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0
Introduction

In medical research and many other fields it is often of interest to study the time
until an event occurs and to identify which factors are associated with the risk of ex-
periencing the event. In cancer research it is of great interest to be able to assess the life
expectancy of the cancer patients. In this example, we are interested in the time to death
and the potential risk factors, or covariates, include the patients’ age, gender, tumour
type etc. Another example comes from research on stem cell transplantations. Stem cell
transplantations are often used to treat patientswith leukaemia, but a transplantation is
considered to have failed if the patient relapses or die before relapsing. In this example,
we are interested in the time from transplantation until treatment failure. However, it
is useful to consider relapse and death before relapse as separate events, as the factors
may have a different influence on the time to relapse than on the time to death without
relapse. A third example comes from demography, which is the study of human popu-
lations. Some have suggested that the life expectancy will continue to increase, and for
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this reason demographers are interested in assessing whether the future generations of
elderly will spend the remaining part of their life in good health or as disabled. In this
example, we are interested in the time spent as either healthy or disabled. Factors such
as socio-economic status and education are likely to have an effect on the time a person
will spend in either state.

All three examples can be addressed by employing methods known under the um-
brella term survival analysis, or the more modern term event history analysis. As the
name suggests, the outcome is predominantly the time to an event and usually the time
is incompletely observed due to right-censoring. In the breast cancer example, right-
censoring may occur when subjects are lost to follow-up or because the data collection
ended before all subjects had died. The subjects that did not die by the time that the
data collection ended are considered to be right-censored, because we only know that
they were still alive up until the end of follow-up, but we do not known when they
died afterwards. There are other ways in which the event history data can be incom-
pletely observed, such as left-truncation or interval-censoring, however right-censoring
is themost common type of incompleteness. If the time to deathwas observed for every
subject, ordinary methods, such as generalised linear regression models, could be used
to model the survival probability or even the mean survival time. However, due to the
incompleteness alternative regression methods have to be employed. The classical ap-
proach has been to model the hazard, which can be thought of as the instantaneous
risk of dying, as it is observable from the data. Other more recent approaches attempt
to first recover the incompletely observed event times and then use standard regression
methods using the recovered outcome. One such method known as inverse probab-
ility of censoring weights accomplishes this by giving more weight to subjects with an
observed event. Another method known as pseudo-observations does it by calculating
the contribution of each subject to the nonparametric estimator of the parameter of
interest.
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There are many different uses for event history analyses, however one application
for event history models is to use them for prediction. In cancer care, prediction mod-
els are used as a tool to assess the survival probability of the patients. The prediction
models can help guide clinical decision making and inform patients about their pro-
gnosis. Some prediction models are used to help guide what treatments to select for a
given patient and some are used to help motivate patients to change behaviour, such
as smoking less and exercising more. Prediction models can also be used as a tool for
governmental management. For example, in order to allocate the right amount of re-
sources, it is paramount to have a sense of the number of disabled elderly in the future.
In statistical methodology there is a distinction between what is known as population-
averaged and subject-specific predictions. Population-averaged models provide predic-
tions for subpopulations, where the subpopulations are determined by the factors in
the model. In addition, to adjusting for risk factors the subject-specific predictions also
consists of an individual component. The individual component is sometimes based
on the experience from other subjects and sometimes also on the subject’s own history.
Ordinary prediction models make predictions from a fixed point in time, e.g. time of
diagnosis or time of treatment start, and into the future. Dynamic prediction models
on the other hand allow predictions to be updated over the course of time. It is for
example natural to assume that the survival probability will change during the course
of a cancer patient’s follow-up. The probability of surviving may be high right after
being diagnosed with breast cancer, however if the cancer reoccurs it will lower the sur-
vival probability from that point on. It may also be that the patient received treatment
during the first three years after diagnosis, which improved the survival predictions. Dy-
namic models allow predictions to be updated as more information becomes available
during the course of time, which is known as dynamic prediction. One way to cre-
ate dynamic prediction models is by landmarking. The idea of landmarking is to cut
the data at a point during follow-up, a so-called landmark. That is, only subjects still
alive at the landmark are then analysed with standard methods to predict survival in
the future given that a subject is still alive at the landmark. Another approach to create
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dynamic prediction models is by employing joint models. These are usually employed
if a routinely measured biomarker, such as blood pressure, is related to survival. As the
name suggests the biomarker and the survival time are modelled jointly, usually with a
submodel for each outcome along with a description of the relation between the two.

The following sections provide a more detailed explanation of event history data
and the models used in the analysis of event history data with a special focus on the
methods considered in this thesis. The last section of this chapter contains an overview
of the papers that comprise this thesis.

0.1 Event history data

Multi-state models are a convenientway of describing event history data. Figure 1 shows
four examples of multi-state models for event history data. The cancer example can be
described by a survivalmulti-statemodel. Subjects enter the first statewhen they are dia-
gnosed and theymove to the second state when they die. The stem cell transplantation
example can be described with a competing risks model, where subjects can experience
one of a number of competing events. The demography example can be described by
a reversible illness-death model, where subjects can move back and forth between two
states or move to an absorbing state, which is typically death. The figure also shows a
fourth example where the event of interest is recurrent. This multi-state model could
be used to describe the recurrence of infections in a group of patients.

In the survival setting the event time is denoted by T , which in the above example
is the time between diagnosis and death. LetC denote the right-censoring time, which
may be caused by the study ended before all subjects had died or other reasons. Let
T̃ = min(T,C) and define the event indicator δ = I(T ≤ C). If δ = 1 then the
time of death is observed and otherwise only the right-censoring time is observed. It is
usual to assume thatT andC are independent, possibly conditional on the covariatesZ .
The independence assumption is untestable, but it implies that knowing the censoring
time does not provide any information about the event time. If we have a sample of
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Figure 1: Four examples of multi-state models.
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Figure 2: The left graph shows the survival data for ten subjects. The right graph
shows the corresponding Kaplan-Meier estimate of the survival probability.

n subjects then we observe (T̃i, δi, Zi) for i = 1, . . . , n. The left graph in Figure 2
shows survival data from ten subjects that were either right-censored or died. In this
example the timescale is disease duration, assuming that the onset of the disease was
the same as the time of diagnosis. There are however more timescale options, such as
the age time scale or the time on study. The choice of timescale depends upon the data
and research question at hand. If the event of interest is death, then the age timescale
will often be an attractive choice because it accounts for age in a natural way. However,
disease duration may offer a more appropriate biological interpretation of the model.
On the other hand, it may be that central covariates are only measured upon entry into
the study, which would make the time on study timescale more reasonable. Besides
right-censoring, another reason why event times are not always observed is due to left-
truncation. Left-truncation means that we only observe individuals for which T̃ > L,
where L is called the left-truncation time. In the breast cancer example left-truncation
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may occur if we only observe cancer patients that were alive at a given calendar date.
If we are interested in the survival from the time of diagnosis, then the data are left-
truncatedbecause thedata didnot include those that diedbefore the calendar datewhen
the data were gathered.

0.2 Parameters and estimation methods

The survival probability S(t) = P (T > t) is the most common parameter of interest
in survival analysis. Due to right-censoring, the survival probability is usuallymodelled
through the hazard function

λ(t) = lim
∆t→0

P (t ≤ T < t+∆t|T ≥ t)

∆t
.

One can think of the hazard as a force that tries to pull the subject from one state to
another, the larger the hazard the stronger the pull. In the survival setting there is a
direct relation between the hazard function and the survival probability given by

S(t) = exp
(
−
∫ t

0
λ(u)du

)
. (1)

Another interesting consequence of right-censoring is that the mean survival time is
usually not an attainable parameter, since too little is known about the right tail of the
distribution. Instead we may consider the restricted mean survival time

E
(
min(T, τ)

)
=

∫ τ

0
S(t)dt ,

where τ > 0 is a fixed point in time. So although the mean survival time has a more
convenient interpretation, the restrictedmean survival time is more convenient in prac-
tice.
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The parameters can be generalised to suit the more complex multi-state models in
Figure 1. In the competing risk setting, a parameter that is of interest for prediction is the
cumulative incidence function, which is the probability of experiencing a specific event
before a certain time point. The cumulative incidences of the competing events can
be modelled through the cause-specific hazards, which can be thought of as the instant-
aneous risk of experiencing the cause or event in question. However, the cumulative
incidence of the event of interest not only depends on that cause-specific hazard, but
also on the cause-specific hazards of the other events. In Figure 1.b this means that the
probability of experiencing relapse not only depends on the pull towards relapse, but
also on the strength of the pull towards death. So unlike the simpler survival setting,
there is no direct relation between how the covariates affect the cause-specific hazard
in question and how they affect the cumulative incidence of interest. For this reason,
other approaches have aimed atmodelling the direct relationbetween the covariates and
the cumulative incidence function of the event of interest. It is worth noting that the
different approaches also lead to different interpretations, some of which are more ap-
propriate than others 8,33. In generalmulti-statemodels a commonparameter of interest
is the transition probability, which is usuallymodelled through the transition intensities.
The transition intensity is a generalisation of the hazard and it is the instantaneous risk
of making a transition from one state to another. Alternatives to the traditional mod-
elling approach through the transition intensities also exist for the general multi-state
models. Just as in the competing risks setting, care should be taken when interpreting
the direct effect of the covariates. However, for prediction purposes the interpretation
of the covariate effects is not an issue. The generalisation of the restrictedmean survival
time is the restricted expected length of stay in a state. In Figure 1.d we could for example
be interested in the expected length of stay in health and disability within the next ten
years’ time for people aged 75.

The choice ofmodel and themethodused to estimate themodel parameters depends
on the objective. The Kaplan-Meier estimator 50 is a nonparametric estimator of the
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survival probability, meaning that it does not specify or assume a particular shape of
the curve. The right graph in Figure 2 shows the Kaplan-Meier estimate of the survival
probability, which is based on the data in the left graph and it jumps at the observed
death times. If we instead want to predict the conditional survival probability S(t|Z)

given a set of covariatesZ , then the Cox proportional hazards model 22

λ(t|Z) = λ0(t) exp(β⊤Z)

is a popular choice. The model assumes that the covariates have a multiplicative ef-
fect, known as the hazard ratio exp(β⊤Z), on the nonparametric baseline hazardλ0(t).
The parameters β are estimated bymaximising a partial likelihood and the baseline haz-
ard is subsequently estimatedby theBreslow estimator 15. Estimates of the survival prob-
ability are then obtained by plugging the estimates into Equation (1). Another option
is to assume that the event time follows a parametric distribution e.g. a Weibull distri-
bution. The question of whether to choose a fully parametric or more nonparametric
model is delicate. A parametric model requires more assumptions about the data. In
return, it offersmore structure and efficiency to the estimates, whereas a nonparametric
model may provide too little.

There are many other ways to model the survival probability. In this thesis two
related approaches are considered, which use either inverse probability of censoring
weights (IPCW)or pseudo-observations (PO).The IPCWapproach has been proposed
for regression analysis of the survival probability 55 and restricted mean survival time 20.
It has furthermore been used in competing risks for regression analysis of the cumulat-
ive incidence functions 83, where the approach was also referred to as direct binomial
regression, and in an illness-death setting for the transition probabilities 12. The PO ap-
proach was proposed for regression analysis of parameters in multi-state models9, such
as the survival at a fixed point in time 54, restricted mean survival time6 and cumulative
incidence functions 53. At first thePOapproachwas only conjectured to have the proper
asymptotic properties and the formal theoretical justification only followed later 39,48,69.
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In the following, the basic idea behind the two approaches are sketched in the survival
setting, although the true benefit of these approaches is more clearly seen in a general
multi-state model, where the direct relation between the hazard and the survival prob-
ability is lost.

Consider a setting with right-censored survival data, where the objective is to predict
the survival probability, or equivalently the probability of death F (t0) = P (T ≤ t0),
at a fixed point in time t0. To this end we setup amarginal model for the probability of
death

F (t0|Zi) = g(β⊤Zi) ,

where g is a known link function and β is a vector of parameters to be estimated. Let

Ni(t) = I(Ti ≤ t),

denote the counting process that jumps from 0 to 1 when subject i dies. If the data
were not subject to right-censoring then we could use Ni(t0) for i = 1, . . . , n to fit
themodel using generalised estimating equations 58 (GEE).However, the counting pro-
cesses are only partially observed for right-censored individuals andNi(t0) is therefore
not observed for subjects that were censored before time t0. Both the IPCW and PO
approach try to find a replacement for the incomplete responses. That is they both cal-
culate artificial responses from the observed data and then use those artificial responses
instead in the estimating equations. With the IPCWapproach the replacement is found
by reweighting subjects with an observed death, such that they also represent those that
were censored before time t0. Let G(t) = P (C > t) denote the probability of re-
maining uncensored at time t and assume that T and C are independent. Define the
reweighted counting process as

N̂ IPCW
i (t) =

Ni(t)δi

Ĝ(Ti−)
.

The reweighted counting process is fully observed for all subjects and it is zero for right-
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censored subjects or subjects that are still at risk at time t. The left panel in Figure 3
shows an example of the reweighted counting process for a right-censored subject and
a subject that died after one year. Once the second subject dies the reweighted process
is larger than one, because the subject also represents those that were right-censored
within the first year. The idea behind the PO approach comes from jackknife theory
and it starts by considering a nonparametric estimator of the parameter of interest. In
this example a nonparametric estimator for F (t) is

F̂ (t) =
1

n

n∑
i=1

Ni(t)δi

Ĝ(Ti−)
= 1− Ŝ(t) . (2)

The estimator can be written in an IPCW form or as one minus the Kaplan-Meier es-
timator 82. The PO for subject i is defined as

N̂PO
i (t) = nF̂ (t)− (n− 1)F̂−i(t) ,

where F̂−i(t) is the nonparametric estimate based on the sample without subject i.
Hence, with the PO approach the replacement for subject i is the subject’s contribu-
tion to the nonparametric estimator. Due to the equivalence in Equation (2) then
N̂PO

i (t) = 1 − (nŜ(t) − (n − 1)Ŝ−i(t)). The right panel in Figure 3 shows the
corresponding POs for the same two subjects from before. To further see the relation
between the two approaches, in this setting, we take a closer look at the PO

N̂PO
i (t) = n

(
1
n

∑n
j=1

Nj(t)δj

Ĝ(Tj−)

)
− (n− 1)

(
1

n−1

∑n
j=1,j ̸=i

Nj(t)δj

Ĝ−i(Tj−)

)
= N̂ IPCW

i (t) +
∑n

j=1,j ̸=iNj(t)δj

(
1

Ĝ(Tj−)
− 1

Ĝ−i(Tj−)

)
.

The difference between the two comes down to a term that depends on the estimates of
the censoring distribution based on the whole sample and the sample without subject i.
The PO approach reevaluates all subjects, whereas the IPCW approach only reweights
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subjects after they have died. If the data were not subject to right-censoring, then it is
straightforward to see that N̂ IPCW

i (t) = N̂PO
i (t) = Ni(t).

Since the PO and IPCW approach both use GEE, they are valid under the missing
completely at random assumption 58. When there are other alternatives available the
PO and IPCW approach are usually not very efficient. Nevertheless, due to their flexib-
ility they can be applied in many settings where there are no alternatives for regression
analyses.

