than can be expected. To
accommodate this, we can first fit the model by using lasso to
obtain a network structure (i.e., which edges are present), and then
refit a model with only those edges without lasso regularization
(see also Epskamp, Rhemtulla et al., 2017 on confirmatory partial
correlation network analysis). This can be done by using the refit
argument in estimateNetwork:

network <- estimateNetwork(data,
default = �EBICglasso�,
corMethod = �cor_auto�,
tuning = 0.5,
refit = TRUE)

Next, a simulation study can be performed using the following
R code:

simRes <- netSimulator(network$graph,
dataGenerator = ggmGenerator(ordinal =

TRUE, nLevels = 5),
default = �EBICglasso�,
nCases = c(100,250,500,1000,2500),
tuning = 0.5,

Figure 5. Closeness, betweenness, and degree centrality of the three networks described in Figure 4 with
increasing levels of the lasso hyperparameter �. Centrality indices are plotted using standardized z-scores in
order to facilitate interpretation. See the online article for the color version of this figure.
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nReps = 100,
nCores = 8)

The netSimulator can use any argument of
estimateNetwork, with a vector of options describing mul-
tiple conditions are estimated (e.g., tuning = c(0.25,
0.5)) would vary the tuning parameter). The first argument is
a weights matrix encoding an expected network (or a list with
a weights matrix and intercepts vector for the Ising model
which is not needed for partial correlation networks), the
dataGenerator argument specifies the data generating pro-
cess (can be ignored for nonordinal data), nCases encodes the
sample size conditions, nReps the number of repetitions per

condition, and nCores the number of computer cores to use.
Next, results can be printed:

simRes

or plotted:

plot(simRes)
plot(simRes,yvar = c(�strength�,�closeness�,
�betweenness�))

Figure 6 shows the corresponding plots. These plots may be
used to gain a rough insight into the required sample size, based on
the requirements of the researcher. For example, N � 250 achieves
a correlation between the “true” and estimated networks above 0.8

Figure 6. Simulation results using the estimated refitted posttraumatic stress disorder (PTSD) network as true
network structure. The top panel shows the sensitivity (true positive rate), specificity (true negative rate) and
correlation between true and estimated networks, and the bottom panel shows the correlation between true and
estimated centrality indices.
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for edge weights and strength, and above 0.7 for sensitivity.
Noteworthy is that specificity is moderate, but not as high as in
other studies (Epskamp, 2016; Foygel & Drton, 2010; van Borkulo
et al., 2014), possibly a result of the true network structure used
being very sparse (54% of the edges were zero in the generating
network).

Post Hoc Stability Analysis

After estimating a network, bootstrapping methods (Chernick,
2011; Efron, 1979) can be used to gain insight into the accuracy
and stability of the network parameters and descriptive statistics
based on the estimated network structure (e.g., centrality indices).
These are extensively discussed by Epskamp, Borsboom et al.
(2017), including a tutorial on how to perform these analyses using
the bootnet package. In short, bootnet can be used to perform
several types of bootstraps using the original data and the estima-
tion method. The two most important methods are:

boot1 <- bootnet(results, nCores = 8,
nBoots = 1000, type = �nonparametric�)

boot2 <- bootnet(results, nCores = 8,
nBoots = 1000, type = �case�)

The first bootstrap is a nonparametric bootstrap (using resa-
mpled data with replacement), which can be used to construct
confidence intervals around the regularized edge weights (Hastie
et al., 2015) and perform significance tests on the difference
between different edge weights (e.g., comparing edge A � B with
edge A � C) and different centrality indices (e.g., comparing node
strength centrality of node A vs. node B). Confidence intervals can
not be constructed for centrality indices (see the supplementary
materials of Epskamp, Borsboom et al., 2017). To assess the
stability of centrality indices, one can perform a case-dropping
bootstrap (subsampling without replacement). Based on these
bootstraps, the steps from Epskamp, Borsboom et al. (2017) can be
followed to create several plots, which we include for the network
in Figure 4, Panel (c) in the supplementary files to this article. The

plots show sizable sampling variation around the edge weights and
a poor stability for closeness and betweenness. Strength was more
stable, although not many nodes differed from each other signif-
icantly in strength. The results of the case-dropping bootstrap can
also be summarized in a coefficient, the CS-coefficient (correlation
stability), which quantifies the proportion of data that can be
dropped to retain with 95% certainty a correlation of at least 0.7
with the original centrality coefficients. Ideally this coefficient
should be above 0.5, and should be at least above 0.25. Strength
was shown to be stable (CS(cor � 0.7) 	 0.516) while closeness
(CS(cor � 0.7) 	 0.204) and betweenness (CS(cor � 0.7) 	 0.05)
were not. Thus, the post hoc analysis shows that the estimated
network structure and derived centrality indices should be inter-
preted with some care for our example network of PTSD symp-
toms.

