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5
Dynamic prediction with a joint

model

Uveitis is characterised as a recurrent inflammation of the eye and an ongoing
inflammation can have severe impact on the visual acuity of the patient. The Rotter-
dam Eye Hospital has been collecting data on every uveitis patient visiting the hospital
since 2000. We propose a joint model for the inflammation and visual acuity with the
purpose ofmaking dynamic predictions. Dynamic predictionmodels allowpredictions
to be updated during the follow-up of the patient based on the patient’s disease history.

The joint model consists of a submodel for the inflammation, the event history out-
come, and one for the visual acuity, the longitudinal outcome. The inflammation pro-
cess is describedwith a two state reversiblemulti-statemodel, where transition times are
interval censored. Correlated log-normal frailties are included in the multi-state model
to account for the within eye and within patient correlation. A linear mixed model is
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used for the visual acuity. The joint model is fitted in a two-stage procedure and we il-
lustrate how the model can be used to make dynamic predictions. The performance of
the method was investigated in a simulation study. The novelty of the proposedmodel
includes the extension to a multi-state outcome, whereas previously the standard has
been to consider survival or competing risk outcomes. Furthermore, it is usually the
case that the longitudinal outcome affects the event history outcome, but in this model
the relation is reversed.

5.1 Introduction

Uveitis is an intraocular inflammation of the uvea, which typically is episodic. An act-
ive inflammation can be very painful for the patient. After the onset of the disease it is
vital that the patient is provided with proper treatment to keep the inflammation un-
der control. An untreated inflamed eye will over time progress towards poorer visual
acuity, but correct treatment can suppress the inflammation, and the eyemay over time
recover and regain visual acuity. In 35 − 50% of cases, there is no known cause 31 and
the interplay between the two eyes is unresolved. Unlike other eye diseases, that usually
affect the elderly, uveitis affects all ages. Accurate assessment of the risk of inflamma-
tion and poor visual acuity is highly relevant for these patients as uveitis is one of the
leading causes of preventable legal blindness in developed countries 31.

We propose a joint model for dynamic prediction of visual acuity and inflammation
for patients with uveitis. The data that motivated the joint model was collected at the
Rotterdam EyeHospital, and it is comprised of uveitis patients that started visiting the
hospital in the period from 2000 to 2014. Most previous studies on uveitis have been
cross-sectional, so the longitudinal data collected in Rotterdam offers unique possibil-
ities to understand how different risk factors affect the disease progression.

Early keypapers on jointmodels for event history and longitudinal outcomes include
Faucett andThomas 28 andWulfsohn andTsiatis99, and jointmodels have since been an
increasingly popular research field. A somewhat recent overview can be found inDiggle
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et al 27. The classical example is when a biomarker is measured repeatedly over time
which may be related to a time to event outcome such as death. There are three main
objectives for employing a joint model. The objective can be to analyse either the time
to event outcome or the longitudinal outcome or to study the relationship between the
two. Our main objective is to analyse the longitudinal outcome, since visual acuity is
what ultimately matters for the patients. However, the inflammation process, which
we consider as a time to event outcome, is also of secondary interest. Often when the
longitudinal outcome is the object of interest the joint model approach is used to cor-
rect for informative censoring98,84. This is however not the case here, since the changes
in the inflammation do not terminate the measurements of the visual acuity, which
would otherwise be the case if the time to event outcome where death. Instead, our
motive to employ a joint model is based on clinical considerations; that the time spent
with an active inflammation or the time spent in recovery is what drives the progression
of the visual acuity 31. However, the exact time of transition from one state to another
is interval censored in our data, since the inflammation status is only observed at the
visits to the hospital. Other examples of joint models for an interval censored time to
event outcome can be found in Gueorguieva et al44 and Rouanet et al79. We used ran-
dom effects both to account for the dependence of observations within an individual
and within an eye as well as to allow for individualised predictions. Using correlated
random effects, rather than just one shared random effect, has been a popular way of
connecting the longitudinal and time to event outcomes43,87. Given the complexity of
the joint model, particularly the random effects structure, we employed a two-stage ap-
proach to estimating the parameters of the jointmodel. Two-stage approaches has been
criticized as being subject to possible bias and poor coverage 86. Nevertheless our two-
stage approach differs from the conventional approach in a number of ways and we
conducted a simulation study to evaluate the performance of the proposed estimation
procedure.

Jointmodels can be used for dynamic prediction70,76, where predictions are updated
based on the information that is available on the patient at a given time during follow-
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up. Predictionsmay change over the follow-updue to changes in the patient’s covariates
or due to changes in the effect of the covariates or the baseline. Early work on dynamic
predictionused aCoxmodelwith time-varying covariates47,95, and vanHouwelingen92

proposed to use landmarking 11. Although joint models are usually more complex than
the alternatives, they may also provide more insight, as both the longitudinal and time
to event outcome are modelled.

We start by describing the data from the Rotterdam Eye Hospital in Section 5.2. In
Section 5.3 we describe the joint model, how the estimation is carried out and how the
jointmodel can be used tomake dynamic prediction of both outcomes. To evaluate the
performance of the proposed estimation procedure we conducted a simulation study
described in Section 5.4. In Section 5.5 we show the results of fitting the joint model
to the uveitis data along with the results from a sensitivity analysis of the assumptions.
Section 5.6 is devoted to discussion. Additional results from the uveitis data and the
simulation study are provided in the Supporting Information.

