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0
Introduction

In medical research and many other fields it is often of interest to study the time
until an event occurs and to identify which factors are associated with the risk of ex-
periencing the event. In cancer research it is of great interest to be able to assess the life
expectancy of the cancer patients. In this example, we are interested in the time to death
and the potential risk factors, or covariates, include the patients’ age, gender, tumour
type etc. Another example comes from research on stem cell transplantations. Stem cell
transplantations are often used to treat patientswith leukaemia, but a transplantation is
considered to have failed if the patient relapses or die before relapsing. In this example,
we are interested in the time from transplantation until treatment failure. However, it
is useful to consider relapse and death before relapse as separate events, as the factors
may have a different influence on the time to relapse than on the time to death without
relapse. A third example comes from demography, which is the study of human popu-
lations. Some have suggested that the life expectancy will continue to increase, and for
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this reason demographers are interested in assessing whether the future generations of
elderly will spend the remaining part of their life in good health or as disabled. In this
example, we are interested in the time spent as either healthy or disabled. Factors such
as socio-economic status and education are likely to have an effect on the time a person
will spend in either state.

All three examples can be addressed by employing methods known under the um-
brella term survival analysis, or the more modern term event history analysis. As the
name suggests, the outcome is predominantly the time to an event and usually the time
is incompletely observed due to right-censoring. In the breast cancer example, right-
censoring may occur when subjects are lost to follow-up or because the data collection
ended before all subjects had died. The subjects that did not die by the time that the
data collection ended are considered to be right-censored, because we only know that
they were still alive up until the end of follow-up, but we do not known when they
died afterwards. There are other ways in which the event history data can be incom-
pletely observed, such as left-truncation or interval-censoring, however right-censoring
is themost common type of incompleteness. If the time to deathwas observed for every
subject, ordinary methods, such as generalised linear regression models, could be used
to model the survival probability or even the mean survival time. However, due to the
incompleteness alternative regression methods have to be employed. The classical ap-
proach has been to model the hazard, which can be thought of as the instantaneous
risk of dying, as it is observable from the data. Other more recent approaches attempt
to first recover the incompletely observed event times and then use standard regression
methods using the recovered outcome. One such method known as inverse probab-
ility of censoring weights accomplishes this by giving more weight to subjects with an
observed event. Another method known as pseudo-observations does it by calculating
the contribution of each subject to the nonparametric estimator of the parameter of
interest.
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There are many different uses for event history analyses, however one application
for event history models is to use them for prediction. In cancer care, prediction mod-
els are used as a tool to assess the survival probability of the patients. The prediction
models can help guide clinical decision making and inform patients about their pro-
gnosis. Some prediction models are used to help guide what treatments to select for a
given patient and some are used to help motivate patients to change behaviour, such
as smoking less and exercising more. Prediction models can also be used as a tool for
governmental management. For example, in order to allocate the right amount of re-
sources, it is paramount to have a sense of the number of disabled elderly in the future.
In statistical methodology there is a distinction between what is known as population-
averaged and subject-specific predictions. Population-averaged models provide predic-
tions for subpopulations, where the subpopulations are determined by the factors in
the model. In addition, to adjusting for risk factors the subject-specific predictions also
consists of an individual component. The individual component is sometimes based
on the experience from other subjects and sometimes also on the subject’s own history.
Ordinary prediction models make predictions from a fixed point in time, e.g. time of
diagnosis or time of treatment start, and into the future. Dynamic prediction models
on the other hand allow predictions to be updated over the course of time. It is for
example natural to assume that the survival probability will change during the course
of a cancer patient’s follow-up. The probability of surviving may be high right after
being diagnosed with breast cancer, however if the cancer reoccurs it will lower the sur-
vival probability from that point on. It may also be that the patient received treatment
during the first three years after diagnosis, which improved the survival predictions. Dy-
namic models allow predictions to be updated as more information becomes available
during the course of time, which is known as dynamic prediction. One way to cre-
ate dynamic prediction models is by landmarking. The idea of landmarking is to cut
the data at a point during follow-up, a so-called landmark. That is, only subjects still
alive at the landmark are then analysed with standard methods to predict survival in
the future given that a subject is still alive at the landmark. Another approach to create
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dynamic prediction models is by employing joint models. These are usually employed
if a routinely measured biomarker, such as blood pressure, is related to survival. As the
name suggests the biomarker and the survival time are modelled jointly, usually with a
submodel for each outcome along with a description of the relation between the two.

