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4
Pseudo-observations and

left-truncation

Pseudo-observations have been introduced as a way to perform regression ana-
lysis of amean value parameter related to a right-censored time-to-event outcome, such
as the survival probability or the restrictedmean survival time. Since the introductionof
the approach there have been several extensions from the original setting. However, the
proper definition and performance of pseudo-observations under left-truncation has
not yet been addressed. Here we look at two types of pseudo-observations under right-
censoring and left-truncation. We explored their performance in a simulation study and
applied them to data on diabetes patients with left-truncation.
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4.1 Introduction

Inmany clinical settings the outcome is time to an event, such as time to death, which is
often incompletely observed due to right-censoring and sometimes also left-truncation.
One of the ways left-truncation can arise is when the timescale of interest is time from
diagnosis of some disease until death. Often the available data will be cross sectional,
in the sense that all subjects with the disease at a given point in time are sampled and
followed until death or censoring. As a result, subjects with short disease durations are
less likely to be sampled. This is illustrated in Figure 4.1, which shows survival data for
three imaginary patients, where one patient dies before entering into the study. The
disease duration timescale is oftenmore attractive than the time-on-study timescale, be-
cause the interpretation is clinically relevant. The time from diagnosis until entry into
the study is then the delayed entry or left-truncation time. Pseudo-observations have
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Figure 4.1: Lexis diagram of survival data for three imaginary patients. The lines
represent the disease duration of the patients and the solid lines represents the time-
on-study.
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been introduced as a way to perform regression analysis of a mean value parameter re-
lated to a right-censored time-to-event outcome, such as the survival probability or the
restricted mean survival time9. The pseudo-observations are jackknife estimates which
represent a subject’s contribution to thenonparametric estimator of theparameter of in-
terest. Under right-censoring, pseudo-observations are calculated for all subjects in the
sample and the regressionmodel parameters are obtained by solving the corresponding
generalised estimating equations using the pseudo-observations as outcome. The ques-
tion of how to use pseudo-observations with left-truncated data was raised byGrand&
Putter 35 . There the simulation study showed that the so-called strict approach, where
only subjects at risk at time 0 are used, worked reasonably well. However, the approach
is inefficient and it is obviously not feasible if there is no one at risk at time 0.

Here we considered two alternative ways of defining the pseudo-observations when
the data are left-truncated. To keep things simple we considered the case where the
objective is to perform regression of the survival probability. In this setting there are a
numberof alternatives such as the classic partial likelihood approach for theCoxpropor-
tional hazards model 22. This approach deals with left-truncation by adjusting the risk
sets in the partial likelihood 5, i.e. the subjects only contribute during the time they are
at risk, under the assumption that the left-truncation is independent of the event time
given the covariates. The accelerated failure time model is another alternative, where
left-truncation has been approached in a number of different ways see for example Lai
& Ying 57 . Another alternative is to use inverse probability weights, which for example
has been studied for themore general case with competing risks 34 and for the restricted
mean survival time 20.

The first part of Section 4.2 describes the pseudo-observation approach in the stand-
ard situation with right-censored data and without left-truncation. The second part
describes the situation where the data are also subject to left-truncation and two altern-
ative ways of defining the pseudo-observations are considered. The performance of the
two types of pseudo-observations was investigated in a simulation study described in
Section 4.3. The two types of pseudo-observationswere also applied to data on patients
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with diabetes in Section 4.4. All analyses were conducted in R (3.4.3).

4.2 Method

Consider a setting where the outcome of interest is time to an event T , and where the
mean value parameter of interest is the survival probability S(t) = P (T > t) = θ(t),
i.e. the probability of being event free at time t. The objective is to relate the survival
probability to a set of covariates. With complete data wewould observeN subjects and
their event timesTi and covariatesXi for i = 1, . . . , N . If the data were also subject to
right-censoring, we would only observe subjects up until the time of the event or right-
censoringC whichever comes first. That is, we observe the time T̃i = min(Ti, Ci) and
the event indicator δi = I(Ti ≤ Ci) for i = 1, . . . , N . In addition, if the data were
also subject to left-truncation, we only observe the n (≤ N) subjects where the time
of entryLi was smaller than T̃i. We assume that the subjects are independent and that
Ci, Li are independent of (Ti, Xi).

