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3
Dynamic prediction of
expected length of stay

Inmulti-statemodels the expected length of stay (ELOS) in a state is not a straight-
forward object to relate to covariates and the traditional approach has instead been to
construct regressionmodels for the transition intensities and calculate ELOS fromthese.
The disadvantage of this approach is that the effect of covariates on the intensities is not
easily translated into the effect on ELOS and it typically relies on the Markov assump-
tion.

We propose to use pseudo-observations to construct regression models for ELOS,
thereby allowing adirect interpretationof covariate effects, while at the same time avoid-
ing theMarkov assumption. For this approach, all we need is a non-parametric consist-
ent estimator for ELOS. For every subject (and for every state of interest) a pseudo-ob-
servation is constructed and they are then used as outcome variables in the regression
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model. We furthermore show how to construct longitudinal (pseudo-) data when com-
bining the concept of pseudo-observations with landmarking. In doing so, covariates
are allowed to be time-varying and we can investigate potential time-varying effects of
the covariates. The models can be fitted using generalized estimating equations (GEE)
and dependence between observations on the same subject are handled by applying
the sandwich estimator. The method is illustrated using data from the US Health and
Retirement Study where the impact of socioeconomic factors on ELOS in health and
disability is explored. Finally, we investigate the performance of our approach under
different degrees of left-truncation, non-Markovianity and right-censoring by means
of simulation.

3.1 Introduction

Over the 20th century, from the 1920’s onward, the life expectancy of humans has in-
creased an incredible 2.5 years every decade68. The increase has been remarkably steady
with no signs as yet that this trend is disappearing in the 21st century. Clearly this in-
creased life expectancy will have a profound effect on modern society.

Among demographers there is a heavy debate, whether these additional life years are
being spent in health or in disability. Adistinction between life years spent in health and
disability is crucial, both for the well-being of individuals and for health resources. An
importantquestion is thenhowbackground characteristics of individuals, such as gender
and socio-economic status, andbehavioral characteristics, like dietaryhabits and smoking,
influence expected (remaining) life years spent in health and disability. In a paper study-
ing the effects of these factors on healthy life expectancy and expected life in disability,
Reuser et. al summarized the most striking behavioral effects as “Smoking kills, obesity
disables”75. To contribute to this debate there is a need formethods to assess andmodel
expected remaining life years in health and in disability for older people.

The typical approach used to address these questions, is to view this problem in the
context of a multi-state model72. A reasonable multi-state model for the above healthy-

74



Health Disability

Death

Figure 3.1: The reversible health-disability-death multi-state model.

disability debate is shown in Figure 3.1. It is an example of an illness-death model, with
disability as the ‘illness’ state. The illness-death model of Figure 3.1 is reversible, since
recovery from disability is possible. In general, a multi-state model is a stochastic pro-
cess with outcomes in a finite space that represents the different stages in a subject’s life
course or disease/recovery process. Such multi-state models enable the estimation of
the effect of explanatory factors on the transition intensities, but they do not give a dir-
ect quantification of the effect of these factors on the expected length of stay (ELOS)
in a given state. Furthermore, these models typically rely on the assumption that the
process is Markov.

Wepropose tousepseudo-observations to fit regressionmodels that directly quantify
the effect of explanatory variables on ELOS. Pseudo-observations has previously been
proposed for regression on different multi-state objects such as the state occupation
probabilities9 and the restricted mean survival time6. The restricted ELOS is a general-
ization of the restricted mean survival to the multi-state setting. Here we will consider
the restricted residual ELOS, which provides ELOS for a subject who has already sur-
vived up to a certain time-point, e.g. the expected remaining life in health and disability
for a person of age 75. To incorporate this aspect we combine the concept of pseudo-
observations with landmarking. Landmarking was introduced by 11, as a way to deal
with time-dependent covariates in survival analysis, while avoiding immortal time bias.
Pseudo-observations have previously been combined with landmarking for regression
on the cumulative incidence function in a competing risks setting66.

In the case of ordinary survival data Oakes and Dasu67 proposed a proportional
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mean residual life model, for the (unrestricted) residual mean survival time. Previous
workon the restrictedmean survival timehasbeen focusedon comparisonof twogroups
adjusted for covariates 51,106,17,104. Ourmethod provides a straightforward way of fitting
the proportional mean residual life model. At the same time, we allow for the more
general setting with multiple states and the possibility of nonproportionality.

Section 3.2 describes the method; a formal definition of ELOS is given in section
3.2.1, section 3.2.2 defines the pseudo-observations in a general setting, and section 3.2.3
describes how to construct dynamic pseudo-observations for ELOS. These pseudo-ob-
servations are then used to construct direct regressionmodels for ELOS in section 3.2.4.
To illustrate the method we apply it to data from the USHealth and Retirement Study
described in section 3.3. In section 3.4 a simulation study is conducted to study the per-
formance of the method under different degrees of incompleteness and non-Markov-
ianity. Section 3.5 contains a discussion of the implications of the model assumptions,
the performance of the method, as well as possible extensions and applications.

