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1
Dynamic prediction of
survival probabilities

Predictivemodels are an integral part of current clinical practice and help determ-
ine optimal treatment strategies for individual patients. A drawback is that covariates
are assumed to have constant effects on overall survival (OS), when in fact, these effects
may change during follow-up (FU). Furthermore, breast cancer (BC) patients may ex-
perience events that alter their prognosis from that time onwards. We investigated the
’dynamic’ effects of different covariates on OS and developed a nomogram to calculate
5-year dynamic OS (DOS) probability at different prediction time points (tp) during
FU.
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1.1 Introduction

Breast cancer (BC) comprises a heterogeneous disease with diverse features that can
interact with outcomes, making it difficult to obtain estimations of individual pro-
gnoses. The overwhelming popularity of tools such as Adjuvant! or the Nottingham
Prognostic Index (NPI) illustrates the importance of prediction models for physicians
and patients, providing guidance for adjuvant treatment decisions 2,74. Most prediction
models, however,cannot be used for cancer patients at specific time points during the
follow-up (FU) period, as these models have been designed for use immediately after
diagnosis. Apart from the caveats associated with available ’static’ prediction models,
there are some important reasons why these models may give misleading results when
usedduringFU. First, the fact that patients have already survived anumber of years after
diagnosis may change a patient’s prognosis. For instance, BC recurrence rates peak at
12 years after diagnosis anddecline thereafter, resulting in an improvedprognosis77,81,103.
Second, in the time between diagnosis and themoment of prediction, important events
mayhave takenplace, such as locoregional recurrence (LRR) and/or distant recurrences
(DR) or premature discontinuation of treatment, whichmay alter a patient’s prognosis.
Third, some variables included in current models may exhibit time-varying effects on
outcome, resulting in a change in mortality risk as time progresses. Consequently, too
much emphasis may be placed on variables with a strong impact on outcome early in
the FU period, whereas this effect might bemuch smaller later on. Available static mod-
els are based on probabilities of survival at the time of diagnosis andmay not accurately
portray a patient’s survival probability later on in the FUperiod. The concept of updat-
ing survival probabilities by both incorporating time-varying covariates and allowing
for time-varying effects is called dynamic prediction. By design, these variables are not
included in the static risk prediction models, and these considerations illustrate a need
for better prediction models for cancer patients. To investigate the clinical applicabil-
ity of dynamic prediction, we utilized a dataset from a large randomized clinical trial
of postmenopausal hormone receptor-positive (HR+) early BC patients treated with
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endocrine treatment (ET) in the Netherlands and Belgium. The aim of the current
analysis was to develop a clinically applicable nomogram to facilitate the prediction of
an individual patient’s probability of surviving an additional 5 years at any prediction
timepoint (tp) up to 3 years after starting adjuvant ET. This concept of continually
updating 5-year overall survival (OS) from a certain tp is referred to as 5-year dynamic
overall survival (DOS). We designed a dynamic predictive model, taking into account
various patient- and tumor-specific covariates with time-varying and time-constant ef-
fects during FU.

1.2 Method

The Tamoxifen Exemestane Adjuvant Multinational (TEAM) trial is a randomized,
phase III, multinational, open-label study conducted in postmenopausal women with
HR+ BC, who were eligible for adjuvant ET and randomized to either 5 years of ex-
emestane (25mg) or 2.53 years of tamoxifen (20mg) followed by exemestane (25mg)
for 2.52 years90. The TEAM trial protocol was approved by regulatory and ethics
authorities of all participating centers in all participating countries. The trial was re-
gistered in theNetherlands and Belgiumwith theNetherlands Trial register, NTR 267.
All patients providedwritten informed consent. Details of the study anddata collection
have been published previously90. In the Netherlands and Belgium, 3168 postmeno-
pausal, early BC patients were enrolled in the TEAM trial. Patients who did not start
randomized treatment (n = 19) or hadmissing end point data (n = 4), metastatic dis-
ease before the start of ET (n = 7), and patients withmissing data regarding covariates
used in themodel (n = 528)were excluded (Figure 1.1). Patientswith estrogen receptor
(ER) and progesterone receptor (PR)-negative disease (n = 8) were excluded. Due to
the unavailability of regular FU data by countries other than the Netherlands and Bel-
gium beyond the initially planned 5 years of FU, the dynamic prediction model does
not include data from all participating TEAM trial countries (Table 1.1). The primary
outcome of the present investigation was OS, which was the time from randomization
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3168 patients included
in the study