The following sections provide a more detailed explanation of event history data
and the models used in the analysis of event history data with a special focus on the
methods considered in this thesis. The last section of this chapter contains an overview
of the papers that comprise this thesis.

0.1 Event history data

Multi-state models are a convenientway of describing event history data. Figure 1 shows
four examples of multi-state models for event history data. The cancer example can be
described by a survivalmulti-statemodel. Subjects enter the first statewhen they are dia-
gnosed and theymove to the second state when they die. The stem cell transplantation
example can be described with a competing risks model, where subjects can experience
one of a number of competing events. The demography example can be described by
a reversible illness-death model, where subjects can move back and forth between two
states or move to an absorbing state, which is typically death. The figure also shows a
fourth example where the event of interest is recurrent. This multi-state model could
be used to describe the recurrence of infections in a group of patients.

In the survival setting the event time is denoted by T , which in the above example
is the time between diagnosis and death. LetC denote the right-censoring time, which
may be caused by the study ended before all subjects had died or other reasons. Let
T̃ = min(T,C) and define the event indicator δ = I(T ≤ C). If δ = 1 then the
time of death is observed and otherwise only the right-censoring time is observed. It is
usual to assume thatT andC are independent, possibly conditional on the covariatesZ .
The independence assumption is untestable, but it implies that knowing the censoring
time does not provide any information about the event time. If we have a sample of
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Figure 1: Four examples of multi-state models.
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Figure 2: The left graph shows the survival data for ten subjects. The right graph
shows the corresponding Kaplan-Meier estimate of the survival probability.

n subjects then we observe (T̃i, δi, Zi) for i = 1, . . . , n. The left graph in Figure 2
shows survival data from ten subjects that were either right-censored or died. In this
example the timescale is disease duration, assuming that the onset of the disease was
the same as the time of diagnosis. There are however more timescale options, such as
the age time scale or the time on study. The choice of timescale depends upon the data
and research question at hand. If the event of interest is death, then the age timescale
will often be an attractive choice because it accounts for age in a natural way. However,
disease duration may offer a more appropriate biological interpretation of the model.
On the other hand, it may be that central covariates are only measured upon entry into
the study, which would make the time on study timescale more reasonable. Besides
right-censoring, another reason why event times are not always observed is due to left-
truncation. Left-truncation means that we only observe individuals for which T̃ > L,
where L is called the left-truncation time. In the breast cancer example left-truncation
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may occur if we only observe cancer patients that were alive at a given calendar date.
If we are interested in the survival from the time of diagnosis, then the data are left-
truncatedbecause thedata didnot include those that diedbefore the calendar datewhen
the data were gathered.

0.2 Parameters and estimation methods

The survival probability S(t) = P (T > t) is the most common parameter of interest
in survival analysis. Due to right-censoring, the survival probability is usuallymodelled
through the hazard function

λ(t) = lim
∆t→0

P (t ≤ T < t+∆t|T ≥ t)

∆t
.

One can think of the hazard as a force that tries to pull the subject from one state to
another, the larger the hazard the stronger the pull. In the survival setting there is a
direct relation between the hazard function and the survival probability given by

S(t) = exp
(
−
∫ t

0
λ(u)du

)
. (1)

Another interesting consequence of right-censoring is that the mean survival time is
usually not an attainable parameter, since too little is known about the right tail of the
distribution. Instead we may consider the restricted mean survival time

E
(
min(T, τ)

