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Abstract

Aim: Paxillin is a well-known multidomain scaffold protein that is involved in the regulation of cell-matrix adhesion 
dynamics, a process required for the tumor cell migration and invasion. Phosphorylation of the serine residue 178 
requires c-Jun NH2-terminal kinase (JNK) activation, which occurs downstream of epidermal growth factor receptor 
(EGFR)-mediated signaling and drives cell migration. In this study, we investigated the significance of paxillin Ser178 
phosphorylation in breast cancer progression.

Methods: We employed the rat mammary carcinoma MTLn3 cell line with which we established stabile variants of 
both wild type and mutant GFP-paxillin constructs. With those, we next performed several in vitro assays including 
cell proliferation, migration and focal adhesion dynamics. Finally, we monitored the metastatic spread of both cell 
line variants in an othrotopic mouse model for breast cancer.

Results: Here we show that expression of the phospho-defective mutant paxillinS178A in the metastatic mammary 
adenocarcinoma MTLn3 cell-line significantly decreased EGF-induced cell migration, which was correlated with 
impaired focal adhesion dynamics. Moreover, paxillinS178A attenuated lung metastasis formation in an orthotopic 
in vivo mammary gland tumor/metastasis model, demonstrating the importance of JNK-mediated paxillin 
phosphorylation in breast cancer progression. Expression of paxillinS178A caused a decrease in EGFR expression, 



while re-expression of EGFR in MTLn3-paxillinS178A cells fully restored EGF-driven cell motility and focal adhesion 
dynamics. Furthermore, re-expression of EGFR in MTLn3-paxillinS178A rescued spontaneous metastasis from 
breast to lung.

Conclusion: Overall our data show an important role for JNK-mediated paxillin Ser178 phosphorylation in the 
regulation of EGFR expression and thereby, in EGF-driven cell migration and metastasis formation.

Keywords: Paxillin, c-Jun NH2-terminal kinase, focal adhesion, epidermal growth factor receptor, cell migration, 
metastasis, breast cancer

INTRODUCTION
Breast cancer represents the most common type of cancer among women. The formation of metastases, 
which is a determinant of the prognosis of cancer patients, involves distinct cellular processes including 
cell migration, invasion, intra- and extravasation and proliferation. These processes are regulated by 
growth factors, cytokines and cellular matrix molecules[1-6]. An important regulator of cell proliferation 
and migration is the receptor tyrosine kinase epidermal growth factor receptor (EGFR) whose stimulation 
by epidermal growth factor (EGF) results in the activation of downstream signaling pathways including 
different mitogen-activated protein kinases cascades: extracellular signal-regulated kinase (ERK), p38 and 
c-Jun NH2-terminal kinase (JNK)[7-11].

The JNK group of kinases has essential roles in cancer development including regulation of the survival/
proliferation balance as well as cell migration[7,9,12,13]. Dual Thr and Tyr phosphorylation of JNK by upstream 
MAP kinases results in JNK activation and nuclear translocation. In the nucleus, JNKs phosphorylate and 
activate transcription factors including members of the AP-1 family such as c-Jun. The JNK-AP-1 pathway 
regulates the expression of genes involved in the cell cycle, survival and apoptosis and extracellular matrix 
homeostasis[14-22]. Besides phosphorylation of transcription factors, several cytoskeleton-associated adaptor 
and signaling proteins have recently been identified as direct JNK substrates including β-catenin[23] and 
paxillin[24,25]. Since both proteins are well known to be involved in cell-matrix and cell-cell contacts, the 
direct JNK-mediated phosphorylation of these targets may also influence cell migration. 

Paxillin is a 68 kD multidomain adaptor protein associated with focal adhesions[26-31]. It is long known 
to function as a scaffold to integrate multiple signaling pathways involved in matrix adhesion dynamics 
and cell migration[27,31-36], and recently, it was shown to play a role in the nucleus in relation to mRNA 
transcription and subsequent translation[37,38]. Few studies have identified paxillin as a JNK substrate[8,24,25]. 
EGF-driven JNK activation results in JNK-mediated phosphorylation of paxillin at Ser178 and is required 
for cell migration[9,13,19,25,39]. In addition, expression of a phospho-defective Ser178 to Ala mutant of paxillin 
inhibited cell migration[9,19,24]. How JNK-mediated phosphorylation of paxillin regulates cell migration is still 
under investigation. It is still unclear how this phosphorylation event is relevant for breast cancer metastasis 
formation[40,41]. 