Distant recurrence at the start
of treatment (n = 7)

Missing primary endpoint data (n = 4)

ER- and PR-negative status (n = 8)

Never started treatment (n = 19)

At least one missing covariate (n = 528)

2602 patients included
in the analyses

Figure 1.1: CONSORT diagram of patients included in the analyses.

to the date of death or last recorded FU. LRR was defined as any BC recurrence in the
ipsilateral breast and/or lymph nodes as well as in supraclavicular lymph nodes. LRR
did not include ductal carcinoma in situ relapses. DR comprised all other accounts of
BC recurrence.

1.2.1 Statistical analysis

Statistical analyses were carried out using the programs SPSS (version 20) and R (ver-
sion 2.15.1). We used the proportional baselines landmark super model92,95 to obtain
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Table 1.1: Comparison of the patients in the Dynamic Prediction study population
with all other TEAM trial patients. BR, Bloom and Richardson.

Non-study population Study population
(n = 7165) (n = 2602)

Characteristics n (%) n (%) p-value
Age at diagnosis (years) (mean, SD) 64.2 (8.9) 64.8 (9.19)
Tumor stage < 0.01
T1 (< 2cm) 4556 (64) 1135 (44)
T2 (2− < 5cm) 2316 (32) 1276 (49)
T3 / T4 (5cm) 266 (4) 191 (7)
Unknown 27 (0) 0 (0)
Nodal stage < 0.01
N0 4290 (60) 821 (32)
N1 2514 (35) 1344 (52)
N2/N3 295 (4) 437 (17)
Unknown 66 (1) 0 (0)
Histological grade (BR) < 0.01
BR I 1295 (18) 382 (15)
BR II 3596 (50) 1202 (46)
BR III 1420 (20) 1018 (39)
Unknown 854 (12) 0 (0)
Estrogen receptor status 0.09
Negative 119 (2) 57 (2)
Positive 7042 (98) 2545 (98)
Unknown 4 (0) 0 (0)
Progesterone receptor status < 0.01
Negative 1146 (16) 579 (22)
Positive 5278 (74) 2023 (78)
Unknown 741 (10) 0 (0)
HER2 status < 0.01
Negative 3169 (44) 1898 (73)
Positive 826 (12) 257 (10)
Unknown 3170 (44) 447 (17)
Most extensive surgery < 0.01
Mastectomy 2911 (41) 1422 (55)
Breast conserving surgery 4244 (59) 1180 (45)
Unknown 10 (0) 0 (0)
Radiotherapy < 0.01
Yes 4981 (70) 1718 (66)
No 2091 (29) 884 (34)
Unknown 93 (1) 0 (0)
Chemotherapy < 0.01
Yes 2679 (37) 843 (32)
No 4481 (63) 1759 (68)
Unknown 5 (0) 0 (0)
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dynamic predictions of the 5-year DOS probability. The model requires a number of
landmark time points (tLM ); in the current model tLM was established at every third
monthbetween0 and3 years after the start of ET.Apredictionmodel for5-yearDOSat
a specific tLM is constructed by selecting the individuals at risk at that tLM and incorpor-
ating the values of any time-dependent covariates at that respective tLM in aCox propor-
tional hazards model 11. The landmark predictionmodels at different tLMs may be com-
bined into a single supermodel (Appendix 1.5). Using this analysis in the clinical setting,
we can obtainDOSpredictions at any prediction time point, tLM between 0 and 3 years
after starting adjuvant ET. For this specific model, the prediction window was set to 5
years after the established tLM. Baseline patient- and tumor-specific factors included in
themodel comprised age at diagnosis (continuous, linear, and quadratic terms), Bloom
& Richardson (BR) histological grade (I, II, III), tumor stage (1, 2, 3/4), nodal stage
(N0, N1, N2/N3), ER and PR status (positive, negative), HER2 status (positive, neg-
ative, missing), most extensive surgery (mastectomy, breast-conserving surgery), and
radiotherapy (yes, no), chemotherapy (yes, no). ER and PR status were considered pos-
itive if at least 10% of tumor cells stained positively following immunohistochemical
staining, as defined by the Dutch BC treatment guidelines63. The model also included
three dynamic variables whose values may change during ET, namely current ET status
(on versus off ET), LRR (yes,no), and DR (yes, no). To assess whether a patient had
stopped treatment, weused the last treatment date, as reported on the case-report forms.
If no last treatment date was available, the patient was assumed to be on-treatment.
According to the TEAM trial protocol, patients with LRR or DR discontinued or
switched ET. In order to test for time-varying covariate effects, interactions between co-
variates and tLM (both linear and quadratic) were included in the model. A backward
selection procedure was then carried out in two steps. In the first step, all quadratic
tLM interactions with the covariates were tested. Nonsignificant quadratic interactions
were removed, and those covariates which did not have significant interactions in the
first step were then tested in the second step for linear tLM interactions. Again, only sig-
nificant interactions were retained. Wald tests, based on robust standard errors, were