0.3 Dynamic prediction

One usage for event history analyses is to use them for creating prediction models. Pre-
diction models are increasingly being adopted in clinical practise as a tool to predict
patient outcomes, such as the survival of cancer patients. These prediction models are
often only designed to predict from a fixed baseline time point, such as time of dia-
gnosis of cancer. However, when patients come back for follow-up at later time points
these predictions may be obsolete, if they did not account for important changes that
occurred in between diagnosis and the follow-up. Furthermore, it is usually the case
that baseline information lose predictive power during follow-up. Thus, it is valuable
to have prediction models that are able to update predictions and utilize the informa-
tion that becomes available during follow-up. These types of models, where both the
covariates and their effects can be updated during follow-up, are referred to as dynamic
predictionmodels. Multi-state models can be used for dynamic prediction. One way to
do this is by including the occurrence of an important event as a state in the multi-state
model, such as the recurrence of the cancer after the original cancer has been removed.
There are two complementary approaches to multi-state models called landmark mod-
els and joint models.

Landmark models are build upon the concept of landmarking, which was intro-
duced as a way to avoid immortality bias 11. Immortality bias arises when information
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from the future erroneously has been used in the model as if it was known at baseline.
Say we were interested in investigating whether people with a certain type of cancer,
that usually appears late in life, dies faster than people without the cancer. If we tried to
assess the longevity of the two groups from time of birth, then cancer status would be
information from the future, since it is not known at time of birth. The cancer patients
are therefore immortal from the time of birth until they received the cancer, because if
they had died before they would not have been in the cancer group. The landmarking
remedy, is to select a more suitable point in time, say the age of 50, and then compare
the future survival of those that had cancer before the age of 50with those that did not.

In general, the fixed point in time s is called a landmark and only subjects that are
still at risk at time s are selected for the analysis. Any time-varying covariatesZ(t), such
as the occurrence of a cancer, are fixed at their value at the landmark time Z(s). The
resulting landmark data set can then be used to create a dynamic prediction model for
the survival probability given survival up until the landmark time P (T > t|T > s).
The concept is illustrated in Figure 4, which builds upon the data from Figure 2. The
left graphs show the landmark data based on two landmarks at time 0.25 and 0.5. The
right graphs show the correspondingKaplan-Meier estimates of the survival probability
basedon the landmarkdata. vanHouwelingen 92 proposed touse theCoxproportional
hazardsmodel for creating dynamic predictionmodels with landmarking, which is also
related to the approach proposed by Zheng&Heagerty 105 . If more than one landmark
is of interest, it is also possibly tomake a super model, instead ofmaking separatemodels
each landmark95. In a super model the relation between the model parameters and
landmark time is usually modelled by smooth functions. Other approaches that have
been combined with landmarking include cause-specific hazards65 and PO approach66

for regression on cumulative incidence functions in competing risks.

It is interesting to consider the relation between the underlying model and the land-
markmodel. Tobetter understand the connection between the two, consider a scenario
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where the underlying model is a Cox proportional hazards model

λ(t|Z(t)) = λ0(t) exp(β⊤(t)Z(t)) , (3)

with time-varying covariates Z(t) and effects β(t). The relation between the hazard
ratios from thismodel compared to those obtained by landmarkmodels were discussed
by Putter & van Houwelingen 73 . Notably, if a Cox proportional hazards model with
time-varying effects were employed for the landmark model, at one fixed landmark s,
the corresponding hazard ratio exp(β(t|s)) for a time-varying covariateZ(s)would be
attenuated compared to exp(β(t)). In addition, if the hazard ratio was constant over
time, β(t) = β, it wouldmost often imply that the landmarkmodel has a time-varying
effect, β(t|s) ̸= β(s).

Ideally the value of all time-varying covariates should be known at the landmark time
s. In practice this is often not the case except for certain types of time-varying covariates.
A time-varying covariate, such as the recurrence of cancer, can conveniently be include
as an indicator function for whether or not the cancer has recurred. On the other hand,
a time-varying biomarker, such as blood pressure, is typically not measured at the same
time points during follow-up for all patients. For this reasonmore care should be taken
when including this type of covariate in a landmark model.

So although landmark models can be criticised for potentially oversimplifying the
true underlying model, they nonetheless provide a convenient framework for creating
dynamic prediction models with a clinical relevant interpretation.

Joint models were introduced as a way to correct for informative dropout in regres-
sion analysis of longitudinal outcomes, typically biomarkers98,43. Subsequently, the
concept of joint models for longitudinal and time to event outcomes has been explored
in many directions including dynamic prediction70,76. A basic joint model consists of
two submodels, which is usually for a biomarker and time of death. The two submod-
els can be connected via shared or correlated random effects. A linear mixed model is
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Figure 4: The left panel shows the survival data for the subjects that are still alive
at the landmark time. The right panel shows the corresponding Kaplan-Meier curves
based on the landmark data.

16



often used for the biomarker and the survival probability is typically modelled with a
Cox proportional hazards model with frailties. The use of random effects are especially
useful for making subject specific dynamic predictions. Although they may also cause
difficulties when interpreting the fixed effect parameters78. For this reason, it is import-
ant to distinguish between an event that terminates the longitudinal outcome, such as
death, or one that simply censors it, such as dropout.

To compare the joint models to landmark models, consider the scenario from (3)
and assume that there is only one time-varying biomarker covariate. The biomarker is
measured at number of visit times during follow-upwithmeasurement error. A simple
landmark model would only use the last observed value of the biomarker before the
landmark. The time-dependent Coxmodel from (3) assumes that the biomarker is con-
stant in between visits and measured without error. In contrast, the joint model is spe-
cifically tailored for this type of scenario, although joint models in general are more
complicated to apply in practise than landmark models.

Regardless of the method, it is important to validate dynamic prediction models to
assess their predictive performance. There aremanyways tomeasure the predictive per-
formance in terms of calibration and discrimination, although many of the standard
measures are somewhat complicated by the presence of right-censoring. Cross valida-
tion or the use of an external data source are recommended to avoid an overly optimistic
assessment of the predictive performance.

0.4 Overview of chapters

The following chapters in this thesis each represent a published or accepted paper. The
main objectives of this thesis were to extend some of the above mentioned estimation
methods to the context of dynamic prediction and to compare their performance. Each
of the chapters and their relation to the main objectives are described briefly below.
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Chapter 1 is based on Fontein et al. 30 , which is a shared first authorship. Using data
from a randomized clinical trial we constructed a dynamic prediction model for the 5
year survival probability of breast cancer patients up until three years after starting treat-
ment. We employed a landmark super model for the risk of death using a Cox propor-
tional hazardsmodel95. The aspirationwas to bring the existing statisticalmethodology
closer to the clinical practice and to show its practical usability.

Chapter 2 is based on Grand & Putter 36 , where we combined the direct binomial
regression approach by Scheike et al. 83 with the landmark methodology. This was a
continuation of the work byNicolaie et al. 65 66, as it extended yet another approach for
dynamic prediction of cumulative incidence functions in competing risks. The com-
bination of landmarking and direct binomial regression enables the estimation of very
flexible models for the dynamic cumulative incidence function. The performance of
the method was investigated in a simulation study and compared to the performance
of the PO approach combined with landmarking.

Chapter 3 is based on Grand & Putter 35 , in which the PO approach was combined
with landmarking to enable dynamic prediction of the restricted expected length of stay
in a state for a general multi-state model. It can be seen as an extension of the PO ap-
proach for the restrictedmean survival time. A remarkable feature of themethod is that
it performswell even if themulti-state process does not fulfill theMarkovproperty. The
performance of the method was investigated in a simulation study. The method was
also applied to data concerning the health status of elderly people, which was subject to
both right-censoring and left-truncation. Due to the left-truncation in the application
we also considered two different ways of defining POs under left-truncation, since it
had not been addressed previously, but especially one of them did not perform well in
the simulations.

Motivated by the challenges with left-truncated data in Grand & Putter 35 chapter
4 explored new ways to define POs for regression analysis of the survival probability,
when data are subject to both right-censoring and left-truncation. Unlike the IPCW
approach, the PO approach had not previously been investigated in connection to left-
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truncated data. We considered two definitions, whichwere conceptually different from
thosewe considered in the previous chapter. We investigated their performance in a sim-
ulation study andoverall theyworked reasonablywell even compared toCox regression.
The chapter is based on Grand et al. 37 .

Chapter 5 presents a novel adaptation of joint models for longitudinal and time to
event outcomes, which was motivated by an application to patients with the eye dis-
ease uveitis. The method was applied to data collected at the Rotterdam Eye Hospital
and the objective was to create a dynamic predictionmodel of inflammation and visual
acuity. The chapter is based on Grand et al. 38.
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1
Dynamic prediction of
survival probabilities

Predictivemodels are an integral part of current clinical practice and help determ-
ine optimal treatment strategies for individual patients. A drawback is that covariates
are assumed to have constant effects on overall survival (OS), when in fact, these effects
may change during follow-up (FU). Furthermore, breast cancer (BC) patients may ex-
perience events that alter their prognosis from that time onwards. We investigated the
’dynamic’ effects of different covariates on OS and developed a nomogram to calculate
5-year dynamic OS (DOS) probability at different prediction time points (tp) during
FU.
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1.1 Introduction

Breast cancer (BC) comprises a heterogeneous disease with diverse features that can
interact with outcomes, making it difficult to obtain estimations of individual pro-
gnoses. The overwhelming popularity of tools such as Adjuvant! or the Nottingham
Prognostic Index (NPI) illustrates the importance of prediction models for physicians
and patients, providing guidance for adjuvant treatment decisions 2,74. Most prediction
models, however,cannot be used for cancer patients at specific time points during the
follow-up (FU) period, as these models have been designed for use immediately after
diagnosis. Apart from the caveats associated with available ’static’ prediction models,
there are some important reasons why these models may give misleading results when
usedduringFU. First, the fact that patients have already survived anumber of years after
diagnosis may change a patient’s prognosis. For instance, BC recurrence rates peak at
12 years after diagnosis anddecline thereafter, resulting in an improvedprognosis77,81,103.
Second, in the time between diagnosis and themoment of prediction, important events
mayhave takenplace, such as locoregional recurrence (LRR) and/or distant recurrences
(DR) or premature discontinuation of treatment, whichmay alter a patient’s prognosis.
Third, some variables included in current models may exhibit time-varying effects on
outcome, resulting in a change in mortality risk as time progresses. Consequently, too
much emphasis may be placed on variables with a strong impact on outcome early in
the FU period, whereas this effect might bemuch smaller later on. Available static mod-
els are based on probabilities of survival at the time of diagnosis andmay not accurately
portray a patient’s survival probability later on in the FUperiod. The concept of updat-
ing survival probabilities by both incorporating time-varying covariates and allowing
for time-varying effects is called dynamic prediction. By design, these variables are not
included in the static risk prediction models, and these considerations illustrate a need
for better prediction models for cancer patients. To investigate the clinical applicabil-
ity of dynamic prediction, we utilized a dataset from a large randomized clinical trial
of postmenopausal hormone receptor-positive (HR+) early BC patients treated with
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endocrine treatment (ET) in the Netherlands and Belgium. The aim of the current
analysis was to develop a clinically applicable nomogram to facilitate the prediction of
an individual patient’s probability of surviving an additional 5 years at any prediction
timepoint (tp) up to 3 years after starting adjuvant ET. This concept of continually
updating 5-year overall survival (OS) from a certain tp is referred to as 5-year dynamic
overall survival (DOS). We designed a dynamic predictive model, taking into account
various patient- and tumor-specific covariates with time-varying and time-constant ef-
fects during FU.

1.2 Method

The Tamoxifen Exemestane Adjuvant Multinational (TEAM) trial is a randomized,
phase III, multinational, open-label study conducted in postmenopausal women with
HR+ BC, who were eligible for adjuvant ET and randomized to either 5 years of ex-
emestane (25mg) or 2.53 years of tamoxifen (20mg) followed by exemestane (25mg)
for 2.52 years90. The TEAM trial protocol was approved by regulatory and ethics
authorities of all participating centers in all participating countries. The trial was re-
gistered in theNetherlands and Belgiumwith theNetherlands Trial register, NTR 267.
All patients providedwritten informed consent. Details of the study anddata collection
have been published previously90. In the Netherlands and Belgium, 3168 postmeno-
pausal, early BC patients were enrolled in the TEAM trial. Patients who did not start
randomized treatment (n = 19) or hadmissing end point data (n = 4), metastatic dis-
ease before the start of ET (n = 7), and patients withmissing data regarding covariates
used in themodel (n = 528)were excluded (Figure 1.1). Patientswith estrogen receptor
(ER) and progesterone receptor (PR)-negative disease (n = 8) were excluded. Due to
the unavailability of regular FU data by countries other than the Netherlands and Bel-
gium beyond the initially planned 5 years of FU, the dynamic prediction model does
not include data from all participating TEAM trial countries (Table 1.1). The primary
outcome of the present investigation was OS, which was the time from randomization
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3168 patients included
in the study

Distant recurrence at the start
of treatment (n = 7)

Missing primary endpoint data (n = 4)

ER- and PR-negative status (n = 8)

Never started treatment (n = 19)

At least one missing covariate (n = 528)

2602 patients included
in the analyses

Figure 1.1: CONSORT diagram of patients included in the analyses.

to the date of death or last recorded FU. LRR was defined as any BC recurrence in the
ipsilateral breast and/or lymph nodes as well as in supraclavicular lymph nodes. LRR
did not include ductal carcinoma in situ relapses. DR comprised all other accounts of
BC recurrence.

1.2.1 Statistical analysis

Statistical analyses were carried out using the programs SPSS (version 20) and R (ver-
sion 2.15.1). We used the proportional baselines landmark super model92,95 to obtain
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Table 1.1: Comparison of the patients in the Dynamic Prediction study population
with all other TEAM trial patients. BR, Bloom and Richardson.