Common Problems and Questions

Difficulties in interpreting networks. Regularized networks
can sometimes lead to network structures that are hard to interpret.
Here, we list several common problems and questions encountered
when estimating and interpreting these models, and try to provide
potential ways forward.

1. The estimated network has no or very few edges. This
can occur in the unlikely case when variables of interest
do not exhibit (partial) correlations. More likely, it occurs
when the sample size is too low for the number of nodes
in the network. The EBIC penalizes edge weights based
on sample size to avoid false positive associations, which
means that with increasing sample size, the partial cor-
relation network will be more and more similar to the
regularized partial correlation network. With smaller N
fewer edges will be retained. Figure 7, Panel (a) shows a
network estimated on the same data as Figure 4, but this
time with only 50 instead of the 221 participants: It is
devoid of any edges. A way to remediate this problem is

Figure 7. Network of 20 PTSD symptoms. Instead of the full data like in Figure 4 (221 subjects), only 50
subjects were used. Panel (a): Lasso hyperparameter � set to the default of 0.5; Panel (b): � set to 0 for discovery.
(a) � � 0.5, (b) � � 0. See the online article for the color version of this figure.
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by setting the hyperparameter lower (e.g., 0; see Figure 7,
Panel b), but note that this increases the likelihood that
the network will contain spurious edges. An alternative
solution is to reduce the variables of interest and estimate
a network based on a subset of variables, because fewer
nodes mean that fewer parameters are estimated. How-
ever, doing so would lead one to not use all the available
data, and might lead to failing to condition on relevant
nodes.

2. The network is densely connected (i.e., many edges)
including many unexpected negative edges and many
implausibly high partial correlations (e.g., higher than
0.8). As the lasso aims to remove edges and returns a
relatively sparse network, we would not expect densely
connected networks in any data that are not extremely
large. In addition, we would not expect many partial
correlations to be so high, as (partial) correlations above
0.8 indicate near-perfect collinearity between variables.
These structures can occur when the correlation matrix
used as input is not positive definite, which can occur
when a sample is too small, or when estimating poly-
choric correlations. Just as a variance has to be positive,
a variance–covariance matrix has to be positive-definite
(all eigenvalues higher than zero) or at least positive
semidefinite (all eigenvalues at least zero). When a
variance–covariance matrix is estimated pairwise, how-
ever, the resulting matrix is not guaranteed to be positive-
definite or positive-semi-definite. Polychoric correlation
matrices are estimated in such a pairwise manner. In case
of a nonpositive definite correlation matrix, cor_auto
will warn the user when it estimates a nonpositive defi-
nite correlation matrix and attempt to correct for this by
searching for a nearest positive definite matrix. This
matrix, however, can still lead to very unstable results.
When the network looks very strongly connected with
few (if any) missing edges and partial correlations near 1
and �1, the network structure is likely resulting from
such a problem and should not be interpreted. We suggest
that researchers always compare networks based on poly-
choric correlations with networks based on Spearman
correlations (they should look somewhat similar) to de-
termine if the estimation of polychoric correlations is the
source of this problem.

3. While in general the graph looks as expected (i.e., rela-
tively sparse), some edges are extremely high and/or
unexpectedly extremely negative. This problem is related
to the previous problem. The estimation of polychoric
correlations relies on the pairwise crossing of variables in
the dataset. When the sample size is relatively low, some
cells in the item by item frequency table can be low or
even zero (e.g., nobody was observed that scored a 2 on
one item and a 1 on another item). The estimation of
polychoric correlations is based on these frequency tables
and is biased whenever an expected frequency is too
small (i.e., below 10; Olsson, 1979). Low frequencies can
thus lead to biased polychoric correlations, which can
compound to large biases in the estimated partial corre-

lations. Another situation in which one might obtain low
frequencies is when the scores are highly skewed (Rig-
don & Ferguson, 1991), which unfortunately often is the
case in psychopathology data. Again, the network based
on polychoric correlations should be compared with a
network based on Spearman correlations. Obtaining very
different networks indicates that the estimation of the
polychoric correlations may not be trustworthy.