3.2 Method

3.2.1 Expected length of stay

A multi-state model is defined as a stochastic process X(t) which has outcomes in a
finite state space K = {1, . . . ,K}. We are interested in how long time the process
spends in a given state h ∈ K, not necessarily consecutively, until a threshold τ , which
will typically be taken to be large. The restricted length of stay in state h is defined by∫ τ
0 I(X(t) = h)dt. Hence, the restricted ELOS in state h is given by

eh = E

(∫ τ

0
I(X(t) = h)dt

)
=

∫ τ

0
P (X(t) = h) dt ,

and it can be reformulated as the integral of the state occupation probability

Ph(t) = P (X(t) = h),
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i.e. the probability that the process is in state h at time t. This detail is important for
the construction of the pseudo-observations later on.

We can generalize the restricted ELOS to start at an arbitrary fixed time-point s ≥ 0.
This residual restricted ELOS is the expected length of stay in the time period from s to
τ , conditional on the subjects being alive at time s, i.e. being in a non-absorbing state.
Formally it is defined as

eh(s) = E

(∫ τ

s
I(X(t) = h)dt

∣∣∣∣X(s) ∈ A
)

=

∫ τ

s
P (X(t) = h |X(s) ∈ A) dt , (3.1)

whereA is the set of non-absorbing states in themodel. Conceptually, conditioning on
being alive is similar to partly conditioning as defined in 105,56. The state h in eh(s) that
indicates which state the process spends time in, will be referred to as the target state.
In the remainder, the restricted residual ELOS will also be referred to as ELOS, unless
confusion can arise.

3.2.2 Pseudo-observations

Assume that the data (Xi, Zi)
n
i=1 consists of i.i.d. observations of an outcomeX and

covariatesZ . The outcomemay be the trajectory of a multi-state processX(t). We are
interested in constructing regression models based on a (possibly complex) function f

of our outcome, i.e. our aim is to fit regression models of the form

θi = E (f(Xi)|Zi) = g−1
(
β⊤Zi

)
,

for some known link function g, where f(Xi) may be one-dimensional or a vector.
As with most time-to-event data, some Xi are incompletely observed and hence so is
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f(Xi). Consider now the unconditional expectation, which is the parameter

θ = E (f(X)) . (3.2)

Assuming there exists a consistent estimator θ̂ of θ, the pseudo-observation for subject
i is defined as

θ̂i = nθ̂ − (n− 1)θ̂(−i) , (3.3)

where θ̂ is the estimate based on the entire data set and θ̂(−i) is the estimate where sub-
ject i has been removed. The pseudo-observation θ̂i can be seen as the contribution of
subject i to the estimate of θ. The idea is to use the pseudo-observations as outcome,
instead of f(Xi), to fit a generalized linear regression model using generalized estimat-
ing equations (GEE) 58. GEE are employed, sincewewant to avoidmaking assumptions
about the full distribution of the outcome, because we are using pseudo-observations,
and at the same timewewant to account for possible dependence between observations
on the same subject. The assumptions underlying the GEE are

1. Observations between subjects are independent.

2. The conditional mean depends linearly on the covariates through a known link-
function g

E (f(Xi)|Zi) = θi , g(θi) = β⊤Zi .

Furthermore a structure for the working covariance matrix Vi of the pseudo-obser-
vations should be specified. The first assumption is satisfied as the pseudo-observations
are approximately independent 88,10.

A consistent estimate of β can be obtained as the solution to the estimating equa-
tions

U(β) =
n∑

i=1

(
∂θi
∂β

)⊤
V −1
i

(
θ̂i − θi

)
= 0 .
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Notice that pseudo-observations are used also for those individuals where the outcome
was completely observed. The covariance matrix can be estimated by the sandwich es-
timator

Ĉov(β̂) = Σ̂−1Ĉov(U(β))Σ̂−1 ,

where

Σ = 1
n

∑n
i=1

(
∂θi
∂β

)⊤
V −1
i

(
∂θi
∂β

)
and Ĉov(U(β)) = 1

n

∑n
i=1 Ui(β̂)Ui(β̂)

⊤ .

The choice of working covariance matrix influences the efficiency of the estimator β̂.
Nevertheless, if assumption 1 and 2 are satisfied and θ̂ is a consistent estimator of θ,
then β̂ is consistent for any suitable choice of working covariance matrix. So far only
Graw et al 39 has provided proofs regarding the asymptotic properties of the pseudo-
observation based regression in the setting of cumulative incidences for a competing
risks.

3.2.3 Dynamic pseudo-observations

This section describes how to create dynamic pseudo-observations for ELOS, by com-
bining the concept of pseudo-observations with landmarking. In our setting X is the
multi-state process X(t) and the parameter θ is formed by eh(s) from equation (3.1).
Note that eh(s) is indeed the expectation of a complex function of the data, as in (3.2).
The analysis can be limited to specific states of interest. Let therefore H ⊆ K denote
this set and letH be the cardinality ofH. To construct thepseudo-observationsweneed
consistent estimators of eh(s), h ∈ H. The first step is to find a consistent estimator
for the state occupation probabilities. Let

