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2
Dynamic prediction of

cumulative incidence functions

In recent years there have been a series of advances in the field of dynamic pre-
diction. Among those is the development of methods for dynamic prediction of the
cumulative incidence function in a competing risk setting. These models enable the
predictions to be updated as time progresses and more information becomes available,
e.g. when a patient comes back for a follow-up visit after completing a year of treatment,
the risk of death and adverse events may have changed since treatment initiation.

One approach to model the cumulative incidence function in competing risks is by
direct binomial regression, where right censoring of the event times is handled by in-
verse probability of censoring weights. We extend the approach by combining it with
landmarking to enable dynamic prediction of the cumulative incidence function. The
proposed models are very flexible, as they allow the covariates to have complex time-
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varying effects, and we illustrate how to investigate possible time-varying structures
using Wald tests. The models are fitted using generalized estimating equations. The
method is applied to bone marrow transplant data and the performance is investigated
in a simulation study.

2.1 Introduction

In competing risks subjects are at risk of experiencing multiple events. Usually one
event is of particular interest, however due to the competing events the event of interest
is not always observed. An example of competing risks comes from stem cell transplant-
ations, where treatment failure after hematopoietic stem cell transplantation (HSCT)
is defined as relapse or as death without a prior relapse, which is called non-relapse mor-
tality. For these patients it is important to be able to correctly assess their risk of for
instance relapse after the transplant. The risk is expressed in terms of the cumulative
incidence function (CIF), which is the probability of experiencing a particular event
before a certain time point.

When the objective is to predict the CIFs, a number of methods are available; either
indirectly through modelling all the cause-specific hazards or directly by modelling the
sub-distribution hazard 29, by employing pseudo-observations 53 or by direct binomial
regression (DBR) 83. The effect that a covariate has on the cause-specific hazard of in-
terest may be very different from the direct effect that it has on the CIF, since the direct
effect is also influenced by the cause-specific hazards of the competing events72.

In recent years there have been a series of advances in extending these methods to
dynamic prediction of the CIF. Nicolaie et al. extended the cause-specific hazards65

and the pseudo-observation approach66. These models enable the predictions to be
updated as time progresses andmore information becomes available. Take for example
a patient that has received aHSCT.TheCIFof relapsemay look very different right after
the transplant compared to one year later, when the patient comes back for follow-up
without having experienced any events yet. The change in the CIFs may be explained
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by a change in the patient’s covariates or by a change in the effect of the covariates. The
dynamic CIF, as a function of s and t, is defined as the probability of experiencing a
particular event before a certain time point t, given that the patient did not experience
any event before time s < t and given the information that is available at time s 19.

Here we extend theDBR approach tomodel the dynamic CIF by combining it with
landmarking92,95. DBR uses inverse probability of censoring weights to account for
right-censoring, where the idea is to let subjectswith an event represent those thatwhere
censored by giving them an appropriate weight in the estimation. Grøn & Gerds 42

gives a nice introduction to DBR and the estimation procedure. The idea of landmark-
ing is to take a snapshot of the data at a selected time point during follow-up, a so-called
landmark. Only individuals that are still at risk (event-free and under follow-up) at the
landmark are used for the analysis. The model can then be used to predict the CIF
conditional on being event-free up until the landmark time. We can also select a set of
landmarks and use each snapshot to fit a separate model to predict the CIF at differ-
ent landmarks during follow-up. Alternatively, we can combine the snapshot data and
fit one model. The models are estimated by generalised estimating equations (GEE) 58,
and can be fitted with standard software once an extended data set has been created
from the different snapshots. The models are very flexible as they in principle allow
the covariates to have complex time-varying effects. In practice more parsimonious rep-
resentations will be desirable and we discuss ways to navigate through possible model
structures.

The method is described in Section 2.2, where we describe the basic idea of the in-
verse probability of censoring weights, discuss different models and the corresponding
estimation procedures. The situation with only one landmark is described in Section
2.2.1 and the setting with several landmarks is described in Section 2.2.2. The perform-
ance of the method is investigated in a simulation study in Section 2.3 and compared
to pseudo-observations. In Section 2.4 we illustrate the method using data from the
European Society for Bone andMarrow Transplantation and we end with a discussion
in Section 2.5.
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2.2 Method

Let T denote the event time and ϵ ∈ {1, . . . , J} the competing event type indicator.
For ease of notation and without loss of generality we focus on predicting event 1. The
dynamic CIF of event 1 is defined as the probability of experiencing the event before
time t, given no events before time s and possibly conditional on some covariatesX ,

p(t|s,X) = P(T ≤ t, ϵ = 1|T > s,X) .