26



used and a p-value of 0.05was considered statistically significant (Appendix 1.5). Main
effects of the covariates and of tLM and t2LM were included, irrespective of statistical
significance. The model was then validated by internal calibration using the heuristic
shrinkage factor by vanHouwelingen et al.93. Themodel’s ability to correctly discrimin-
ate betweenpatientswas evaluatedusing the dynamic cross-validated c-index. A c-index
of 1 resembles a model that can perfectly discriminate between patients, while with a
c-index of 0.5, the prediction is as good as chance95.

1.2.2 Nomogram

The nomogram is a user-friendly tool for calculating survival probabilities based on a
prediction model, and graphically computes 5-year DOS based on an individual pa-
tient’s unique characteristics. For each prognostic factor, a number of risk points are
assigned to each corresponding covariate, which can be read off the nomogram. The
sum of the risk points represents a total risk point score, from which the correspond-
ing 5-year DOS probability can be assessed at any tLM (between 0 and 3 years) after the
start of ET. A web-based dynamic prediction tool based on the nomogram has been
created to facilitate the calculation of 5-year dynamic overall survival rates and aid in
the decision-making process in clinical practice.

1.3 Results

In total, 2602TEAMtrial patientswith amedian age of64.8 years (range38−92 years),
were included in the analyses (Figure 1.1). Baseline characteristics of included patients
are depicted in the second column in Table 1.1. The majority of patients included in
this trial had adjuvant radiotherapy (66%) and did not receive adjuvant chemotherapy
(68%). Figure 1.2 provides an overview of the total number of patients in the landmark
datasets at successive tLMs in relation to treatment compliance and disease recurrence
status. Table 1.2 depicts the regression coefficients and hazard ratios (HR) with 95%

confidence intervals (95%CI) of the covariates included in the model. Covariates with
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Table 1.2: The dynamic prediction model with time-constant and time-varying cov-
ariates. CI, confidence interval; tp , prediction time point, time elapsed (years) since
the start of treatment.