5.2 Uveitis data

The data consists of 366 uveitis patients that started frequenting the Rotterdam Eye
Hospital in the period from 2000 to 2014. These patients contributed with data on
714 eyes and 10816 observations, with a mean follow-up time of 2.5 years and the
mean number of visits was 15. The visits were in principle prescheduled, and patients
would only be discharged from the hospital after five years without any inflammation
episodes. At each visit informationwas collected on the inflammation status, visual acu-
ity and covariates. The inflammation statuswas either observed to be active (present) or
quiescent (inflammation free). However, the exact transition times are unknown, since
the inflammation status was only observed at the visits. The total number of observed
transitions was 980 to quiescent and 657 to active. The visual acuity was measured
on the Snellen scale, where an eye with normal vision would score 20/20 = 1 and a
completely blind eye would score 0.
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Data collected on three patients are shown in Figure 5.1. It shows the inflammation
status and visual acuity measured at every visit since the patients’ first visit to the hos-
pital. Patient A has close to two years of follow-up, where the left eye started out with
inflammation and declining visual acuity, but after a while the eye turned quiescent and
the visual acuity recovered somewhat. The right eye only had one visit with an active in-
flammation, and the visual acuity did not change asmuch as it did in the left eye. Patient
B is an example of a patient where only one eye seemed to be affected by the disease. In
contrast to patient B, patient C is an example of a patient where the visual acuity and to
some degree the inflammation on both eyes followed similar patterns. Patients B and
C illustrate that for most patients uveitis takes on a chronic nature and in these cases
only proper treatment may help suppress future episodes. Furthermore, Figure 5.1 il-
lustrates that there is a high level of heterogeneity between these patients and that the
visual acuity is affected by the status of the inflammation process.

The covariates include age, early onset, treatments, surgeries and complications. Table
5.1 contains a summary of the covariates in the data set. The fewmissing values (< 5%)
have been replaced by the value at the previous visit. The patient level covariates are
also baseline covariates. Age is defined as the patient’s age at the first visit to the hos-
pital. Visual acuity is expected to decline with age in the general population. Early
onset denotes the patients that had more than six weeks between the onset of the first
complaints and the first visit to the hospital. Although the number of patients with
early onset is small, it is believed to be an important predictor of the outcomes, as early
treatment of uveitis is considered to be crucial for future recovery. The eye level co-
variates are also time-varying, and they are therefore presented on an aggregated level.
The patients could receive a whole range of treatments in the form of eye drops, pills
or injections in various combinations and with varying intensities. A high intensity
treatment increases the suppression of the inflammation, but it also increases the risk
of adverse events. All the treatments have been grouped according to intensity as either
maintenance or active treatment, i.e. medium or high intensity. The surgeries that
were considered clinically relevant for the inflammation were phaco, YAG and vitrec-
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Figure 5.1: Illustration of data collected on both eyes from three selected uveitis
patients. The x-axis is time since the first visit, where the patients came to the Rotter-
dam Eye Hospital with complaints. Every dot is a visit and the observed inflammation
status is represented by shape and colour. The visual acuity is depicted on the y-axis,
where normal vision is 1 and blind is 0.
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Table 5.1: Summary of the covariates in the uveitis data set. All the patient level
covariates are also baseline covariates. The eye level covariates are time-varying, and
they are therefore presented on an aggregated level.

Covariate Number %
Patient level
Age (mean,sd) 45 18
Early onset

no 358 98
yes 8 2

Eye level
Treatment

no 122 17
maintenance 43 6
active 547 77
missing 2 0

Surgery
no 598 84
yes 116 16

Complication
no 456 63
yes 244 34
missing 14 2

tomy surgery. The complications that were considered relevant were macular edema,
macular pucker, atrophy, choroidal neovascularization and retinal detachment, and the
presence of either one was recoded at each visit. Table 5.1 shows the number of eyes that
never received any treatment (no) and how many that had treatment at least once dur-
ing follow-up (maintenance or active). It also shows howmany eyes had at least one of
the relevant surgeries performed during follow up (yes) and at least one of the relevant
complications (yes).
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5.3 Method

Letnbe thenumber of subjects in the sample and letv0, . . . , vNi denote theNi+1 visit
times for the ith patient. The visit times are not necessarily the same for every patient.
The time scale is time since the first visit to the hospital, which for most patients is the
same as the onset of the disease (Table 5.1). The information collected at the time of
the first visit, v0 = 0, is used as baseline information. At each visit we observe the
inflammation status Xil(t), the visual acuity Y ′

il(t) and the covariates Zil(t) on both
eyes l ∈ {R,L}. Throughout Zil(t) will denote the value of the covariates just prior
to time t. The joint model consists of two parts; a model for the inflammation and a
model for the visual acuity.