The probability can be reformulated in terms of the counting process for event 1

N(t) = I(T ≤ t, ϵ = 1) ,

since E(N(t)|T > s,X) = p(t|s,X). For a fixed t, and without censoring, the
responseN(t) is a Bernoulli variable. Hence, ordinarymethods for analysing binomial
responses can be applied and Nicolaie et al. 66 show how to derive the score equations
in this particular setting. In the presence of right-censoring C the counting process
may be incompletely observed. Instead we observe T̃ = min(T,C) and ϵ∆ or in
counting process notation we observeN(t)∆, where∆ = I(T ≤ C) is the indicator
of no censoring. DBR makes use of inverse probability of censoring weights to deal
with right-censoring, while still using the score equations used in ordinary binomial
regression. Let G(t|T > s,X) = P (C > t|T > s,X) denote the conditional
probability of being without censoring at t given alive at time s. We can now define the
weighted response as

N̂(t|s) = N(t)∆

G(T − |T > s,X)
. (2.1)

In principle N̂(t|s) depends onG andX , but this is suppressed in the notation. Fur-
thermore, it is 0 for censored subjects and those that have already experienced a com-
peting event, but it is ≥ 1 for subjects that have experienced event 1. So subjects that
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at a time t have experienced event 1 are given more weight, because they also have to
represent the individuals that have been censored.

Under the assumption that (T, ϵ) is independent ofC conditional on the covariates
X , it then follows that the weighted response has the same conditional mean asN(t),
that is

E
(

N(t)∆
G(T−|T>s,X)

∣∣∣T > s,X
)

= E
(
E
(

N(t)∆
G(T−|T>s,X)

∣∣∣T > s,X, T, ϵ
)∣∣∣T > s,X

)
= E

(
N(t)

G(T−|T>s,X)E (∆|T > s,X, T, ϵ)
∣∣∣T > s,X

)
= E (N(t)|T > s,X) .

The first equality follows by the law of nested conditional expectations. The second
and third line are consequences of the assumptions of conditional independence, which
gives that

P(T ≤ C|T > s,X, T = t, ϵ) = P(C > t|T > s,X) = G(t|T > s,X) .

This property leads to the idea of using the weighted response to fit models for the
dynamic CIF p(t|s), since N̂(t|s) can be calculated for all subjects, whereas N(t) is
incomplete for some. In practice we will have to estimate G and thereby replacing G
with Ĝ in (2.1). Depending on the assumptions either theKaplan-Meier or aCoxmodel
could be used.

2.2.1 Regression models for a fixed landmark

In this section we will show how to fit models for one fixed time point s, a so-called
landmark. The observed data are

(
T̃i, ϵi,∆i,Xi(t)

)
for i = 1, · · · , n, where X(t)
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are possibly time-varying covariates that are assumed to be continuously observed until
T̃i. After selecting a landmark s ≥ 0, we select the subjects that are still at risk at s.
Time-varying covariates are fixed at their value X(s) at s and they enter the model as
time-constant covariates. The following is then completely parallel to the setting in
Scheike et al. 83 .

Models

A very general nonparametric model for the dynamic CIF can be written as

p
(
t|s,Xi(s)

)
= h−1

(
α(s, t), β(s, t),Xi(s)

)
,

where h is a known link-function, α represents the time-varying baseline effect and β

the time-varying effects of Xi(s) over t. The model is called nonparametric, because
the baseline and the covariate effects are unspecified functions of t. We will focus on
slightly less generalmodels withmore structure, i.e. a nonparametricmodel of the form

h
(
p
(
t|s,Xi(s)

))
= α(s, t) + β(s, t)⊤Xi(s) , (2.2)

and a semi-parametric model of the form

h
(
p
(
t|s,Xi(s),Zi(s)

))
= α(s, t) + β(s, t)⊤Xi(s) + γ(s)⊤Zi(s) . (2.3)

Some covariates Xi(t) have time-varying effects, either parametric or nonparametric,
and other covariates Zi(t) have constant effects γ(s). Special cases of (2.3) includes
the partly parametric additive risk model60, with link h−1(x) = 1 − exp(−x), and
the Fine&Gray model, with a complementary log-log link and time-constant covariate
effects. With a logit link the covariate effects are log odds ratios, where the odds are
the ratio of the cumulative incidence and one minus the cumulative incidence. With
a log link the covariate effects are log risk ratios, where the risk ratio is the ratio of the
cumulative incidences. Some concern has been raised about the interpretation of the
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parameterswhen either the complementary log-log or the logit is used as link function 33.
The question of how to interpret the parameters are further discussed in Section 2.5.