4.2.1 Without left-truncation

When the data are right-censored the pseudo-observation for subject i, at a fixed time
t0, is defined as

θ̂i(t0) = Nθ̂(t0)− (N − 1)θ̂−i(t0),

for i = 1, . . . , N . Where θ̂(t) and θ̂−i(t)denote theKaplan-Meier estimatorwith and
without subject i included in the sample. Hence, the pseudo-observation represents the
subject’s contribution to the Kaplan-Meier estimator at time t0. This leads to the idea
of using the pseudo-observations for regression instead of the incompletely observed
responses I(Ti > t). That is, once the pseudo-observations have been calculated for
every subject, they can be used to fit a generalised linear model for the survival probab-
ility using generalised estimating equations. For further details on how to do this, see
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for example Andersen & Perme 10 .
Asymptotic results have so far been studied in the survival48 and competing risks

setting 39, and recently also in a general framework69. The results revolve around the
existence of a nonparametric asymptotically unbiased estimator θ̂ of the mean value
parameter of interest θ, as is the case with the Kaplan-Meier estimator and the survival
probability. It is possible to relax the independence assumption such that Ci, Li are
assumed to be independent of Ti givenXi by employing an inverse probability of cen-
soring and truncation weighted estimator to calculate the pseudo-observations 14.

It is straightforward to make an extension from the survival probability at a single
timepoint to the survival function. Insteadof a single timepoint, a set of timepoints are
selected and the corresponding pseudo-observations are calculated at each time point.
The stacked data set of these pseudo-observations can then be used to fit for example
a proportional hazards model with a nonparametric cumulative baseline, the value of
which is estimable at the selected time points. In theCoxmodel the cumulative baseline
hazard is estimable at all the observed event times, but the pseudo-observations have so
far only been shown to be consistent with a finite set of time points 39,48,69. For this
reason, we would recommend to use a finite set of time points in the range of the ob-
served event times, e.g. equidistant or quantiles.

4.2.2 With left-truncation

When the data are also left-truncated one way to define the pseudo-observations is to
use the same definition as before. Hence, the simple pseudo-observation is defined as

ϕ̂i(t0) = nθ̂(t0)− (n− 1)θ̂−i(t0),

for i = 1, . . . , n. With this definition a subject that enters the sample later than time
t0, i.e. whereLi ≥ t0, will have ϕ̂i(t0) = θ̂(t0). However, the subject did not actually
contribute to the Kaplan-Meier estimate at time t0. Thus, another idea would be to
only create pseudo-observations for subjects that actually contributed to the estimator.
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Hence, the alternative pseudo-observation for subject i is defined as

ρ̂i(t0) = n(t0)θ̂(t0)− (n(t0)− 1)θ̂−i(t0),

where i ∈ {i|Li < t0} and n(t0) denotes the number of such subjects. This is the
same as if we administratively censored the sample at time t0, since that would leave us
with exactly those that entered before time t0. The idea behind this pseudo-observation
is therefore similar to that of stopped Cox regression96, where subjects are administrat-
ively censored at time t0 to obtain more robust estimates. For this reason ρ̂i will be
referred to as the stopped pseudo-observation type. Without left-truncation the two
types of pseudo-observations are equal and identical to the standard definition. If t0 is
larger than the largest entry time the two will be identical.