Non-study population Study population
(n = 7165) (n = 2602)

Characteristics n (%) n (%) p-value
Age at diagnosis (years) (mean, SD) 64.2 (8.9) 64.8 (9.19)
Tumor stage < 0.01
T1 (< 2cm) 4556 (64) 1135 (44)
T2 (2− < 5cm) 2316 (32) 1276 (49)
T3 / T4 (5cm) 266 (4) 191 (7)
Unknown 27 (0) 0 (0)
Nodal stage < 0.01
N0 4290 (60) 821 (32)
N1 2514 (35) 1344 (52)
N2/N3 295 (4) 437 (17)
Unknown 66 (1) 0 (0)
Histological grade (BR) < 0.01
BR I 1295 (18) 382 (15)
BR II 3596 (50) 1202 (46)
BR III 1420 (20) 1018 (39)
Unknown 854 (12) 0 (0)
Estrogen receptor status 0.09
Negative 119 (2) 57 (2)
Positive 7042 (98) 2545 (98)
Unknown 4 (0) 0 (0)
Progesterone receptor status < 0.01
Negative 1146 (16) 579 (22)
Positive 5278 (74) 2023 (78)
Unknown 741 (10) 0 (0)
HER2 status < 0.01
Negative 3169 (44) 1898 (73)
Positive 826 (12) 257 (10)
Unknown 3170 (44) 447 (17)
Most extensive surgery < 0.01
Mastectomy 2911 (41) 1422 (55)
Breast conserving surgery 4244 (59) 1180 (45)
Unknown 10 (0) 0 (0)
Radiotherapy < 0.01
Yes 4981 (70) 1718 (66)
No 2091 (29) 884 (34)
Unknown 93 (1) 0 (0)
Chemotherapy < 0.01
Yes 2679 (37) 843 (32)
No 4481 (63) 1759 (68)
Unknown 5 (0) 0 (0)
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dynamic predictions of the 5-year DOS probability. The model requires a number of
landmark time points (tLM ); in the current model tLM was established at every third
monthbetween0 and3 years after the start of ET.Apredictionmodel for5-yearDOSat
a specific tLM is constructed by selecting the individuals at risk at that tLM and incorpor-
ating the values of any time-dependent covariates at that respective tLM in aCox propor-
tional hazards model 11. The landmark predictionmodels at different tLMs may be com-
bined into a single supermodel (Appendix 1.5). Using this analysis in the clinical setting,
we can obtainDOSpredictions at any prediction time point, tLM between 0 and 3 years
after starting adjuvant ET. For this specific model, the prediction window was set to 5
years after the established tLM. Baseline patient- and tumor-specific factors included in
themodel comprised age at diagnosis (continuous, linear, and quadratic terms), Bloom
& Richardson (BR) histological grade (I, II, III), tumor stage (1, 2, 3/4), nodal stage
(N0, N1, N2/N3), ER and PR status (positive, negative), HER2 status (positive, neg-
ative, missing), most extensive surgery (mastectomy, breast-conserving surgery), and
radiotherapy (yes, no), chemotherapy (yes, no). ER and PR status were considered pos-
itive if at least 10% of tumor cells stained positively following immunohistochemical
staining, as defined by the Dutch BC treatment guidelines63. The model also included
three dynamic variables whose values may change during ET, namely current ET status
(on versus off ET), LRR (yes,no), and DR (yes, no). To assess whether a patient had
stopped treatment, weused the last treatment date, as reported on the case-report forms.
If no last treatment date was available, the patient was assumed to be on-treatment.
According to the TEAM trial protocol, patients with LRR or DR discontinued or
switched ET. In order to test for time-varying covariate effects, interactions between co-
variates and tLM (both linear and quadratic) were included in the model. A backward
selection procedure was then carried out in two steps. In the first step, all quadratic
tLM interactions with the covariates were tested. Nonsignificant quadratic interactions
were removed, and those covariates which did not have significant interactions in the
first step were then tested in the second step for linear tLM interactions. Again, only sig-
nificant interactions were retained. Wald tests, based on robust standard errors, were
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used and a p-value of 0.05was considered statistically significant (Appendix 1.5). Main
effects of the covariates and of tLM and t2LM were included, irrespective of statistical
significance. The model was then validated by internal calibration using the heuristic
shrinkage factor by vanHouwelingen et al.93. Themodel’s ability to correctly discrimin-
ate betweenpatientswas evaluatedusing the dynamic cross-validated c-index. A c-index
of 1 resembles a model that can perfectly discriminate between patients, while with a
c-index of 0.5, the prediction is as good as chance95.

1.2.2 Nomogram

The nomogram is a user-friendly tool for calculating survival probabilities based on a
prediction model, and graphically computes 5-year DOS based on an individual pa-
tient’s unique characteristics. For each prognostic factor, a number of risk points are
assigned to each corresponding covariate, which can be read off the nomogram. The
sum of the risk points represents a total risk point score, from which the correspond-
ing 5-year DOS probability can be assessed at any tLM (between 0 and 3 years) after the
start of ET. A web-based dynamic prediction tool based on the nomogram has been
created to facilitate the calculation of 5-year dynamic overall survival rates and aid in
the decision-making process in clinical practice.

1.3 Results

In total, 2602TEAMtrial patientswith amedian age of64.8 years (range38−92 years),
were included in the analyses (Figure 1.1). Baseline characteristics of included patients
are depicted in the second column in Table 1.1. The majority of patients included in
this trial had adjuvant radiotherapy (66%) and did not receive adjuvant chemotherapy
(68%). Figure 1.2 provides an overview of the total number of patients in the landmark
datasets at successive tLMs in relation to treatment compliance and disease recurrence
status. Table 1.2 depicts the regression coefficients and hazard ratios (HR) with 95%

confidence intervals (95%CI) of the covariates included in the model. Covariates with
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Table 1.2: The dynamic prediction model with time-constant and time-varying cov-
ariates. CI, confidence interval; tp , prediction time point, time elapsed (years) since
the start of treatment.

Covariates with time-constant effects Coefficient Hazard ratio (95% CI) p-value
Age at diagnosis (ref: 65 years, per 10 years) < 0.001
Age 0.365 1.440 (1.254− 1.653)
Age2 0.154 1.166 (1.067− 1.275)

Tumor size [ref: T1 (< 2 cm)] < 0.001
T2 (25 cm) 0.256 1.291 (1.052− 1.5850)
T3/T4 (5 cm) 0.306 1.357 (0.956− 1.928)

Histological grade (BR) (ref: BR I) 0.001
BR II −0.018 0.982 (0.729− 1.3230)
BR III 0.346 1.413 (1.038− 1.923)

Estrogen receptor status (ref: positive) 0.073
Negative 0.566 1.761 (0.948− 3.271)

Progesterone receptor status (ref: positive) < 0.001
Negative 0.456 1.577 (1.301− 1.913)

Most extensive surgery (ref: mastectomy) 0.683
Breast-conserving surgery 0.055 1.057 (0.811− 1.377)

Radiotherapy (ref: yes) 0.157
No 0.195 1.216 (0.928− 1.592)

Chemotherapy (ref: yes) 0.384
No 0.127 1.136 (0.853− 1.512)

Treatment status (ref: on-treatment) 0.224
Off-treatment 0.234 1.263 (0.867− 1.841)

Distant recurrence (ref: no) < 0.001
Yes 2.709 15.018 (9.934− 22.705)

Covariates with time-varying effects
Prediction time (ref: start of treatment ) 0.057
tp 0.017 1.017 (0.920− 1.125)
t2p −0.034 0.967 (0.945− 0.989)

Nodal stage (ref: N0)
Constant < 0.001
N1 0.303 1.354 (1.021− 1.795)
N2/N3 1.287 3.621 (2.596− 5.052)
Time-varying effect 0.026
N1 (tp) −0.047 0.954 (0.869− 1.048)
N2/N3 (tp) −0.204 0.816 (0.722− 0.922)

HER2 status (ref: HER2 negative)
Constant 0.214
Positive 0.211 1.235 (0.885− 1.724)
Time-varying effect 0.015
Positive (tp) −0.162 0.851 (0.747− 0.969)

Locoregional recurrence (ref: no LRR)
Constant < 0.001
LRR 2.131 8.427 (2.885− 24.617)
Time-varying effect 0.013
LRR (tp) −0.540 0.583 (0.380− 0.893)
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A. Treatment compliance B. Distant recurrence C. Locoregional recurrence
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Figure 1.2: Number of patients at risk in relation to follow-up time since the start of
endocrine treatment. Number of patients in the landmark datasets (i.e. at risk) over
time (tLM) since the start of adjuvant endocrine treatment in relation to (A) treatment
compliance status (on-treatment/off-treatment)(B) distant recurrence status (yes, no)
and (C) locoregional recurrence status (yes, no).

time-constant effects and covariates with time-varying effects on 5-yearDOS are shown.
Age at diagnosis demonstrated a time-constant effect, with 5-year DOS being a quad-
ratic function of age (Figure 1.3).

Interestingly, high-risk nodal stage (N2/N3), compared with N0, demonstrated a
significant time-varying effect on 5-year DOS with each successive tLM, while nodal
stage N1 did not (Figure 1.4.B). To illustrate, the HR of a patient with nodal stage
N2/N3 immediately after primary treatment compared with a patient with nodal stage
N0 (reference) is 3.621, calculated by the following formula (Table 1.2):

HR = (constant · time-varying effect)tp = 3.621 · 0.8160 ,
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Figure 1.3: Hazard ratio for age at diagnosis depicted with a 95% confidence interval.
The hazard ratio increases with increasing age.

30



but decreases to 2.401 (HR = 3.621 · 0.8162) at 2 years after the start of ET. HER2-
positive status also demonstrated a significant time-varying effect on 5-yearDOS (Table
1.2, Figure 1.4.A). Next, covariates whose status have the potential to change over time
(i.e. treatment compliance status and disease recurrence) were investigated for their
influence on 5-year mortality risk. Patients who went off-treatment during the FU
period had a higher residual mortality risk compared with patients who remained com-
pliant, although this was not statistically significant. The effect of treatment discon-
tinuation was constant over time (Table 1.2). Simultaneously, LRR had a time-varying
influence on 5-year DOS, revealing a subsiding mortality risk with each successive tLM
(Figure 1.4.C). Compared with no LRR, having a LRR at 1, 2, and 3 years after the
start of ET increased 5-year mortality risk with HR = 4.913(2.444 − 9.877), HR
= 2.864(1.851 − 4.431), and HR = 1.670(1.005 − 2.773), respectively (Table
1.2). In contrast, developing distant metastases (versus no distant metastases) was as-
sociated with an increased 5-year mortality risk, with a constant effect over time [HR
= 15.018(9.934− 22.705)].

Figure 1.5 illustrates differences in the 5-year DOS in the event of a LRR in a patient
who presents with the most commonly occurring baseline characteristics (average pa-
tient) found in this cohort, as well as in a high-risk patient. In the absence of a LRR,
5-year mortality probabilities are 3% and 10%, respectively, at all tps. However, in case
of a LRR, 5-year mortality probabilities in both the average patient and the high-risk
patient are initially high, and decrease with time.

1.3.1 Internal model validation

The heuristic shrinkage factorwas 0.995, indicating good calibration of themodel. Fur-
thermore, themodel’s discriminatory accuracy had a dynamic cross-validated c-index of
0.70, 0.72, 0.76, and 0.79 at 0, 1, 2, and 3 years respectively.
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Figure 1.4: Time-varying hazard ratios for nodal stage, HER2 status, and locoregional
recurrence status. tp , prediction timepoint; LRR, locoregional recurrence. Hazard
ratios for nodal stage, HER2 status, and locoregional recurrence status as time since
the start of endocrine treatment (tp) increases (depicted as a hazard ratio with 95%
confidence interval).
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A. Average patient B. High risk patient
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Figure 1.5: Change in 5-year dynamic probabilities of death based on the occurrence
of a locoregional recurrence in two example patients. tp , prediction time point; LRR,
locoregional recurrence; ER, estrogen receptor; PR, progesterone receptor. This fig-
ure illustrates how 5-year dynamic probabilities of death changes if a patient who is
on-treatment throughout the entire follow-up period develops a LRR during follow-
up. Two example patients are depicted in (A) and (B). (A) Average patient with
the following characteristics: age at diagnosis = 65 years, tumor stage T2, nodal
stage N1, histological grade II (Bloom and Richardson), HER2 negative, ER and PR
positive, treated with breast-conserving surgery, adjuvant radiotherapy and adjuvant
chemotherapy. (B) High-risk patient with the following characteristics: age at dia-
gnosis = 65 years, tumor stage T3, nodal stage N2, histological grade III (Bloom and
Richardson), HER2 negative, ER and PR positive, treated with mastectomy, adjuvant
radiotherapy and adjuvant chemotherapy.
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1.3.2 Using the nomogram

The nomogram (Figure 1.6) provides estimates for 5-yearDOSprobabilities at different
tps from the start of ET and onwards, provided that adequate surgery has been carried
out. The probabilities can be calculated by adding the risk points for each covariate cor-
responding to the patient’s individual characteristics. For each characteristic, the num-
ber of associated risk points can be determined by drawing a vertical line straight up
from the covariate’s corresponding value to the axis with risk points (0 − 80). While
the majority of covariates are considered ‘static’ and defined at the start of ET, some co-
variates are ‘dynamic’, and can alter during the course of FU, such as treatment compli-
ance status and the occurrence of LRR or distant metastases during FU. The covariates
marked with ‘(tp)’ (prediction time point) include nodal stage (N2/3), HER2 status
(positive), and LRR (yes), and have time-varying effects on 5-year DOS. This means
that the effect of having characteristics that pertain to one these specific covariates var-
ies as the time since starting treatment progresses and that the time since the start of
ET needs to be taken into account whenmaking a 5-year DOS prediction. The sum of
the risk points is equal to the total risk point score, which is depicted on the axis of the
nomogram entitled ‘Total Points’. From here, a vertical line can be drawn toward the
axis labeled ‘5-year survival probability’, which is the corresponding 5-yearDOS at that
specific tp. To illustrate, we consider a 69-year-old postmenopausal woman (14 points)
who has been using ET for two years (tp = 2; 191 points). She had a grade III tumor
(13 points) with a diameter of 1.5 cm (0 points), ER-positive (0 points), PR-positive (0
points) andHER2-negative (10 points), and 5 tumor-positive lymph nodes(at tp = 2;
32 points). The patient has undergone breast-conserving surgery (2 points) with ad-
juvant radiotherapy (0 points) and adjuvant chemotherapy (0 points). She is still on-
treatment (0 points) and disease-free (0 points) (no locoregional or DR). To calculate
her 5-year DOS probability, we take her total risk point score (90 points) and draw a
vertical line down to the ‘5-year survival probability’ axis. For this patient, the 5-year
DOS is 75%. If our patient had developed a LRR in the 2-year period since ET, one
must add an additional 38 points (total= 128 points) to her total risk prediction score,
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resulting in a 5-year DOS of 42%.

1.4 Discussion

To our knowledge, this is the first dynamic prediction model in clinical oncology, de-
signed to optimize the prediction of the5-yearDOS at specific timepoints after the start
of adjuvant ET in postmenopausal, endocrine-sensitive early BC patients. The key ad-
vantage of this model is that it takes into account dynamic factors that can influence
a patient’s prognosis after some time has passed since starting ET, including treatment
compliance and the occurrence of LRR or distant metastases. Moreover, covariates
with time-varying effects are also accounted for in the model, including high-risk nodal
stage (N2/3) and HER2-positive status.

Currentnomograms are suboptimal for cancer patients, because their referencepoint
is commonly the time of diagnosis or the start of adjuvant ET. Aiming at further per-
sonalized BC treatment, continuous re-evaluation of the residual risk of BC recurrence
and mortality during FU is crucial. Patients may develop disease recurrences or dis-
continue ET before the predesignated end-date, which may alter a patient’s prognosis
from that time point onward. Additionally, the effect of a covariate on 5-year survival
probabilities may not be constant over time. These changes are more prominent than
current statistical models account for, which could lead to the risk of developing less
effective treatment guidelines. Therefore, survival prediction models need to be adap-
ted for long-term outcome prediction in individual patients. Specifically, dynamic pre-
diction models can be used to determine whether a patient will benefit from further
adjuvant systemic therapy or, conversely, whether ET can be discontinued at a certain
time point during FU.

The current nomogram can be applied to postmenopausal, HR+ BC patients un-
dergoing adjuvant ET and have had an axillary lymph node dissection in case of mac-
rometastases. For patients who have had breast-conserving surgery, the model assumes
that the breast was irradiated. The current nomogram also assumes that disease relapse

35



Po
in

ts
0

10
20

30
40

50
60

70
80

Pa
tie

nt
 &

 tu
m

or
ch

ar
ac

te
ris

tic
s

A
ge

 a
t d

ia
gn

os
is

55
65

70
75

77
.5

80
82

.5
85

87
.5

90

E
st

ro
ge

n 
re

ce
pt

or
 s

ta
tu

s
+

−

P
ro

ge
st

er
on

e 
re

ce
pt

or
 s

ta
tu

s
+

−

H
is

to
lo

gi
ca

l g
ra

de
B

R
 I

I
B

R
 I

II

   
B

R
 I

T
um

or
 s

ta
ge

T
1

T
3/

T
4

T
2

N
od

al
 s

ta
ge

N
0

N
0

N
1 

(t
p)

3
1

N
2/

N
3 

(t
p)

3
2.

5
2

1.
5

1
0.