Estimation

In order to estimate the parameters in the models we need to select a set of time points
t1, · · · , tM for t, that are larger than s. One choice is the exhaustive set, which contains
all event times of event type 1. Another choice would be to use a smaller set of time
points based on either a set of equally spaced time points or a set based on the quantiles
in the event time distribution. In practicewewould recommend to use the latter, which
is alsomore convenient for large data sets withmany events. For all the t’s in the chosen
set, the weighted response N̂i(t|s) is calculated for each of the ns subjects that were at
risk at time s. The data are thereby expanded to ns × M observations, which can be
used to fit either the nonparametric or semi-parametric models using GEE. Let N̂is =

[N̂i(t1|s), . . . , N̂i(tM |s)]⊤ denote the vector of stacked weighted responses and let
Xis denote the correspondingmodelmatrix including the intercept. We can formulate
the nonparametric model in (2.2) in matrix format as

pis = E
(
N̂is

∣∣Ti > s,Xis

)
= h−1

(
Xisθ

)
,

where θ is a vector of parameters forα(s, t) and β(s, t) at every time point t1, . . . , tM .
Let Rs denote the index of the subjects at risk at time s. The estimator θ̂ is found as
the solution to the GEE

U(θ, Ĝ)(s) =
∑

i∈Rs
D⊤

isV
−1
is

(
N̂is − pis

)
= 0 , (2.4)

where D⊤
is = ∂

∂θpis. If the response was known, choosing Vis to be the variance of
the response, would yield the estimator with the smallest variance. When G has to be
estimated it turns out to be difficult to derive what an efficient choice ofVis should be.
Later we will consider models with logit link functions and Vis = pis(1 − pis), i.e.
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the variance of a binomial response. For this particular choice, the weights D⊤
i V

−1
is

reduces toXis and it follows that the GEE reduces to

U(θ, Ĝ)(tm, s) =
∑

i∈Rs
Xi(s)

(
N̂i(tm|s)− p

(
tm|s,Xi(s)

))
= 0 ,

form = 1, . . . ,M . Hence, the parameters in the nonparametric model can be estim-
ated by solvingM separate equations with this choice of link and variance.

The variance of θ̂ may be estimated by a sandwich type variance estimator, which is
discussed later in Section 2.2.2 in the more general context with several landmarks.

For early time points theremay be too few or no events to be able to obtain estimates
in the nonparametricmodels. This situation is known as separation andwewill address
it later in the discussion. However, one simple way to avoid this is to choose t1 large
enough.

The semi-parametric model in Equation (2.3) can be formulated in matrix format as

pis = E
(
N̂is

∣∣Ti > s,Xis,Zis

)
= h−1

(
Xisθ +Zisγ

)
.

For the semi-parametric models the constant covariate effects γ may be estimated by
solving

U(θ, γ, Ĝ)(s) =
∑

i∈Rs
D⊤

isV
−1
is

(
N̂is − pis

)
= 0 . (2.5)

Under the assumption of conditional independence between (T, ϵ) andC given the
covariatesX , and a correctly specified model for the mean, the GEEs in (2.4) and (2.5)
lead to consistent estimators 83.

2.2.2 Regression models for several landmarks

It is straightforward to extend the models above to not only be a function of t, but
also of the landmark time s. What we need is to select a set of landmark points 0 ≤
s1, · · · , sL. For each of these landmarks we select the subjects at risk and fix the time-
varying covariates as described above. The data are thereby expanded over each valid
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β(s, t)

γ(s) + η(t)

γ(s) η(t)

βConstant

Constant in t or s

Additive

Saturated

1

L orM

L+M − 1

K

Figure 2.1: Model selection scheme. The number of parameters is indicated on the
right side.

combination of s and t and is now of size
∑L

l=1 nl × Ml, where nl is the number of
subjects at risk at sl and Ml is the number of t’s which are larger than sl. The total
number of valid time point combinations of s and t isK =

∑L
l=1Ml.

The nonparametric model for the dynamic CIF can be written as in Equation (2.2),
but now α and β are unspecified functions of s and t. For the semi-parametric models
there are more options, which we will now discuss.

Model selection

Although the nonparametric model is very flexible, in practice we would like to search
formore parsimoniousmodels. One approach is to follow a backward selection scheme.
For simplicity, consider a setting with only one covariate. A backward selection scheme
for this setting is illustrated in Figure 2.1. In accordance with common practice the
baseline is kept nonparametric throughout themodel selection scheme. In the first step
a nonparametric model is fitted (Saturated). In this model the covariate effect can be
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divided into a constant effect, an additive contribution from s and t, and an interaction
effect between s and t,

β(s, t) = γ(s) + η(t) + δ(s, t) .

We propose to first test if the interaction term δ(s, t) = 0 using a Wald test over the
selected grid of s and t. If it is found non-significant (p-value ≥ 0.05) we then move
on to fit an additivemodel and test whether the additive effects of s and t are significant
(p-value< 0.05).

InWynant&Abrahamowicz 100 they found in their simulations that backward selec-
tion worked well in survival analysis. Both in terms of detecting real effects, removing
spurious ones, as well as providing reliable inference. However, they also warn that a
nonlinear effect of a continuous covariate may create a spurious time-varying effect. In
addition, it is recommended to split the sample, if the data are large enough, to ensure
that the inference in the final model is reliable.