4. A network has negative edges where the researcher
would expect positive ones. This can occur when one
conditions on a common effect (Pearl, 2000). Suppose
one measures three variables: psychology students’
grades on a recent statistics test, their motivation to pass
the test, and the easiness of the test (Koller & Friedman,
2009). The grade is likely positively influenced by both
test easiness and student motivation, and we do not
expect any correlation between motivation and easiness:
Knowing a student is motivated does not help us predict
how difficult a professor makes a test. However, we can
artificially induce a negative partial correlation between
motivation and easiness by conditioning on a common
effect: If we know an unmotivated student obtained an A,
we now can expect that the test must have been very
easy. These negative relationships can occur when com-
mon effect relationships are present, and unexpected neg-
ative relationships might indicate common effect struc-
tures. Another way these unexpected negative
relationships can occur is if the network is based on a
subsample, defined by a function on the observed vari-
ables. This is because taking a subsample based on a
function of the observed variables is the same as condi-
tioning on a common effect (Muthén, 1989). For exam-
ple, a function of the observed variables might be the
sum-score. When using this sum-score to select people to
include in the analysis (e.g., to investigate the network
structure of subjects with severe symptoms compared
with subjects with less severe symptoms), then that sub-
sample is derived by conditioning on the sumscore (e.g.,
only people with a sumscore above 10 are included). This
will lead to spurious negative edges in the expected
network structure (Muthén, 1989). Results based on such
subsamples should be interpreted with care. In general,
this poses a somewhat curious problem: On the one hand,
we want to include as many variables as possible; on the
other hand, we want to avoid controlling for (i.e., condi-
tion on) common effects. Important to note is that one
would not expect negative partial correlations to occur if
the common cause model is true and all variables are
scored such that factor loadings are positive (Holland &
Rosenbaum, 1986), as such negative relationships where
one would expect positive ones can be of particular
interest to the researcher.

Comparing networks. Another common question is if one
can compare two different groups of people (e.g., clinical patients
and healthy controls) regarding the connectivity or density of their
networks (i.e., the number of edges)? The answer depends on the
differences in sample size. As mentioned before, the EBIC is a
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function of the sample size: The lower the sample size, the more
parsimonious the network structure. This means that comparing
the connectivity of two networks is meaningful if they were
estimated on roughly the same sample size, but that differences
should not be compared if this assumption is not met (e.g., see
Rhemtulla et al., 2016). One option is to perform a permutation
test (Van Borkulo et al., 2017). A permutation test is a data-driven
method in which all data are first pooled and then randomly
assigned to two groups, resulting in two estimated networks.
Repeating this process a number of times (e.g., 1,000) leads to a
distribution of differences between networks given that the two
groups come from the same population. This distribution can
subsequently be used to perform statistical tests on differences of
the network structure between the two groups. The permutation
test is implemented in the R package NetworkComparisonTest.

Network models versus latent variables. A final common
question relates to how much network modeling and latent variable
modeling overlap. Network modeling has been proposed as an
alternative to latent variable modeling. As such, researchers might
wonder if fitting a network model can provide evidence that the
data are indeed generated by a system of variables causally influ-
encing each other, and not from a common cause model where the
covariance between variables is explained by one or more under-
lying latent variables (Schmittmann et al., 2013)? The short answer
is no. While psychological networks have been introduced as an
alternative modeling framework to latent variable modeling, and
are capable of strongly changing the point of focus from the
common shared variance to unique variance between variables
(Costantini, Epskamp et al., 2015), they cannot disprove the latent
variable model. This is because there is a direct equivalence
between network models and latent variable models (Epskamp et
al., 2018; Epskamp, Rhemtulla et al., 2017; Kruis & Maris, 2016;
Marsman, Maris, Bechger, & Glas, 2015; Van Der Maas et al.,
2006). As discussed above, a latent variable causing covariation on
multiple items should lead to a fully connected cluster of items if
they are modeled as a network.

While the presence of a latent variable results in a fully
connected cluster in the network, this does not mean that when
the estimated network does not contain fully connected clusters,
the latent variable model must be false. As explained above, the
lasso retaining an edge can provide evidence that an edge is
present, but not retaining an edge does not provide evidence that
the edge is not present because an edge could simply not be
estimated due to a lack of power. We refer the reader to Epskamp,
Kruis et al. (2017) for a more detailed discussion on this topic and
to Epskamp, Rhemtulla et al. (2017) for methodology on statisti-
cally comparing the fit of a network model and to that of a latent
variable model. Finally, just because two models are equivalent
does not mean that they are equally plausible. For example, a
lattice shaped network structure (nodes ordered on a grid and
connected only to neighbors) is equivalent to some latent variable
model, but the latent variable model is complicated and very
implausible (many latent variables would be needed to explain the
data; Marsman et al., 2015).