)
=

∫ τ

0
S(t)dt ,

where τ > 0 is a fixed point in time. So although the mean survival time has a more
convenient interpretation, the restrictedmean survival time is more convenient in prac-
tice.
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The parameters can be generalised to suit the more complex multi-state models in
Figure 1. In the competing risk setting, a parameter that is of interest for prediction is the
cumulative incidence function, which is the probability of experiencing a specific event
before a certain time point. The cumulative incidences of the competing events can
be modelled through the cause-specific hazards, which can be thought of as the instant-
aneous risk of experiencing the cause or event in question. However, the cumulative
incidence of the event of interest not only depends on that cause-specific hazard, but
also on the cause-specific hazards of the other events. In Figure 1.b this means that the
probability of experiencing relapse not only depends on the pull towards relapse, but
also on the strength of the pull towards death. So unlike the simpler survival setting,
there is no direct relation between how the covariates affect the cause-specific hazard
in question and how they affect the cumulative incidence of interest. For this reason,
other approaches have aimed atmodelling the direct relationbetween the covariates and
the cumulative incidence function of the event of interest. It is worth noting that the
different approaches also lead to different interpretations, some of which are more ap-
propriate than others 8,33. In generalmulti-statemodels a commonparameter of interest
is the transition probability, which is usuallymodelled through the transition intensities.
The transition intensity is a generalisation of the hazard and it is the instantaneous risk
of making a transition from one state to another. Alternatives to the traditional mod-
elling approach through the transition intensities also exist for the general multi-state
models. Just as in the competing risks setting, care should be taken when interpreting
the direct effect of the covariates. However, for prediction purposes the interpretation
of the covariate effects is not an issue. The generalisation of the restrictedmean survival
time is the restricted expected length of stay in a state. In Figure 1.d we could for example
be interested in the expected length of stay in health and disability within the next ten
years’ time for people aged 75.

The choice ofmodel and themethodused to estimate themodel parameters depends
on the objective. The Kaplan-Meier estimator 50 is a nonparametric estimator of the
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survival probability, meaning that it does not specify or assume a particular shape of
the curve. The right graph in Figure 2 shows the Kaplan-Meier estimate of the survival
probability, which is based on the data in the left graph and it jumps at the observed
death times. If we instead want to predict the conditional survival probability S(t|Z)

given a set of covariatesZ , then the Cox proportional hazards model 22

λ(t|Z) = λ0(t) exp(β⊤Z)

is a popular choice. The model assumes that the covariates have a multiplicative ef-
fect, known as the hazard ratio exp(β⊤Z), on the nonparametric baseline hazardλ0(t).
The parameters β are estimated bymaximising a partial likelihood and the baseline haz-
ard is subsequently estimatedby theBreslow estimator 15. Estimates of the survival prob-
ability are then obtained by plugging the estimates into Equation (1). Another option
is to assume that the event time follows a parametric distribution e.g. a Weibull distri-
bution. The question of whether to choose a fully parametric or more nonparametric
model is delicate. A parametric model requires more assumptions about the data. In
return, it offersmore structure and efficiency to the estimates, whereas a nonparametric
model may provide too little.

There are many other ways to model the survival probability. In this thesis two
related approaches are considered, which use either inverse probability of censoring
weights (IPCW)or pseudo-observations (PO).The IPCWapproach has been proposed
for regression analysis of the survival probability 55 and restricted mean survival time 20.
It has furthermore been used in competing risks for regression analysis of the cumulat-
ive incidence functions 83, where the approach was also referred to as direct binomial
regression, and in an illness-death setting for the transition probabilities 12. The PO ap-
proach was proposed for regression analysis of parameters in multi-state models9, such
as the survival at a fixed point in time 54, restricted mean survival time6 and cumulative
incidence functions 53. At first thePOapproachwas only conjectured to have the proper
asymptotic properties and the formal theoretical justification only followed later 39,48,69.
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In the following, the basic idea behind the two approaches are sketched in the survival
setting, although the true benefit of these approaches is more clearly seen in a general
multi-state model, where the direct relation between the hazard and the survival prob-
ability is lost.