Estimation

Let pi = [p⊤
is1

, . . . ,p⊤
isL

]⊤ denoted the vector of conditional probabilities and let
Xi denote the corresponding model matrix. The nonparametric model can then be
formulated in matrix format as

pi = h−1
(
Xiθ

)
,

where θ is a vector of parameters for α(s, t) and β(s, t) at every valid time point com-
bination. The GEE for estimation of θ in the nonparametric model with several land-
marks is given by

U(θ, Ĝ) =
∑n

i=1Ui =
∑n

i=1D
⊤
i V

−1
i

(
N̂i − pi

)
= 0 ,
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where D⊤
i = ∂

∂θpi. The variance of θ̂ may be estimated by the sandwich estimator,
which is obtained by replacing θ with θ̂ in

I−1
(

1
n

∑n
i=1UiU

⊤
i

)
I−1 ,

where
I = 1

n

∑n
i=1D

⊤
i V

−1
i Di .

However, since we condition on subjects being alive, we have to assume working in-
dependence between observations at different landmarks 56. In addition, this variance
estimator does not account for the uncertainty that arises from estimatingG. However,
in a simulation study in Grøn & Gerds 42 the performance of the naive variance estim-
ate and a bootstrap variance estimate was investigated and it was concluded that they
were comparable.

Consider now a semi-parametric model where all the covariates have additive time-
varying effects. We can write it in the matrix form

pi = h−1
(
Xiθ

)
.

whereXi is the covariate matrix and θ is the vector of parameters for the baseline and
the additive effects for the valid combinations of s and t. The interaction effect between
the landmark time and the covariate [γ(sl)]Ll=1 may be estimated by solving

U(θ, Ĝ)(sl) =
∑

i∈R(sl)

M∑
m=1

D⊤
i (tm, sl)V

−1
i (tm, sl)

(
N̂i(tm|sl)− p

(
tm|sl,Xi(sl)

))
= 0 ,

for l = 1, . . . , L and D⊤
i = ∂

∂γpi. Similar we can write the GEE for the interaction
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effect with time t, [η(tm)]Mm=1, as

U(θ, Ĝ)(tm) =
L∑
l=1

∑
i∈R(sl)

D⊤
i (tm, sl)V

−1
i (tm, sl)

(
N̂i(tm|sl)− p

(
tm|sl,Xi(sl)

))
= 0 ,

form = 1, . . . ,M andD⊤
i = ∂

∂ηpi.

Once the data have been extended it is straightforward to fit the GEE with standard
software. We used the R package geepack45.

Prediction

After deciding on a suitable model and fitting it we can use it to make dynamic predic-
tions. Say we decided on a semi-parametric model with a logit link function, where
some covariatesXi(t) have a nonparametric effect β(s, t) and someZi(t) have a semi-
parametric effect η(t) that only varies with t. Predictions, for a given set of covariates
and time points s < t, can be obtained by plugging the parameter estimates into the
model

p̂
(
t|s,Xi(s),Zi(s)

)
=

(
1+exp

(
−
(
α̂(s, t)+β̂(s, t)⊤Xi(s)+η̂(t)⊤Zi(s)

)))−1

.

We can also obtain predictions for a grid of time points simultaneously

p̂i =

(
1 + exp

(
−
(
Xiθ̂

)))−1

,

whereXi is the appropriate model matrix and θ a vector of parameters. Since the prob-
ability is a continuously differentiable function of the parameters, the delta method
may in principle be used to obtain standard errors of p̂i from the variance matrix of θ̂.
We prefer to construct the confidence intervals from the linear predictorXiθ̂, leading
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to (
1 + exp

(
−
(
Xiθ̂ ± 1.96σ̂

)))−1

,

where σ̂2 is the estimate of thediagonal of the variancematrixVar(Xiθ̂) = XiVar(θ̂)X⊤
i ,

which can be calculated from the sandwich estimator.

2.3 Simulations

The performance of the method was investigated through simulations. The objectives
were to investigate the finite sampleproperties of the estimator in termsofbias, coverage
rate and root mean square error (RMSE), along with the performance of the Wald test.