Here we explored the role and mechanism of paxillin Ser178 phosphorylation in breast tumor progression 
using the highly metastastic breast tumor cell line MTLn3 as a model. We show that ectopic expression of 
paxillinS178A significantly decreased EGF-dependent signaling and cell migration. Using an orthotopic 
mammary gland tumor/metastasis model, we demonstrate that the JNK-mediated phosphorylation of 
paxillin at Ser178 is essential for efficient metastasis of MTLn3 cells to the lung. Expression of mutant 
paxillinS178A was found to reduce EGFR expression, whereas re-expression of EGFR rescued the defected 
tumor cell migration and metastasis formation. Our data indicate that the phosphorylation of Ser178 of 
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paxillin by JNK can regulate cell migration and metastasis formation via modulation of the EGFR-signaling 
pathway.

METHODS
Chemicals and antibodies
Alpha modified minimal essential medium without ribonucleosides and deoxyribonucleosides (a-MEM), 
fetal bovine serum (FBS), phosphate-buffered saline (PBS), trypsin and geneticin (G418 sulphate) were from 
Life Technologies. Rat tail collagen type I was from Upstate Biotechnology. LipofectAMINE Plus transfection 
reagents were from Invitrogen. Primary antibodies were anti-paxillin (BD), anti-tubulin, anti-GFP (Sigma, 
St. Louis, MO), anti-pT183/pY185-JNK (Promega), anti-Phospho-Thr202/Tyr204 ERK1/2, anti-pSer473-
AKT (Cell Signaling), anti-pSer178-paxillin (Abcam, Cambridge, UK), anti-EGFR for Western blot (rabbit 
polyclonal, Cell Signaling Technology) and FACS/immunostaining (mouse monoclonal, Calbiochem). All 
secondary antibodies were from Jackson. The Western-Star immunodetection system (Tropix kit) was from 
Applied Biosystems and ECL Plus reagent was from Amersham. Hoechst 33258 and rhodamine-phalloidin 
were from Molecular Probes and Aqua Poly/Mount was from Polysciences. 

Cell culture
MTLn3 cells were cultured as before[42]. To generate stable cell lines, MTLn3 cells were transfected with GFP-
paxillin or GFP-paxillinS178A kindly provided by Huang et al.[24] were transfected using LipofectAMINE 
plus reagents according to manufacturer’s procedures. Stable transfectants were selected using G418 and 
individual clones were picked and kept at 100 mg/mL G418. For EGF experiments, 70%-80% confluent 
cells were starved for 4 h followed by exposure to EGF (10 nmol/L). Human EGFR was expressed in GFP-
paxillin S178A using retroviral transfection followed by FACS sorting as described previously[43]. Retroviral 
transduction of GFP-paxillin cells with a pMSCV-blast-hEGFR retroviral vector, followed by blasticidin 
selection (12.5 mg/mL) was used to generate GFP-paxillin S178A EGFR cells.

Luciferase reporter assay
MTLn3 cells were transiently transfected with the reporter constructs pGL3-Tata-5xE3AP1[44], pGL3-Tata-
5xCol1TRE, pGL3-Tata-5xJun2 kindly provided by Dr. Hans van Dam (LUMC) using Lipofectamine Plus 
reagent[42]. 1 µg of expression reporter plasmids together with 1 µg of a renilla-luciferase construct (as an 
internal control for transfection efficiency) were transfected in both clones WT and S178A. After 48 h, cells 
were serum starved for 4 h then lysed and analyzed for luciferase activity using a luminescence plate reader. 

Proliferation, attachment and wound healing assay
For proliferation assay, cells were plated in complete medium in 6 wells-plates and cultured for 24, 48, 72 
or 96 h at which time point the amount of cells was determined by counting. For cell attachment assay, 1 h 
serum-starved cells were seeded in complete medium on collagen-coated 6 wells-plates for 30, 60, 90 and 
120 min, and following a PBS wash, attached cells were trypsinized and counted. For wound healing assays, 
monolayer cells were scratched using a pipette tip to generate a wound followed by a wash with medium and 
incubation in a-MEM supplemented with 1% (v/v) FBS for 20 hrs. Wounds were photographed using phase 
contrast microscopy with a Nikon Coolpix digital camera directly after scratching and after 20 h. Wound 
closure was determined using Image J software.

Live cell imaging
Random cell migration 
Cells were cultured in glass-bottom plates overnight and starved for 4 h followed by imaging for 1-3 h 
on a Nikon TE 2000-E microscope in a humid climate of 37 °C and 5% CO2 with either DIC (Differential 
Interference Contrast) or fluorescence microscopy. Subsequently, cells were treated with EGF and time-
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lapses were captured with 20× objective. Per biological replicate, there were 3 wells treated similarly and 2 
positions per well were imaged. About 30-40 cells were followed over time in each field of view, which means 
that we analyzed the behavior of more than 120 cells per biological replicate. When used, the JNK inhibitor 
SP600125 (20 mmol/L) was added 30 min prior to stimulation. Cell speed was determined with a homemade 
macro written in Image-Pro Plus (Media Cybernetics Inc., Silver Spring, MD).