5
0

H
E

R
2 

st
at

us
N

eg
at

iv
e

 
Po

si
tiv

e 
(t

p)
3

2
1

0

T
re

at
m

en
t c

ha
ra

ct
er

is
tic

s

R
ad

io
th

er
ap

y
Y

es

N
o

C
he

m
ot

he
ra

py
Y

es

N
o

M
os

t e
xt

en
si

ve
 s

ur
ge

ry
M

as
te

ct
om

y

B
C

S

T
im

e−
va

ry
in

g 
ch

ar
ac

te
ris

tic
s

L
oc

or
eg

io
na

l r
ec

ur
re

nc
e

N
o

N
o 

L
R

R
Y

es
 (t

p)
3

2.
75

2.
5

2.
25

2
1.

75
1.

5
1.

25
1

0.
75

0.
5

T
re

at
m

en
t s

ta
tu

s
O

n 
tr

ea
tm

en
t

O
ff

 tr
ea

tm
en

t

P
re

di
ct

io
n 

tim
e 

(t
p)

0
0.

5
1

1.
5

2
3

To
ta

l P
oi

nt
s

0
50

10
0

15
0

20
0

25
0

30
0

35
0

40
0

5 
Y

ea
r 

Su
rv

iv
al

 P
ro

ba
bi

lit
y

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
85

0.
9

0.
94

0.
96

Figure 1.6: Nomogram for dynamic prediction of the 5-year survival probability. BR,
Bloom and Richardson; BCS, breast-conserving surgery; tp , prediction time point.
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implies discontinuation of ET from thatmoment onward. In case of disease recurrence,
data on subsequent treatment were not available for all patients; hence, our ability to
draw conclusions for this subgroup is limited. LRR is considered a ‘dynamic’ covariate,
as patients can develop a LRR at any moment during FU. LRR also had ‘time-varying’
properties, as the event of a LRR revealed a changing impact on 5-year DOS at dif-
ferent time points after starting ET. Our findings parallel those of several other stud-
ies, which have shown that early LRRs are predictive of a worse prognosis than late
LRRs 21,32,97,64,91. It can therefore be of major clinical importance to include this factor
in dynamic survival prediction. Moreover, this model could potentially help evaluate
the need for additional adjuvant chemotherapy in case of LRR. Data on the benefit
of additional chemotherapy are still relatively lacking, although the nomogram could
be useful in this setting. The current model also revealed a time-varying relationship
between high nodal stage (N2/3) and 5-year DOS probability. A similar time-varying
effect was shown with regard to 5-year DOS in HER2-positive patients, although no
patients received anti-HER2 treatment. To our knowledge, no prior reports have in-
vestigated the time-varying effects of these two prognostic factors, hence warranting
further investigation. Our dynamic prediction model also accounts for the effect of
early treatment discontinuation for reasons other than BC relapse. Although the effect
of treatment discontinuation did not reach statistical significance, possibly due to the
low number of patients who discontinued treatment within three years (Figure 1.2.A),
we retained this data in our model, as an earlier review revealed the importance of treat-
ment compliance on survival outcomes 1. The number and site(s) of DR are known to
be prognostic for subsequent survival 16,18,85. The dynamic prediction model incorpor-
ates the occurrence of distant metastases, but does not include this in the nomogram
due to insufficient data concerning first site of DR and subsequent treatment. For this
reason, it is not advised to use the dynamic prediction model for patients with distant
metastases as first site of disease recurrence. Internal validation demonstrated that the
model had a good ability to discriminate between patients. To elucidate, internal val-
idation of Adjuvant! showed a c-index of 0.71 for discriminatory accuracy (the ability
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for the model to distinguish patients who will versus those who will not die of BC)
and a predictive accuracy of 0.73 at diagnosis, which is similar to that of our prediction
model61. The predictive accuracy of Adjuvant! ‘after diagnosis’ has not been studied;
in contrast, our dynamic prediction model showed a cross-validated c-index that im-
proved from 0.70 to 0.79 3 years after the start of adjuvant ET. Due to the unavailab-
ility of regular FU data for the entire TEAM trial population, our dynamic prediction
model includes Dutch and Belgian TEAM trial patients only. As shown in Table 1.1,
characteristics of the Dutch trial population differed slightly in comparison to the rest
of the TEAM trial population. These differences depict that patients in current cohort
have a slightly higher disease stage and subsequent variations in treatment. The dy-
namic prediction model is a multivariate model that corrects for each of these variables.
Therefore, inclusion of the entire TEAM trial population in themodel could alter indi-
vidual predictions. Importantly, however, this is not expected to affect the ‘correctness’
of the model, which would only be affected in case of lack of model fit. Of note, one
must also consider that any trial population is not representative of the general BC pop-
ulation as a whole. For this reason, further external validation of the prediction model
is required in greater (non-trial) cohorts to allow for full applicability in the clinical set-
ting. An independent population with adequate FU data for performing an external
validation of the dynamic prediction model was not available at the time of conduct-
ing this study. In summary, the importance of using dynamic prediction models for
clinical guidance, not only at the start of treatment, but also during FU, permits con-
tinuous revision of a patient’s residual mortality risk and can help motivate a patient to
continue treatment, improve compliance, and ultimately improve survival. This proof-
of-principle study demonstrates a novel technique for performing dynamic prediction
of BC survival probabilities over time, enabling amore individualized prediction of the
5-yearDOS in individual patients at various time points during adjuvant ET. Themost
important advantage of thismodel is that it takes into account factors that can influence
an individual patient’s prognosis after some time has passed since starting adjuvant ET.
Notwithstanding the feasibility of our dynamic prediction model, further external val-
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idation with longer FU is necessary to enable implementation in clinical practice.

1.5 Appendix

This appendix provides a more detailed description of the statistical method applied
in this paper. The method builds upon the concept of landmarking, which was intro-
duced by Anderson et al. 11 as a way to deal with time-dependent covariates in survival
analysis in order to avoid immortal timebias. Later vanHouwelingen 92 , vanHouwelin-
gen & Putter 94,95 proposed to use landmarking for dynamic prediction of the survival
probability with time-dependent covariates.

1.5.1 Dynamic prediction using landmarking

The idea behind landmarking is to select a point in time s known as a landmark. By
only selecting subjects at risk at s a landmark data set is constructed, which can be seen
as imposing artificial left-truncation at time s. In addition, we can also select a predic-
tion window ω and impose artificial right-censoring at time s + ω (Figure 1.7). For a
time-dependent covariate Z(t), such as distant recurrence, the current value Z(s) at
s is used. Here distant recurrence was included as a indicator function for whether or
not distant metastases had been detected. The resulting landmark data can be analysed
using standard methods such as Kaplan-Meier or Cox regression using Z(s) as a time-
constant covariate.

Start Landmark

︸ ︷︷ ︸
Prediction window

-
0 s s+ ω Time

Figure 1.7: Time line illustrating the idea behind dynamic prediction using landmark-
ing.
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Using a Cox proportional hazards model implies that the hazard, i.e. the instantan-
eous risk of dying, is given by

λ(t|Z(s), s) = λ0(t|s) exp
(
β(s)⊤Z(s)

)
,

whereλ0(t|s) is the baseline hazard given survival up until time s. The proportionality
factor

exp
(
β(s)⊤Z(s)

)
depends on the covariates fixed at their current value at the landmark time Z(s) and
their effect β(s). Themodel can be fitted with standard software to obtain estimates of
λ0(t|s) and β(s). We can then use the estimates to predict the conditional probability
of surviving ω more years after time s, for a new subject with covariate values Z∗(s).
To this end, we can use the relation between the survival- and hazard function

S(t|Z∗(s), s) = exp
(
−
∫ s+ω

s
λ(u|Z∗(s), s)du

)
. (1.1)

The prediction are obtained by plugging in the estimated hazard function

λ̂(t|Z∗(s), s) = λ̂0(t|s) exp
(
β̂(s)⊤Z∗(s)

)
.

Thismethod can be applied for one or for several landmark times. However, in order to
be able to predict survival for any time between start and up to some natural limit (we
cannot predict beyond end of follow-up), we can use a landmark super model instead.

1.5.2 Landmark super models

The general idea of the landmark super model is to select not just one, but several land-
mark time points {s1, . . . , sK}. For each of these landmark times a landmark data set
is created, as described above, by imposing left-truncation and right-censoring. TheK
data sets are then stacked into a super landmark data set. This is similar to longitudinal
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survival data, where a subject can contribute with several observations.

For the landmark super model for the TEAM data we used a Cox proportional haz-
ards model

λ(t|Z(s), s) = λ0(t) exp
(
θ(s)β(s)⊤Z(s)

)
,

where θ(s) is a function of s, which describes how the baseline changes over the land-
mark time. Similarly, β(s) is a vector of functions that describes changes in the covari-
ates’ effect. We chose to use smooth parametric functions such as

θ(s) = θ0s+ θ1s
2 ,

whereθ0 andθ1 areparameters tobe estimated. With this choice of function thebaseline
hazard is allowed to vary non-linearly across landmark time. The interpretation of the
parameter functions β(s) in the supermodel is comparable to the interpretation in the
traditional Coxmodel; the effect of the covariatesworksmultiplicatively on the baseline
hazard.

In order to find a suitablemodel for theTEAMdatawewent through amodel build-
ing process. The first step of the process was to select covariates that were known to be
predictors of overall survival. In the second step we investigated whether any of these
covariates had ( landmark ) time-varying effects by allowing them to be non-linear. A
model including all covariates was therefore fitted, where all covariate effects were of
the form

β(s) = β0 + β1s+ β2s
2 ,

where β0, β1 and β2 are parameters. Amodel selection procedure was then carried out
in two steps: In each one a backward selection was used to decide in which order to
remove terms. In the first step the quadratic time interactions were tested, i.e. for each
covariate the hypothesis β2 = 0 was tested. Nonsignificant quadratic interactions, at
the 5% level, were removed. In the second step all linear interactions, β1 = 0, were
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tested, but only if the quadratic time interaction was removed in the first step. The
resulting model is then what is presented in the paper. It was decided to also retain cov-
ariates for which the effect was not significant, because they are known to be important
predictors.

Once the model had been finalized, we obtained predictions of the survival probab-
ility for any time s, between s1 and sK , using the same formula as before (1.1). The
stacked landmark data set contain repeated observations on the same subjects and to ac-
count for this one can use the robust sandwich estimator 59 to estimate the variance. In
summary, the difference between the landmark super model and having separate mod-
els for each selected landmark is that we can predict at any time between s1 and sK ,
and not just at those exact times. This is due to the fact that the super model assumes a
structure for how the hazard and the covariate effects change with s.
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2
Dynamic prediction of

cumulative incidence functions

In recent years there have been a series of advances in the field of dynamic pre-
diction. Among those is the development of methods for dynamic prediction of the
cumulative incidence function in a competing risk setting. These models enable the
predictions to be updated as time progresses and more information becomes available,
e.g. when a patient comes back for a follow-up visit after completing a year of treatment,
the risk of death and adverse events may have changed since treatment initiation.

One approach to model the cumulative incidence function in competing risks is by
direct binomial regression, where right censoring of the event times is handled by in-
verse probability of censoring weights. We extend the approach by combining it with
landmarking to enable dynamic prediction of the cumulative incidence function. The
proposed models are very flexible, as they allow the covariates to have complex time-
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varying effects, and we illustrate how to investigate possible time-varying structures
using Wald tests. The models are fitted using generalized estimating equations. The
method is applied to bone marrow transplant data and the performance is investigated
in a simulation study.

2.1 Introduction

In competing risks subjects are at risk of experiencing multiple events. Usually one
event is of particular interest, however due to the competing events the event of interest
is not always observed. An example of competing risks comes from stem cell transplant-
ations, where treatment failure after hematopoietic stem cell transplantation (HSCT)
is defined as relapse or as death without a prior relapse, which is called non-relapse mor-
tality. For these patients it is important to be able to correctly assess their risk of for
instance relapse after the transplant. The risk is expressed in terms of the cumulative
incidence function (CIF), which is the probability of experiencing a particular event
before a certain time point.

When the objective is to predict the CIFs, a number of methods are available; either
indirectly through modelling all the cause-specific hazards or directly by modelling the
sub-distribution hazard 29, by employing pseudo-observations 53 or by direct binomial
regression (DBR) 83. The effect that a covariate has on the cause-specific hazard of in-
terest may be very different from the direct effect that it has on the CIF, since the direct
effect is also influenced by the cause-specific hazards of the competing events72.

In recent years there have been a series of advances in extending these methods to
dynamic prediction of the CIF. Nicolaie et al. extended the cause-specific hazards65

and the pseudo-observation approach66. These models enable the predictions to be
updated as time progresses andmore information becomes available. Take for example
a patient that has received aHSCT.TheCIFof relapsemay look very different right after
the transplant compared to one year later, when the patient comes back for follow-up
without having experienced any events yet. The change in the CIFs may be explained
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by a change in the patient’s covariates or by a change in the effect of the covariates. The
dynamic CIF, as a function of s and t, is defined as the probability of experiencing a
particular event before a certain time point t, given that the patient did not experience
any event before time s < t and given the information that is available at time s 19.

Here we extend theDBR approach tomodel the dynamic CIF by combining it with
landmarking92,95. DBR uses inverse probability of censoring weights to account for
right-censoring, where the idea is to let subjectswith an event represent those thatwhere
censored by giving them an appropriate weight in the estimation. Grøn & Gerds 42

gives a nice introduction to DBR and the estimation procedure. The idea of landmark-
ing is to take a snapshot of the data at a selected time point during follow-up, a so-called
landmark. Only individuals that are still at risk (event-free and under follow-up) at the
landmark are used for the analysis. The model can then be used to predict the CIF
conditional on being event-free up until the landmark time. We can also select a set of
landmarks and use each snapshot to fit a separate model to predict the CIF at differ-
ent landmarks during follow-up. Alternatively, we can combine the snapshot data and
fit one model. The models are estimated by generalised estimating equations (GEE) 58,
and can be fitted with standard software once an extended data set has been created
from the different snapshots. The models are very flexible as they in principle allow
the covariates to have complex time-varying effects. In practice more parsimonious rep-
resentations will be desirable and we discuss ways to navigate through possible model
structures.

The method is described in Section 2.2, where we describe the basic idea of the in-
verse probability of censoring weights, discuss different models and the corresponding
estimation procedures. The situation with only one landmark is described in Section
2.2.1 and the setting with several landmarks is described in Section 2.2.2. The perform-
ance of the method is investigated in a simulation study in Section 2.3 and compared
to pseudo-observations. In Section 2.4 we illustrate the method using data from the
European Society for Bone andMarrow Transplantation and we end with a discussion
in Section 2.5.
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2.2 Method

Let T denote the event time and ϵ ∈ {1, . . . , J} the competing event type indicator.
For ease of notation and without loss of generality we focus on predicting event 1. The
dynamic CIF of event 1 is defined as the probability of experiencing the event before
time t, given no events before time s and possibly conditional on some covariatesX ,

p(t|s,X) = P(T ≤ t, ϵ = 1|T > s,X) .

The probability can be reformulated in terms of the counting process for event 1

N(t) = I(T ≤ t, ϵ = 1) ,

since E(N(t)|T > s,X) = p(t|s,X). For a fixed t, and without censoring, the
responseN(t) is a Bernoulli variable. Hence, ordinarymethods for analysing binomial
responses can be applied and Nicolaie et al. 66 show how to derive the score equations
in this particular setting. In the presence of right-censoring C the counting process
may be incompletely observed. Instead we observe T̃ = min(T,C) and ϵ∆ or in
counting process notation we observeN(t)∆, where∆ = I(T ≤ C) is the indicator
of no censoring. DBR makes use of inverse probability of censoring weights to deal
with right-censoring, while still using the score equations used in ordinary binomial
regression. Let G(t|T > s,X) = P (C > t|T > s,X) denote the conditional
probability of being without censoring at t given alive at time s. We can now define the
weighted response as

N̂(t|s) = N(t)∆

G(T − |T > s,X)
. (2.1)

In principle N̂(t|s) depends onG andX , but this is suppressed in the notation. Fur-
thermore, it is 0 for censored subjects and those that have already experienced a com-
peting event, but it is ≥ 1 for subjects that have experienced event 1. So subjects that
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at a time t have experienced event 1 are given more weight, because they also have to
represent the individuals that have been censored.