Setup

The simulation study considers a setting with two competing events 1 and 2, and one
covariateX with two levels 0 and 1. In the following we will choose the CIFs such that
the true effect of the covariate β(s, t) can be calculated explicitly. ForX = 0, the true
CIF for event ϵ is given by

pϵ(t|X = 0) =
λϵ

λ1 + λ2

(
1− exp (−(λ1 + λ2)t

κ)

)
for ϵ = 1, 2, (2.6)

which is a Weibull type CIF with parameters λ1, λ2 and κ > 0. Let logit(p) =

log( p
1−p) and let expit be the inverse of the logit function. ForX = 1, the true CIF for

event 1 is given by

p1(t|X = 1) = expit
(
logit

(
p1(t|X = 0)

)
+ β(0, t)

)
,

where β(0, t) defines the time-varying effect of X . The true CIF for event 2 has the
same form as Equation (2.6), but with λ1 replaced with limt→∞ exp(β(0, t))λ1 and
limt→∞ p1(t|X = x) + p2(t|X = x) = 1. For suitable choices of β(0, t) this setup
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will yield valid cumulative incidence curves forX = 1. The true dynamic CIF can be
calculated from the relation to the CIF

pϵ(t|s,X) =
pϵ(t|X)− pϵ(s|X)

1− p1(s|X)− p2(s|X)
.

This allows us to explicitly calculate the true time-varying covariate effect as

β(s, t) = logit
(
p1(t|s,X = 1)

)
− logit

(
p1(t|s,X = 0)

)
.

Note that the dynamic CIF for event 1 has a nice form forX = 0, that is

p1(t|s,X = 0) =
λϵ

λ1 + λ2

(
1− exp

(
− (λ1 + λ2)(t

κ − sκ)
))

,

but unfortunately the expression for p1(t|s,X = 1) does not in general reduce to a
nice formula.

It was straightforward to simulate data in this setup. For subject i, we first drew xi

with equal probability from {0, 1}. Then a u was drawn from a uniform distribution
on 0 to 1. If u ≤ limt→∞ p1(t|xi) then the event type ϵi was set to 1 and otherwise 2.
The event time ti was obtain as the t for which

u =

{
p1(t|xi) if ϵi = 1

p2(t|xi) + limt→∞
λ1 expβ(0,t)xi

λ1 expβ(0,t)xi+λ2
if ϵi = 2

. (2.7)

Two scenarios were investigated, both with λ1 = 0.4, λ2 = 0.6 and κ = 1. In
scenario 1 the covariate had no effect, i.e. β(0, t) = 0. In scenario 2, the covariate had
an increasing effect over time t, which for s = 0 was given by β(0, t) = 2expit(t) −
1. The baseline (blue lines) and time-varying effect (red lines) of x in scenario 2 are
depicted in the left graph in Figure 2.2. The right graph shows the corresponding CIF.

Three censoring schemeswhere considered. In the first scheme, censoringwas gener-
ated fromauniformdistribution on1 to2.5. In the other two, censoringwas generated
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Figure 2.2: The left graph shows the true baseline α(s, t) (blue lines, x = 0) and
time-varying effect β(s, t) of the covariate (red lines, x = 1) in scenario 2 at different
time points s during follow-up. The right graph show the corresponding CIF for each
level of x.

from exponential distributions, where the distribution used in the latter depended on
the covariate X. This led to censoring of around 19%, 40% and 45% of the event times
in scenario2. Themethodwas evaluated in each scenariousing a sample of500, 1000or
2000 subjectswith a total of1000 simulated studies. Themethodwas also compared to
pseudo-observations in scenario 2 with 40% censoring and 45% covariate dependent
censoring.
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Evaluation

For each simulated data set a saturated nonparametric model with a logit link function
was fitted for event 1

logit(p1(t|X)) = α(s, t) + β(s, t)X .

For s the landmarks were set at 0, 0.25, 0.5, 0.75, 1 and for t the time points were set
at 0.2, 0.4 . . . , 1.8. Working independence was used for the correlation matrix. The
weights in theGEEwere set to be the inverse of the binomial variance and the censoring
survival functionGwas estimated using a Kaplan-Meier estimate at every landmark.

To evaluate the performance of the estimators we calculated the bias, RMSE and
coverage rate for both the baselineα(s, t), covariate effect β(s, t) and dynamic CIF for
event 1.

The Wald test was evaluated by looking at the type I error rate under the null hypo-
thesis. To this end, we only looked at the simulations from scenario 1with 19% censor-
ing, where the covariate did not have an effect on the CIF of event 1. In the saturated
model the percentage of rejections of the interaction term δ(s, t) = 0 were calculated.
Furthermore, an additive model were fitted

logit(p1(t|X)) = α(s, t) +
(
γ(s) + η(t)

)
X ,

and the percentage of rejections of time constant effects γ(s) = γ or η(t) = η were
calculated.

Results

The bias of the estimated baseline and the covariate effect for scenario 2with 19% cen-
soring are given in Figure 2.3. The time points that are closer to the landmarks in general
showedmore bias due to fewer events, in particular for the baseline. However, the bias
decreased with increasing sample size and it disappeared on the probability scale, see

58



Figure 2.4. It is therefore less of an issue for prediction purposes, however for model
selection it could be an issue.