Total internal reflection fluorescence and fluorescence recovery after photobleaching
Total internal reflection fluorescence (TIRF) microscopy was performed with a Nikon TE 2000-E microscope 
in a climate control chamber. To determine the turnover of GFP-tagged paxillin proteins in individual focal 
adhesions, fluorescence recovery after photobleaching (FRAP) was performed as follows: photobleaching was 
applied to a small area covering a single focal adhesion for 1 s with laser intensity of 50 mW. Redistribution 
of fluorescence was monitored with 100 ms time intervals at 7.5 mW starting directly after the bleach pulse. 
Approximately 20 focal adhesions (each in distinct cells) were averaged to generate one FRAP curve for a 
single experiment. All measurements were performed at 37 °C and the experiment was performed on three 
different days. The relative fluorescence intensity of individual focal adhesion was calculated at each time 
interval as follows: Irel(t) = (FAt/FA0), where FAt is the intensity of the focal adhesion at time point t after 
bleaching and FA0 is the average intensity of the focal adhesion before bleaching. 

Gel electrophoresis and immunoblotting
Equal protein amounts (25 mg; Bradford protein assay) were separated on 7.5% polyacrylamide gels and 
transferred to PVDF membranes (Millipore). Membranes were blocked in 5% (w/v) BSA in TBS-T and 
probed with primary antibody overnight followed by sufficient washes and incubation with secondary 
antibodies. Alkaline phosphatase-conjugated secondary antibodies for phospho-proteins were detected with 
the Western-Star immunodetection system. For detection of horseradish peroxidase-conjugated antibodies, 
ECL Plus reagent was used, followed by visualization on a Typhoon Imager 9400.

Immunofluorescence
Cells were plated on collagen-coated glass coverslips. Cells were briefly washed in PBS, followed by fixation 
in 3.7% formaldehyde for 10 min at room temperature. After washing, coverslips were blocked in TBP (0.1% 
(w/v) Triton X-100, 0.5% (w/v) BSA in PBS, pH 7.4). Incubation with primary antibodies diluted in TBP 
containing 0.05% (w/v) NaN3 was carried out overnight at 4 °C. Coverslips were mounted on glass slides 
using Aqua Poly/Mount. 

RNA isolation and DNA array analysis 
Total RNA was isolated from all MTLn3 clones using TRIzol reagent (Invitrogen Corp.). Five microgram 
of RNA was used for cDNA synthesis. A custom cDNA kit (Invitrogen Corp.) with T7-(dT)24 primer was 
used for this reaction. Biotinylated cRNA was generated from the cDNA reaction using the BioArray high 
yield RNA transcript kit (Affymetrix Inc., Santa Clara, CA). cRNA was then fragmented (5X fragmentation 
buffer: 200 mmol/L Tris acetate, pH 8.1, 500 mmol/L potassium acetate, 150 mmol/L magnesium acetate) at 
94 °C for 35 min before chip hybridization. Following the manufacturer's protocol, fragmented cRNA was 
added to the hybridization mixture. For DNA array, HG-U133A from Affymetrix were hybridized for 16 h 
in a GeneChip Fluidics Station 400 and scanned with a GeneArray Scanner. The Human Genome U133A 
set of microarray represents ~14,500 human genes. Affymetrix GeneChip Microarray software was used for 
basic analysis. Samples were normalized to the average hybridization intensity on each chip. The study was 
performed for all 6 clones in duplicate. Gene Spring 6.0 (Silicon Genetics, Redwood City, CA) software was 
used for data analysis. Data mining of the list of genes was done using Enrichr (http://amp.pharm.mssm.
edu/Enrichr/), an online gene set enrichment analysis web tool from the Ma'ayan Lab[45,46]. 

Stable shRNA-mediated gene knockdown
MC7 cells were transduced with lentiviral shRNA constructs coding for a non-targeting control sequences 
shCtrl (SHC002) and a sequence targeting the coding region of PXN (TRCN0000123138) (Mission/
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Sigma-Aldrich, Zwijndrecht, The Netherlands). The cells were selected by puromycin (sc-108071, Santa 
Cruz Biotechnology, Heidelberg, Germany). Knockdown efficiency was verified by Western Blot and 
immunofluorescent staining.

In vivo tumor growth and metastasis formation
Six-week-old Rag2-/-gc-/-mice were obtained from in-house breeding. Animals were housed in individually 
ventilated cages under sterile conditions containing 3 mice per cage. Sterilised food and water were provided 
ad libitum. To measure spontaneous metastasis, tumor cells (5 × 105) were injected into the right thoracic 
mammary fat pads as described previously[10]. After 4 weeks, the lungs were excised as well as the primary 
tumor which was also weighed. For quantification of all GFP-paxillin positive macro- and micro-metastases, 
the flat side of the right lung was analysed with the immunofluorescence microscope using a 10× objective 
lens (NA 0.25). Next the right lung and primary tumor were fixated in 4% paraformaldehyde. Paraffin 
sections of the lungs (5 mm) were stained with hematoxylin and eosin followed by histological analysis. 