Covariates with time-constant effects Coefficient Hazard ratio (95% CI) p-value
Age at diagnosis (ref: 65 years, per 10 years) < 0.001
Age 0.365 1.440 (1.254− 1.653)
Age2 0.154 1.166 (1.067− 1.275)

Tumor size [ref: T1 (< 2 cm)] < 0.001
T2 (25 cm) 0.256 1.291 (1.052− 1.5850)
T3/T4 (5 cm) 0.306 1.357 (0.956− 1.928)

Histological grade (BR) (ref: BR I) 0.001
BR II −0.018 0.982 (0.729− 1.3230)
BR III 0.346 1.413 (1.038− 1.923)

Estrogen receptor status (ref: positive) 0.073
Negative 0.566 1.761 (0.948− 3.271)

Progesterone receptor status (ref: positive) < 0.001
Negative 0.456 1.577 (1.301− 1.913)

Most extensive surgery (ref: mastectomy) 0.683
Breast-conserving surgery 0.055 1.057 (0.811− 1.377)

Radiotherapy (ref: yes) 0.157
No 0.195 1.216 (0.928− 1.592)

Chemotherapy (ref: yes) 0.384
No 0.127 1.136 (0.853− 1.512)

Treatment status (ref: on-treatment) 0.224
Off-treatment 0.234 1.263 (0.867− 1.841)

Distant recurrence (ref: no) < 0.001
Yes 2.709 15.018 (9.934− 22.705)

Covariates with time-varying effects
Prediction time (ref: start of treatment ) 0.057
tp 0.017 1.017 (0.920− 1.125)
t2p −0.034 0.967 (0.945− 0.989)

Nodal stage (ref: N0)
Constant < 0.001
N1 0.303 1.354 (1.021− 1.795)
N2/N3 1.287 3.621 (2.596− 5.052)
Time-varying effect 0.026
N1 (tp) −0.047 0.954 (0.869− 1.048)
N2/N3 (tp) −0.204 0.816 (0.722− 0.922)

HER2 status (ref: HER2 negative)
Constant 0.214
Positive 0.211 1.235 (0.885− 1.724)
Time-varying effect 0.015
Positive (tp) −0.162 0.851 (0.747− 0.969)

Locoregional recurrence (ref: no LRR)
Constant < 0.001
LRR 2.131 8.427 (2.885− 24.617)
Time-varying effect 0.013
LRR (tp) −0.540 0.583 (0.380− 0.893)
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A. Treatment compliance B. Distant recurrence C. Locoregional recurrence
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Figure 1.2: Number of patients at risk in relation to follow-up time since the start of
endocrine treatment. Number of patients in the landmark datasets (i.e. at risk) over
time (tLM) since the start of adjuvant endocrine treatment in relation to (A) treatment
compliance status (on-treatment/off-treatment)(B) distant recurrence status (yes, no)
and (C) locoregional recurrence status (yes, no).

time-constant effects and covariates with time-varying effects on 5-yearDOS are shown.
Age at diagnosis demonstrated a time-constant effect, with 5-year DOS being a quad-
ratic function of age (Figure 1.3).

Interestingly, high-risk nodal stage (N2/N3), compared with N0, demonstrated a
significant time-varying effect on 5-year DOS with each successive tLM, while nodal
stage N1 did not (Figure 1.4.B). To illustrate, the HR of a patient with nodal stage
N2/N3 immediately after primary treatment compared with a patient with nodal stage
N0 (reference) is 3.621, calculated by the following formula (Table 1.2):

HR = (constant · time-varying effect)tp = 3.621 · 0.8160 ,
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Figure 1.3: Hazard ratio for age at diagnosis depicted with a 95% confidence interval.
The hazard ratio increases with increasing age.
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but decreases to 2.401 (HR = 3.621 · 0.8162) at 2 years after the start of ET. HER2-
positive status also demonstrated a significant time-varying effect on 5-yearDOS (Table
1.2, Figure 1.4.A). Next, covariates whose status have the potential to change over time
(i.e. treatment compliance status and disease recurrence) were investigated for their
influence on 5-year mortality risk. Patients who went off-treatment during the FU
period had a higher residual mortality risk compared with patients who remained com-
pliant, although this was not statistically significant. The effect of treatment discon-
tinuation was constant over time (Table 1.2). Simultaneously, LRR had a time-varying
influence on 5-year DOS, revealing a subsiding mortality risk with each successive tLM
(Figure 1.4.C). Compared with no LRR, having a LRR at 1, 2, and 3 years after the
start of ET increased 5-year mortality risk with HR = 4.913(2.444 − 9.877), HR
= 2.864(1.851 − 4.431), and HR = 1.670(1.005 − 2.773), respectively (Table
1.2). In contrast, developing distant metastases (versus no distant metastases) was as-
sociated with an increased 5-year mortality risk, with a constant effect over time [HR
= 15.018(9.934− 22.705)].