Figure 4.2 illustrates the differences between the twopseudo-observations for a single
subject over time under different circumstances with or without right-censoring and
left-truncation. In the scenarios where data are right-censored the subject is either ob-
served or censored at time 1 and in the scenarios where data are left-truncated the sub-
ject enters either early or late. In the scenarios without left-truncation the two pseudo-
observations are both equal to the usual pseudo-observation and it behaves accord-
ingly 10. In the scenarios with left-truncation the two pseudo-observations are different
until all subjects have entered the data around time2. The simple pseudo-observation is
equal to the Kaplan-Meier estimate before the subject enters. The pseudo-observations
are also initially larger in the scenarios where the subject enters early on.

As was the case without left-truncation, it seems natural to assume the same con-
ditions to hold under which the nonparametric estimator is consistent for the pseudo-
observationswith left-truncation. TheKaplan-Meier estimator adapts to left-truncation
by adjusting the risk set from those i where t ≤ T̃i to Li < t ≤ T̃i

50,89. Accord-
ing to Andersen et al. 5 , sufficient conditions, in addition to the previously stated as-
sumptions, for consistency of the Kaplan-Meier estimator is that P (T > L) > 0 and
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Figure 4.2: Comparison of the simple and stopped pseudo-observations for a single
subject where T̃ = 1 under nine different scenarios. The data are either with or without
right-censoring and left-truncation. When the data are right-censored, the subject is
either observed or censored at time 1. When the data are left-truncated, the subject
enters at time 0 or 0.5.
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P (L < C) = 1. The Kaplan-Meier estimator is nonetheless consistent even when
P (L < C) < 1 as long as the independence assumption holds. However, it remains
to be formally shown that the pseudo-observations will have the desired properties un-
der these conditions.

4.3 Simulations

We explored the performance of the simple and stopped pseudo-observations in a sim-
ulation study with two baseline covariates.

4.3.1 Setup

The first covariate was categoricalX1 ∈ {0, 1} with an even distribution in the simu-
lated samples and the second covariatewas continuousX2 ∼ N(1, 1). The event times
were generated from aWeibull distribution (shape 2, scale exp[−1/2(β1X1+β2X2)])
which implies a proportional hazards model with baseline λ0(t) = 2t and log haz-
ard ratio βk for Xk for k = 1, 2. The hazard ratio for X1 was either 1.25, 1.5 or
2 and the hazard ratio for X2 was 0.8. Right-censoring times were generated from
a Weibull distribution (shape 5, scale 1.8). Left-truncation times were generated for
either 50%, 90% or 100% of the sample. The left-truncation times were generated
from a Weibull distribution (shape aL, scale 1), where aL was either 0.5, 1 or 2 which
resulted in eithermild,mediumor severe truncationof event times. If the generated left-
truncation time exceeded the generated right-censoring time, the left-truncationwas set
to the right-censoring time minus 0.1. Observations were generated until the desired
sample size was obtained. A total of 10000 data sets were simulated with sample sizes
of n = 100, 500 or 1000.

Pseudo-observations were calculated at 10 time points from 0.4 to 1.3 with a dis-
tance of 0.1. The stacked set of pseudo-observations from different time points was
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used to fit a proportional hazards model for the survival probability

S(t|X1, X2) = exp(− exp(β0(t) + β1X1 + β2X2)) .

To this end, the generalised linearmodel had a complementary log-log link function and
a nonparametric cumulative baseline with values estimated at the selected time points.
We also fitted a standard Cox model to serve as a benchmark for the performance.

The bias, variance, root mean squared error (RMSE) and the coverage probability
were calculated for the log hazard ratios. We used the sandwich estimator with work-
ing independence for the variance, however, it is known to be a bit conservative in the
setting with only right-censoring48, so it will likely be an issue with left-truncation as
well.

4.3.2 Results

The impact of the severity of the left-truncation on the estimated hazard ratios is shown
in Table 4.1. The bias when using the stopped pseudo-observation ρ̂i was smaller than
for the simple ϕ̂i for both covariates and the difference increased with the severity of
the left-truncation. In addition, the variance and RMSE of ρ̂i were smaller or equal to
those of ϕ̂i and the differences increased with the severity of the left-truncation. The
coverage probability was comparable for both and reasonably close to 0.95. The stand-
ard Cox model mostly outperformed both types of pseudo-observations, nevertheless
the pseudo-observations came close in some scenarios.