Statistical analysis
When not indicated, all experiments were performed in biological triplicates. As all data sets in this study 
follow a normal distribution, therefore were compared with Student’s t-test (two-tailed, equal variances) 
using GraphPad Prism 6.0. Results were considered to be significant if P value < 0.05. 

RESULTS
EGF-induced cell migration of MTLn3 cells is dependent on JNK activation and associated with 
paxillin Ser178 phosphorylation
First we determined the role of JNK-paxillin signaling in EGF-induced migration of the highly metastatic 
MTLn3 rat mammary adenocarcinoma cell line. EGF exposure caused membrane ruffling [Supplementary 
Figure 1], random cell migration and scattering of MTLn3 cells [Figure 1A and Video 1]. An inhibitor 
of JNK, SP600125, blocked the migration almost completely, which was associated with increased cell 
clustering of the MTLn3 cells. This clustered phenotype was associated with increased localization of 
β-catenin at cell-cell contacts [Figure 1B and Supplementary Figure 2]. Visual inspection of the movies 
indicates that inhibition of JNK reduces persistent movement [Figure 1C] and quantitative analysis of the 
cellular tracks reveal that the velocity of both individual and clustered cells was significantly impaired 
[Figure 1D]. By immunofluorescence, we observed that active phosphorylated JNK co-localizes with paxillin 
at focal adhesions in MTLn3 cells [Supplementary Figure 3B] as was previously observed in renal epithelial 
cells[47,48]. EGF treatment induced a transient phosphorylation of paxillin at Ser178 in association with JNK 
activation, while SP600125 prevented phosphorylation of JNK, c-Jun as well as paxillin at Ser178 indicating 
the importance of EGF-induced JNK activation for paxillin phosphorylation [Figure 1E and Supplementary 
Figure 3C]. Together, these data indicate that in MTLn3 cells EGF-induced JNK activation mediates cell 
migration possibly via the phosphorylation of paxillin at Ser178. 

PaxillinS178A mutant inhibits MTLn3 cell motility in vitro
To further investigate the role of paxillin Ser178 in cell migration, we generated MTLn3 cell-lines stably 
expressing either GFP-tagged paxillin-wt or phospho-defective mutant GFP-paxillin in which the serine 
residue 178 was replaced by alanine (further referred to as paxillinS178A). Three independently obtained 
paxillin-wt clones and paxillinS178A clones were selected for further experiments. MTLn3 clones stably 
expressing GFP-wt-paxillin or GFP-paxillinS178A were evaluated by flow cytometry, Western blotting 
[Supplementary Figure 4A] and immunofluorescence [Figure 2A]. Expression levels were approximately 
equal in all clones. Although GFP-paxillinS178A still localized at focal adhesions, cells were smaller and 
clustered with enhanced β-catenin-containing cell-cell contacts while cells expressing the GFP-wt-paxillin 
were stretched with large lamellipodia and almost no cell-cell contacts [Figure 2A and Supplementary 
Figure 4B]. The paxillinS178A-induced cell clusters [Figure 2B and Supplementary Figure 4C] resembled 
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those formed in SP600125 treated cells [Figure 1B]. Given the prominent role of paxillin in focal adhesion 
formation and dynamics, a process required for cell spreading, we next examined the effect of paxillinS178A 
expression on cell attachment and spreading. Significantly less paxillinS178A cells adhered shortly after 
plating compared to paxillin-wt cells [Figure 2Ca]. Furthermore, while most of paxillin-wt cells had already 
spread most of the paxillinS178A cells remained rounded and presented a smaller surface area even after 
three hours of spreading [Figure 2Cb]. We also determined the effect of paxillinS178A on directed cell 
migration in an artificial wound healing assay [Figure 2D and Supplementary Figure 4D]. While wt-paxillin 
cells closed the wound by 83%, paxillin-S178A cells had only closed 25% of the wound after 20 h.