Figure 1.5 illustrates differences in the 5-year DOS in the event of a LRR in a patient
who presents with the most commonly occurring baseline characteristics (average pa-
tient) found in this cohort, as well as in a high-risk patient. In the absence of a LRR,
5-year mortality probabilities are 3% and 10%, respectively, at all tps. However, in case
of a LRR, 5-year mortality probabilities in both the average patient and the high-risk
patient are initially high, and decrease with time.

1.3.1 Internal model validation

The heuristic shrinkage factorwas 0.995, indicating good calibration of themodel. Fur-
thermore, themodel’s discriminatory accuracy had a dynamic cross-validated c-index of
0.70, 0.72, 0.76, and 0.79 at 0, 1, 2, and 3 years respectively.
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C. Locoregional Recurrence
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Figure 1.4: Time-varying hazard ratios for nodal stage, HER2 status, and locoregional
recurrence status. tp , prediction timepoint; LRR, locoregional recurrence. Hazard
ratios for nodal stage, HER2 status, and locoregional recurrence status as time since
the start of endocrine treatment (tp) increases (depicted as a hazard ratio with 95%
confidence interval).
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A. Average patient B. High risk patient
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Figure 1.5: Change in 5-year dynamic probabilities of death based on the occurrence
of a locoregional recurrence in two example patients. tp , prediction time point; LRR,
locoregional recurrence; ER, estrogen receptor; PR, progesterone receptor. This fig-
ure illustrates how 5-year dynamic probabilities of death changes if a patient who is
on-treatment throughout the entire follow-up period develops a LRR during follow-
up. Two example patients are depicted in (A) and (B). (A) Average patient with
the following characteristics: age at diagnosis = 65 years, tumor stage T2, nodal
stage N1, histological grade II (Bloom and Richardson), HER2 negative, ER and PR
positive, treated with breast-conserving surgery, adjuvant radiotherapy and adjuvant
chemotherapy. (B) High-risk patient with the following characteristics: age at dia-
gnosis = 65 years, tumor stage T3, nodal stage N2, histological grade III (Bloom and
Richardson), HER2 negative, ER and PR positive, treated with mastectomy, adjuvant
radiotherapy and adjuvant chemotherapy.
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1.3.2 Using the nomogram

The nomogram (Figure 1.6) provides estimates for 5-yearDOSprobabilities at different
tps from the start of ET and onwards, provided that adequate surgery has been carried
out. The probabilities can be calculated by adding the risk points for each covariate cor-
responding to the patient’s individual characteristics. For each characteristic, the num-
ber of associated risk points can be determined by drawing a vertical line straight up
from the covariate’s corresponding value to the axis with risk points (0 − 80). While
the majority of covariates are considered ‘static’ and defined at the start of ET, some co-
variates are ‘dynamic’, and can alter during the course of FU, such as treatment compli-
ance status and the occurrence of LRR or distant metastases during FU. The covariates
marked with ‘(tp)’ (prediction time point) include nodal stage (N2/3), HER2 status
(positive), and LRR (yes), and have time-varying effects on 5-year DOS. This means
that the effect of having characteristics that pertain to one these specific covariates var-
ies as the time since starting treatment progresses and that the time since the start of
ET needs to be taken into account whenmaking a 5-year DOS prediction. The sum of
the risk points is equal to the total risk point score, which is depicted on the axis of the
nomogram entitled ‘Total Points’. From here, a vertical line can be drawn toward the
axis labeled ‘5-year survival probability’, which is the corresponding 5-yearDOS at that
specific tp. To illustrate, we consider a 69-year-old postmenopausal woman (14 points)
who has been using ET for two years (tp = 2; 191 points). She had a grade III tumor
(13 points) with a diameter of 1.5 cm (0 points), ER-positive (0 points), PR-positive (0
points) andHER2-negative (10 points), and 5 tumor-positive lymph nodes(at tp = 2;
32 points). The patient has undergone breast-conserving surgery (2 points) with ad-
juvant radiotherapy (0 points) and adjuvant chemotherapy (0 points). She is still on-
treatment (0 points) and disease-free (0 points) (no locoregional or DR). To calculate
her 5-year DOS probability, we take her total risk point score (90 points) and draw a
vertical line down to the ‘5-year survival probability’ axis. For this patient, the 5-year
DOS is 75%. If our patient had developed a LRR in the 2-year period since ET, one
must add an additional 38 points (total= 128 points) to her total risk prediction score,
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resulting in a 5-year DOS of 42%.