P s
h(t) = P (X(t) = h |X(s) ∈ A)

denote the state h occupation probability at time t conditional on being at alive at time
s. It can be estimated by the non-parametric Aalen-Johansen estimator P̂ s

h(t)
7 using
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landmarking 11,92. The estimate is based on the sub-sample of subjects alive at time s.
Letn(s) denote the number of subjects alive and at risk at time s and letYg(s+) be the
number of those subjects that occupied state g ∈ A. P̂ s

h(t) is then the weighted sum
over the estimated transition probabilities P̂gh(s, t), where the weights are equal to the
corresponding empirical initial occupation probabilities Yg(s+)

n(s) . The non-parametric
Aalen-Johansen estimator of the state occupation probabilities is consistent under in-
dependent right-censoring, even when the process is non-Markovian and in the pres-
ence of left-truncation 23,62. The second step is then to find the area under the Aalen-
Johansen estimator. Let s = t0 < t1 < · · · < tJ ≤ tJ+1 = τ be the ordered
transition times pooled over all transitions. A consistent estimator for eh(s) in (3.1) is
then given by

êh(s) =

J∑
j=0

P̂ s
h(tj)(tj+1 − tj) . (3.4)

Inserting the estimator of (3.4) into the equation (3.3) gives rise to the pseudo-observa-
tions

êih(s) = n(s)êh(s)− (n(s)− 1) ê
(−i)
h (s) ,

one for every subject i at risk at time s and for every state h of interest. Pseudo-observa-
tions are only created for subjects at risk, but left-truncated individuals still contribute
to the estimate of the pseudo-observations through êh(s). In principle it is possible
to create pseudo-observations for left-truncated individuals, but typically the value of
the (time-dependent) covariates at times will be unknown for such subjects. An altern-
ative way of estimating the state occupation probability is to base P̂ s

h(t) only on the
sub-sample of people alive and at risk at time s. In this way left-truncated individuals
would be completely discarded in the construction of the pseudo-observations. We call
this latter approach the strict approach and the former approach (where subjects not yet
at risk are included in the calculation of the state occupation probabilities) thenon-strict
approach.
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An interesting feature is that had the data been completely observed, the pseudo-
observations would be the actual observed length of stay of the subjects.

3.2.4 Regression models

In this section we describe how the dynamic pseudo-observations may be used to con-
struct direct regression models for ELOS. Section 3.2.4 describes the situation for one
fixed landmark. In section 3.2.4 several landmarks are selected, for the purpose of mod-
eling the development of ELOS over the landmark time. To this end a so-called super
model is employed to construct one regression model.

Models for a fixed landmark

Let s be a fixed landmark and recall H to be the cardinality of H the states of interest.
For every individual i at risk at time s and every state h of interest, a pseudo-observa-
tion êih(s) is created as described in section 3.2.3. Hence, each individual at risk hasH
pseudo-observations which may be dependent.

For a time-dependent covariateZ(t) the value fixed at the landmarkZ(s) is used as
a time-fixed covariate 11,92,95. A covariate of special interest is X(s) = g, which is the
state that the process occupies at time s and it will be referred to as the current state.

It is natural to assume that the effect of some covariates will differ according to the
target state h, e.g. the effect of BMI or smoking is different for ELOS in health and
ELOS in disability. We therefore introduce target-specific covariates. The idea is similar
to that of transition-specific covariates in regressionmodels for the transition intensities
in multi-states models4. Let Zih(s) denote the p dimensional target-specific covariate
vector for subject i fixed at time s. Define the conditional mean

eih(s) = E

(∫ τ

s
I(X(t) = h)dt

∣∣∣∣X(s) ∈ A, Zih(s)

)
.
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We assume that the conditional mean has the structure

g(eih(s)) = β(s)⊤Zih(s) , (3.5)

where β(s) is a vector of p parameters. The covariate vector may include 1 to allow for
target-specific intercepts. The current stateX(s)may also be included as a covariate. In
some situations covariates may also interact with the current states, e.g. being disabled
at time s couldmodify the effect of BMI on time spent in disability. These interactions
will be a part of the p covariates contained inZih(s).

The model in (3.5) can be fitted by GEE using a suitable working covariance matrix.
The following section shows how the concept can be extended fromone to several land-
marks. TheGEE for a fixed landmark therefore follows from themore generalGEE case
with several landmarks.

Supermodels using several landmarks

Let S = {s1, · · · , sD} be a set of fixed landmark time points. To study the develop-
ment of ELOS over time we could repeat the fixed landmark method to make D sep-
arate regression models. It is, however, appealing to think that covariate effects change
smoothly over s, and the (pseudo-) data could instead be considered as longitudinal
data95,66. Let Si ⊆ S denote the set of the Di landmarks where subject i was at risk.
For every subject i, every sd ∈ Si and every h ∈ H we create a pseudo-observation
êih(sd). Subject i therefore has H · Di pseudo-observations, which are stacked into
the vector êi. As before, with one fixed landmark, wemake use of target-specific covari-
ates to handle interactions between covariates and target state. In addition to this there
is also the new possibility of covariates interacting with landmark time, i.e. effects may
be time-varying.