PaxillinS178A affects EGF-induced cell migration and focal adhesion dynamics
In a random cell migration assay paxillin-wt cells rapidly formed lamellipodia and became highly motile 
while paxillinS178A cells showed decreased cell motility and responded less to EGF stimulation [Figure 3A 
and Video 2]. Since paxillinS178A most likely acts as a dominant negative construct in these cells, it may 
compete for the localization of endogenous paxillin at focal adhesions and prevent the phosphorylation of 
endogenous paxillin at Ser178 by JNK. Indeed, EGF stimulation of paxillinS178A cells induced negligible 
Ser178 phosphorylation of endogenous paxillin whereas in paxillin-wt cells, both endogenous and GFP-
paxillin-wt were phosphorylated at Ser178 after EGF treatment [Supplementary Figure 5]. Importantly, an 

Figure 1. c-Jun NH2-terminal kinase (JNK)-mediated phosphorylation of paxillin Ser178 plays a role in tumor cell migration. MTLn3 
cells were either untreated or treated with EGF (10 nmol/L) in the absence or presence of the JNK inhibitor SP600125 (20 mmol/L). A: 
migration of these cells was observed by live DIC microscopy. Snapshots of the time-lapse made for 2 h are shown, scale bar is 50 mm. 
See movie M1; B: at 0, 5 and 10 min after treatment cells were fixed and stained for the nucleus (blue) and β-catenin (green). Scale bar 
is 20 mm; C: overall migration trajectories of individual cells of one representative experiment (only one position from the 6 technical 
replicates of one biological replicate); D: average cell speeds of about 100 cells per treatment imaged in one biological replicate were 
plotted. This graph shows the data for one representative biological replicate.*P  < 0.05, **P  < 0.01, ***P  < 0.001; E: the JNK signaling 
pathway was analyzed by Western Blotting using the indicated antibodies. The arrows indicate the phospho specific bands of the different 
antibodies. The paxillin antibody detects also a paxillin family member leupaxin encoded by LPXN, which has a much lower molecular 
weight than paxillin encoded by PXN
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EGF-induced mobility shift of endogenous paxillin was observed in both WT and S178A cell-lines, indicating 
that most of the other paxillin modifications were unaffected [Supplementary Figure 5]. 

To understand the mechanism of the inhibitory effect of paxillinS178A on cell migration, we determined 
the dynamics of focal adhesions in WT and S178A cells using TIRF microscopy. MTLn3 cells expressing 
paxillin-wt showed a high focal adhesion turnover which was enhanced upon EGF stimulation. In contrast, 
paxillinS178A cells showed a much slower rate of FA disassembly either in the presence or absence of EGF 
[Figure 3B and Video 3]. The decreased focal adhesion dynamics could not be explained by a changed 
in mobility of GFP-paxillinS178A as determined by FRAP experiments. Indeed, both under serum-free 
conditions and upon EGF stimulation, the rates and percentages of fluorescence recovery of GFP-paxillin-wt 
and GFP-paxillinS178A were similar [Figure 3C]. 

GFP-paxillinS178A expression impairs metastasis formation of MTLn3 cells in an orthotopic 
breast tumor model
We next determined whether paxillin Ser178 was important for spontaneous lung metastasis formation. The 
MTLn3 cell line has been established as a suitable cell model to study metastasis formation from mammary 
gland tumors to the lung[10]. We injected GFP-paxillin-wt (clone #2) and GFP-paxillinS178A (clone #2) 
cells into the mammary fat pads of immunodeficient Rag2-/-g-/-mice. After three weeks mice were sacrificed 
for the analysis of the primary mammary gland tumors as well as lung metastases. All primary tumors 
remained GFP-positive, indicating expression of wt or paxillinS178A GFP-paxillin continuously during 
the experiment. The edges of the GFP-paxillin-wt tumors were more invasive-like compared to those of 
GFP-paxillinS178A tumors [Figure 4A]. Yet, the weight of the primary tumor was not significantly altered 

Figure 2. Expression of paxillinS178A decreases cell spreading and directed cell migration. GFP-paxillin-wt and GFP-paxillinS178A 
MTLn3 cells were generated and three independent clones were used for further research. A: endogenous paxillin (red) colocalized with 
ectopically expressed GFP-paxillin-wt and GFP-paxillinS178A (green). Scale bar is 10 mm; B: cell clusters were detected using β-catenin 
(red) and GFP-paxillin (green) staining. Scale bar is 20 mm; C: cells were analyzed for cell adhesion (a). Cells were replated on collagen-
coated plastic culture dishes. The number of attached cells was counted at different time points after replating. Columns show the 
mean of three independent experiments; bars show SE, ***P  < 0.001. The spreading after 3 hrs of both wildtype and mutant cells was 
assessed using phase-contrast pictures (b); D: directed cell migration capacity was assessed using a woundhealing assay. The wound 
closure was measured at three different location in the wound after 24 h. The assay was repeated three times. Columns show the mean 
of three independent experiments; bars show SE, *** P  < 0.001. All three adhesion related assays were demonstrating a defect in the GFP-
paxillinS178A cells
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by GFP-paxillinS178A [Figure 4B]. GFP-paxillinS178A MTLn3 cells formed significantly less spontaneous 
lung metastases than GFP-paxillin-wt MTLn3 cells [Figure 4C and D], and these metastases also had a less 
invasive phenotype [Figure 4C]. Our data show for the first time an important role for phosphorylation of 
paxillin on Ser178 in breast cancer progression.