5.3.1 Models

Inflammation model

The inflammation process Xil(t) can be described by the multi-state model in Figure
5.2. The process canmove back and forth between the two states quiescent 1 and active
2. We assume that the transition intensity for making a transition into state g, for eye l
of subject i, takes the form

λg(t|Zil(t), bilg) = λg,0 exp(Zil(t)βg + bilg) for g ∈ {1, 2} . (5.1)

The baseline transition intensity λg,0 is assumed to be constant, which is considered
to be reasonable in view of the chronic nature of the disease. The smaller the trans-
ition intensity the longer time the process will spend in the current state. The effect
βg of the time-varying covariates Zil(t) is assumed to be time-constant. The eye and
subject specific frailty is denoted by bilg . It is expected that the frailties between the
two transitions will be negatively correlated. The frailties are therefore assumed to be
multivariate normal, which unlike the gamma distribution also allows the correlation
to be negative. It would however be too ambitious to attempt to estimate all variance
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and correlation parameters in an unstructured covariance matrix, so we impose some
structure. We assume that the vector of frailties bi for subject i can be decomposed into
a component that is common for both eyes and a component that is unique for each
eye. Let b′i ∼ N2(0,Σb′) denote the common component and let b′il ∼ N2(0,Σb′′)

denote the component that is unique for eye l. We assume that b′i, b′iR and b′iL are in-
dependent. As a result we have that

bi =


biR1

biR2

biL1

biL2

 =

[
b′i + b′iR
b′i + b′iL

]
∼ N4(0,Σb) ,

where the variance matrix, due to independence, can be decomposed as

Σb =

[
Σb′ +Σb′′ Σb′

Σb′ Σb′ +Σb′′

]
.

We assume that the inflammation status can change atmost once between two visits. In
this way we are certain whether or not there was a transition between two visits. So if
the inflammation status between two visits was unchanged, then we assume that there
were no transitions. If there was a change, then we assume that only one transition
took place. Let Til1, . . . , TilMil

denote theMil unobserved transition times. The first
period between the first visit and the first transition will be referred to as spell 0, and
the period between the first and the second transition will be referred to as spell 1 etc.
Hence, withMil transitions we will haveMil + 1 spells.
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Visual acuity model

The visual acuity is first transformed from the Snellen scale y′ to a new scale y given by

y = log
(

y′ + ϵ1
1− y′ + ϵ2

)
,

where ϵ1, ϵ2 > 0 are small. The reasoning behind the transformation is that y′ is on the
Snellen scale, which is bounded and in order to ensure that predictions will stay within
the range of the visual acuity scale we transform it to an unbounded scale. Furthermore,
the model assumption about normality is more appropriate after the transformation.
The visual acuity on the new scale is assumed to follow a linear mixed model

Yil(vj) = µil(vj) + ϵilj for l ∈ {R,L} and j ∈ {1, . . . , Ni} ,

whereYil(t) is the visual acuity on the transformed scale at visit time vj andµil(t) is its
expectation given random effects, whichwill be specified in amoment. The error terms
ϵilj are assumed to be independent and identically distributed withN(0, σ2

ϵ ).

The key motivation for the joint model, and hence the visual acuity model, is that
the time that the eye spent with a quiescent or active inflammation, is the driving force
behind changes in the visual acuity 31. We therefore assume that µil(t) is a linear func-
tion of the time that the eye has spent in the quiescent and active inflammation state.

Quiescent 1 Active 2

λ2(t)

λ1(t)

Figure 5.2: Multi-state model describing the inflammation process within the eye.
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For now we will carry on as if the transition times of the inflammation process were
known. We will discuss later how to incorporate the inherent uncertainty arising from
the fact that the transition times are unobserved. Let t1 and t2 denote the time that the
eye has spent in the quiescent and active inflammation state up until time t, such that
t = t1 + t2. The part of µil(t) that does not depend on t1 or t2 is referred to as the
intercept and the part that does is referred to as the progression of µil(t).

The progression part of µil(t) is given by

(
Z⊤
il (t)α1 + ailm1

)
t1 +

(
Z⊤
il (t)α2 + ailm2

)
t2 form ∈ {0, . . . ,Mil} ,

where the vectorsα1 andα2 are the fixed effects of the covariatesZil(t) on the progres-
sionpart. Hence,Z⊤

il (t)α1 andZ⊤
il (t)α2 are the fixed effect slopes for time spent in the

quiescent or active state. They depend on the covariates, since the presence of complic-
ations is expected to have an effect on the slopes. Furthermore, ailm1 and ailm2 denote
the random effect part of the slopes. They also depend on time as they are spell-specific
andm indicates what spell the eye is in at time t.

The intercept of µil(t) is given by

Z⊤
il (t)α0 + ailm0

where α0 is a vector of fixed effect of the covariates Z⊤
il (t) and ailm0 denotes the ran-

dom intercept for spell m and eye l. Since the random intercept is spell-specific, the
model allow for discontinuities at the transition times between spells.