Consider a setting with right-censored survival data, where the objective is to predict
the survival probability, or equivalently the probability of death F (t0) = P (T ≤ t0),
at a fixed point in time t0. To this end we setup amarginal model for the probability of
death

F (t0|Zi) = g(β⊤Zi) ,

where g is a known link function and β is a vector of parameters to be estimated. Let

Ni(t) = I(Ti ≤ t),

denote the counting process that jumps from 0 to 1 when subject i dies. If the data
were not subject to right-censoring then we could use Ni(t0) for i = 1, . . . , n to fit
themodel using generalised estimating equations 58 (GEE).However, the counting pro-
cesses are only partially observed for right-censored individuals andNi(t0) is therefore
not observed for subjects that were censored before time t0. Both the IPCW and PO
approach try to find a replacement for the incomplete responses. That is they both cal-
culate artificial responses from the observed data and then use those artificial responses
instead in the estimating equations. With the IPCWapproach the replacement is found
by reweighting subjects with an observed death, such that they also represent those that
were censored before time t0. Let G(t) = P (C > t) denote the probability of re-
maining uncensored at time t and assume that T and C are independent. Define the
reweighted counting process as

N̂ IPCW
i (t) =

Ni(t)δi

Ĝ(Ti−)
.

The reweighted counting process is fully observed for all subjects and it is zero for right-
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censored subjects or subjects that are still at risk at time t. The left panel in Figure 3
shows an example of the reweighted counting process for a right-censored subject and
a subject that died after one year. Once the second subject dies the reweighted process
is larger than one, because the subject also represents those that were right-censored
within the first year. The idea behind the PO approach comes from jackknife theory
and it starts by considering a nonparametric estimator of the parameter of interest. In
this example a nonparametric estimator for F (t) is

F̂ (t) =
1

n

n∑
i=1

Ni(t)δi

Ĝ(Ti−)
= 1− Ŝ(t) . (2)

The estimator can be written in an IPCW form or as one minus the Kaplan-Meier es-
timator 82. The PO for subject i is defined as

N̂PO
i (t) = nF̂ (t)− (n− 1)F̂−i(t) ,

where F̂−i(t) is the nonparametric estimate based on the sample without subject i.
Hence, with the PO approach the replacement for subject i is the subject’s contribu-
tion to the nonparametric estimator. Due to the equivalence in Equation (2) then
N̂PO

i (t) = 1 − (nŜ(t) − (n − 1)Ŝ−i(t)). The right panel in Figure 3 shows the
corresponding POs for the same two subjects from before. To further see the relation
between the two approaches, in this setting, we take a closer look at the PO

N̂PO
i (t) = n

(
1
n

∑n
j=1

Nj(t)δj

Ĝ(Tj−)

)
− (n− 1)

(
1

n−1

∑n
j=1,j ̸=i

Nj(t)δj

Ĝ−i(Tj−)

)
= N̂ IPCW

i (t) +
∑n

j=1,j ̸=iNj(t)δj

(
1

Ĝ(Tj−)
− 1

Ĝ−i(Tj−)

)
.

The difference between the two comes down to a term that depends on the estimates of
the censoring distribution based on the whole sample and the sample without subject i.
The PO approach reevaluates all subjects, whereas the IPCW approach only reweights
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subjects after they have died. If the data were not subject to right-censoring, then it is
straightforward to see that N̂ IPCW

i (t) = N̂PO
i (t) = Ni(t).

Since the PO and IPCW approach both use GEE, they are valid under the missing
completely at random assumption 58. When there are other alternatives available the
PO and IPCW approach are usually not very efficient. Nevertheless, due to their flexib-
ility they can be applied in many settings where there are no alternatives for regression
analyses.

0.3 Dynamic prediction

One usage for event history analyses is to use them for creating prediction models. Pre-
diction models are increasingly being adopted in clinical practise as a tool to predict
patient outcomes, such as the survival of cancer patients. These prediction models are
often only designed to predict from a fixed baseline time point, such as time of dia-
gnosis of cancer. However, when patients come back for follow-up at later time points
these predictions may be obsolete, if they did not account for important changes that
occurred in between diagnosis and the follow-up. Furthermore, it is usually the case
that baseline information lose predictive power during follow-up. Thus, it is valuable
to have prediction models that are able to update predictions and utilize the informa-
tion that becomes available during follow-up. These types of models, where both the
covariates and their effects can be updated during follow-up, are referred to as dynamic
predictionmodels. Multi-state models can be used for dynamic prediction. One way to
do this is by including the occurrence of an important event as a state in the multi-state
model, such as the recurrence of the cancer after the original cancer has been removed.
There are two complementary approaches to multi-state models called landmark mod-
els and joint models.