The conditional mean is assumed to follow 3.5, where β(s) is no longer a vector of
parameters, but a q vector of suitable smooth function of s ∈ [s1, sD] that we have to

82



specify. The lth element of β(s) is

βl(s) = β⊤
l bl(s) ,

where bl is a vector of fixed basis functions, and βl a vector of parameters. Let B(s)

denote the p × q matrix of basis functions and let β denote the stacked vector of bl’s.
It then follows that β(s) = B(s)β. The conditional mean in equation (3.5) can be
rewritten in terms of the covariateZ∗

ih(s) = B(s)⊤Zih(s),

g(eih(s)) = β(s)⊤Zih(s) = (B(s)β))⊤ Zih(s) = β⊤Z∗
ih(s) .

The estimating equations of the super model can be formulated as

U(β) =

n∑
i=1

(
∂ei
∂β

)⊤
V −1
i (êi − ei) = 0 , (3.6)

where êi = [êih(sd)]h,d is the stacked vector of all pseudo-observations for subject
i. The solution to the estimating equations β̂(s) is a consistent estimator ofβ, provided
that

1. The estimator of eh(s) is consistent.

2. The regression model is correctly specified.

Furthermore, it is necessary to assume working independence between observations
at different landmarks. Kurland and Heagerty 56 point out that for partly conditional
models, i.e. models such as ours where we condition on being alive (X(t) ∈ A), the
number of observations on an individual is stochastic. If theworking correlationmatrix
would be anything else than a diagonal matrix, the inverse variance matrix V −1

i would
depend on the cluster size. Since V −1

i no longer is a known quantity conditional on
the covariates, this may destroy the unbiasedness of the estimating equations in (3.6).
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Covariates effect may be tested by a Wald test, in the same fashion as with standard
GEE.

3.3 Application

To illustrate the method and to show how it can be used to contribute to the health-
disability debate, data from the Asset and Health Dynamics Among the Oldest Old
(AHEAD), now part of the wider US Health and Retirement Study (HRS), will be
used49. The HRS has been collecting data since 1992, including health and socio-
economic status on a population of elderly. Of these we selected a subpopulation of
people of age 75 and older. The time scale is age. Table 3.1 shows the frequency in
the HRS data of the time-fixed covariates considered in the illustration (body-mass in-
dex (BMI) and smoking status are assessed at entry into the study). Disability status is
defined according to the Basic Activities of Daily Living (ADL) scale 52, which includes
items for walking, bathing, dressing, toileting and feeding. A subject is defined to be
ADL disabled here if he/she responds ”with difficulty” for at least one of the ADL
items.

In the following we will study the dynamics of disability and recovery in the health-
disability-deathmulti-statemodel of Figure 3.1. In this data, for a total of 4026 subjects,
1929 transitions fromhealthy toADLdisabledoccurred and679 recoveries (transitions
from ADL disability to healthy). A total of 1982 deaths were observed, 916 from the
healthy state and 1066 from ADL disability. More details about the results and the
code used for the analysis can be found in the Supplementary Material.

3.3.1 Fixed landmark model

We begin with considering a fixed landmark model for the age of 75, to investigate the
effect of the covariates on the ELOS in health (h = 1) and disability (h = 2). Pseudo-
observations were created for these two states, with τ = 110, using the mstate pack-
age 26 in R to estimate ELOS.
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Table 3.1: Baseline covariates in the HRS study.

Covariate n (%)
Gender

Male 1561 (39%)
Female 2465 (61%)

Education
Less than high school 1732 (43%)
High school 1211 (30%)
Some college 1083 (27%)

BMI (kg/m2)
≤ 25 2241 (56%)
25− 30 1386 (34%)
> 30 389 (10%)
Missing 10

Smoking
Never 1996 (50%)
Past 1680 (42%)
Current 322 (8%)
Missing 28 (1%)

It is natural to assume that the effect of the covariates on expected healthy life will
differ from the effect on expected life in disability, in other words that the covariates
will interact with the target state. We therefore make use of target-specific covariates.
Furthermore, the effect of covariates may not only differ by target-state, but also by
current state.We therefore fit amodelwhere all the target-specific covariates also interact
with the current state. This amounts to estimating separate covariate effects for each of
the four combinations of target state and current state. The link function is assumed to
be the identity function and a working independence covariancematrix is applied. The
model was fitted using the geepack package45 in R.

Table 3.2 shows the estimated regression parameters of themodel, with robust stand-
ard errors and95% confidence intervals. It is presented in terms of the target-specific co-
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variates conditional on the current state. We see that females who are healthy at age 75,
with a high school education, a BMI< 25 and who never smoked, are expected to have
10.057more years in health, and 3.587more in disability. Corresponding males spent
less time in health than the females, and even less time in disability. Interestingly, both
high BMI and current smoking are associated with less time spent in health, but the
effect on time spent in disability is quite different: negative for current smoking, posit-
ive for high BMI. This supports the claim of ”smoking kills, obesity disables”75. More
parsimonious models could have been found, e.g. by removing the non-significant co-
variates by current state interactions, but this was not pursued at this stage.

The procedure was repeated for a whole set of landmarks from the age of 75 to 95 at
every 2.5 years. Figure 3.2 illustrates the change of ELOS with age for the baseline char-
acteristics, i.e. the intercepts of all the landmark models. Not surprisingly, the ELOS is
declining in all four groups as people become older. The drop seems to be particularly
fast for time spent in health.