Similar to the inflammation model, we also simplify the random effect structure in
the visual acuity model by decomposing it into a part that is common within the eye
and one that is specific for each spell, as we assume that the random effects between
the two eyes are independent. Let ailm = [ailm0, ailm1, ailm2]

⊤ denote the vector of
the spell specific random effects for eye l on subject i. The vector of all random effects
ail = [a⊤il0, . . . , a

⊤
ilMil

]⊤ for eye l on subject i can be decomposed into a contribution
from the eye a′il ∼ N3(0,Σa′) and from the spells a′ilm ∼ N3(0,Σa′′). We assume
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that a′il, a
′
il0, . . . , a

′
ilMil

are independent. As a result we have that

ail =


ail0
...

ailMil

 =


a′il + a′il0

...
a′il + a′ilMil

 ∼ N3(Mil+1)(0,Σa) .

Hence, the intercept and slopes between spells on the same eye are allowed to be de-
pendent. As mentioned earlier, the random effects between the two eyes on the same
subject, aiR and aiL, are assumed to be independent. Furthermore, the random effects
from the inflammation model are assumed to be independent from the random effects
and error terms from the visual acuity model. The visual acuity model could be simpli-
fied by assuming that the random effects are the same for all spells within an eye, and
thus that there is only one random intercept and slope for each eye. We explore this
later in Section 5.5.

Joint model

An illustration of the dependence between the variables and the random effects in the
joint model is shown in Figure 5.3. It includes both the unobserved (circles) and ob-
served variables (squares). It illustrates that any correlation between two eyes’ visual
acuity is induced by the frailty term in the inflammation model. The joint model relies
on a number of assumptions, and we list the essential ones below:

• The visit times are non-informative.

• Missing values are missing at random 80.

• The inflammation process changes at most once between two visit times.

• The baseline transition intensities are constant.

• Given the inflammation status the visual acuity processes from the two eyes are
independent.
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• Expected visual acuity, on the new scale, is a linear function of time spent with
and without inflammation.

• Censoring is independent of the inflammation and visual acuity processes.

Most of these assumptions are based on clinical input. Nonetheless it is important,
if possible, to verify them from the data or conduct sensitivity analyses. To this end, we
performed a sensitivity analysis of the first assumption in Section 5.5 and the rest is left
for the discussion.

Right eye Left eye

TiR bi TiL

aiR aiL

ϵiR ϵiL

XiR XiL

YiR YiL

ZiR ZiL

β

α

β

α

Figure 5.3: Illustration of the dependencies in the joint model between unobserved
(circles) and observed variables (squares).

5.3.2 Estimation

Let X , Y and Z = (ZY , ZX) denote the observed data, i.e. the status of the inflam-
mation, the visual acuity and the covariates, which are all observed at every visit. Let T
denote the unobserved transition times and let a, b denote the unobserved random ef-
fects of the visual acuity and inflammation model. Let θ = (θY , θX) =

(
(α,Σa, σϵ),

(β,Σb)
)
be the collection of all the parameters in the joint model. The observed data
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likelihood, conditional on the covariates, can be decomposed as

L∗(θ|Y,X,Z) = P (Y,X|Z, θ)
= P (Y |X,Z, θ) P (X|Z, θ)
= E

(
P (Y |T,ZY , θY )

∣∣∣X,Z, θ
)
P (X|ZX , θX) .

Maximization of the observed likelihood is complicated as Y depends on the unob-
served transition times. Furthermore, the observed data likelihood consists of integrals
which have no closed form solution and thus would need to be approximated, which is
computationally intractable with the available software. For joint models with random
effects the expectation maximisation (EM) algorithm has proven to be a convenient
estimation approach99, as the random effects can be considered as missing data. How-
ever, in our settingwehavebothunobserved randomeffects and transition times, which
make a classic EM algorithm approach intractable. Instead the joint model is fitted in
two steps. First the parameters of the inflammation model are estimated and the out-
put, along with its uncertainty, is used to estimate the parameters of the visual acuity
model.

Inflammation model

The parameters of the inflammation model θX are estimated using Poisson regression
with random effects. Poisson regression with random effects can be performed in R
using glmer from the package lme4 13 when the transition times are known. We use an
EM type algorithm where we consider the unobserved transition times as missing data,
calculate their expectations using current values of the estimates (E-step), then use these
expectations to obtain updated estimates of the parameters using glmer (M-step).

More specifically, for the E-step we use the empirical Bayes estimates of the random
effects for each subject to calculate the expected transition time within each interval
where a transition took place. We obtain the empirical Bayes estimates via ranef func-
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tion, which calculates the conditional mode given by

b̄i = argmaxb log
(
f(b|Ti, Xi, Zi)

)
,

where f(b|Ti, Xi, Zi) is the conditional density of the random effect. To calculate the
expected transition timeswe assume that a transition took place between two visit times
vj and vj+1 if Xil(vj) ̸= Xil(vj+1). Let ∆j = vj+1 − vj denote the length of the
interval and define the intensity in the interval as

γilj =

{
λ1(vj |Zil(vj), bil1) forXil(vj−) = 2

λ2(vj |Zil(vj), bil2) forXil(vj−) = 1

whereXil(vj−) is the value of the inflammation just prior to time vj . The expectation
of the unobserved transition time T given the observed data and the frailties is given by

E
(
T |Xil(vj), Xil(vj+1), Zil(vj), bi

)
= E

(
TI(vj ,vj+1)(T )|Zil(vj), bi

)/
P
(
T ∈

(
vj , vj+1

))
=

vj+1∫
vj

s exp
(
− γiljs

)
γiljds

/ vj+1∫
vj

exp
(
− γiljs

)
γiljds

=
(
vj +

1
γilj

−
(
vj+1 +

1
γilj

)
exp

(
− γilj∆j

))/ (
1− exp

(
− γilj∆j

))
,

(5.2)
which is straightforward to calculate given β and bi. Thus, the expectations of the un-
observed transition times are estimated by plugging in β̂ and b̄i.