The coverage ratewas in general very close to the nominal 95% (Figure 2.5). The sim-
ulation study also showed that the small sample bias of the covariate effect in scenario 1
was smaller than in scenario 2, but the bias of the baseline estimates was similar in both
scenarios. Both coverage rate and RMSE in scenario 1were similar to those in scenario
2. Furthermore, the method performed similarly in the case with and without censor-
ing in both scenarios. In addition, the simulations showed that the bias was larger for
time points that were not included in the model fitting. This confirms the importance
of carefully selecting the time points. In the simulation study, the landmarks and time
points for t were chosen to be the same for every simulated data set in order to make
the comparisonmore straightforward. This, however, gave rise to overparametrization
for some data sets if there were no events between two selected time points. An altern-
ative would have been to select the landmarks and time points for t based on the event
times of each data set. In practise, it is recommended to select time points such that
least one event is present between any two selected time points. This point also carries
over to the evaluation of the Wald test shown in Table 2.1. Under the null we would
expect the number of rejections to be around 0.05, however in the saturatedmodel the
Wald test performs poorly due to the problems with overparametrization in some sim-
ulations. However, the Wald test performs well when testing for time constant effects
in the additive model.

Going from 19% to 40% censoring or 45% covariate dependent censoring in scen-
ario 2 only lead to small changes. The bias of the estimated parameters and the dynamic
CIF decreased (Figures 2.4-2.6), while the RMSE of the parameters increased. The cov-
erage rate of the parameters decreased with 40% censoring, but showed a slight con-
servatism for later time points t with 45% covariate dependent censoring. The lack of
difference between the censoring schemes may be due to a benefit from being better at
determining the censoring distribution with increased censoring.

Figure 2.6 shows the bias of the dynamicCIF of the proposedmethod versus pseudo-
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Figure 2.3: Bias (dots) of the estimated baseline parameters (first column) and
covariate effect (second column) for event 1 in scenario 2 with 19% censoring. The
bias is calculated based on samples with either 500 (first row) or 1000 (second row)
subjects. The bias was evaluated at the same time points which were used to fit the
models. The lines indicate which points come from the same landmark time s.
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Figure 2.4: Bias (dots) of the estimated dynamic CIF for X = 0 (first column) and
X = 1 (second column) for event 1 in scenario 2 with 19% censoring. The bias is
calculated based on samples with either 500 (first row) or 1000 (second row) subjects.
The bias was evaluated at the same time points which were used to fit the models.
The lines indicate which points come from the same landmark time s.
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Figure 2.5: Coverage rates of the 95% confidence intervals (dots) of the estimated
baseline parameters (first column) and covariate effect (second column) for event 1 in
scenario 2 with 19% censoring. The coverage rate is calculated based on samples with
either 500 (first row) or 1000 (second row) subjects. The coverage rate was evaluated
at the same time points which were used to fit the models. The lines indicate which
points come from the same landmark time s.

62



Table 2.1: The percentage of simulations where the null hypothesis was rejected in
Scenario 1 with 19% censoring. The percentage is calculated for different models
and tests, based on different sample sizes. The number of simulations used in the
evaluation differs since the simulations which yielded a singular variance matrix were
excluded.

Model Test n Number of simulations % of rejections

Saturated δ(s, t) = 0
500 899 0.593
1000 918 0.231
2000 864 0.084

Additive

γ(s) = γ
500 1000 0.048
1000 1000 0.051
2000 1000 0.045

η(t) = η
500 995 0.060
1000 1000 0.061
2000 1000 0.051

observations. In general, there was not much difference between the methods in scen-
ario 2 with 40% censoring. However, with 45% covariate dependent censoring the
pseudo-observations yielded large biases as expected.

2.4 Application

The method was applied to data from the European Society for Blood and Marrow
Transplantation (EBMT). The data consisted of 5582 chronic myeloid leukaemia pa-
tients that received allogeneic stem cell transplantation. The two competing events
are relapse and non-relapse mortality (NRM). The number of observed transitions to
either relapse or NRM are shown in Figure 2.7. Covariates included year of stem cell
transplantation (1997 − 2003, centred at 2000) and the EBMT risk score (low, me-
dium, high), which is a prognostic index based on covariates measured at baseline. In
addition, presence of low (grade≤ 2) or high (grade≥ 3) grade acute graft versus host
disease (AGVHD), were included as time-varying covariates.
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Figure 2.6: Bias (dots) of the estimated dynamic CIF for X = 0 for event 1 in
scenario 2 with sample size 1000 and either 40% censoring (first column) or 45%
covariate dependent censoring (second column). The bias is calculated using either
DBR (first row) or pseudo-observations (second row). The bias was evaluated at the
same time points which were used to fit the models. The lines indicate which points
come from the same landmark time s.
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Transplant
(5582)

Relapse (1397)

NRM (1679)

Figure 2.7: Competing risk model for the HSCT patients. The number of observed
events are given along the arrows.