1.4 Discussion

To our knowledge, this is the first dynamic prediction model in clinical oncology, de-
signed to optimize the prediction of the5-yearDOS at specific timepoints after the start
of adjuvant ET in postmenopausal, endocrine-sensitive early BC patients. The key ad-
vantage of this model is that it takes into account dynamic factors that can influence
a patient’s prognosis after some time has passed since starting ET, including treatment
compliance and the occurrence of LRR or distant metastases. Moreover, covariates
with time-varying effects are also accounted for in the model, including high-risk nodal
stage (N2/3) and HER2-positive status.

Currentnomograms are suboptimal for cancer patients, because their referencepoint
is commonly the time of diagnosis or the start of adjuvant ET. Aiming at further per-
sonalized BC treatment, continuous re-evaluation of the residual risk of BC recurrence
and mortality during FU is crucial. Patients may develop disease recurrences or dis-
continue ET before the predesignated end-date, which may alter a patient’s prognosis
from that time point onward. Additionally, the effect of a covariate on 5-year survival
probabilities may not be constant over time. These changes are more prominent than
current statistical models account for, which could lead to the risk of developing less
effective treatment guidelines. Therefore, survival prediction models need to be adap-
ted for long-term outcome prediction in individual patients. Specifically, dynamic pre-
diction models can be used to determine whether a patient will benefit from further
adjuvant systemic therapy or, conversely, whether ET can be discontinued at a certain
time point during FU.