Visual acuity model

Once the inflammationmodel has been fitted we use the estimated parameters as input
to estimate the parameters of the visual acuity model. Rather than using the estimated
parameters from the inflammation model to obtain the unobserved transition times
we use multiple imputation. Hence, we start by imputing the transitions times given
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the observed data and the estimated parameters from the inflammationmodel. That is,
between two visit times vj and vj+1 with a transition we impute the unobserved event
time T by drawing a p ∼ uniform[0, 1] and letting

Tilj = − 1
γilj

log
(
exp(−γiljvj)−

(
exp(−γiljvj)− exp(−γiljvj+1)

)
p
)
.

From the imputed transition times we can calculate the time each eye has spent with
an quiescent or active inflammation prior to each visit time. Let δilj = I(Xil(vj) ̸=
Xil(vj+1)) denote the indicator for a transition between visit vj and vj+1. We com-
pute the time eye l has spent in state g prior to visit vj by

tilg(vj) =
∑j−1

k=1

(
(1− δilk)I(Xil(vk) = g)∆k

+ δilk
(
I(Xil(vk) = g)(Tilk − vk) + I(Xil(vk) ̸= g)(vk+1 − Tilk)

))
,

and for short we use tg to denote tilg(vj) for g = 1, 2. After calculating t1 and t2 for
each visit it is straightforward to estimate the parameters of the visual acuity model by
maximising P (Y |T,Z, θY ) , as it is a standard linear mixed model. This procedure is
repeated a number of times and the estimated parameters are then pooled. The pooled
estimate of the parameters in α are obtained by taking the mean of the estimate of α
obtained in each imputation.

Variance estimation

The estimated standard errors obtained within the fitting procedure do not account
for the two-stage estimation of the parameters and are therefore most likely too small.
The standard errors of the estimates in the joint model are therefore obtained by boot-
strapping. A bootstrap sample is obtained by sampling from the pool of subjects with
replacement until the sample has the same number of subjects as in the original data set.
Hence, the same subject can appear more than once and the number of observations is
not necessarily the same as in the original sample. The bootstrap sample is then used
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to re-estimate the model parameters. This is repeated a large number of times and the
variance of the estimates are calculated as the variance of the estimated parameters in
the bootstrap samples.

5.3.3 Dynamic prediction

Here we describe how we use the joint model to make dynamic predictions by simula-
tion. Consider a patient iwith a current follow-up time of s years after the first visit to
the hospital. For this patient we wish to predict the inflammation status and visual acu-
ity for the lth eye up until a horizon τ . We first estimate the expected transition times
in the past and then simulate the future transitions times up until τ . Both the past and
future transition times are then used to predict the visual acuity from s up until τ . All
time-dependent covariatesZil(t) need to be specified beforehand. In other words, the
predictions will be for a predetermined set of treatment decisions etc., which will typic-
ally be taken as constant and in what follows we describe them as constant.

First the empirical Bayes estimates of the frailties b̄i = (b̄iR1, b̄iR2, b̄iL1, b̄iL2) are
calculated. The expected transition times in the past are obtained by using equation
(5.2). For the future transition times, the transition intensities for eye l on subject i are
obtained by replacing the parameters with their estimates β̂ = (β̂1, β̂2) and b̄i into

λ̂ilg = λ̂g,0 exp
(
Zil(s)β̂g + b̄ilg

)
for g ∈ {1, 2} .

We can then simulate the time to the next transition by drawing a u ∼ uniform[0, 1]

and letting

∆T =
− log(u)
exp(λ̂ilg)

, (5.3)

where g is determined by what state the previous transition was made from. The kth
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transition time after time s is given by

T̂ilk = s+
k∑

j=1

∆Tj .

This is repeated until T̂ilk > τ . The time the eye will spend in either the quiescent t1
or active state t2 up until τ is calculated from the past and future transition times. The
procedure generates a single trajectory for the inflammation process.

After generating the transition times for a single trajectory of the inflammation pro-
cess, we generate a single trajectory from the predictive distribution of Yil(t), for s <

t ≤ τ given these transition times. Let t1(s) and t2(s) denote the time the eye has
spent in quiescent and active state up until time s and let m denote the current spell
the eye is in at time s. First the empirical Bayes estimates of the decomposed eye spe-
cific random effects ā′il = [ā′il0, ā

′
il1, ā

′
il2]

⊤ and current spell specific random effects
ā′ilm = [ā′ilm0, ā

′
ilm1, ā

′
ilm2]

⊤ are calculated. Then we determine the current true
value of the visual acuity

Ŷil(s) = Z⊤
il (s)α̂0 + Z⊤

il (s)α̂1t1(s) + Z⊤
il (s)α̂2t2(s) (fixed)

+ ā′il0 + ā′il1t1(s) + ā′il2t2(s) (eye)
+ ā′ilm0 + ā′ilm1t1(s) + ā′ilm2t2(s) (spell) .