The impact of the sample size and the degree of left-truncation is shown in Table
4.2. The superscript indicates the number of failed estimations, which happened when
a subject entered and died early on in a sample with few at risk in the beginning. The
pseudo-observations for such a subject were very large and this caused the estimation
to fail. This happened more frequently when all subjects had delayed entry, the left-
truncation was severe, the sample size was small and the hazard ratio of X1 was large.
Forn = 1000 the bias increasedwith the degree of left-truncation for all threemethods,
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Table 4.1: Summary statistics from the simulation study in the scenarios where
β1 = log(2) and where around 90% of the sample had delayed entry. It shows the
severity (aL) of the left-truncation, along with the bias (Bias), variance (Var), root
mean squared error (RMSE) and coverage probability (CP) for the estimated log hazard
ratios β1 and β2.

β1 β2

aL Bias Var RMSE CP Bias Var RMSE CP

n = 1000
0.5 −0.0002 0.005 0.072 0.949 −0.0006 0.001 0.036 0.948

Cox 1 0.0006 0.005 0.072 0.949 −0.0007 0.001 0.036 0.952
2 0.0009 0.005 0.073 0.949 −0.0008 0.001 0.036 0.948

0.5 −0.0051 0.007 0.084 0.950 0.0009 0.002 0.042 0.948
Simple 1 −0.0060 0.008 0.091 0.950 −0.0007 0.002 0.046 0.949

2 −0.0117 0.011 0.106 0.954 −0.0040 0.003 0.055 0.954

0.5 −0.0012 0.007 0.083 0.949 −0.0007 0.002 0.042 0.948
Stopped 1 −0.0023 0.008 0.089 0.950 −0.0007 0.002 0.045 0.949

2 −0.0088 0.010 0.100 0.952 −0.0002 0.003 0.050 0.953

and in general the Coxmodel had the smallest bias followed by ρ̂i. For a fixed degree of
left-truncation both the bias and the number of errors decreased going from n = 100

to n = 1000. The variance and RMSE for ρ̂i were for most parts smaller than for ϕ̂i

and the coverage probabilities were comparable.

The scenario where a 100% of the sample have delayed entry is interesting as it oc-
curs frequently in practice, e.g. if the data are cross-sectional it is likely to be the case.
However, the scenario also presents some challenges for the simulations. In a sample
without anyone at risk at time0 the data contain no informationon the survival probab-
ility before the smallest observed entry time. In such a scenario, a practical recommend-
ation 5,54 is to restrict attention to estimation of the survival probability conditional on
survival up until some suitable time point s0 for which the risk set is not too small. For
this reason, the scenario without anyone at risk at time 0 is peculiar. Nonetheless, the
pseudo-observations still seemed to perform reasonably well.

We also looked at the impact of increasing the number of time points or decreasing
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Table 4.2: Summary statistics from the simulation study in the scenarios where
β1 = log(2) and aL = 1. It shows the percentage of the sample with delayed entry
(DE %), along with the bias (Bias), variance (Var), root mean squared error (RMSE)
and coverage probability (CP) for the estimated log hazard ratios β1 and β2. The
superscript after the percentage indicates the number of failed estimations out of the
10000 replications.