Figure 3.3 shows the covariate effects on time spent in health given healthy at age s. It
is interesting to see that the effect of current smoking seems to decline over time. Natur-
ally this is also forced by the fact that there is less time to spend, but it may also be that
individuals who live to an old age are especially robust and therefore less susceptible to
die from smoking.

These plotsmotivate the idea that the changes over age could be reasonablymodeled
with linear functions for the covariates and quadratic functions for the intercepts. This
can be achieved by employing a landmark super model.

3.3.2 Super model

In this sectionwe applied a supermodel to the stackedpseudo-data for all the landmarks
from age 75 to 95 at every 2.5 years. Landmark time was rescaled as s̃ = (s− 75)/20

, thus taking values between 0 and 1. The only time-varying covariate included in the
model was the current state, which was fixed at its current value at time s. Quadratic
interactions between landmark time and the target- and current state were included.
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the fixed landmark models with 95% point-wise confidence intervals. The dashed line
only serves as an visual aid.
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according to the fixed landmark models with 95% point-wise confidence intervals.
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Table 3.2: Estimates of the fixed landmark model for the age of 75.

Covariate β̂ SE(β̂) (CI) β̂ SE(β̂) (CI)
Target state : Health Current state : Health Current state : Disability
Intercept 10.057 0.172 (9.775, 10.339) 3.851 0.493 (3.039, 4.663)
Sex
Male −0.295 0.174 (−0.581,−0.008) −0.442 0.431 (−1.150, 0.266)
BMI
25− 30 0.082 0.177 (−0.210, 0.374) −0.329 0.467 (−1.097, 0.439)
> 30 −0.600 0.304 (−1.100,−0.101) 0.455 0.500 (−0.367, 1.277)
Education
Less than high school −0.066 0.204 (−0.401, 0.269) −0.711 0.430 (−1.419,−0.003)
Some college 0.365 0.168 (0.089, 0.641) 0.305 0.617 (−0.710, 1.320)
Smoking
Past −0.427 0.169 (−0.704,−0.149) −0.321 0.420 (−0.371,−1.012)
Current −1.004 0.337 (−1.558,−0.449) −0.353 0.520 (−0.502, 1.209)
Target state : Disability Current state : Health Current state : Disability
Intercept 3.587 0.098 (3.426, 3.749) 7.194 0.386 (6.559, 7.829)
Sex
Male −0.171 0.085 (−0.310,−0.031) −0.453 0.428 (−1.157, 0.250)
BMI
25− 30 −0.114 0.089 (−0.033, 0.260) 0.583 0.475 (−0.199, 1.364)
> 30 0.055 0.165 (−0.216, 0.326) 0.434 0.406 (−0.233, 1.102)
Education
Less than high school −0.021 0.103 (−0.148, 0.190) −0.436 0.460 (−1.192, 0.320)
Some college 0.059 0.091 (−0.090,−0.208) 0.198 0.476 (−0.585, 0.981)
Smoking
Past −0.072 0.091 (−0.221,−0.077) −0.520 0.388 (−1.158, 0.118)
Current −0.293 0.159 (−0.554,−0.031) −0.631 0.395 (−1.281, 0.031)
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Covariate effects were assumed to vary linearly over landmark time and differ according
to both target- and current state. The link function was assumed to be the identity
function and an independence working covariance matrix was employed.

The results of the analysis are shown in Table 3.3 and 3.4 with the estimates of the
regression parameters, robust standard errors and corresponding 95% confidence in-
tervals. The table shows the target-specific effects conditional on the current state. The
constant part of the super model corresponds to the effect on ELOS at age 75, and it
is therefore comparable to the fixed landmark model in Table 3.2. In the super model a
female, with low BMI, high school education, who never smoked is expected to spend
9.693 years in health from the age of 75. This is comparable to the fixed landmark
model at age 75 in the previous section. The landmark part of the super model shows
the estimated change of the effects over s. Since the intercept is assumed to change as a
quadratic function over time, a similar person of age 85 (s̃ = 0.5) is expected to spend
(9.693− 11.590 · 0.5 + 4.129 · 0.52 =) 4.930 years in health. If this person instead
had been disabled at age 85 she would be expected to spend (3.745 − 5.827 · 0.5 +

2.354 · 0.52 =) 1.42 years in health.
Figure 3.4 illustrates the overall impact of gender on ELOS and how it interacts with

the target- and current state over time. It shows males and females with low BMI, a
high school education, who never smoked. The upper left graph show ELOS in health
conditional on being healthy at the current age s. At age 75, both males and females
are expected to live around 10more years in health. On the other hand, the lower left
graph shows that the females are expected to live longer in disability than the males.
This difference is even larger for subjects that were disabled at time s (the lower right
graph).

3.4 Simulations

Theperformanceof themethodunderdifferentdegrees of right-censoring, left-truncation
and non-Markovianity was investigated through simulations by comparing the true ef-
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Figure 3.4: Estimated ELOS over time in health and disability for males and females,
given healthy or disabled, with point-wise 95% confidence intervals.
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Table 3.3: Estimates of the landmark super model for the target state health.