Under the assumption that (T, ϵ) is independent ofC conditional on the covariates
X , it then follows that the weighted response has the same conditional mean asN(t),
that is

E
(

N(t)∆
G(T−|T>s,X)

∣∣∣T > s,X
)

= E
(
E
(

N(t)∆
G(T−|T>s,X)

∣∣∣T > s,X, T, ϵ
)∣∣∣T > s,X

)
= E

(
N(t)

G(T−|T>s,X)E (∆|T > s,X, T, ϵ)
∣∣∣T > s,X

)
= E (N(t)|T > s,X) .

The first equality follows by the law of nested conditional expectations. The second
and third line are consequences of the assumptions of conditional independence, which
gives that

P(T ≤ C|T > s,X, T = t, ϵ) = P(C > t|T > s,X) = G(t|T > s,X) .

This property leads to the idea of using the weighted response to fit models for the
dynamic CIF p(t|s), since N̂(t|s) can be calculated for all subjects, whereas N(t) is
incomplete for some. In practice we will have to estimate G and thereby replacing G
with Ĝ in (2.1). Depending on the assumptions either theKaplan-Meier or aCoxmodel
could be used.

2.2.1 Regression models for a fixed landmark

In this section we will show how to fit models for one fixed time point s, a so-called
landmark. The observed data are

(
T̃i, ϵi,∆i,Xi(t)

)
for i = 1, · · · , n, where X(t)
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are possibly time-varying covariates that are assumed to be continuously observed until
T̃i. After selecting a landmark s ≥ 0, we select the subjects that are still at risk at s.
Time-varying covariates are fixed at their value X(s) at s and they enter the model as
time-constant covariates. The following is then completely parallel to the setting in
Scheike et al. 83 .

Models

A very general nonparametric model for the dynamic CIF can be written as

p
(
t|s,Xi(s)

)
= h−1

(
α(s, t), β(s, t),Xi(s)

)
,

where h is a known link-function, α represents the time-varying baseline effect and β

the time-varying effects of Xi(s) over t. The model is called nonparametric, because
the baseline and the covariate effects are unspecified functions of t. We will focus on
slightly less generalmodels withmore structure, i.e. a nonparametricmodel of the form

h
(
p
(
t|s,Xi(s)

))
= α(s, t) + β(s, t)⊤Xi(s) , (2.2)

and a semi-parametric model of the form

h
(
p
(
t|s,Xi(s),Zi(s)

))
= α(s, t) + β(s, t)⊤Xi(s) + γ(s)⊤Zi(s) . (2.3)

Some covariates Xi(t) have time-varying effects, either parametric or nonparametric,
and other covariates Zi(t) have constant effects γ(s). Special cases of (2.3) includes
the partly parametric additive risk model60, with link h−1(x) = 1 − exp(−x), and
the Fine&Gray model, with a complementary log-log link and time-constant covariate
effects. With a logit link the covariate effects are log odds ratios, where the odds are
the ratio of the cumulative incidence and one minus the cumulative incidence. With
a log link the covariate effects are log risk ratios, where the risk ratio is the ratio of the
cumulative incidences. Some concern has been raised about the interpretation of the
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parameterswhen either the complementary log-log or the logit is used as link function 33.
The question of how to interpret the parameters are further discussed in Section 2.5.

Estimation

In order to estimate the parameters in the models we need to select a set of time points
t1, · · · , tM for t, that are larger than s. One choice is the exhaustive set, which contains
all event times of event type 1. Another choice would be to use a smaller set of time
points based on either a set of equally spaced time points or a set based on the quantiles
in the event time distribution. In practicewewould recommend to use the latter, which
is alsomore convenient for large data sets withmany events. For all the t’s in the chosen
set, the weighted response N̂i(t|s) is calculated for each of the ns subjects that were at
risk at time s. The data are thereby expanded to ns × M observations, which can be
used to fit either the nonparametric or semi-parametric models using GEE. Let N̂is =

[N̂i(t1|s), . . . , N̂i(tM |s)]⊤ denote the vector of stacked weighted responses and let
Xis denote the correspondingmodelmatrix including the intercept. We can formulate
the nonparametric model in (2.2) in matrix format as

pis = E
(
N̂is

∣∣Ti > s,Xis

)
= h−1

(
Xisθ

)
,

where θ is a vector of parameters forα(s, t) and β(s, t) at every time point t1, . . . , tM .
Let Rs denote the index of the subjects at risk at time s. The estimator θ̂ is found as
the solution to the GEE

U(θ, Ĝ)(s) =
∑

i∈Rs
D⊤

isV
−1
is

(
N̂is − pis

)
= 0 , (2.4)

where D⊤
is = ∂

∂θpis. If the response was known, choosing Vis to be the variance of
the response, would yield the estimator with the smallest variance. When G has to be
estimated it turns out to be difficult to derive what an efficient choice ofVis should be.
Later we will consider models with logit link functions and Vis = pis(1 − pis), i.e.
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the variance of a binomial response. For this particular choice, the weights D⊤
i V

−1
is

reduces toXis and it follows that the GEE reduces to

U(θ, Ĝ)(tm, s) =
∑

i∈Rs
Xi(s)

(
N̂i(tm|s)− p

(
tm|s,Xi(s)

))
= 0 ,

form = 1, . . . ,M . Hence, the parameters in the nonparametric model can be estim-
ated by solvingM separate equations with this choice of link and variance.

The variance of θ̂ may be estimated by a sandwich type variance estimator, which is
discussed later in Section 2.2.2 in the more general context with several landmarks.

For early time points theremay be too few or no events to be able to obtain estimates
in the nonparametricmodels. This situation is known as separation andwewill address
it later in the discussion. However, one simple way to avoid this is to choose t1 large
enough.

The semi-parametric model in Equation (2.3) can be formulated in matrix format as

pis = E
(
N̂is

∣∣Ti > s,Xis,Zis

)
= h−1

(
Xisθ +Zisγ

)
.

For the semi-parametric models the constant covariate effects γ may be estimated by
solving

U(θ, γ, Ĝ)(s) =
∑

i∈Rs
D⊤

isV
−1
is

(
N̂is − pis

)
= 0 . (2.5)

Under the assumption of conditional independence between (T, ϵ) andC given the
covariatesX , and a correctly specified model for the mean, the GEEs in (2.4) and (2.5)
lead to consistent estimators 83.

2.2.2 Regression models for several landmarks

It is straightforward to extend the models above to not only be a function of t, but
also of the landmark time s. What we need is to select a set of landmark points 0 ≤
s1, · · · , sL. For each of these landmarks we select the subjects at risk and fix the time-
varying covariates as described above. The data are thereby expanded over each valid
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β(s, t)

γ(s) + η(t)

γ(s) η(t)

βConstant

Constant in t or s

Additive

Saturated

1

L orM

L+M − 1

K

Figure 2.1: Model selection scheme. The number of parameters is indicated on the
right side.

combination of s and t and is now of size
∑L

l=1 nl × Ml, where nl is the number of
subjects at risk at sl and Ml is the number of t’s which are larger than sl. The total
number of valid time point combinations of s and t isK =

∑L
l=1Ml.

The nonparametric model for the dynamic CIF can be written as in Equation (2.2),
but now α and β are unspecified functions of s and t. For the semi-parametric models
there are more options, which we will now discuss.

Model selection

Although the nonparametric model is very flexible, in practice we would like to search
formore parsimoniousmodels. One approach is to follow a backward selection scheme.
For simplicity, consider a setting with only one covariate. A backward selection scheme
for this setting is illustrated in Figure 2.1. In accordance with common practice the
baseline is kept nonparametric throughout themodel selection scheme. In the first step
a nonparametric model is fitted (Saturated). In this model the covariate effect can be
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divided into a constant effect, an additive contribution from s and t, and an interaction
effect between s and t,

β(s, t) = γ(s) + η(t) + δ(s, t) .

We propose to first test if the interaction term δ(s, t) = 0 using a Wald test over the
selected grid of s and t. If it is found non-significant (p-value ≥ 0.05) we then move
on to fit an additivemodel and test whether the additive effects of s and t are significant
(p-value< 0.05).

InWynant&Abrahamowicz 100 they found in their simulations that backward selec-
tion worked well in survival analysis. Both in terms of detecting real effects, removing
spurious ones, as well as providing reliable inference. However, they also warn that a
nonlinear effect of a continuous covariate may create a spurious time-varying effect. In
addition, it is recommended to split the sample, if the data are large enough, to ensure
that the inference in the final model is reliable.

Estimation

Let pi = [p⊤
is1

, . . . ,p⊤
isL

]⊤ denoted the vector of conditional probabilities and let
Xi denote the corresponding model matrix. The nonparametric model can then be
formulated in matrix format as

pi = h−1
(
Xiθ

)
,

where θ is a vector of parameters for α(s, t) and β(s, t) at every valid time point com-
bination. The GEE for estimation of θ in the nonparametric model with several land-
marks is given by

U(θ, Ĝ) =
∑n

i=1Ui =
∑n

i=1D
⊤
i V

−1
i

(
N̂i − pi

)
= 0 ,
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where D⊤
i = ∂

∂θpi. The variance of θ̂ may be estimated by the sandwich estimator,
which is obtained by replacing θ with θ̂ in

I−1
(

1
n

∑n
i=1UiU

⊤
i

)
I−1 ,

where
I = 1

n

∑n
i=1D

⊤
i V

−1
i Di .

However, since we condition on subjects being alive, we have to assume working in-
dependence between observations at different landmarks 56. In addition, this variance
estimator does not account for the uncertainty that arises from estimatingG. However,
in a simulation study in Grøn & Gerds 42 the performance of the naive variance estim-
ate and a bootstrap variance estimate was investigated and it was concluded that they
were comparable.

Consider now a semi-parametric model where all the covariates have additive time-
varying effects. We can write it in the matrix form

pi = h−1
(
Xiθ

)
.

whereXi is the covariate matrix and θ is the vector of parameters for the baseline and
the additive effects for the valid combinations of s and t. The interaction effect between
the landmark time and the covariate [γ(sl)]Ll=1 may be estimated by solving

U(θ, Ĝ)(sl) =
∑

i∈R(sl)

M∑
m=1

D⊤
i (tm, sl)V

−1
i (tm, sl)

(
N̂i(tm|sl)− p

(
tm|sl,Xi(sl)

))
= 0 ,

for l = 1, . . . , L and D⊤
i = ∂

∂γpi. Similar we can write the GEE for the interaction

53



effect with time t, [η(tm)]Mm=1, as

U(θ, Ĝ)(tm) =
L∑
l=1

∑
i∈R(sl)

D⊤
i (tm, sl)V

−1
i (tm, sl)

(
N̂i(tm|sl)− p

(
tm|sl,Xi(sl)

))
= 0 ,

form = 1, . . . ,M andD⊤
i = ∂

∂ηpi.

Once the data have been extended it is straightforward to fit the GEE with standard
software. We used the R package geepack45.

Prediction

After deciding on a suitable model and fitting it we can use it to make dynamic predic-
tions. Say we decided on a semi-parametric model with a logit link function, where
some covariatesXi(t) have a nonparametric effect β(s, t) and someZi(t) have a semi-
parametric effect η(t) that only varies with t. Predictions, for a given set of covariates
and time points s < t, can be obtained by plugging the parameter estimates into the
model

p̂
(
t|s,Xi(s),Zi(s)

)
=

(
1+exp

(
−
(
α̂(s, t)+β̂(s, t)⊤Xi(s)+η̂(t)⊤Zi(s)

)))−1

.

We can also obtain predictions for a grid of time points simultaneously

p̂i =

(
1 + exp

(
−
(
Xiθ̂

)))−1

,

whereXi is the appropriate model matrix and θ a vector of parameters. Since the prob-
ability is a continuously differentiable function of the parameters, the delta method
may in principle be used to obtain standard errors of p̂i from the variance matrix of θ̂.
We prefer to construct the confidence intervals from the linear predictorXiθ̂, leading
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to (
1 + exp

(
−
(
Xiθ̂ ± 1.96σ̂

)))−1

,

where σ̂2 is the estimate of thediagonal of the variancematrixVar(Xiθ̂) = XiVar(θ̂)X⊤
i ,

which can be calculated from the sandwich estimator.

2.3 Simulations

The performance of the method was investigated through simulations. The objectives
were to investigate the finite sampleproperties of the estimator in termsofbias, coverage
rate and root mean square error (RMSE), along with the performance of the Wald test.

Setup

The simulation study considers a setting with two competing events 1 and 2, and one
covariateX with two levels 0 and 1. In the following we will choose the CIFs such that
the true effect of the covariate β(s, t) can be calculated explicitly. ForX = 0, the true
CIF for event ϵ is given by

pϵ(t|X = 0) =
λϵ

λ1 + λ2

(
1− exp (−(λ1 + λ2)t

κ)

)
for ϵ = 1, 2, (2.6)

which is a Weibull type CIF with parameters λ1, λ2 and κ > 0. Let logit(p) =

log( p
1−p) and let expit be the inverse of the logit function. ForX = 1, the true CIF for

event 1 is given by

p1(t|X = 1) = expit
(
logit

(
p1(t|X = 0)

)
+ β(0, t)

)
,

where β(0, t) defines the time-varying effect of X . The true CIF for event 2 has the
same form as Equation (2.6), but with λ1 replaced with limt→∞ exp(β(0, t))λ1 and
limt→∞ p1(t|X = x) + p2(t|X = x) = 1. For suitable choices of β(0, t) this setup
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will yield valid cumulative incidence curves forX = 1. The true dynamic CIF can be
calculated from the relation to the CIF

pϵ(t|s,X) =
pϵ(t|X)− pϵ(s|X)

1− p1(s|X)− p2(s|X)
.

This allows us to explicitly calculate the true time-varying covariate effect as

β(s, t) = logit
(
p1(t|s,X = 1)

)
− logit

(
p1(t|s,X = 0)

)
.

Note that the dynamic CIF for event 1 has a nice form forX = 0, that is

p1(t|s,X = 0) =
λϵ

λ1 + λ2

(
1− exp

(
− (λ1 + λ2)(t

κ − sκ)
))

,

but unfortunately the expression for p1(t|s,X = 1) does not in general reduce to a
nice formula.

It was straightforward to simulate data in this setup. For subject i, we first drew xi

with equal probability from {0, 1}. Then a u was drawn from a uniform distribution
on 0 to 1. If u ≤ limt→∞ p1(t|xi) then the event type ϵi was set to 1 and otherwise 2.
The event time ti was obtain as the t for which

u =

{
p1(t|xi) if ϵi = 1

p2(t|xi) + limt→∞
λ1 expβ(0,t)xi

λ1 expβ(0,t)xi+λ2
if ϵi = 2

. (2.7)

Two scenarios were investigated, both with λ1 = 0.4, λ2 = 0.6 and κ = 1. In
scenario 1 the covariate had no effect, i.e. β(0, t) = 0. In scenario 2, the covariate had
an increasing effect over time t, which for s = 0 was given by β(0, t) = 2expit(t) −
1. The baseline (blue lines) and time-varying effect (red lines) of x in scenario 2 are
depicted in the left graph in Figure 2.2. The right graph shows the corresponding CIF.