The current nomogram can be applied to postmenopausal, HR+ BC patients un-
dergoing adjuvant ET and have had an axillary lymph node dissection in case of mac-
rometastases. For patients who have had breast-conserving surgery, the model assumes
that the breast was irradiated. The current nomogram also assumes that disease relapse
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Figure 1.6: Nomogram for dynamic prediction of the 5-year survival probability. BR,
Bloom and Richardson; BCS, breast-conserving surgery; tp , prediction time point.
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implies discontinuation of ET from thatmoment onward. In case of disease recurrence,
data on subsequent treatment were not available for all patients; hence, our ability to
draw conclusions for this subgroup is limited. LRR is considered a ‘dynamic’ covariate,
as patients can develop a LRR at any moment during FU. LRR also had ‘time-varying’
properties, as the event of a LRR revealed a changing impact on 5-year DOS at dif-
ferent time points after starting ET. Our findings parallel those of several other stud-
ies, which have shown that early LRRs are predictive of a worse prognosis than late
LRRs 21,32,97,64,91. It can therefore be of major clinical importance to include this factor
in dynamic survival prediction. Moreover, this model could potentially help evaluate
the need for additional adjuvant chemotherapy in case of LRR. Data on the benefit
of additional chemotherapy are still relatively lacking, although the nomogram could
be useful in this setting. The current model also revealed a time-varying relationship
between high nodal stage (N2/3) and 5-year DOS probability. A similar time-varying
effect was shown with regard to 5-year DOS in HER2-positive patients, although no
patients received anti-HER2 treatment. To our knowledge, no prior reports have in-
vestigated the time-varying effects of these two prognostic factors, hence warranting
further investigation. Our dynamic prediction model also accounts for the effect of
early treatment discontinuation for reasons other than BC relapse. Although the effect
of treatment discontinuation did not reach statistical significance, possibly due to the
low number of patients who discontinued treatment within three years (Figure 1.2.A),
we retained this data in our model, as an earlier review revealed the importance of treat-
ment compliance on survival outcomes 1. The number and site(s) of DR are known to
be prognostic for subsequent survival 16,18,85. The dynamic prediction model incorpor-
ates the occurrence of distant metastases, but does not include this in the nomogram
due to insufficient data concerning first site of DR and subsequent treatment. For this
reason, it is not advised to use the dynamic prediction model for patients with distant
metastases as first site of disease recurrence. Internal validation demonstrated that the
model had a good ability to discriminate between patients. To elucidate, internal val-
idation of Adjuvant! showed a c-index of 0.71 for discriminatory accuracy (the ability
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for the model to distinguish patients who will versus those who will not die of BC)
and a predictive accuracy of 0.73 at diagnosis, which is similar to that of our prediction
model61. The predictive accuracy of Adjuvant! ‘after diagnosis’ has not been studied;
in contrast, our dynamic prediction model showed a cross-validated c-index that im-
proved from 0.70 to 0.79 3 years after the start of adjuvant ET. Due to the unavailab-
ility of regular FU data for the entire TEAM trial population, our dynamic prediction
model includes Dutch and Belgian TEAM trial patients only. As shown in Table 1.1,
characteristics of the Dutch trial population differed slightly in comparison to the rest
of the TEAM trial population. These differences depict that patients in current cohort
have a slightly higher disease stage and subsequent variations in treatment. The dy-
namic prediction model is a multivariate model that corrects for each of these variables.
Therefore, inclusion of the entire TEAM trial population in themodel could alter indi-
vidual predictions. Importantly, however, this is not expected to affect the ‘correctness’
of the model, which would only be affected in case of lack of model fit. Of note, one
must also consider that any trial population is not representative of the general BC pop-
ulation as a whole. For this reason, further external validation of the prediction model
is required in greater (non-trial) cohorts to allow for full applicability in the clinical set-
ting. An independent population with adequate FU data for performing an external
validation of the dynamic prediction model was not available at the time of conduct-
ing this study. In summary, the importance of using dynamic prediction models for
clinical guidance, not only at the start of treatment, but also during FU, permits con-
tinuous revision of a patient’s residual mortality risk and can help motivate a patient to
continue treatment, improve compliance, and ultimately improve survival. This proof-
of-principle study demonstrates a novel technique for performing dynamic prediction
of BC survival probabilities over time, enabling amore individualized prediction of the
5-yearDOS in individual patients at various time points during adjuvant ET. Themost
important advantage of thismodel is that it takes into account factors that can influence
an individual patient’s prognosis after some time has passed since starting adjuvant ET.
Notwithstanding the feasibility of our dynamic prediction model, further external val-
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idation with longer FU is necessary to enable implementation in clinical practice.

1.5 Appendix

This appendix provides a more detailed description of the statistical method applied
in this paper. The method builds upon the concept of landmarking, which was intro-
duced by Anderson et al. 11 as a way to deal with time-dependent covariates in survival
analysis in order to avoid immortal timebias. Later vanHouwelingen 92 , vanHouwelin-
gen & Putter 94,95 proposed to use landmarking for dynamic prediction of the survival
probability with time-dependent covariates.

1.5.1 Dynamic prediction using landmarking

The idea behind landmarking is to select a point in time s known as a landmark. By
only selecting subjects at risk at s a landmark data set is constructed, which can be seen
as imposing artificial left-truncation at time s. In addition, we can also select a predic-
tion window ω and impose artificial right-censoring at time s + ω (Figure 1.7). For a
time-dependent covariate Z(t), such as distant recurrence, the current value Z(s) at
s is used. Here distant recurrence was included as a indicator function for whether or
not distant metastases had been detected. The resulting landmark data can be analysed
using standard methods such as Kaplan-Meier or Cox regression using Z(s) as a time-
constant covariate.