Covariate β̂ SE(β̂) (CI) β̂ SE(β̂) (CI)
Target state : Health Current state : Health Current state : Disability
Constant
Intercept 9.693 0.195 (9.312, 10.075) 3.745 0.281 (3.195, 4.296)
Sex
Male −0.276 0.171 (−0.611, 0.06) −0.382 0.242 (−0.857, 0.092)
BMI
25− 30 0.240 0.166 (−0.085, 0.565) 0.550 0.242 (0.076, 1.023)
> 30 −0.355 0.274 (−0.891, 0.181) 0.212 0.289 (−0.355, 0.779)
Education
Less than high school 0.133 0.191 (−0.241, 0.508) −0.467 0.244 (−0.945, 0.012)
Some college 0.795 0.194 (0.415, 1.175) 0.173 0.297 (−0.409, 0.754)
Smoking
Past −0.537 0.174 (−0.878,−0.196) −0.163 0.249 (−0.651, 0.325)
Current −1.710 0.294 (−2.286,−1.133) −1.023 0.338 (−1.685,−0.361)

Landmark
Intercept
s̃ −11.590 0.589 (−12.745,−10.435) −5.827 0.717 (−7.232,−4.422)
s̃2 4.129 0.486 (3.177, 5.08) 2.354 0.517 (1.341, 3.367)
Sex
Male ·s̃ 0.513 0.349 (−0.171, 1.197) 0.495 0.379 (−0.248, 1.238)
BMI
25− 30 · s̃ −0.219 0.335 (−0.876, 0.437) −0.663 0.351 (−1.351, 0.025)
> 30 · s̃ 0.146 0.621 (−1.07, 1.363) −0.504 0.479 (−1.444, 0.435)
Education
Less than high school ·s̃ −0.590 0.400 (−1.374, 0.194) 0.471 0.364 (−0.241, 1.184)
Some college ·s̃ −1.651 0.397 (−2.429,−0.872) −0.145 0.438 (−1.003, 0.714)
Smoking
Past ·s̃ 0.928 0.360 (0.223, 1.633) 0.265 0.372 (−0.463, 0.993)
Current ·s̃ 1.931 0.641 (0.675, 3.187) 1.579 0.643 (0.319, 2.839)

92



Table 3.4: Estimates of the landmark super model for the target state disability.

Covariate β̂ SE(β̂) (CI) β̂ SE(β̂) (CI)
Target state : Disability Current state : Health Current state : Disability
Constant
Intercept 3.848 0.160 (3.535, 4.161) 7.694 0.461 (6.791, 8.598)
Sex
Male −0.554 0.143 (−0.835,−0.273) −1.152 0.406 (−1.948,−0.356)
BMI
25− 30 0.000 0.139 (−0.273, 0.273) 0.227 0.391 (−0.539, 0.993)
> 30 0.504 0.214 (0.085, 0.923) 0.442 0.509 (−0.555, 1.44)
Education
Less than high school −0.200 0.153 (−0.499, 0.099) −0.237 0.409 (−1.037, 0.564)
Some college −0.298 0.161 (−0.614, 0.018) −0.560 0.462 (−1.465, 0.344)
Smoking
Past 0.164 0.146 (−0.122, 0.45) −0.799 0.409 (−1.6, 0.002)
Current 0.001 0.222 (−0.435, 0.437) −0.843 0.648 (−2.114, 0.428)

Landmark
Intercept
s̃ 0.542 0.623 (−0.679, 1.762) −4.146 1.283 (−6.661,−1.631)
s̃2 −1.541 0.555 (−2.629,−0.453) −0.630 1.023 (−2.634, 1.375)
Sex
Male ·s̃ −0.026 0.019 (−0.064, 0.013) −0.007 0.040 (−0.085, 0.071)
BMI
25− 30 · s̃ 1.137 0.388 (0.376, 1.899) 1.042 0.720 (−0.37, 2.454)
> 30 · s̃ −0.735 0.627 (−1.965, 0.494) 0.415 1.008 (−1.561, 2.391)
Education
Less than high school ·s̃ −0.188 0.394 (−0.961, 0.585) 0.599 0.754 (−0.88, 2.078)
Some college ·s̃ 0.795 0.466 (−0.118, 1.709) 1.482 0.862 (−0.207, 3.172)
Smoking
Past ·s̃ −0.559 0.390 (−1.323, 0.205) 0.675 0.776 (−0.847, 2.196)
Current ·s̃ −0.679 0.649 (−1.951, 0.592) 0.823 1.430 (−1.981, 3.626)
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fect of one covariate with the estimates. In addition, the approach was compared to es-
timates based on regression models for the transition intensities, which will be referred
to as themulti-statemodel. In general, it is not possible to compare to alternativemeth-
ods, as no other methods are available for direct regression on ELOS. It was however
possible to make a direct comparison in this simulations study as the model only in-
cludes one categorical covariate. The setup of the simulation study is inspired by the
HRS data in Section 3.3 and the generated data follows the multi-state model of Figure
3.1. In the following section the setup of the simulation study is described in brief and
the last section describes the results. Additional results can be found in the Supplement-
ary Material.