Three censoring schemeswhere considered. In the first scheme, censoringwas gener-
ated fromauniformdistribution on1 to2.5. In the other two, censoringwas generated
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Figure 2.2: The left graph shows the true baseline α(s, t) (blue lines, x = 0) and
time-varying effect β(s, t) of the covariate (red lines, x = 1) in scenario 2 at different
time points s during follow-up. The right graph show the corresponding CIF for each
level of x.

from exponential distributions, where the distribution used in the latter depended on
the covariate X. This led to censoring of around 19%, 40% and 45% of the event times
in scenario2. Themethodwas evaluated in each scenariousing a sample of500, 1000or
2000 subjectswith a total of1000 simulated studies. Themethodwas also compared to
pseudo-observations in scenario 2 with 40% censoring and 45% covariate dependent
censoring.
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Evaluation

For each simulated data set a saturated nonparametric model with a logit link function
was fitted for event 1

logit(p1(t|X)) = α(s, t) + β(s, t)X .

For s the landmarks were set at 0, 0.25, 0.5, 0.75, 1 and for t the time points were set
at 0.2, 0.4 . . . , 1.8. Working independence was used for the correlation matrix. The
weights in theGEEwere set to be the inverse of the binomial variance and the censoring
survival functionGwas estimated using a Kaplan-Meier estimate at every landmark.

To evaluate the performance of the estimators we calculated the bias, RMSE and
coverage rate for both the baselineα(s, t), covariate effect β(s, t) and dynamic CIF for
event 1.

The Wald test was evaluated by looking at the type I error rate under the null hypo-
thesis. To this end, we only looked at the simulations from scenario 1with 19% censor-
ing, where the covariate did not have an effect on the CIF of event 1. In the saturated
model the percentage of rejections of the interaction term δ(s, t) = 0 were calculated.
Furthermore, an additive model were fitted

logit(p1(t|X)) = α(s, t) +
(
γ(s) + η(t)

)
X ,

and the percentage of rejections of time constant effects γ(s) = γ or η(t) = η were
calculated.

Results

The bias of the estimated baseline and the covariate effect for scenario 2with 19% cen-
soring are given in Figure 2.3. The time points that are closer to the landmarks in general
showedmore bias due to fewer events, in particular for the baseline. However, the bias
decreased with increasing sample size and it disappeared on the probability scale, see
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Figure 2.4. It is therefore less of an issue for prediction purposes, however for model
selection it could be an issue.

The coverage ratewas in general very close to the nominal 95% (Figure 2.5). The sim-
ulation study also showed that the small sample bias of the covariate effect in scenario 1
was smaller than in scenario 2, but the bias of the baseline estimates was similar in both
scenarios. Both coverage rate and RMSE in scenario 1were similar to those in scenario
2. Furthermore, the method performed similarly in the case with and without censor-
ing in both scenarios. In addition, the simulations showed that the bias was larger for
time points that were not included in the model fitting. This confirms the importance
of carefully selecting the time points. In the simulation study, the landmarks and time
points for t were chosen to be the same for every simulated data set in order to make
the comparisonmore straightforward. This, however, gave rise to overparametrization
for some data sets if there were no events between two selected time points. An altern-
ative would have been to select the landmarks and time points for t based on the event
times of each data set. In practise, it is recommended to select time points such that
least one event is present between any two selected time points. This point also carries
over to the evaluation of the Wald test shown in Table 2.1. Under the null we would
expect the number of rejections to be around 0.05, however in the saturatedmodel the
Wald test performs poorly due to the problems with overparametrization in some sim-
ulations. However, the Wald test performs well when testing for time constant effects
in the additive model.

Going from 19% to 40% censoring or 45% covariate dependent censoring in scen-
ario 2 only lead to small changes. The bias of the estimated parameters and the dynamic
CIF decreased (Figures 2.4-2.6), while the RMSE of the parameters increased. The cov-
erage rate of the parameters decreased with 40% censoring, but showed a slight con-
servatism for later time points t with 45% covariate dependent censoring. The lack of
difference between the censoring schemes may be due to a benefit from being better at
determining the censoring distribution with increased censoring.

Figure 2.6 shows the bias of the dynamicCIF of the proposedmethod versus pseudo-
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Figure 2.3: Bias (dots) of the estimated baseline parameters (first column) and
covariate effect (second column) for event 1 in scenario 2 with 19% censoring. The
bias is calculated based on samples with either 500 (first row) or 1000 (second row)
subjects. The bias was evaluated at the same time points which were used to fit the
models. The lines indicate which points come from the same landmark time s.
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Figure 2.4: Bias (dots) of the estimated dynamic CIF for X = 0 (first column) and
X = 1 (second column) for event 1 in scenario 2 with 19% censoring. The bias is
calculated based on samples with either 500 (first row) or 1000 (second row) subjects.
The bias was evaluated at the same time points which were used to fit the models.
The lines indicate which points come from the same landmark time s.
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Figure 2.5: Coverage rates of the 95% confidence intervals (dots) of the estimated
baseline parameters (first column) and covariate effect (second column) for event 1 in
scenario 2 with 19% censoring. The coverage rate is calculated based on samples with
either 500 (first row) or 1000 (second row) subjects. The coverage rate was evaluated
at the same time points which were used to fit the models. The lines indicate which
points come from the same landmark time s.
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Table 2.1: The percentage of simulations where the null hypothesis was rejected in
Scenario 1 with 19% censoring. The percentage is calculated for different models
and tests, based on different sample sizes. The number of simulations used in the
evaluation differs since the simulations which yielded a singular variance matrix were
excluded.

Model Test n Number of simulations % of rejections

Saturated δ(s, t) = 0
500 899 0.593
1000 918 0.231
2000 864 0.084

Additive

γ(s) = γ
500 1000 0.048
1000 1000 0.051
2000 1000 0.045

η(t) = η
500 995 0.060
1000 1000 0.061
2000 1000 0.051

observations. In general, there was not much difference between the methods in scen-
ario 2 with 40% censoring. However, with 45% covariate dependent censoring the
pseudo-observations yielded large biases as expected.

2.4 Application

The method was applied to data from the European Society for Blood and Marrow
Transplantation (EBMT). The data consisted of 5582 chronic myeloid leukaemia pa-
tients that received allogeneic stem cell transplantation. The two competing events
are relapse and non-relapse mortality (NRM). The number of observed transitions to
either relapse or NRM are shown in Figure 2.7. Covariates included year of stem cell
transplantation (1997 − 2003, centred at 2000) and the EBMT risk score (low, me-
dium, high), which is a prognostic index based on covariates measured at baseline. In
addition, presence of low (grade≤ 2) or high (grade≥ 3) grade acute graft versus host
disease (AGVHD), were included as time-varying covariates.
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Figure 2.6: Bias (dots) of the estimated dynamic CIF for X = 0 for event 1 in
scenario 2 with sample size 1000 and either 40% censoring (first column) or 45%
covariate dependent censoring (second column). The bias is calculated using either
DBR (first row) or pseudo-observations (second row). The bias was evaluated at the
same time points which were used to fit the models. The lines indicate which points
come from the same landmark time s.
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Transplant
(5582)

Relapse (1397)

NRM (1679)

Figure 2.7: Competing risk model for the HSCT patients. The number of observed
events are given along the arrows.

Only the results related to relapse are shown, but NRM was modelled analogously.
We started with a saturated model with nonparametric effects for all covariates. We
then followed the model selection scheme described in Section 2.2.2. The baseline was
kept nonparametric throughout and a p-value of 0.05was considered significant. Each
covariatewas tested separately for interactions between s and t (δ(s, t) = 0). The signi-
ficant covariates were kept nonparametric and non-significant covariates were assumed
to have additive effects. In the next model, each covariate with an additive effect was
again tested separately for having a constant effect over s or t ( γ(s) = γ or η(t) = η).
The covariates that were non-significant were given a time-constant effect over s or t
in the following model. The models were fitted with a logit link. The GEE weights
were set to the inverse of the binomial variance and working independence was used
for the correlation matrix. Landmarks were fixed at 0, 2, 4, 6, 8, 10 and 12 months
after transplant. For t a set of quantiles in the range from the first event of relapse to
6 years after transplantation were selected, i.e. at month 5, 7, 10, 13, 17, 22, 28, 37, 49
and 70. A Kaplan-Meier curve was fitted at every landmark to estimate the censoring
weights. After following the model selection scheme we obtained Model 1

logit
(
prelapse

(
t|s,X(s)

))
= α(s, t) + ηyear(t)Xyear

+ γrisk score medium(s)Xrisk score medium

+
(
γrisk score high(s) + ηrisk score high(t)

)
Xrisk score high

+ γAGVHD low(s)XAGVHD low(s)

+ βAGVHD high(s, t)XAGVHD high(s) .
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Year of stem cell transplantation Xyear was found to have a time-varying effect over t.
High risk score had an additive time-varying effect. Medium risk score and presence
of low AGVHD had a time-varying effect over s. Presence of high AGVHD had a sat-
urated time-varying effect. A second model ( Model 2 ) was fitted with the same struc-
ture asModel 1, but where the covariates’ time-varying effect was replaced by quadratic
functions of s and t, i.e. ηyear(t)was replaced by ηyear,0 + ηyear,1t+ ηyear,2t

2 etc.

The estimatedbaseline (first column) and effect of amediumorhigh risk score (second
and third column) are shown in Figure 2.8, both from Model 1 (circles) and Model 2
(lines) for landmarks at 0 and 12months. Overall the two models are in agreement, al-
though a closer look at the standard errors revealed thatModel 2 in general had smaller
confidence intervals. The effects of medium and high risk scores were strictly positive,
which means that these groups have a larger CIF of relapse than the group with a low
risk score. Looking at a fixed landmark, the effect of a high risk score initially decreases
over t, but then seems to become constant. This directly implies that the CIF for a high
risk score increases more steeply than with low or medium risk scores. For a fixed t the
effects of risk score generally decreased over landmark time.

Figure 2.9 shows the predicted CIF for relapse, where year of stem cell transplanta-
tion is fixed at 2003. Since AGVHD only occurs after the transplant there is only one
curve in the first row, corresponding to no presence of AGVHD at landmark 0. In the
bottom row, the curves start at 12 months after transplantation, since we here condi-
tion on being alive and without relapse in the first 12 months. The predictions from
the twomodels are very similar, although there seems to be some disagreement for high
risk scores at landmark 12. The CIF for high risk scores increases faster within the first
couple of months, and reaches a higher plateau, than the low and medium risk scores.
In the bottom row we see that the presence of high grade AGVHD at 12months had
the smallest risk of relapse followed by low grade AGVHD. Presence of AGVHD is
an indication, albeit unpleasant and potentially dangerous, that the graft is immunolo-
gically active (graft versus leukaemia effect) and it therefore reduces the risk of relapse,
on the other hand it is also related to an increased risk of NRM. In general, it is useful
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Figure 2.8: Estimated baseline α(s, t) (first column) and effects of the risk score,
γrisk score medium(s) (second column) and γrisk score high(s) + ηrisk score high(t) (third column),
for relapse at s = 0 and 12 months. The circle and error bars represent the estimates
and 95% confidence intervals from Model 1 and the lines represent Model 2.
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to know how a covariate affects all the competing events and not only the event of in-
terest. To this end, it is recommended to fit direct binomial regression models for all
the competing events, as opposed to only fitting a model for the event of interest.

The samedatawere also analysedusing cause-specific hazards65 anddynamic pseudo-
observations66, where the focuswas ondynamic prediction of the cumulative incidence
function at 5 years p(s+5|s,X(s)) for s between zero and one year. We have taken it
a step further by also allowing t to vary. In Figure 2.9 we can see that at s+ 5 the CIFs
have mostly reached a plateau. Hence, the previous analyses of the data only provide
information about the plateaus. With this model we can not only see the differences
in the plateaus among the patient groups, but also that some groups experience relapse
faster than others. Although themethods andmodels are different we can still compare
the predictions, and we found that all three approaches gave similar predictions and
confidence intervals.

2.5 Discussion

Wehave shown how direct binomial regression (DBR) can be extended with landmark-
ing to obtain estimates of the dynamic cumulative incidence function (CIF) in compet-
ing risks. DBRallows for very flexiblemodelling of the dynamicCIF, since it can handle
both time-varying covariates and time-varying effects. The estimated covariate effects
furthermore have a direct relation to the event of interest. The simulations showed that
the method performed well in terms of bias, coverage rate and RMSE in the different
scenarios.

This is a continuationof theworkbyNicolaie et al. 65,66 , where the cause-specific and
pseudo-observation approach was combined with landmarking. The three approaches
differ in a number of ways. First of all is the question of how to interpret the covariate
effects. Although both DBR and the pseudo-observations estimate the direct effect of
the covariates on the event of interest, the interpretation depends on the link function
and not all link functions result in a probabilistic interpretation 33. The estimated ef-
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Figure 2.9: The dynamic cumulative incidence of relapse at s = 0 (first row) and
s = 12 months (second row) for different covariate values. Year of transplant is fixed
at 2003, but risk score (columns) and presences of AGVHD (colours) is varied. The
circle and error bars represent the estimates and 95% confidence intervals from Model
1 and the lines represent Model 2.
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fects in the cause-specific approach always have a probabilistic interpretation, but they
do not directly translate into an effect on the event of interest. Secondly, the pseudo-
observation approach assumes that the censoring time and the event time are independ-
ent, whereas the cause-specific approach and DBR allow them to be independent con-
ditional on the covariates. However, the pseudo-observation approach can bemodified
to relax this assumption 14. Thirdly, the cause-specific approach requires, not only the
event of interest, but also the other competing events to bemodelled in order to obtain
the CIF. On the other hand, DBR and the pseudo-observation approach require the
estimation of either the censoring distribution or a nonparametric estimator of the re-
sponse. The models proposed in this paper can in principle be fitted using both DBR
and pseudo-observations. However, due to the great flexibility of the nonparametric
models, they do not in general enforce CIF’s to be increasing over time t. This is also an
issue without the landmark extension, but it can be remedied by assuming more struc-
ture in the models. Despite the differences between the methods, we found that the
three approaches gave very similar predictions when applied to the EBMT data. The
simulation study furthermore showed that DBR and pseudo-observations performed
similarly when the censoring did not depend on covariates. In conclusion, we would
recommend using DBR, when the main objective is to predict the CIF and the censor-
ing is believed to depend on covariates. However, more research is needed to be able to
give general recommendations.

There are a number of things to consider when using DBR, such as the choice of
link function, whichmodel to use for the censoring distribution andwhich time grid to
select. In the simulations and the applicationwe used a logit link function. The advant-
ages of the logit link function is that it restricts the CIF between 0 and 1, and terms con-
veniently cancel out in theGEE.However, caution in the interpretation of the resulting
odds ratio is needed 33. Using a log link function instead would give a more appropriate
interpretation, but it does not restrict the CIF within its natural boundaries. The log
link function can therefore be unpractical in situations where the objective is to use the
model for prediction. DBR requires the censoring survival distribution to be estimated
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by for example using a Kaplan-Meier or Cox model. One option is to refit the censor-
ing distribution for every landmark, as we did in this paper. Another option would be
to fit just one model for the censoring distribution and then calculate the probability
of censoring conditional on the landmark G(t|s,X) = G(t|X)/G(s|X). When
Kaplan-Meier is used there is no difference, but when covariates are included differ-
ences may occur. We also did not correct the standard errors for the fact that we were
estimating the censoring distribution as it was previously found that corrected standard
errors were very similar to the uncorrected ones42. Care should be taken when select-
ing the time grid in order to avoid overparametrisation, however for semi-parametric
models this is less of a problem. Furthermore, for larger data sets with many events it is
useful to select a time grid that is a subset of the event times. A nonparametric model
with a logit link function can give rise to separation issues at early time points. Separ-
ation occurs when a linear combination of the covariates is able to fully separate cases
from non-cases. This will for example be the case if there is one group that has events
much later than the other groups. Heinze & Schemper 46 showed that Firth correction
can be used to overcome separation in ordinary logistic regression by removing bias in
the coefficients, but it introduces bias in the predicted probabilities. Recently, Puhr
et al. 71 introduced two ways of obtaining accurate estimates of both the coefficients
and predicted probabilities using Firth correction. These approaches could potentially
be incorporated into our setting, but a straightforward alternative would be to simply
not use combinations of time points in the fitting procedure for which separation will
occur, which is generally when t is close to s.
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3
Dynamic prediction of
expected length of stay

Inmulti-statemodels the expected length of stay (ELOS) in a state is not a straight-
forward object to relate to covariates and the traditional approach has instead been to
construct regressionmodels for the transition intensities and calculate ELOS fromthese.
The disadvantage of this approach is that the effect of covariates on the intensities is not
easily translated into the effect on ELOS and it typically relies on the Markov assump-
tion.