β1 β2

DE% Bias Var RMSE CP Bias Var RMSE CP

n = 100
50 0.0166 0.054 0.233 0.950 −0.0054 0.014 0.118 0.945

Cox 90 0.0147 0.056 0.237 0.949 −0.0049 0.015 0.121 0.945
100 0.0158 0.057 0.240 0.947 −0.0059 0.015 0.122 0.948

501 0.0268 0.072 0.270 0.947 −0.0089 0.019 0.137 0.947
Simple 903 0.0254 0.093 0.305 0.956 −0.0111 0.025 0.160 0.948

10059 0.0292 0.111 0.335 0.957 −0.0147 0.031 0.178 0.953

501 0.0283 0.072 0.269 0.946 −0.0092 0.018 0.135 0.945
Stopped 901 0.0282 0.089 0.300 0.952 −0.0104 0.023 0.153 0.946

10048 0.0311 0.104 0.324 0.954 −0.0128 0.028 0.167 0.948

n = 500
50 0.0018 0.010 0.100 0.951 −0.0008 0.002 0.050 0.951

Cox 90 0.0017 0.011 0.103 0.953 −0.0011 0.003 0.051 0.949
100 0.0022 0.011 0.103 0.952 −0.0012 0.003 0.051 0.952

50 0.0020 0.013 0.115 0.949 −0.0007 0.003 0.058 0.948
Simple 90 −0.0025 0.017 0.130 0.950 −0.0021 0.004 0.066 0.951

1002 −0.0033 0.020 0.142 0.953 −0.0028 0.005 0.074 0.955

50 0.0036 0.013 0.115 0.949 −0.0011 0.003 0.057 0.948
Stopped 90 0.0011 0.016 0.128 0.948 −0.0019 0.004 0.064 0.951

1002 0.0006 0.019 0.138 0.949 −0.0022 0.005 0.070 0.954

n = 1000
50 0.0005 0.005 0.070 0.953 −0.0006 0.001 0.035 0.948

Cox 90 0.0006 0.005 0.072 0.949 −0.0007 0.001 0.036 0.952
100 0.0010 0.005 0.073 0.952 −0.0008 0.001 0.036 0.948

50 −0.0009 0.007 0.081 0.950 −0.0002 0.002 0.041 0.948
Simple 90 −0.0060 0.008 0.091 0.950 −0.0007 0.002 0.046 0.949

100 −0.0076 0.010 0.100 0.953 −0.0013 0.003 0.051 0.954

50 0.0008 0.006 0.080 0.950 −0.0007 0.002 0.040 0.948
Stopped 90 −0.0023 0.008 0.089 0.950 −0.0007 0.002 0.045 0.949

100 −0.0033 0.009 0.097 0.951 −0.0009 0.002 0.049 0.952
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the hazard ratio of X1, but the results are not shown here. The bias of the log hazard
ratio was somewhat reduced with an increased number of time points in the model,
but in general it did not change much. There was no trend in the relative bias of X1

for both pseudo-observations, when the hazard ratio decreased, but the bias ofX2 was
slightly increased.

4.4 Application

The approaches were applied to data onDanish diabetes patients40,41, which have been
used previously as an illustration of left-truncated data 5 Example I.3.2. Out of the en-
tire population of the county of Funen in Denmark on 1 July 1973, a total of 1499were
identified as diabetes patients. The objective was to assess survival in diabetes patients
from the time of diagnosis. Hence, the timescale was time in years from diagnosis un-
til death or censoring (1 January 1982). The entry time was the time from the date of
diagnosis until study start (1 July 1973). The entry times had a median of 12.4 years
(minimum 1 month), and the times from entry until censoring or death, had a me-
dian of 8.5 years. Pseudo-observations were calculated at 10 time points, which where
the deciles of the observed death times. We fitted a proportional hazards model with
the simple and stopped pseudo-observations using a complementary log-log link and a
nonparametric baseline, including sex and age at diagnosis as covariates. We also fitted
a standard Cox proportional hazards model for comparison.

The estimates from the three approaches are shown in Table 4.3. All three gave com-
parable estimates for the hazard ratios, although the stopped pseudo-observations came
closer to the Cox model for sex and the simple pseudo-observations came closer to the
Cox model for age at diagnosis. The Cox model yielded the smallest standard errors
followed by the stopped pseudo-observations. This is in agreement with the results
from the simulations, where the estimates based on the stopped pseudo-observations
in general had less variance than the simple.