Subsequently, we predict Ŷil(t) until the first transition time after s as a straight line
with slopeZ⊤

il (s)α̂1+ ā′il1+ ā′ilm1 if the current state is quiescent, or withZ⊤
il (s)α̂2+

ā′il2+ā′ilm2 if the current state is active. Every time a transition time T̂ilk is encountered
a new set of spell specific random effects are drawn from the estimated distribution.
The new set of spell specific random effects ā′il(m+k) replaces the set from the previous
spell. Using the updated spell specific random effects, t1(T̂ilk) and t2(T̂ilk), we can
determine the true value of the visual acuity at the transition time Ŷil(T̂ilk) as before.
The visual acuity Ŷil(t) is then predicted as a straight line with slopeZ⊤

il (s)α̂1+ ā′il1+

ā′il(m+k)1 if the state is quiescent, or with Z⊤
il (s)α̂2 + ā′il2 + ā′il(m+k)2 if the state is
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active, until the next transition time is encountered. The procedure is repeated until
the horizon τ .

After having generated a number of trajectories, the results are gathered, and the
mean and 2.5% and 97.5% percentiles are used to obtain a point prediction and 95%
prediction interval.

5.4 Simulations

In order to evaluate the performance of the proposed estimation procedure we conduc-
ted a simulation study. The main objective were to evaluate the estimates of the fixed
effects and the variance of the random effects under the assumption that the model is
correctly specified in a scenario resembling the uveitis data. In addition, we also looked
at the performance of the estimates when the model would be misspecified to not take
into account the dependence between the eyes.

5.4.1 Setup

To generate the data for a single subject i, we first generated three patient level baseline
covariates, where Z1i and Z2i are binary and each level were sampled with equal prob-
ability and Z3i ∼ N(0, 15). Then we generated the subject b′i ∼ N2(0,Σb′) and
eye b′il ∼ N2(0,Σb′′) specific frailty components. The specific parameters values are
reported in the Supporting Information. The parameters were chosen such that the
simulated data resembled the uveitis data. The transition intensities for subject i were
assumed to be given by

λg(t|Z1i, bilg) = λg,0 exp(Z1iβg + bilg) for g ∈ {1, 2} .

The initial states were also random, that is there was a 50% chance that one of the
eyes were inflamed, a 40% chance that bothwere inflamed and a 10% chance that none
of the eyes had an active inflammation at time 0. Given the random effects and the
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baseline information we then generated the time to the next transition by employing
the same strategy as in (5.3). New transition times were generated until the sum reached
the time horizon of 5 years for each eye. In order to induce the interval censoring of
the event times, we simulated a number of prescheduled visit timesNi ∼ Poisson(λN )

with equal distance between time 0 and 5 years. It was possibly for the subject to receive
extra visits to ensure that every transition was observed. Every subject had a minimum
of two visits. We generated the eye a′il ∼ N3(0,Σa′) and spell a′ilm ∼ N3(0,Σa′′)

specific random effect components, where the number of spells was determined by the
simulated transitions. The transformed visual acuity was simulated at each visit time
based on the true history of the inflammation process according to the model

Yil(vj) = α0+α1t1+α2t2+α3Z2i+α4Z3i+ailm0+ailm1t1+ailm2t2+ ϵilj ,

where ϵilj ∼ N(0, 0.36). We generated data with sample sizes of 100 or 300 with an
average of 15 or 30 visits per subject and repeated the simulations 1000 times. In scen-
ario Awe analysed the simulated interval censored data using the correct submodels for
the inflammation and visual acuity, but in scenario B we used an inflammation model
which assumed that the eyeswere independent. The performance of the estimationpro-
cedurewas evaluated by calculating the bias, variance, rootmean squared error (RMSE)
of the fixed effects, along with the coverage rate of the 95% confidence intervals based
on the variance estimate with or without bootstrap. Due to computation time, the
bootstrapped coverage rates were only based on 100 repetitions and not 1000. We also
calculated the bias, variance and RMSE of the variance estimates of the random effects.

5.4.2 Results

The results from the simulation study can be found in the Supporting Information. In
scenario A with sample sizes of 100 or 300 and an average number of visits of 15, the
bias of the fixed effects in both submodels was overall of a reasonable size compared
to the true effect size even with a sample size of 100. In general the bias, variance and
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RMSE improvedwith an increase in sample size, although the improvement in bias was
less for the inflammation model parameters. The coverage rate without bootstrapping
the variancewas lower than the nominal95% for the inflammation, but itwas adequate
for the visual acuity. The bootstrapped confidence intervals in the inflammationmodel
had a somewhat better coverage rate. The conclusion for the variance of the random
effects is broadly the same as for the fixed effects.

In scenario A it was found that an increase in the average number of visit times im-
proved the bias for both the fixed effects and the variance of the random effects, but
had less of an impact on the variance and RMSE. Even with an increase in visits the
coverage rate without bootstrapping was still too low. The boostrapped coverage rate
performed reasonable, although somewhat variable probably due to the low number
of repetitions.