Ectopic paxillinS178A expression results in EGFR down regulation at mRNA and protein levels
Next we sought to determine the possible mechanism by which paxillinS178A affects tumor cell migration 
and metastasis formation. Using Affimetrix microarrays, we analyzed the differentially expressed genes 
(DEG) between GFP-paxillinWT and GFP-paxillinS178A MTLn3 clones. Using a very low p-value, a 
comparison between WT and mutant clones delineated 134 genes that were differentially expressed of 
which 84 were down-regulated and 50 up-regulated [Supplementary Table 1]. In Figure 5Aa, we plotted 

Figure 3. EGF-driven cell migration is inhibited in paxillinS178A cells because of impaired focal adhesion turnover. MTLn3 cells were 
either untreated or treated with EGF (10 nmol/L). A: migration was observed for 10 h by epi-fluorescence microscopy PaxillinS178A 
reduced cell speed average (about 100 cells per condition were imaged in one biological replicate). This graph shows the data for one 
representative biological replicate.*P  < 0.05, **P  < 0.01, ***P  < 0.001 (a) and directional cell movement (b). See also Supplementary 
movie M2; B: matrix adhesions dynamics in MTLn3 cells was visualized with TIRF microscopy. See alsoSuplementary movie M3. Overlay 
of different timeframes were generated in red, green and blue. Focal adhesions in white, as observed for PaxillinSer178, represent 
unchanged (less dynamic) focal adhesions. Scale bar is 20 mm; C: protein dynamics was measured with the spot bleaching technique 
and showed similar dynamics for both GFP-paxillinS178A (b) and GFP-paxillin-wt (a). Approximately 20 focal adhesions (each in distinct 
cells) were averaged to generate one FRAP curve for a single experiment.The mean relative fluorescence of both GFP-paxillin-wt and GFP-
paxillinS178A both in SFM and upon EGF stimulation shows no significant difference after 30 s of recovery
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the fold changes of the 10 most down- and 10 most up-regulated genes. Strikingly, EGFR was significantly 
down-regulated in the mutant clones. A pathway analysis of the complete set of genes using Gene Ontology 
revealed that pathways involved in intermediate filament assembly, cell proliferation and regulation of 
β-catenin transport were significantly altered when compared to the wt clones [Figure 5Ab]. Furthermore, a 
protein-protein interaction analysis of those same DEGs highlighted the EGFR network as most significantly 
altered [Figure 5B]. Paxillin localizes at focal adhesions and EGFR signaling is regulated and trans-activated 
at focal adhesions by both integrins[49,50] and FAK[51,52]. Therefore we reasoned that paxillinS178A may disturb 
the EGFR signaling pathway. In agreement with our microarray analysis, all three paxillinS178A clones had 
much lower levels of EGFR protein than wt clones. As a consequence, downstream EGFR signaling towards 
Akt and ERK were also reduced in S178A clones [Figure 5C]. Since EGF also caused JNK activation in control 
MTLn3 cells [Figure 1], we also determined the activation of JNK signaling pathway in these cells. Indeed, 
paxillinS178A expression also inhibited EGF-induced JNK activation [Figure 5C], which was associated with 
a reduction in c-Jun transcriptional activity as determined by luciferase reporter assays [Figure 5D]. These 
data indicate that paxillinS178A affects the expression of EGFR possibly through the regulation of c-Jun-
mediated EGFR transcription[53,54], thereby disturbing downstream signaling pathways that are essential in 
the cell migration process.

Ectopic expression of human wt-EGFR in paxillinS178A cells restores EGF-driven cell motility 
and lung metastasis formation
To determine whether paxillinS178A reduced tumor cell migration and metastases formation via EGFR 
downregulation, we re-expressed EGFR in the mutant cells [Supplementary Figure 6A]. The EGFR re-
expression induced a more spread phenotype in paxillinS178A cells [Figure 6A and Supplementary Figure 6B]. 
The EGF-driven cell migration was rescued and the protein turnover of paxillinS178A at focal adhesions was 
slightly faster only upon EGF stimulation [Figure 6B and Supplementary Figure 6C]. This was associated with a 
sustained activation of both JNK and ERK after EGF exposure [Supplementary Figure 6D]. Next we determined 
whether EGFR re-expression also restored the capacity of MTLn3 paxillinS178A cells to metastasize to the 
lungs. For this purpose, we injected GFP-paxillinS178A cells and EGFR-GFP-paxillinS178A cells into the 
mammary fat pads of immunodeficient Rag2-/-g-/-mice, although we were aware that EGFR expression would 
decrease during the course of the experiment. The tumor growth of paxillinS178A and EGFR-paxillinS178A 