Only the results related to relapse are shown, but NRM was modelled analogously.
We started with a saturated model with nonparametric effects for all covariates. We
then followed the model selection scheme described in Section 2.2.2. The baseline was
kept nonparametric throughout and a p-value of 0.05was considered significant. Each
covariatewas tested separately for interactions between s and t (δ(s, t) = 0). The signi-
ficant covariates were kept nonparametric and non-significant covariates were assumed
to have additive effects. In the next model, each covariate with an additive effect was
again tested separately for having a constant effect over s or t ( γ(s) = γ or η(t) = η).
The covariates that were non-significant were given a time-constant effect over s or t
in the following model. The models were fitted with a logit link. The GEE weights
were set to the inverse of the binomial variance and working independence was used
for the correlation matrix. Landmarks were fixed at 0, 2, 4, 6, 8, 10 and 12 months
after transplant. For t a set of quantiles in the range from the first event of relapse to
6 years after transplantation were selected, i.e. at month 5, 7, 10, 13, 17, 22, 28, 37, 49
and 70. A Kaplan-Meier curve was fitted at every landmark to estimate the censoring
weights. After following the model selection scheme we obtained Model 1

logit
(
prelapse

(
t|s,X(s)

))
= α(s, t) + ηyear(t)Xyear

+ γrisk score medium(s)Xrisk score medium

+
(
γrisk score high(s) + ηrisk score high(t)

)
Xrisk score high

+ γAGVHD low(s)XAGVHD low(s)

+ βAGVHD high(s, t)XAGVHD high(s) .
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Year of stem cell transplantation Xyear was found to have a time-varying effect over t.
High risk score had an additive time-varying effect. Medium risk score and presence
of low AGVHD had a time-varying effect over s. Presence of high AGVHD had a sat-
urated time-varying effect. A second model ( Model 2 ) was fitted with the same struc-
ture asModel 1, but where the covariates’ time-varying effect was replaced by quadratic
functions of s and t, i.e. ηyear(t)was replaced by ηyear,0 + ηyear,1t+ ηyear,2t

2 etc.

The estimatedbaseline (first column) and effect of amediumorhigh risk score (second
and third column) are shown in Figure 2.8, both from Model 1 (circles) and Model 2
(lines) for landmarks at 0 and 12months. Overall the two models are in agreement, al-
though a closer look at the standard errors revealed thatModel 2 in general had smaller
confidence intervals. The effects of medium and high risk scores were strictly positive,
which means that these groups have a larger CIF of relapse than the group with a low
risk score. Looking at a fixed landmark, the effect of a high risk score initially decreases
over t, but then seems to become constant. This directly implies that the CIF for a high
risk score increases more steeply than with low or medium risk scores. For a fixed t the
effects of risk score generally decreased over landmark time.

Figure 2.9 shows the predicted CIF for relapse, where year of stem cell transplanta-
tion is fixed at 2003. Since AGVHD only occurs after the transplant there is only one
curve in the first row, corresponding to no presence of AGVHD at landmark 0. In the
bottom row, the curves start at 12 months after transplantation, since we here condi-
tion on being alive and without relapse in the first 12 months. The predictions from
the twomodels are very similar, although there seems to be some disagreement for high
risk scores at landmark 12. The CIF for high risk scores increases faster within the first
couple of months, and reaches a higher plateau, than the low and medium risk scores.
In the bottom row we see that the presence of high grade AGVHD at 12months had
the smallest risk of relapse followed by low grade AGVHD. Presence of AGVHD is
an indication, albeit unpleasant and potentially dangerous, that the graft is immunolo-
gically active (graft versus leukaemia effect) and it therefore reduces the risk of relapse,
on the other hand it is also related to an increased risk of NRM. In general, it is useful
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Figure 2.8: Estimated baseline α(s, t) (first column) and effects of the risk score,
γrisk score medium(s) (second column) and γrisk score high(s) + ηrisk score high(t) (third column),
for relapse at s = 0 and 12 months. The circle and error bars represent the estimates
and 95% confidence intervals from Model 1 and the lines represent Model 2.
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to know how a covariate affects all the competing events and not only the event of in-
terest. To this end, it is recommended to fit direct binomial regression models for all
the competing events, as opposed to only fitting a model for the event of interest.

The samedatawere also analysedusing cause-specific hazards65 anddynamic pseudo-
observations66, where the focuswas ondynamic prediction of the cumulative incidence
function at 5 years p(s+5|s,X(s)) for s between zero and one year. We have taken it
a step further by also allowing t to vary. In Figure 2.9 we can see that at s+ 5 the CIFs
have mostly reached a plateau. Hence, the previous analyses of the data only provide
information about the plateaus. With this model we can not only see the differences
in the plateaus among the patient groups, but also that some groups experience relapse
faster than others. Although themethods andmodels are different we can still compare
the predictions, and we found that all three approaches gave similar predictions and
confidence intervals.