We also checked that the model assumptions, such as proportionality and linearity
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Table 4.3: Summary of the analyses of the Danish diabetes patients. It shows the
estimated log hazard ratio (log(HR)) for sex (reference female) and age at diagnosis
in years (centered at 31 and divided by 10) with corresponding standard error (SE),
hazard ratio (HR) and 95% confidence interval (CI).

Sex Age at diagnosis
log(HR) SE HR CI log(HR) SE HR CI

Cox 0.445 0.094 1.56 (1.30, 1.88) 0.659 0.033 1.93 (1.81, 2.06)

Simple 0.518 0.383 1.68 (0.79, 3.55) 0.659 0.122 1.93 (1.52, 2.45)

Stopped 0.477 0.282 1.61 (0.93, 2.80) 0.608 0.084 1.84 (1.56, 2.16)

of age at diagnosis, were reasonable. The checks for linearity of age at diagnosis are
shown in Figure 4.3. For the Cox model the relation between age at diagnosis and the
martingale residuals seems to be reasonably linear. The diagnostic plots for the pseudo-
observations t0 = 20.7 looked similar for the other time points. The largest positive
pseudo-observations belonged to subjects that entered early and ended up being admin-
istratively censored. The largest negative pseudo-observations belonged to subjects that
entered early and died quickly thereafter.

4.5 Discussion

We looked at two different ways of defining pseudo-observations for regression of the
survival probability with right-censored and left-truncated data. The performance of
the two was investigated in a simulation study that overall showed that the stopped
pseudo-observation performed better than the simple pseudo-observation. So despite
the fact that the simple pseudo-observationusesmore subjects than the stoppedpseudo-
observation, those extra subjects do not seem to add any information of value. The
differences between the two depended upon the severity and degree of left-truncation.
Notably both approaches may fail in situations where there are very few at risk in the
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beginning. In a sense this is also a useful property that the pseudo-observations will
indicate when the information in the data is sparse. In practice, if the estimation pro-
cedure fails it may help to select a different set of time points where the information is
less sparse.

The fact that one has to be careful when selecting times at which to compute pseudo-
observations when data are left-truncated is closely connected with the problem dis-
cussed by Andersen et al. 5, Example IV.3.4. Namely that, with left-truncated data one
has to settle for estimating the conditional survival distribution given that the survival
time exceeds some suitable time value s0, for which P (L < s0) is not too small. Since
there is little information on the distribution of the probabilitymass before s0. For this
reason one may encounter problems with bias for the estimated intercepts, which are
transformed values of S(tj) for the chosen time point tj . We observed this problem in
our simulations.

For simplicity, we illustrated the method in a survival setting with the survival prob-
ability as the parameter of interest, but here the Cox model approach is in many in-
stances an attractive choice. The pseudo-observations become especially useful in other
settings where there are no other regressionmethods available. Without left-truncation
the pseudo-observations have been applied to many other settings and other paramet-
ers of interest. One such parameter is the restricted mean survival time, which is ob-
tained by integrating S(t) from 0 to some threshold τ . The pseudo-observations that
we presented here can also be extended to this parameter. Although if there is little in-
formation on the distribution of the probabilitymass before some timepoint s0, the be-
forementionedbias problem is potentially enhancedby the integration, andone should
therefore aimat estimating a conditional restrictedmean survival timeE(min(T, τ)|T >

s0).
We applied the pseudo-observations to data on Danish diabetes patients and com-

pared them with the Cox model approach. The estimated hazard ratios were com-
parable with all three methods, but the simple pseudo-observations yielded the largest
standard errors.
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Figure 4.3: Model diagnostics for linearity of age at diagnosis. For the Cox model the
martingale residuals under the null is plotted against age at diagnosis. The pseudo-
observations at t0 = 20.7 are plotted against age at diagnosis. A loess smoother have
been added to each graph indicated by the grey line.117
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