Landmark models are build upon the concept of landmarking, which was intro-
duced as a way to avoid immortality bias 11. Immortality bias arises when information
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Figure 3: Comparison of how the IPCW and PO approach assign weights to censored
and observed events in a survival setting. IPCW gives a higher weight to subjects that
had an observed death, since they need to also represent those that were censored.
The PO approach reweights both censored and observed events corresponding to their
contribution to the nonparametric estimator of the probability of death.
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from the future erroneously has been used in the model as if it was known at baseline.
Say we were interested in investigating whether people with a certain type of cancer,
that usually appears late in life, dies faster than people without the cancer. If we tried to
assess the longevity of the two groups from time of birth, then cancer status would be
information from the future, since it is not known at time of birth. The cancer patients
are therefore immortal from the time of birth until they received the cancer, because if
they had died before they would not have been in the cancer group. The landmarking
remedy, is to select a more suitable point in time, say the age of 50, and then compare
the future survival of those that had cancer before the age of 50with those that did not.

In general, the fixed point in time s is called a landmark and only subjects that are
still at risk at time s are selected for the analysis. Any time-varying covariatesZ(t), such
as the occurrence of a cancer, are fixed at their value at the landmark time Z(s). The
resulting landmark data set can then be used to create a dynamic prediction model for
the survival probability given survival up until the landmark time P (T > t|T > s).
The concept is illustrated in Figure 4, which builds upon the data from Figure 2. The
left graphs show the landmark data based on two landmarks at time 0.25 and 0.5. The
right graphs show the correspondingKaplan-Meier estimates of the survival probability
basedon the landmarkdata. vanHouwelingen 92 proposed touse theCoxproportional
hazardsmodel for creating dynamic predictionmodels with landmarking, which is also
related to the approach proposed by Zheng&Heagerty 105 . If more than one landmark
is of interest, it is also possibly tomake a super model, instead ofmaking separatemodels
each landmark95. In a super model the relation between the model parameters and
landmark time is usually modelled by smooth functions. Other approaches that have
been combined with landmarking include cause-specific hazards65 and PO approach66

for regression on cumulative incidence functions in competing risks.

It is interesting to consider the relation between the underlying model and the land-
markmodel. Tobetter understand the connection between the two, consider a scenario
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where the underlying model is a Cox proportional hazards model

λ(t|Z(t)) = λ0(t) exp(β⊤(t)Z(t)) , (3)

with time-varying covariates Z(t) and effects β(t). The relation between the hazard
ratios from thismodel compared to those obtained by landmarkmodels were discussed
by Putter & van Houwelingen 73 . Notably, if a Cox proportional hazards model with
time-varying effects were employed for the landmark model, at one fixed landmark s,
the corresponding hazard ratio exp(β(t|s)) for a time-varying covariateZ(s)would be
attenuated compared to exp(β(t)). In addition, if the hazard ratio was constant over
time, β(t) = β, it wouldmost often imply that the landmarkmodel has a time-varying
effect, β(t|s) ̸= β(s).

Ideally the value of all time-varying covariates should be known at the landmark time
s. In practice this is often not the case except for certain types of time-varying covariates.
A time-varying covariate, such as the recurrence of cancer, can conveniently be include
as an indicator function for whether or not the cancer has recurred. On the other hand,
a time-varying biomarker, such as blood pressure, is typically not measured at the same
time points during follow-up for all patients. For this reasonmore care should be taken
when including this type of covariate in a landmark model.

So although landmark models can be criticised for potentially oversimplifying the
true underlying model, they nonetheless provide a convenient framework for creating
dynamic prediction models with a clinical relevant interpretation.