In scenario B the misspecification of the inflammation model lead to an increased
bias of both the fixed and random effects in the inflammation model, but did not have
a sizeable effect on the estimation of the visual acuity model parameters.

All in all the simulation study suggests that the two-stage estimation procedure with
multiple imputation performed satisfactory.

5.5 Uveitis results

The jointmodel was applied to the uveitis data using early onset, treatment and surgery
for the inflammation model and patient age, centred at age 43, and complications for
the visual acuitymodel. The estimated fixed effects for the two submodels can be found
in Table 5.2. The estimated baseline transition intensities λ1,0 and λ2,0, the Intercept
in Table 5.2, imply that the eyes in general move quicker to the quiescent state than to
the active state. Moreover, since the baseline is time-constant, it also implies that the ref-
erence group is expected to spend 1/λ2,0 ≈ 1 years in the active state and 1/λ1,0 ≈ 3

years in the quiescent state. Maintenance or active treatments increase the transition in-
tensity to the quiescent state considerably, but they did not have a significant effect at
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the5% level on the transitions to the active state. Surgery increases the transition intens-
ity to active inflammation, which was expected since surgery may distress the eye and
thereby cause more inflammation. The estimated slopes in the visual acuity submodel
imply that the visual acuity improves with time, although the time spent with an active
inflammation was not found to be significant. The explanation for the increase over
time may be due to our relatively young population. At baseline the older ages have a
lower intercept and we investigated if there was an interaction between time spent in
quiescent or active state and age, but it was found not to be significant. The presence of
complications had a significant negative impact on the intercept and a nonsignificant
negative impact on the progression of visual acuity over time.

The estimated variances of the random effects are shown in Table 5.3. From Σ̂b′ and
Σ̂b′′ we can see that there is a negative correlation between the two transitions both
within the patient and within an eye. Furthermore, the variance is larger for transitions
to active than to quiescent. In addition, we can see that there largely is a negative cor-
relation between the intercept and the two slopes in the visual acuity model, and that
the variance of the slope for time spent with inflammation is larger than of the slope for
time spent without inflammation.

We investigated whether it would be sufficient to have random effects in the visual
acuitymodel on the eye level, instead of a set for each spell. All the same, a likelihood ra-
tio test strongly suggested that the more complex model was preferable. The estimates
from the model without spell specific random effects can be found in the Supporting
Information.

Figure 5.4 shows the model estimates of the inflammation and visual acuity for the
three patients from Figure 5.1. The y-axis depicts the visual acuity on the new scale used
in themodel, instead of the Snellen scale. On the new scale higher values correspond to
better visual acuity and lower values to poorer visual acuity. Themodel estimates are de-
picted as lines eitherwith orwithout the empirical Bayes estimates of the randomeffects.
The fixed effect estimates are straight lines with an intercept and slope that depends on
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Table 5.2: Estimates of the fixed effects parameters in the inflammation and visual
acuity model for the uveitis data with 95% bootstrapped confidence intervals (CI).
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Table 5.3: Estimates of the variance of the frailties and random effects in the joint
model.

Σ̂b′1
=

[
0.35 −0.01

−0.01 0.63

]
Σ̂b′2

=

[
0.001 −0.02

−0.02 0.37

]

Σ̂a′1
=

 1.77 0.01 −0.60
0.01 0.15 −0.12

−0.60 −0.12 2.28

 Σ̂a′2
=

 0.40 −0.05 −0.13
−0.05 0.03 −0.05
−0.13 −0.05 0.24



the estimated time spent in the two states. The lines are not continuous, because the
time-varying covariates can modify both the intercept and the slopes. The lines where
the empirical Bayes estimates are included allow the lines to be even more discontinu-
ous, as the inclusion of spell specific intercepts allow the visual acuity to jump at the
transition times.

An illustration of dynamic predictions of inflammation and visual acuity based on
data from the three patients can be found in the Supporting Information.

We also conducted a sensitivity analysis of the assumption of non-informative vis-
its. The assumption was based on the input that visits were prescheduled. However,
since the inflammation can be very painful, it is possible that some patients requested
an earlier appointment due to an onset of an inflammation episode. In order to address
this concern, we refitted the model under the assumption that the onset of an inflam-
mation episode happened exactly at the visit time, where an onset was registered. The
offset of an inflammation episode was still assumed to be subject to interval censoring.
It was simple to implement, as the only thing that changed in the estimation procedure
in Section 5.3.2, was that only the transition times going fromactive to quiescent needed
to be updated. The estimates of the fixed effects are given in Table 5.4. In the inflam-
mation model the baseline transition intensity for transitions to quiescent went from
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Figure 5.4: Illustration of the model applied to data from three patients. The observed
inflammation (colour) and visual acuity on the model scale (y-axis) is indicated with
transparent dots. The lines depicts the model estimates of the inflammation and visual
acuity either with (Fixed + random) or without (Fixed) the empirical Bayes estimates
of the random effects.
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0.984 to 3.599 under the new assumption. Considering that the assumption leads to
less time being spent in the active inflammation state, this is not surprising. However,
what is surprising is that the treatment effects on transitions to quiescent were also no-
ticeably reduced. In the visual acuity model results were qualitatively the same, except
for the effect of time in the quiescent state, which increased from 0.055 to 0.1.