2.5 Discussion

Wehave shown how direct binomial regression (DBR) can be extended with landmark-
ing to obtain estimates of the dynamic cumulative incidence function (CIF) in compet-
ing risks. DBRallows for very flexiblemodelling of the dynamicCIF, since it can handle
both time-varying covariates and time-varying effects. The estimated covariate effects
furthermore have a direct relation to the event of interest. The simulations showed that
the method performed well in terms of bias, coverage rate and RMSE in the different
scenarios.

This is a continuationof theworkbyNicolaie et al. 65,66 , where the cause-specific and
pseudo-observation approach was combined with landmarking. The three approaches
differ in a number of ways. First of all is the question of how to interpret the covariate
effects. Although both DBR and the pseudo-observations estimate the direct effect of
the covariates on the event of interest, the interpretation depends on the link function
and not all link functions result in a probabilistic interpretation 33. The estimated ef-
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Figure 2.9: The dynamic cumulative incidence of relapse at s = 0 (first row) and
s = 12 months (second row) for different covariate values. Year of transplant is fixed
at 2003, but risk score (columns) and presences of AGVHD (colours) is varied. The
circle and error bars represent the estimates and 95% confidence intervals from Model
1 and the lines represent Model 2.

69



fects in the cause-specific approach always have a probabilistic interpretation, but they
do not directly translate into an effect on the event of interest. Secondly, the pseudo-
observation approach assumes that the censoring time and the event time are independ-
ent, whereas the cause-specific approach and DBR allow them to be independent con-
ditional on the covariates. However, the pseudo-observation approach can bemodified
to relax this assumption 14. Thirdly, the cause-specific approach requires, not only the
event of interest, but also the other competing events to bemodelled in order to obtain
the CIF. On the other hand, DBR and the pseudo-observation approach require the
estimation of either the censoring distribution or a nonparametric estimator of the re-
sponse. The models proposed in this paper can in principle be fitted using both DBR
and pseudo-observations. However, due to the great flexibility of the nonparametric
models, they do not in general enforce CIF’s to be increasing over time t. This is also an
issue without the landmark extension, but it can be remedied by assuming more struc-
ture in the models. Despite the differences between the methods, we found that the
three approaches gave very similar predictions when applied to the EBMT data. The
simulation study furthermore showed that DBR and pseudo-observations performed
similarly when the censoring did not depend on covariates. In conclusion, we would
recommend using DBR, when the main objective is to predict the CIF and the censor-
ing is believed to depend on covariates. However, more research is needed to be able to
give general recommendations.

There are a number of things to consider when using DBR, such as the choice of
link function, whichmodel to use for the censoring distribution andwhich time grid to
select. In the simulations and the applicationwe used a logit link function. The advant-
ages of the logit link function is that it restricts the CIF between 0 and 1, and terms con-
veniently cancel out in theGEE.However, caution in the interpretation of the resulting
odds ratio is needed 33. Using a log link function instead would give a more appropriate
interpretation, but it does not restrict the CIF within its natural boundaries. The log
link function can therefore be unpractical in situations where the objective is to use the
model for prediction. DBR requires the censoring survival distribution to be estimated
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by for example using a Kaplan-Meier or Cox model. One option is to refit the censor-
ing distribution for every landmark, as we did in this paper. Another option would be
to fit just one model for the censoring distribution and then calculate the probability
of censoring conditional on the landmark G(t|s,X) = G(t|X)/G(s|X). When
Kaplan-Meier is used there is no difference, but when covariates are included differ-
ences may occur. We also did not correct the standard errors for the fact that we were
estimating the censoring distribution as it was previously found that corrected standard
errors were very similar to the uncorrected ones42. Care should be taken when select-
ing the time grid in order to avoid overparametrisation, however for semi-parametric
models this is less of a problem. Furthermore, for larger data sets with many events it is
useful to select a time grid that is a subset of the event times. A nonparametric model
with a logit link function can give rise to separation issues at early time points. Separ-
ation occurs when a linear combination of the covariates is able to fully separate cases
from non-cases. This will for example be the case if there is one group that has events
much later than the other groups. Heinze & Schemper 46 showed that Firth correction
can be used to overcome separation in ordinary logistic regression by removing bias in
the coefficients, but it introduces bias in the predicted probabilities. Recently, Puhr
et al. 71 introduced two ways of obtaining accurate estimates of both the coefficients
and predicted probabilities using Firth correction. These approaches could potentially
be incorporated into our setting, but a straightforward alternative would be to simply
not use combinations of time points in the fitting procedure for which separation will
occur, which is generally when t is close to s.
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