3.4.1 Setup

Simulating from a multi-state model

Thedata for the simulation studywas generated by assuming constant transition intens-
ities. One categorial covariateZ with two levels{0, 1}was considered and subjectswith
Z = 1wouldhave lower transition intensities intodeath than thosewithZ = 0, which
may illustrate the situation of non-smokers versus smokers. Non-Markovian data was
generated by including individual frailties on the transition to disability. The intuition
is that an individual who is currently healthy, but has a history of being disabled, would
more likely be a frail individual, which by construction has a higher transition intensity
to disability. The probability of making a transition therefore depends on the process
history, which is a violation of the Markov assumption.

For both the Markov and non-Markov setup a total of 1000 data sets, each with
2000 individuals, were simulated. In each data set one half of the subjects had Z = 0

and the other half had Z = 1. To mimic the setup of the HRS data, where subjects
were followed from approximately age 75 onwards, we simply added 75 (years) to all
simulated time values of the complete data. Subjects were followed for 35 years until
τ = 110. Six different scenarios of random right-censoring and left-truncation were
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subsequently imposed on the complete data.

Estimated- and true parameters

This section describes the models that were fitted to the simulated data using either the
pseudo-observations or the multi-state approach.

For the pseudo-observation approach landmarks from 75 to 105 at every 2.5were se-
lected and the corresponding pseudo-data created. The pseudo-data was then analyzed
using either fixed landmark models or a super model. Let Zgh(s) denote the target-
specific covariates of Z , which also include interactions with current state g. In the
fixed landmark models the mean was assumed to be

E

(∫ τ
s I(X(t) = h)dt

∣∣∣∣X(s) = g ∈ {1, 2}, Zgh(s)

)
= α(s) + β(s)Zgh(s) ,

(3.7)
where α(s) and β(s) are parameters. In the super model quadratic functions were
assumed for both the intercept and the effect ofZgh(s) over s,

E

(∫ τ
s I(X(t) = h)dt

∣∣∣∣X(s) = g ∈ {1, 2}, Zgh(s)

)
=

α1 + α2s+ α3s
2 + (β1 + β2s+ β3s

2)Zgh(s) ,
(3.8)

where the α’s and β’s are parameters and β(s) = β1 + β2s + β3s
2 is the effect of

the covariate at time s. All models were fitted with a working independence covariance
matrix.

In the multi-state approach the transition intensity from state g to h was assumed
to be

λgh(t|Z) = λ0,gh(t) exp(βZ) , (3.9)

whereλ0,gh(t) is the unspecifiedbaseline intensity andβ is the transition specific covari-
ate effect. Estimates of the transition intensities was then used for obtaining estimates
of the transition probabilitiesPgh(s, t). Finally, the area under the estimated transition
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probabilities was used as estimates of the conditional mean of interest.
The true effect of the covariate was approximated, since the simulation setup does

not allow explicit analytical expressions, unless in theMarkov case. The true effect β̄(s)
of Zgh(s) may depend on both time s, the current state g and the target state h. The
true value was therefore approximated by averaging the length of stay eh(s), over the
1000 complete data sets (before censoring or truncation was applied). This was done
separately for each landmark s and each current state g = 1, 2.

Comparison

The estimated effects were compared with the true effects β̄(s) by calculating the bias,
root mean square error (RMSE) and coverage as measures of performance. Let β̂(s)
denote the estimated effect ofZgh(s) in either the fixed landmark models or the super
model. For a given s and covariateZgh(s) the bias and RMSE are defined as

bias = E
(
β̂(s)− β̄(s)

)
& RMSE =

√
E
(
(β̂(s)− β̄(s))2

)
.

The coverage was estimated by the proportion of simulated data sets from which the
estimated confidence interval contained the true value. All three measures may depend
on the target- and the current state, but this is suppressed in the notation.

3.4.2 Results

This section describes the results of the simulation study, where the performance of
the method is evaluated. Figure 3.5 shows the results of the fixed landmark models us-
ing non-strict and strict pseudo-observations, as well as themulti-statemodel approach.
The models was fitted on non-Markov data with 20% truncation and 10% censoring.
The estimated effect of the covariate Zgh(s) for each of the 1000 data sets are depic-
ted with boxplots. The top left graph shows the results for Z11(s), i.e the effect of the
covariate on ELOS in health, given healthy at time s. The true value β̄(s) is denoted
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with a white diamond. The estimates of the strict approach are virtually unbiased, and
the variability is acceptable, although occasionally negative estimates for ELOS are ob-
tained. The non-strict approach show some bias, especially at earlier landmarks, for
which the degree of left-truncation is substantial. The bias disappears for later land-
mark time points. Interestingly (details not shown), RMSE for the strict and non-strict
approaches are comparable; coverage is very good for the strict approach and increasing
from 94% for earlier landmarks to 95% for later landmarks. The multi-state model is
biased, which is due to the non-Markovian nature of the data.

It is clear that the strict approach is favorable in this situation. However, for a small
data set with some truncation the non-strict version will be more stable, which is sup-
ported by the simulation study. This is due to the fact that the non-strict version bor-
rows information frommore individuals, without truncation the twowill coincide. As
expected, lower levels of censoring and truncation lead to smaller bias for the non-strict
approach. When applied to the Markov data there was no change in performance for
the pseudo-observations and the multi-state model performed reasonably. The super
model showed very similar results as the fixed landmark models and is therefore not
shown.