We propose to use pseudo-observations to construct regression models for ELOS,
thereby allowing adirect interpretationof covariate effects, while at the same time avoid-
ing theMarkov assumption. For this approach, all we need is a non-parametric consist-
ent estimator for ELOS. For every subject (and for every state of interest) a pseudo-ob-
servation is constructed and they are then used as outcome variables in the regression
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model. We furthermore show how to construct longitudinal (pseudo-) data when com-
bining the concept of pseudo-observations with landmarking. In doing so, covariates
are allowed to be time-varying and we can investigate potential time-varying effects of
the covariates. The models can be fitted using generalized estimating equations (GEE)
and dependence between observations on the same subject are handled by applying
the sandwich estimator. The method is illustrated using data from the US Health and
Retirement Study where the impact of socioeconomic factors on ELOS in health and
disability is explored. Finally, we investigate the performance of our approach under
different degrees of left-truncation, non-Markovianity and right-censoring by means
of simulation.

3.1 Introduction

Over the 20th century, from the 1920’s onward, the life expectancy of humans has in-
creased an incredible 2.5 years every decade68. The increase has been remarkably steady
with no signs as yet that this trend is disappearing in the 21st century. Clearly this in-
creased life expectancy will have a profound effect on modern society.

Among demographers there is a heavy debate, whether these additional life years are
being spent in health or in disability. Adistinction between life years spent in health and
disability is crucial, both for the well-being of individuals and for health resources. An
importantquestion is thenhowbackground characteristics of individuals, such as gender
and socio-economic status, andbehavioral characteristics, like dietaryhabits and smoking,
influence expected (remaining) life years spent in health and disability. In a paper study-
ing the effects of these factors on healthy life expectancy and expected life in disability,
Reuser et. al summarized the most striking behavioral effects as “Smoking kills, obesity
disables”75. To contribute to this debate there is a need formethods to assess andmodel
expected remaining life years in health and in disability for older people.

The typical approach used to address these questions, is to view this problem in the
context of a multi-state model72. A reasonable multi-state model for the above healthy-
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Health Disability

Death

Figure 3.1: The reversible health-disability-death multi-state model.

disability debate is shown in Figure 3.1. It is an example of an illness-death model, with
disability as the ‘illness’ state. The illness-death model of Figure 3.1 is reversible, since
recovery from disability is possible. In general, a multi-state model is a stochastic pro-
cess with outcomes in a finite space that represents the different stages in a subject’s life
course or disease/recovery process. Such multi-state models enable the estimation of
the effect of explanatory factors on the transition intensities, but they do not give a dir-
ect quantification of the effect of these factors on the expected length of stay (ELOS)
in a given state. Furthermore, these models typically rely on the assumption that the
process is Markov.

Wepropose tousepseudo-observations to fit regressionmodels that directly quantify
the effect of explanatory variables on ELOS. Pseudo-observations has previously been
proposed for regression on different multi-state objects such as the state occupation
probabilities9 and the restricted mean survival time6. The restricted ELOS is a general-
ization of the restricted mean survival to the multi-state setting. Here we will consider
the restricted residual ELOS, which provides ELOS for a subject who has already sur-
vived up to a certain time-point, e.g. the expected remaining life in health and disability
for a person of age 75. To incorporate this aspect we combine the concept of pseudo-
observations with landmarking. Landmarking was introduced by 11, as a way to deal
with time-dependent covariates in survival analysis, while avoiding immortal time bias.
Pseudo-observations have previously been combined with landmarking for regression
on the cumulative incidence function in a competing risks setting66.

In the case of ordinary survival data Oakes and Dasu67 proposed a proportional
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mean residual life model, for the (unrestricted) residual mean survival time. Previous
workon the restrictedmean survival timehasbeen focusedon comparisonof twogroups
adjusted for covariates 51,106,17,104. Ourmethod provides a straightforward way of fitting
the proportional mean residual life model. At the same time, we allow for the more
general setting with multiple states and the possibility of nonproportionality.

Section 3.2 describes the method; a formal definition of ELOS is given in section
3.2.1, section 3.2.2 defines the pseudo-observations in a general setting, and section 3.2.3
describes how to construct dynamic pseudo-observations for ELOS. These pseudo-ob-
servations are then used to construct direct regressionmodels for ELOS in section 3.2.4.
To illustrate the method we apply it to data from the USHealth and Retirement Study
described in section 3.3. In section 3.4 a simulation study is conducted to study the per-
formance of the method under different degrees of incompleteness and non-Markov-
ianity. Section 3.5 contains a discussion of the implications of the model assumptions,
the performance of the method, as well as possible extensions and applications.

3.2 Method

3.2.1 Expected length of stay

A multi-state model is defined as a stochastic process X(t) which has outcomes in a
finite state space K = {1, . . . ,K}. We are interested in how long time the process
spends in a given state h ∈ K, not necessarily consecutively, until a threshold τ , which
will typically be taken to be large. The restricted length of stay in state h is defined by∫ τ
0 I(X(t) = h)dt. Hence, the restricted ELOS in state h is given by

eh = E

(∫ τ

0
I(X(t) = h)dt

)
=

∫ τ

0
P (X(t) = h) dt ,

and it can be reformulated as the integral of the state occupation probability

Ph(t) = P (X(t) = h),
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i.e. the probability that the process is in state h at time t. This detail is important for
the construction of the pseudo-observations later on.

We can generalize the restricted ELOS to start at an arbitrary fixed time-point s ≥ 0.
This residual restricted ELOS is the expected length of stay in the time period from s to
τ , conditional on the subjects being alive at time s, i.e. being in a non-absorbing state.
Formally it is defined as

eh(s) = E

(∫ τ

s
I(X(t) = h)dt

∣∣∣∣X(s) ∈ A
)

=

∫ τ

s
P (X(t) = h |X(s) ∈ A) dt , (3.1)

whereA is the set of non-absorbing states in themodel. Conceptually, conditioning on
being alive is similar to partly conditioning as defined in 105,56. The state h in eh(s) that
indicates which state the process spends time in, will be referred to as the target state.
In the remainder, the restricted residual ELOS will also be referred to as ELOS, unless
confusion can arise.

3.2.2 Pseudo-observations

Assume that the data (Xi, Zi)
n
i=1 consists of i.i.d. observations of an outcomeX and

covariatesZ . The outcomemay be the trajectory of a multi-state processX(t). We are
interested in constructing regression models based on a (possibly complex) function f

of our outcome, i.e. our aim is to fit regression models of the form

θi = E (f(Xi)|Zi) = g−1
(
β⊤Zi

)
,

for some known link function g, where f(Xi) may be one-dimensional or a vector.
As with most time-to-event data, some Xi are incompletely observed and hence so is
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f(Xi). Consider now the unconditional expectation, which is the parameter

θ = E (f(X)) . (3.2)

Assuming there exists a consistent estimator θ̂ of θ, the pseudo-observation for subject
i is defined as

θ̂i = nθ̂ − (n− 1)θ̂(−i) , (3.3)

where θ̂ is the estimate based on the entire data set and θ̂(−i) is the estimate where sub-
ject i has been removed. The pseudo-observation θ̂i can be seen as the contribution of
subject i to the estimate of θ. The idea is to use the pseudo-observations as outcome,
instead of f(Xi), to fit a generalized linear regression model using generalized estimat-
ing equations (GEE) 58. GEE are employed, sincewewant to avoidmaking assumptions
about the full distribution of the outcome, because we are using pseudo-observations,
and at the same timewewant to account for possible dependence between observations
on the same subject. The assumptions underlying the GEE are

1. Observations between subjects are independent.

2. The conditional mean depends linearly on the covariates through a known link-
function g

E (f(Xi)|Zi) = θi , g(θi) = β⊤Zi .

Furthermore a structure for the working covariance matrix Vi of the pseudo-obser-
vations should be specified. The first assumption is satisfied as the pseudo-observations
are approximately independent 88,10.

A consistent estimate of β can be obtained as the solution to the estimating equa-
tions

U(β) =
n∑

i=1

(
∂θi
∂β

)⊤
V −1
i

(
θ̂i − θi

)
= 0 .
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Notice that pseudo-observations are used also for those individuals where the outcome
was completely observed. The covariance matrix can be estimated by the sandwich es-
timator

Ĉov(β̂) = Σ̂−1Ĉov(U(β))Σ̂−1 ,

where

Σ = 1
n

∑n
i=1

(
∂θi
∂β

)⊤
V −1
i

(
∂θi
∂β

)
and Ĉov(U(β)) = 1

n

∑n
i=1 Ui(β̂)Ui(β̂)

⊤ .

The choice of working covariance matrix influences the efficiency of the estimator β̂.
Nevertheless, if assumption 1 and 2 are satisfied and θ̂ is a consistent estimator of θ,
then β̂ is consistent for any suitable choice of working covariance matrix. So far only
Graw et al 39 has provided proofs regarding the asymptotic properties of the pseudo-
observation based regression in the setting of cumulative incidences for a competing
risks.

3.2.3 Dynamic pseudo-observations

This section describes how to create dynamic pseudo-observations for ELOS, by com-
bining the concept of pseudo-observations with landmarking. In our setting X is the
multi-state process X(t) and the parameter θ is formed by eh(s) from equation (3.1).
Note that eh(s) is indeed the expectation of a complex function of the data, as in (3.2).
The analysis can be limited to specific states of interest. Let therefore H ⊆ K denote
this set and letH be the cardinality ofH. To construct thepseudo-observationsweneed
consistent estimators of eh(s), h ∈ H. The first step is to find a consistent estimator
for the state occupation probabilities. Let

P s
h(t) = P (X(t) = h |X(s) ∈ A)

denote the state h occupation probability at time t conditional on being at alive at time
s. It can be estimated by the non-parametric Aalen-Johansen estimator P̂ s

h(t)
7 using
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landmarking 11,92. The estimate is based on the sub-sample of subjects alive at time s.
Letn(s) denote the number of subjects alive and at risk at time s and letYg(s+) be the
number of those subjects that occupied state g ∈ A. P̂ s

h(t) is then the weighted sum
over the estimated transition probabilities P̂gh(s, t), where the weights are equal to the
corresponding empirical initial occupation probabilities Yg(s+)

n(s) . The non-parametric
Aalen-Johansen estimator of the state occupation probabilities is consistent under in-
dependent right-censoring, even when the process is non-Markovian and in the pres-
ence of left-truncation 23,62. The second step is then to find the area under the Aalen-
Johansen estimator. Let s = t0 < t1 < · · · < tJ ≤ tJ+1 = τ be the ordered
transition times pooled over all transitions. A consistent estimator for eh(s) in (3.1) is
then given by

êh(s) =

J∑
j=0

P̂ s
h(tj)(tj+1 − tj) . (3.4)

Inserting the estimator of (3.4) into the equation (3.3) gives rise to the pseudo-observa-
tions

êih(s) = n(s)êh(s)− (n(s)− 1) ê
(−i)
h (s) ,

one for every subject i at risk at time s and for every state h of interest. Pseudo-observa-
tions are only created for subjects at risk, but left-truncated individuals still contribute
to the estimate of the pseudo-observations through êh(s). In principle it is possible
to create pseudo-observations for left-truncated individuals, but typically the value of
the (time-dependent) covariates at times will be unknown for such subjects. An altern-
ative way of estimating the state occupation probability is to base P̂ s

h(t) only on the
sub-sample of people alive and at risk at time s. In this way left-truncated individuals
would be completely discarded in the construction of the pseudo-observations. We call
this latter approach the strict approach and the former approach (where subjects not yet
at risk are included in the calculation of the state occupation probabilities) thenon-strict
approach.

80



An interesting feature is that had the data been completely observed, the pseudo-
observations would be the actual observed length of stay of the subjects.

3.2.4 Regression models

In this section we describe how the dynamic pseudo-observations may be used to con-
struct direct regression models for ELOS. Section 3.2.4 describes the situation for one
fixed landmark. In section 3.2.4 several landmarks are selected, for the purpose of mod-
eling the development of ELOS over the landmark time. To this end a so-called super
model is employed to construct one regression model.

Models for a fixed landmark

Let s be a fixed landmark and recall H to be the cardinality of H the states of interest.
For every individual i at risk at time s and every state h of interest, a pseudo-observa-
tion êih(s) is created as described in section 3.2.3. Hence, each individual at risk hasH
pseudo-observations which may be dependent.

For a time-dependent covariateZ(t) the value fixed at the landmarkZ(s) is used as
a time-fixed covariate 11,92,95. A covariate of special interest is X(s) = g, which is the
state that the process occupies at time s and it will be referred to as the current state.

It is natural to assume that the effect of some covariates will differ according to the
target state h, e.g. the effect of BMI or smoking is different for ELOS in health and
ELOS in disability. We therefore introduce target-specific covariates. The idea is similar
to that of transition-specific covariates in regressionmodels for the transition intensities
in multi-states models4. Let Zih(s) denote the p dimensional target-specific covariate
vector for subject i fixed at time s. Define the conditional mean

eih(s) = E

(∫ τ

s
I(X(t) = h)dt

∣∣∣∣X(s) ∈ A, Zih(s)

)
.
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We assume that the conditional mean has the structure

g(eih(s)) = β(s)⊤Zih(s) , (3.5)

where β(s) is a vector of p parameters. The covariate vector may include 1 to allow for
target-specific intercepts. The current stateX(s)may also be included as a covariate. In
some situations covariates may also interact with the current states, e.g. being disabled
at time s couldmodify the effect of BMI on time spent in disability. These interactions
will be a part of the p covariates contained inZih(s).

The model in (3.5) can be fitted by GEE using a suitable working covariance matrix.
The following section shows how the concept can be extended fromone to several land-
marks. TheGEE for a fixed landmark therefore follows from themore generalGEE case
with several landmarks.

Supermodels using several landmarks

Let S = {s1, · · · , sD} be a set of fixed landmark time points. To study the develop-
ment of ELOS over time we could repeat the fixed landmark method to make D sep-
arate regression models. It is, however, appealing to think that covariate effects change
smoothly over s, and the (pseudo-) data could instead be considered as longitudinal
data95,66. Let Si ⊆ S denote the set of the Di landmarks where subject i was at risk.
For every subject i, every sd ∈ Si and every h ∈ H we create a pseudo-observation
êih(sd). Subject i therefore has H · Di pseudo-observations, which are stacked into
the vector êi. As before, with one fixed landmark, wemake use of target-specific covari-
ates to handle interactions between covariates and target state. In addition to this there
is also the new possibility of covariates interacting with landmark time, i.e. effects may
be time-varying.