Even when one expects a network model to largely explain the
data, it may be implausible to assume that no latent variables cause
any covariation in the network model (Chandrasekaran, Parrilo, &
Willsky, 2012; Epskamp, Rhemtulla et al., 2017; Fried & Cramer,
2017). To this end, estimating causal networks can lead to faulty

causal hypotheses in the presence of latent variables. This issue is
less problematic when estimating (undirected) partial correlation
networks, as no direction of effect is coupled to the estimated
edges. Methodologies to combine latent variable modeling and
network modeling are currently being developed, which would
allow researchers to use strengths from one framework to over-
come weaknesses of the other framework. To overcome induced
edges from latent variables, one can estimate a network structure
after taking covariation due to one or more common causes into
account (termed a residual network; Chandrasekaran et al., 2012;
Chen, Li, Liu, & Ying, 2016; Epskamp, Rhemtulla et al., 2017;
Pan, Ip, & Dube, 2017). Another way of combining network
models with latent variable models is to use latent variables as
nodes in a network (termed a latent network; Epskamp, Rhemtulla
et al., 2017). Doing so can cope with potential measurement error
in the observed variables, allowing for powerful exploratory model
search on the structural effects between latent variables (Guyon,
Falissard, & Kop, 2017). Finally, statistical tests to distinguish
sparse networks from latent variable models are currently being
developed (Van Bork, 2015).

Conclusion

This article contains a tutorial on how to estimate psychological
networks using a popular estimation technique: Lasso regulariza-
tion with the EBIC model selection. This method provides a
network of partial correlation coefficients with a limited number of
spurious edges and can be based on either continuous or ordered-
categorical data. This methodology has grown prominent in the
past years and is featured in an increasing number of publications
throughout various fields of psychological research. In addition,
this article (a) discusses in detail what partial correlations and
partial correlation networks are and how these should be inter-
preted, (b) shows how researchers can estimate these network
models in psychological data sets, (c) introduces a new simulation
tool to perform power analysis for psychological networks, (d)
summarizes post hoc stability and accuracy analyses, and (e)
describes how to deal with most commonly encountered issues
when estimating and interpreting regularized partial correlation
networks.

The methods described in this article are only appropriate when
the cases in the data can reasonably be assumed to be independent.
As this is plausible in cross-sectional analysis, we have exempli-
fied the methodology by analyzing such a dataset. Several authors
criticize cross-sectional analysis for not being able to separate
within- and between-person variation (Bos et al., 2017; Hamaker,
2012; Molenaar, 2004), and propose to study longitudinal data in
order to capture within-person relationships (Bringmann et al.,
2013). We refer the reader to Epskamp, Waldorp et al. (2017) for
discussion on this topic and simulation studies studying cross-
sectional analysis, and to Weinberger (2015) for a discussion on
the causal interpretation of relationships when within-subject vari-
ation is lacking. The methods discussed in this paper can readily be
applied to within-person data to obtain network structures not
confounded by between-subjects effects (Epskamp, Waldorp et al.,
2017). For a recent tutorial on this methodology, we refer the
reader to Costantini et al. (2017). A downside of this method is that
temporal information is not taken into account when estimating
network structures. One way to estimate partial correlation
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networks while taking temporal information into account is by
using the graphical vector-autoregression model (graphical VAR;
Epskamp, Waldorp et al., 2017; Fisher, Reeves, Lawyer, Medaglia,
& Rubel, 2017; Wild et al., 2010), for which lasso regularization
techniques have been worked out (Abegaz & Wit, 2013; Rothman,
Levina, & Zhu, 2010). EBIC model selection using these routines
has been implemented in the R packages sparseTSCGM (Abegaz
& Wit, 2015; aimed at estimating genetic networks) and graphi-
calVAR (Epskamp, 2015; aimed at estimating n � 1 psychological
networks).

The use of network modeling in psychology is still a young field
and is not without challenges. Several related topics were beyond
the scope of this tutorial and are discussed elsewhere in the
literature. For an overview of challenges and future directions in
network modeling of psychological data we refer the reader to
Fried and Cramer (2017) and Epskamp (2017). Psychological
network analysis is a novel field that is rapidly changing and
developing. We have not seen an accessible description of the most
commonly used estimation procedure in the literature: Lasso reg-
ularization using EBIC model selection to estimate a sparse partial
correlation network. This article addresses this gap by providing an
overview of this common and promising method.
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