Start Landmark

︸ ︷︷ ︸
Prediction window

-
0 s s+ ω Time

Figure 1.7: Time line illustrating the idea behind dynamic prediction using landmark-
ing.
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Using a Cox proportional hazards model implies that the hazard, i.e. the instantan-
eous risk of dying, is given by

λ(t|Z(s), s) = λ0(t|s) exp
(
β(s)⊤Z(s)

)
,

whereλ0(t|s) is the baseline hazard given survival up until time s. The proportionality
factor

exp
(
β(s)⊤Z(s)

)
depends on the covariates fixed at their current value at the landmark time Z(s) and
their effect β(s). Themodel can be fitted with standard software to obtain estimates of
λ0(t|s) and β(s). We can then use the estimates to predict the conditional probability
of surviving ω more years after time s, for a new subject with covariate values Z∗(s).
To this end, we can use the relation between the survival- and hazard function

S(t|Z∗(s), s) = exp
(
−
∫ s+ω

s
λ(u|Z∗(s), s)du

)
. (1.1)

The prediction are obtained by plugging in the estimated hazard function

λ̂(t|Z∗(s), s) = λ̂0(t|s) exp
(
β̂(s)⊤Z∗(s)

)
.

Thismethod can be applied for one or for several landmark times. However, in order to
be able to predict survival for any time between start and up to some natural limit (we
cannot predict beyond end of follow-up), we can use a landmark super model instead.

1.5.2 Landmark super models

The general idea of the landmark super model is to select not just one, but several land-
mark time points {s1, . . . , sK}. For each of these landmark times a landmark data set
is created, as described above, by imposing left-truncation and right-censoring. TheK
data sets are then stacked into a super landmark data set. This is similar to longitudinal
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survival data, where a subject can contribute with several observations.

For the landmark super model for the TEAM data we used a Cox proportional haz-
ards model

λ(t|Z(s), s) = λ0(t) exp
(
θ(s)β(s)⊤Z(s)

)
,

where θ(s) is a function of s, which describes how the baseline changes over the land-
mark time. Similarly, β(s) is a vector of functions that describes changes in the covari-
ates’ effect. We chose to use smooth parametric functions such as

θ(s) = θ0s+ θ1s
2 ,

whereθ0 andθ1 areparameters tobe estimated. With this choice of function thebaseline
hazard is allowed to vary non-linearly across landmark time. The interpretation of the
parameter functions β(s) in the supermodel is comparable to the interpretation in the
traditional Coxmodel; the effect of the covariatesworksmultiplicatively on the baseline
hazard.

In order to find a suitablemodel for theTEAMdatawewent through amodel build-
ing process. The first step of the process was to select covariates that were known to be
predictors of overall survival. In the second step we investigated whether any of these
covariates had ( landmark ) time-varying effects by allowing them to be non-linear. A
model including all covariates was therefore fitted, where all covariate effects were of
the form

β(s) = β0 + β1s+ β2s
2 ,

where β0, β1 and β2 are parameters. Amodel selection procedure was then carried out
in two steps: In each one a backward selection was used to decide in which order to
remove terms. In the first step the quadratic time interactions were tested, i.e. for each
covariate the hypothesis β2 = 0 was tested. Nonsignificant quadratic interactions, at
the 5% level, were removed. In the second step all linear interactions, β1 = 0, were
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tested, but only if the quadratic time interaction was removed in the first step. The
resulting model is then what is presented in the paper. It was decided to also retain cov-
ariates for which the effect was not significant, because they are known to be important
predictors.

Once the model had been finalized, we obtained predictions of the survival probab-
ility for any time s, between s1 and sK , using the same formula as before (1.1). The
stacked landmark data set contain repeated observations on the same subjects and to ac-
count for this one can use the robust sandwich estimator 59 to estimate the variance. In
summary, the difference between the landmark super model and having separate mod-
els for each selected landmark is that we can predict at any time between s1 and sK ,
and not just at those exact times. This is due to the fact that the super model assumes a
structure for how the hazard and the covariate effects change with s.
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