3.5 Discussion

In this paper we explored the use of pseudo-observations in combination with land-
marking to construct direct regressionmodels for the restricted residual expected length
of stay (ELOS) inmulti-statemodels. The traditional approach tomodel ELOS is to fit
regressionmodels for all the transition hazards. The estimated covariate effects in these
model, however, do not translate directly into the effect of the covariates on ELOS.Our
method conveniently avoids the need to fit this kind of, possibly complicated, multi-
state models and the estimated effect of the covariates have a direct interpretation. In
combination with landmarking it furthermore allows for time-dependent covariates
and time-varying effects.
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Figure 3.5: Estimated effect of Zgh(s) in the 1000 non-Markov data sets with 10%
censoring and 20% truncation, using the fixed landmark models with non-strict and
strict pseudo-observations and the multi-state model respectively. The true value is
denoted with a white diamond.
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The proportional mean residual life model67 is a special case of the super models we
consider in this paper, namely for the alive-deathmulti-state model, with log-link func-
tion and covariate effects which do not vary over landmark time. The pseudo-obser-
vation approach thus provides a straightforward way of fitting the proportional mean
residual lifemodel, and extends it, bothby allowing formultiple states andother choices
of link function. Our choice of identity link function in the application has the disad-
vantage of not guaranteeing positive ELOS, but in our view the advantage of directly
interpreting the regression coefficients as adding/subtracting life years outweighs this
disadvantage. As in any situation, it would be appropriate to make a goodness-of-fit
assessment. It is however an open question how this could be achieved when pseudo-
observations are used and we did not pursue this.

We showed how the method can be applied in a reversible illness-death model to es-
timate the direct effects of socio-economic factors on ELOS in health and disability for
a population of elderly. The fixed landmark models had comparable standard errors
with the super model, but this model may be too rich. Although we did not pursue
it here, the method allows for model selection, and a more parsimonious model may
have been found for the super model. In general better efficiency, in terms of improved
standard errors, may be obtained by using a supermodel, at the possible expense of bias
introduced by incorrect specification of such a super model. Further improvements in
terms of efficiencymay be achieved by selecting an appropriateworking covariancemat-
rix, as long as observations between landmarks are taken as independent in the working
covariance matrix.

We conjecture that the approach yields consistent estimates provided that the estim-
ator for the state-occupation probabilities is consistent and the regression model is cor-
rectly specified. We have chosen to use theAalen-Johansen estimator, which in the pres-
ence of independent right-censoring is consistent even under non-Markovianity23 and
left-truncation62. Depending on the setting alternatives to the Aalen-Johansen estim-
ator could be considered in order to obtain consistency and to improve efficiency. E.g.
in the situation with state dependent censoring, Datta and Satten 24 proposed an estim-

99



ator for the state occupationprobabilities undernon-Markovianity, andothers 14,25 have
also considered different alternatives and settings. At present, as far as we know, there
has been nowork related to pseudo-observations under left-truncation. In ourmotivat-
ing examplewith theHRSdata bothnon-Markovianity and left-truncationwaspresent.
We therefore relied on a simulation study to evaluate bias and rootmean square error of
our approach in this context. Under right-censoring and even non-Markovianity, but
in the absence of left-truncation, the performance was good, which is in line with the
theory 23. The non-strict approach did seem to be sensitive to left-truncation, however.
The strict approach, which for landmark time s uses only the subjects alive and at risk
at time s in the calculation of the state occupation probabilities, performed quite well.
For a small to moderate degree of left-truncation, bias and root mean square error of
the non-strict approach are acceptable, but it is not completely clear how our approach
performswhen there is a considerable degree of left-truncation. Thus, the non-strict ap-
proach needs to be used with caution. The crucial issue might be in the correct choice
of n(s) in the definition of the pseudo-observations. We used the number of subjects
alive and at risk at time s, even though additional subjects were used for calculation of
the transition intensities and the state occupation probabilities. We also evaluated the
non-strict approach, takingn(s) to be the number of subjects used in the calculation of
the state occupation probabilities, but this also resulted in a moderate bias. Perhaps an
intermediate “effective sample size” governing the asymptotics of the state occupation
probability estimates should be used, but it is unclear as yet how to define this. Further
theoretical research and practical experience is needed in this case.

There are a number of directions for future research. First, the method is applic-
able for general multi-state models and is not restricted to the illness-death model. De-
pending on the objective of the data analysis it may also be of interest to select a predic-
tion window, instead of a time-horizon τ , i.e. to investigate the ELOS in health over
the next 10 years. Another possible extension of the pseudo-observation approach is
to consider other outcomes, where one important possibility is regression models for
quality-adjusted (remaining) life years. A utility qh (per time unit spent in state) is then
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assigned to each stateh, andone is interested in
∑

h qheh(s). In another application, qh
could be (medical) costs associated with being in state h. Another outcome of interest
may be the proportion of remaining life spent in health; in our setting that would be
eh=1(s)/(eh=1(s) + eh=2(s)).
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