Figure 4. Expression of paxillinS178A impairs lung metastasis formation in vivo . One representative clone of either GFP-paxillin-wt or GFP-
paxillinS178A MTLn3 cell-lines were used for in vivo  experiments. A: Primary tumors were imaged using two-photon intravital imaging. Scale 
bar is 100 mm; B: no significant difference in tumor weight was measured between the wt mice (n  = 10) and S178A mice (n = 12); C: two-
photon intravital microscopy, H&E staining of lung slices; D: quantification of the number of GFP-positive lung metastases demonstrated that 
paxilinS178A reduced lung metastasis formation. Scale bar is 100 mm
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cells was similar in the both groups [Figure 6Cb] and all tumor cells in the primary tumors were GFP-positive 
[Figure 6Ca]. Mice injected with GFP-paxillinS178A cells that expressed EGFR showed an approximately 
threefold increase in the lung tumor burden in [Figure 6D]. These data indicate that the reduced metastasis 
formation of GFP-paxillinS178A cells is directly related to the expression levels of EGFR.

Figure 5. EGFR and EGFR-signaling is downregulated in paxillinS178A mutant cells. A: bar graph displaying the 10 most down- and up-
regulating genes in mutant cells when compared with wt cells (a); and Enrichr analysis using the GO Biological process function (processes 
are sorted by combined score) (b); B: Enrichr analysis using the PPI Hub proteins function (a), EGFR being the first PPI with the highest 
score (b); C: Western blot analysis confirms a decreased EGFR expression in all S178A clones. Ratios of EGFR levels relative to wt1 clone 
are indicated below the blot. EGFR downstream signaling towards Akt, ERK and JNK is affected in S178A clones; D: activity of AP-1 
member c-Jun was reduced in paxillinS178A cells as determined by TATA-luciferase reporter assay
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DISCUSSION
Our data indicate that EGF-induced JNK activation is essential for MTLn3 cell migration. Phosphorylation 
of paxillin on Ser178 in MTLn3 cells was induced upon EGF stimulation in a manner sensitive to the JNK 
inhibitor, and expression of paxillinS178A inhibited cell motility. Such a role for paxillin Ser178 in cell 
migration is in agreement with observations made in different tumor cell lines[7,9,13,24,25,40,55-60]. Here we further 
demonstrate that the JNK-paxillin axis regulates both the dynamics of focal adhesions through modulation 
of paxillin protein dynamics at focal adhesions as well as the stability of β-catenin-based adherence junction 
formation. We propose that Ser178 phosphorylation may induce a conformational change, thereby affecting 
paxillin interactions with other focal adhesion components. Alternatively, the decreased EGFR expression in 
paxillinS178A cells affects downstream signaling pathways that indirectly modifies focal adhesion dynamics 
as well as adherence junction stability. Indeed, re-expression of EGFR in paxillinS178A cells reversed the 
epithelial-like phenotype and rendered paxillinS178A again less immobile at focal adhesions, suggesting that 
this is not an intrinsic characteristic of paxillinS178A, but is rather due to altered signaling in cells mediated 
by downstream EGFR signaling pathways. This needs further investigation. 

So far no in vivo data on the specific role of paxillin Ser178 in metastasis formation have been presented. Here, 
we demonstrate that the Ser178 of paxillin is essential for spontaneous metastasis formation in an orthotopic 
breast tumor/metastasis model. Our in vivo data on the specific role of paxillin Ser178 in metastasis formation 
is in line with previously published data using a knock-down of MLK3 in MDA-MB-231. Indeed in the later 
study, they found that Ser178 phosphorylation of paxillin was associated with the metastatic phenotype[40,59]. 
Importantly in our study, we demonstrate that specifically the Ser178 of paxillin is essential for spontaneous 
metastasis formation in an orthotopic breast tumor/metastasis model. Our findings are indicative for a 
role for the JNK-paxillin pathway in the regulation of the expression of EGFR, thereby severely affecting 
the capacity of tumor cells to migrate and metastasize. Indeed, reduced levels of EGFR were observed in 