Joint models were introduced as a way to correct for informative dropout in regres-
sion analysis of longitudinal outcomes, typically biomarkers98,43. Subsequently, the
concept of joint models for longitudinal and time to event outcomes has been explored
in many directions including dynamic prediction70,76. A basic joint model consists of
two submodels, which is usually for a biomarker and time of death. The two submod-
els can be connected via shared or correlated random effects. A linear mixed model is
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Figure 4: The left panel shows the survival data for the subjects that are still alive
at the landmark time. The right panel shows the corresponding Kaplan-Meier curves
based on the landmark data.
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often used for the biomarker and the survival probability is typically modelled with a
Cox proportional hazards model with frailties. The use of random effects are especially
useful for making subject specific dynamic predictions. Although they may also cause
difficulties when interpreting the fixed effect parameters78. For this reason, it is import-
ant to distinguish between an event that terminates the longitudinal outcome, such as
death, or one that simply censors it, such as dropout.

To compare the joint models to landmark models, consider the scenario from (3)
and assume that there is only one time-varying biomarker covariate. The biomarker is
measured at number of visit times during follow-upwithmeasurement error. A simple
landmark model would only use the last observed value of the biomarker before the
landmark. The time-dependent Coxmodel from (3) assumes that the biomarker is con-
stant in between visits and measured without error. In contrast, the joint model is spe-
cifically tailored for this type of scenario, although joint models in general are more
complicated to apply in practise than landmark models.

Regardless of the method, it is important to validate dynamic prediction models to
assess their predictive performance. There aremanyways tomeasure the predictive per-
formance in terms of calibration and discrimination, although many of the standard
measures are somewhat complicated by the presence of right-censoring. Cross valida-
tion or the use of an external data source are recommended to avoid an overly optimistic
assessment of the predictive performance.

0.4 Overview of chapters

The following chapters in this thesis each represent a published or accepted paper. The
main objectives of this thesis were to extend some of the above mentioned estimation
methods to the context of dynamic prediction and to compare their performance. Each
of the chapters and their relation to the main objectives are described briefly below.
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Chapter 1 is based on Fontein et al. 30 , which is a shared first authorship. Using data
from a randomized clinical trial we constructed a dynamic prediction model for the 5
year survival probability of breast cancer patients up until three years after starting treat-
ment. We employed a landmark super model for the risk of death using a Cox propor-
tional hazardsmodel95. The aspirationwas to bring the existing statisticalmethodology
closer to the clinical practice and to show its practical usability.

Chapter 2 is based on Grand & Putter 36 , where we combined the direct binomial
regression approach by Scheike et al. 83 with the landmark methodology. This was a
continuation of the work byNicolaie et al. 65 66, as it extended yet another approach for
dynamic prediction of cumulative incidence functions in competing risks. The com-
bination of landmarking and direct binomial regression enables the estimation of very
flexible models for the dynamic cumulative incidence function. The performance of
the method was investigated in a simulation study and compared to the performance
of the PO approach combined with landmarking.

Chapter 3 is based on Grand & Putter 35 , in which the PO approach was combined
with landmarking to enable dynamic prediction of the restricted expected length of stay
in a state for a general multi-state model. It can be seen as an extension of the PO ap-
proach for the restrictedmean survival time. A remarkable feature of themethod is that
it performswell even if themulti-state process does not fulfill theMarkovproperty. The
performance of the method was investigated in a simulation study. The method was
also applied to data concerning the health status of elderly people, which was subject to
both right-censoring and left-truncation. Due to the left-truncation in the application
we also considered two different ways of defining POs under left-truncation, since it
had not been addressed previously, but especially one of them did not perform well in
the simulations.

Motivated by the challenges with left-truncated data in Grand & Putter 35 chapter
4 explored new ways to define POs for regression analysis of the survival probability,
when data are subject to both right-censoring and left-truncation. Unlike the IPCW
approach, the PO approach had not previously been investigated in connection to left-
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truncated data. We considered two definitions, whichwere conceptually different from
thosewe considered in the previous chapter. We investigated their performance in a sim-
ulation study andoverall theyworked reasonablywell even compared toCox regression.
The chapter is based on Grand et al. 37 .

Chapter 5 presents a novel adaptation of joint models for longitudinal and time to
event outcomes, which was motivated by an application to patients with the eye dis-
ease uveitis. The method was applied to data collected at the Rotterdam Eye Hospital
and the objective was to create a dynamic predictionmodel of inflammation and visual
acuity. The chapter is based on Grand et al. 38.
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