To evaluate the model predictions we looked at the Brier Score for the inflamma-
tionmodel, and for the visual acuity we looked at the bias and root mean squared error
(RMSE). The evaluation measures were calculated for three different time points dur-
ing the patients’ follow-up at 0, 1 and 2 years. Using the data that were available at a
given follow-up time point predictions were assessed at 1 and 3 years ahead in time. We
compared predictions from three joint models. The first model (Model 1.a) did not in-
clude any covariates in the two submodels and it was fitted under the assumption that
the transition times of the inflammation process were interval censored. The second
model (Model 1.b) is the one that was reported in Table 5.2. It was fitted under the
same assumption, but it included covariates. The last model (Model 2) was reported
in Table 5.4. The model included covariates, but it was fitted under the assumption
that the onset of inflammation episodes were observed and happened at the visit time.
For each patient 50 simulated predictions were obtained from each of the threemodels.
Although it arguably is an imperfect solution, we compared the mean of the 50 predic-
tions to the last observed value of either the inflammation or the visual acuity. Figure
5.5 show the results of the evolutions. In general Model 1.a has the lowest Brier Score
andModel 2 has the lowestRMSE. In terms of bias there is no onemodel that performs
better than the others. Since the primary concern of the patients is their visual acuity
we tend to favour the models that perform better on the visual acuity scale. For this
reason we ultimately decided to favour Model 2 and furthermore the implied assump-
tion about the interval censoring seems reasonable for the uveitis data.

Albeit, thepredictionswere evaluatedon the samedata thatwereused to estimate the
models’ parameters, it is still reasonably to compare themodels basedon their predictive
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Table 5.4: Estimates of the fixed effects parameters in the inflammation and visual
acuity model for the uveitis data with 95% bootstrapped confidence intervals (CI),
where it was assumed that onset of inflammation happened at the visit time.
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performance. Nonetheless, the final model should be evaluated on a new data set to
avoid overoptimism.

5.6 Discussion

We have proposed a joint model for dynamic prediction of visual acuity and inflam-
mation in uveitis patients, which accounts for the special features of the data. The
proposed joint model distinguishes itself by dealing with an episodic interval censored
multi-state outcome. In addition it is unusual in that the multi-state outcome affects
the longitudinal outcome and not the other way around.

The joint model is complicated by the need to account for the special dependence
structure in the uveitis data. We employed random effects both to account for the de-
pendence structure and to obtain subject-specific predictions. However, a classic cri-
ticism of random effect models is that the assumed distribution is difficult to verify
from the data, and instead the choice is often based on what is computationally con-
venient. For other applications the structure could be simplified, which would reduce
the dimensions of the random effects, and such a model would probably prove easier
to estimate in one step instead of two. The current estimation procedure could be im-
proved by finding away to directly estimate all the parameters in one step. Ways to solve
the problem of computational intractability could be to use Laplace approximations 102

or adaptiveGaussian quadratures, whichwould likely bemuch faster than using an EM
algorithm. Due to the complexity of the uveitis data and consequently the joint model,
we employed a two-stage estimation procedure. Although two-stage procedures can
lead to bias and loss of efficiency compared to other procedures 3,86,101, our simulation
study showed that the estimation procedure performed satisfactory when the model
was correctly specified. It is however a disadvantage of the two-stage procedure that we
cannot compute a full likelihood.

The model relies on a number of assumptions, which were largely motivated by
clinical insight. One of the assumptions was that the baseline transition intensities
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Figure 5.5: Evaluations of the dynamic predictions from three models: Model 1.a
and 1.b refers to the joint model where it is assumed that the inflammation is interval
censored. Model 2 assumes that onset of inflammation happens at the visit time.
Model 1.b and 2 do in include covariates, whereas 1.a does not. The predictions from
the inflammation submodel are evaluated with the Brier Score and predictions form
the visual acuity submodel are evaluated in terms of bias and RMSE. The evaluation
measures are calculated at three follow-up time points and at 1 or 3 years ahead in
time.
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were constant. This was believed to be reasonable for this application, since uveitis is
a chronic disease in most cases. However, for other applications it would be a natural
extension of the model to allow the baseline to be time-varying. This could also be a
way of confirming the assumption about the constant baseline. A necessary assump-
tion to fit themodel was that all transitions between the quiescent and active state were
observed. The assumption is believed to be reasonably for the uveitis data, however it
could be an issue if the assumption is violated. Dropout from the study could be a cause
for concern as well for the missing at random assumption. The standard procedure at
the Rotterdam EyeHospital was to only discharge a patient after five years without any
inflammation episodes, unfortunately information about discharges was not available
to us. In addition, it is also imaginable that patients could have neglected to turn up
for the appointments if their eyes had been improving over a longer period of time.
We investigated the consequences of one of the other assumptions in a sensitivity ana-
lysis. There we either assumed that the onset of an inflammation episode was always
observed or interval censored. It turned out to result in a higher baseline transition rate
to quiescent and smaller treatment effects. It is likely that the truth is somewhere in
between.
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