Figure 6. Re-expression of wt-EGFR fully restores EGF-driven cell motility and lung metastasis formation. A: immunostaining with a 
specific mouse monoclonal antibody against human EGFR confirmed the ectopic expression of EGFR in S178A cells; paxillinS178A (green) 
and human EGFR (red). Scale bar is 10 mm; B: trajectories of the movements of S178A and S178AEGFR cells are plotted in (a) and (b) 
respectively (X and Y are in mm). Protein dynamics was quantified with spot bleaching technique and the fluorescence recovery after 30 
sec was slightly faster upon EGF stimulation, * P  < 0.05. (c); C: two-photon imaging of GFP-positive lung metastases, scale bar is 100 mm. 
(a). There was no significant difference in tumor weight of S178A (n = 13) and S178AEGFR (n = 13) groups (b); D: H&E staining of lung 
slices of S178A and S178AEGFR groups (a). Number of GFP-positive metastases counted in the fresh lungs at time of sacrifice is shown (b)
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three independent paxillinS178A MTLn3 clones, resulting in decreased EGF-induced activation of signaling 
pathways downstream of EGFR. Given the fact that EGFR is often highly expressed in advanced breast cancer, 
and that EGFR antagonists inhibit spontaneous metastasis formation of MTLn3 cells, we anticipated that 
the reduced EGFR expression was an essential component of the inhibited cell migration and metastasis 
formation. Indeed, re-expression of the wt-EGFR in the paxillinS178A cells did rescue the migratory phenotype 
of MTLn3 paxillinS178A cells as well as their metastatic capacity under in vivo conditions. This regulation of 
the EGFR by paxillin phosphorylation has not been described before. Curiously, a recent study demonstrated 
that knockdown of MCLK in mammary MCF10A cells induces increase in cell migration through enhanced 
phosphorylation of paxillin at Ser178 which was linked to an increase in JNK activity and very interestingly to 
a significant up-regulation of EGFR at protein level[60]. This is striking and yet would suggest that our findings 
might not be specific to our cell model. In our study, paxillinS178A MTLn3 cells showed reduced c-Jun 
transcriptional activity. In MCF7 cells stable overexpression of c-Jun induces an increase in EGFR expression 
suggesting that AP-1 transcription factors can regulate EGFR transcription levels[53]; such a regulation is also 
observed in keratinocytes[54]. Therefore, we propose a role of the JNK-c-Jun signaling pathway in the regulation 
of EGFR expression at transcriptional level. Our own data in MCF7 cells that have increased ectopic expression 
of EGFR show that depletion of paxillin results in significant downregulation of EGFR expression as well as 
downstream signaling such as AKT and ERK [Supplementary Figure 7]. Thus, an alternative explanation 
may be that JNK-mediated phosphorylation of paxillin Ser178 is required for efficient EGFR endocytosis and 
recycling, an essential component in its activation[61]. Hence this will affect proper JNK activation and AP-1 
transcription factor activation thereby providing a positive feedback for EGFR expression[62]. Alternatively, 
paxillin may affect the expression of EGFR by its known role in the regulation of gene expression through 
its interaction with ERK[63,64], poly-A-binding protein[65], Abl[66,67] and steroid receptors, or through its own 
ability to undergo nucleocytoplasmic shuttling[37,38,68-71]. 

Our findings indicate that the JNK-paxillin axis modulates the scattered phenotype of MTLn3 cells. 
Both inhibition of JNK as well as ectopic expression of paxillinS178A reversed the scattered phenotype 
towards a more epithelial-like morphology with the formation of E-cadherin/β-catenin cell-cell junctions. 
This morphological switch was observed under serum-starved and EGF-treated conditions. The (in)direct 
tyrosine phosphorylation of β-catenin by EGFR and other receptor tyrosine kinases such as c-Met is known 
to destabilize its binding to E-cadherin. Because of the low EGFR expression in the paxillin mutant cells, 
we anticipate that this results in de-phosphorylation of β-catenin leading to its localization to the cell-cell 
contacts. These data suggest that paxillinS178A does not affect the intrinsic molecular components and 
machinery required for the scattered phenotype and support the notion that the effect of paxillinS178A is 
rather related to the defects in the EGFR signaling pathways. Consequently, the defects in in vivo metastasis 
formation of MTLn3 paxillinS178A cells are most likely largely due to defects EGF signaling. This fits with 
our observations that ectopic EGFR expression itself is sufficient to again allow metastasis formation of 
paxillinS178A cells. 

In summary, in MTLn3, engagement of EGF receptors by EGF triggers rapid activation of JNK, leading 
to the phosphorylation of paxillin on Ser 178 which facilitates adhesion turnover thus promoting rapid 
migration. In the MTLn3 cell lines that ectopically express GFP-paxillin-S178A mutants, we found that the 
EGF receptor is downregulated at both the protein and mRNA levels. Paxillin S178A mutant protein might 
associate with JNK preventing its activation and consequently affecting AP1 activity (c-Jun phosphorylation) 
and consequently EGFR expression. In our model [Figure 7], still some links need to be further determined 
such as how exactly paxillin regulates via JNK EGFR expression. Given the essential role of Ser178 
phosphorylation in the migration and metastasis formation, monitoring this paxillin phosphorylation in 
tumor samples from patients may be indicative of the activation of this pro-metastatic pathway and possibly 
predictive for the disease prognosis. Moreover, with the further development of specific JNK inhibitors[72,73] 
it is anticipated that novel targeted therapies that antagonize the migratory/invasive behavior of tumor cells 
may be used in the clinic in the future. Further work in this area is required. 
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