The conditional mean is assumed to follow 3.5, where β(s) is no longer a vector of
parameters, but a q vector of suitable smooth function of s ∈ [s1, sD] that we have to
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specify. The lth element of β(s) is

βl(s) = β⊤
l bl(s) ,

where bl is a vector of fixed basis functions, and βl a vector of parameters. Let B(s)

denote the p × q matrix of basis functions and let β denote the stacked vector of bl’s.
It then follows that β(s) = B(s)β. The conditional mean in equation (3.5) can be
rewritten in terms of the covariateZ∗

ih(s) = B(s)⊤Zih(s),

g(eih(s)) = β(s)⊤Zih(s) = (B(s)β))⊤ Zih(s) = β⊤Z∗
ih(s) .

The estimating equations of the super model can be formulated as

U(β) =

n∑
i=1

(
∂ei
∂β

)⊤
V −1
i (êi − ei) = 0 , (3.6)

where êi = [êih(sd)]h,d is the stacked vector of all pseudo-observations for subject
i. The solution to the estimating equations β̂(s) is a consistent estimator ofβ, provided
that

1. The estimator of eh(s) is consistent.

2. The regression model is correctly specified.

Furthermore, it is necessary to assume working independence between observations
at different landmarks. Kurland and Heagerty 56 point out that for partly conditional
models, i.e. models such as ours where we condition on being alive (X(t) ∈ A), the
number of observations on an individual is stochastic. If theworking correlationmatrix
would be anything else than a diagonal matrix, the inverse variance matrix V −1

i would
depend on the cluster size. Since V −1

i no longer is a known quantity conditional on
the covariates, this may destroy the unbiasedness of the estimating equations in (3.6).
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Covariates effect may be tested by a Wald test, in the same fashion as with standard
GEE.

3.3 Application

To illustrate the method and to show how it can be used to contribute to the health-
disability debate, data from the Asset and Health Dynamics Among the Oldest Old
(AHEAD), now part of the wider US Health and Retirement Study (HRS), will be
used49. The HRS has been collecting data since 1992, including health and socio-
economic status on a population of elderly. Of these we selected a subpopulation of
people of age 75 and older. The time scale is age. Table 3.1 shows the frequency in
the HRS data of the time-fixed covariates considered in the illustration (body-mass in-
dex (BMI) and smoking status are assessed at entry into the study). Disability status is
defined according to the Basic Activities of Daily Living (ADL) scale 52, which includes
items for walking, bathing, dressing, toileting and feeding. A subject is defined to be
ADL disabled here if he/she responds ”with difficulty” for at least one of the ADL
items.

In the following we will study the dynamics of disability and recovery in the health-
disability-deathmulti-statemodel of Figure 3.1. In this data, for a total of 4026 subjects,
1929 transitions fromhealthy toADLdisabledoccurred and679 recoveries (transitions
from ADL disability to healthy). A total of 1982 deaths were observed, 916 from the
healthy state and 1066 from ADL disability. More details about the results and the
code used for the analysis can be found in the Supplementary Material.

3.3.1 Fixed landmark model

We begin with considering a fixed landmark model for the age of 75, to investigate the
effect of the covariates on the ELOS in health (h = 1) and disability (h = 2). Pseudo-
observations were created for these two states, with τ = 110, using the mstate pack-
age 26 in R to estimate ELOS.
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Table 3.1: Baseline covariates in the HRS study.

Covariate n (%)
Gender

Male 1561 (39%)
Female 2465 (61%)

Education
Less than high school 1732 (43%)
High school 1211 (30%)
Some college 1083 (27%)

BMI (kg/m2)
≤ 25 2241 (56%)
25− 30 1386 (34%)
> 30 389 (10%)
Missing 10

Smoking
Never 1996 (50%)
Past 1680 (42%)
Current 322 (8%)
Missing 28 (1%)

It is natural to assume that the effect of the covariates on expected healthy life will
differ from the effect on expected life in disability, in other words that the covariates
will interact with the target state. We therefore make use of target-specific covariates.
Furthermore, the effect of covariates may not only differ by target-state, but also by
current state.We therefore fit amodelwhere all the target-specific covariates also interact
with the current state. This amounts to estimating separate covariate effects for each of
the four combinations of target state and current state. The link function is assumed to
be the identity function and a working independence covariancematrix is applied. The
model was fitted using the geepack package45 in R.

Table 3.2 shows the estimated regression parameters of themodel, with robust stand-
ard errors and95% confidence intervals. It is presented in terms of the target-specific co-
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variates conditional on the current state. We see that females who are healthy at age 75,
with a high school education, a BMI< 25 and who never smoked, are expected to have
10.057more years in health, and 3.587more in disability. Corresponding males spent
less time in health than the females, and even less time in disability. Interestingly, both
high BMI and current smoking are associated with less time spent in health, but the
effect on time spent in disability is quite different: negative for current smoking, posit-
ive for high BMI. This supports the claim of ”smoking kills, obesity disables”75. More
parsimonious models could have been found, e.g. by removing the non-significant co-
variates by current state interactions, but this was not pursued at this stage.

The procedure was repeated for a whole set of landmarks from the age of 75 to 95 at
every 2.5 years. Figure 3.2 illustrates the change of ELOS with age for the baseline char-
acteristics, i.e. the intercepts of all the landmark models. Not surprisingly, the ELOS is
declining in all four groups as people become older. The drop seems to be particularly
fast for time spent in health.

Figure 3.3 shows the covariate effects on time spent in health given healthy at age s. It
is interesting to see that the effect of current smoking seems to decline over time. Natur-
ally this is also forced by the fact that there is less time to spend, but it may also be that
individuals who live to an old age are especially robust and therefore less susceptible to
die from smoking.

These plotsmotivate the idea that the changes over age could be reasonablymodeled
with linear functions for the covariates and quadratic functions for the intercepts. This
can be achieved by employing a landmark super model.

3.3.2 Super model

In this sectionwe applied a supermodel to the stackedpseudo-data for all the landmarks
from age 75 to 95 at every 2.5 years. Landmark time was rescaled as s̃ = (s− 75)/20

, thus taking values between 0 and 1. The only time-varying covariate included in the
model was the current state, which was fixed at its current value at time s. Quadratic
interactions between landmark time and the target- and current state were included.
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Figure 3.2: Estimated ELOS for the baseline characteristics (Intercepts) according to
the fixed landmark models with 95% point-wise confidence intervals. The dashed line
only serves as an visual aid.
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Figure 3.3: Estimated covariate effect on ELOS in health, given healthy at age s,
according to the fixed landmark models with 95% point-wise confidence intervals.
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Table 3.2: Estimates of the fixed landmark model for the age of 75.

Covariate β̂ SE(β̂) (CI) β̂ SE(β̂) (CI)
Target state : Health Current state : Health Current state : Disability
Intercept 10.057 0.172 (9.775, 10.339) 3.851 0.493 (3.039, 4.663)
Sex
Male −0.295 0.174 (−0.581,−0.008) −0.442 0.431 (−1.150, 0.266)
BMI
25− 30 0.082 0.177 (−0.210, 0.374) −0.329 0.467 (−1.097, 0.439)
> 30 −0.600 0.304 (−1.100,−0.101) 0.455 0.500 (−0.367, 1.277)
Education
Less than high school −0.066 0.204 (−0.401, 0.269) −0.711 0.430 (−1.419,−0.003)
Some college 0.365 0.168 (0.089, 0.641) 0.305 0.617 (−0.710, 1.320)
Smoking
Past −0.427 0.169 (−0.704,−0.149) −0.321 0.420 (−0.371,−1.012)
Current −1.004 0.337 (−1.558,−0.449) −0.353 0.520 (−0.502, 1.209)
Target state : Disability Current state : Health Current state : Disability
Intercept 3.587 0.098 (3.426, 3.749) 7.194 0.386 (6.559, 7.829)
Sex
Male −0.171 0.085 (−0.310,−0.031) −0.453 0.428 (−1.157, 0.250)
BMI
25− 30 −0.114 0.089 (−0.033, 0.260) 0.583 0.475 (−0.199, 1.364)
> 30 0.055 0.165 (−0.216, 0.326) 0.434 0.406 (−0.233, 1.102)
Education
Less than high school −0.021 0.103 (−0.148, 0.190) −0.436 0.460 (−1.192, 0.320)
Some college 0.059 0.091 (−0.090,−0.208) 0.198 0.476 (−0.585, 0.981)
Smoking
Past −0.072 0.091 (−0.221,−0.077) −0.520 0.388 (−1.158, 0.118)
Current −0.293 0.159 (−0.554,−0.031) −0.631 0.395 (−1.281, 0.031)
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Covariate effects were assumed to vary linearly over landmark time and differ according
to both target- and current state. The link function was assumed to be the identity
function and an independence working covariance matrix was employed.

The results of the analysis are shown in Table 3.3 and 3.4 with the estimates of the
regression parameters, robust standard errors and corresponding 95% confidence in-
tervals. The table shows the target-specific effects conditional on the current state. The
constant part of the super model corresponds to the effect on ELOS at age 75, and it
is therefore comparable to the fixed landmark model in Table 3.2. In the super model a
female, with low BMI, high school education, who never smoked is expected to spend
9.693 years in health from the age of 75. This is comparable to the fixed landmark
model at age 75 in the previous section. The landmark part of the super model shows
the estimated change of the effects over s. Since the intercept is assumed to change as a
quadratic function over time, a similar person of age 85 (s̃ = 0.5) is expected to spend
(9.693− 11.590 · 0.5 + 4.129 · 0.52 =) 4.930 years in health. If this person instead
had been disabled at age 85 she would be expected to spend (3.745 − 5.827 · 0.5 +

2.354 · 0.52 =) 1.42 years in health.
Figure 3.4 illustrates the overall impact of gender on ELOS and how it interacts with

the target- and current state over time. It shows males and females with low BMI, a
high school education, who never smoked. The upper left graph show ELOS in health
conditional on being healthy at the current age s. At age 75, both males and females
are expected to live around 10more years in health. On the other hand, the lower left
graph shows that the females are expected to live longer in disability than the males.
This difference is even larger for subjects that were disabled at time s (the lower right
graph).

3.4 Simulations

Theperformanceof themethodunderdifferentdegrees of right-censoring, left-truncation
and non-Markovianity was investigated through simulations by comparing the true ef-
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Figure 3.4: Estimated ELOS over time in health and disability for males and females,
given healthy or disabled, with point-wise 95% confidence intervals.
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Table 3.3: Estimates of the landmark super model for the target state health.

Covariate β̂ SE(β̂) (CI) β̂ SE(β̂) (CI)
Target state : Health Current state : Health Current state : Disability
Constant
Intercept 9.693 0.195 (9.312, 10.075) 3.745 0.281 (3.195, 4.296)
Sex
Male −0.276 0.171 (−0.611, 0.06) −0.382 0.242 (−0.857, 0.092)
BMI
25− 30 0.240 0.166 (−0.085, 0.565) 0.550 0.242 (0.076, 1.023)
> 30 −0.355 0.274 (−0.891, 0.181) 0.212 0.289 (−0.355, 0.779)
Education
Less than high school 0.133 0.191 (−0.241, 0.508) −0.467 0.244 (−0.945, 0.012)
Some college 0.795 0.194 (0.415, 1.175) 0.173 0.297 (−0.409, 0.754)
Smoking
Past −0.537 0.174 (−0.878,−0.196) −0.163 0.249 (−0.651, 0.325)
Current −1.710 0.294 (−2.286,−1.133) −1.023 0.338 (−1.685,−0.361)

Landmark
Intercept
s̃ −11.590 0.589 (−12.745,−10.435) −5.827 0.717 (−7.232,−4.422)
s̃2 4.129 0.486 (3.177, 5.08) 2.354 0.517 (1.341, 3.367)
Sex
Male ·s̃ 0.513 0.349 (−0.171, 1.197) 0.495 0.379 (−0.248, 1.238)
BMI
25− 30 · s̃ −0.219 0.335 (−0.876, 0.437) −0.663 0.351 (−1.351, 0.025)
> 30 · s̃ 0.146 0.621 (−1.07, 1.363) −0.504 0.479 (−1.444, 0.435)
Education
Less than high school ·s̃ −0.590 0.400 (−1.374, 0.194) 0.471 0.364 (−0.241, 1.184)
Some college ·s̃ −1.651 0.397 (−2.429,−0.872) −0.145 0.438 (−1.003, 0.714)
Smoking
Past ·s̃ 0.928 0.360 (0.223, 1.633) 0.265 0.372 (−0.463, 0.993)
Current ·s̃ 1.931 0.641 (0.675, 3.187) 1.579 0.643 (0.319, 2.839)
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Table 3.4: Estimates of the landmark super model for the target state disability.

Covariate β̂ SE(β̂) (CI) β̂ SE(β̂) (CI)
Target state : Disability Current state : Health Current state : Disability
Constant
Intercept 3.848 0.160 (3.535, 4.161) 7.694 0.461 (6.791, 8.598)
Sex
Male −0.554 0.143 (−0.835,−0.273) −1.152 0.406 (−1.948,−0.356)
BMI
25− 30 0.000 0.139 (−0.273, 0.273) 0.227 0.391 (−0.539, 0.993)
> 30 0.504 0.214 (0.085, 0.923) 0.442 0.509 (−0.555, 1.44)
Education
Less than high school −0.200 0.153 (−0.499, 0.099) −0.237 0.409 (−1.037, 0.564)
Some college −0.298 0.161 (−0.614, 0.018) −0.560 0.462 (−1.465, 0.344)
Smoking
Past 0.164 0.146 (−0.122, 0.45) −0.799 0.409 (−1.6, 0.002)
Current 0.001 0.222 (−0.435, 0.437) −0.843 0.648 (−2.114, 0.428)

Landmark
Intercept
s̃ 0.542 0.623 (−0.679, 1.762) −4.146 1.283 (−6.661,−1.631)
s̃2 −1.541 0.555 (−2.629,−0.453) −0.630 1.023 (−2.634, 1.375)
Sex
Male ·s̃ −0.026 0.019 (−0.064, 0.013) −0.007 0.040 (−0.085, 0.071)
BMI
25− 30 · s̃ 1.137 0.388 (0.376, 1.899) 1.042 0.720 (−0.37, 2.454)
> 30 · s̃ −0.735 0.627 (−1.965, 0.494) 0.415 1.008 (−1.561, 2.391)
Education
Less than high school ·s̃ −0.188 0.394 (−0.961, 0.585) 0.599 0.754 (−0.88, 2.078)
Some college ·s̃ 0.795 0.466 (−0.118, 1.709) 1.482 0.862 (−0.207, 3.172)
Smoking
Past ·s̃ −0.559 0.390 (−1.323, 0.205) 0.675 0.776 (−0.847, 2.196)
Current ·s̃ −0.679 0.649 (−1.951, 0.592) 0.823 1.430 (−1.981, 3.626)
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fect of one covariate with the estimates. In addition, the approach was compared to es-
timates based on regression models for the transition intensities, which will be referred
to as themulti-statemodel. In general, it is not possible to compare to alternativemeth-
ods, as no other methods are available for direct regression on ELOS. It was however
possible to make a direct comparison in this simulations study as the model only in-
cludes one categorical covariate. The setup of the simulation study is inspired by the
HRS data in Section 3.3 and the generated data follows the multi-state model of Figure
3.1. In the following section the setup of the simulation study is described in brief and
the last section describes the results. Additional results can be found in the Supplement-
ary Material.

3.4.1 Setup

Simulating from a multi-state model

Thedata for the simulation studywas generated by assuming constant transition intens-
ities. One categorial covariateZ with two levels{0, 1}was considered and subjectswith
Z = 1wouldhave lower transition intensities intodeath than thosewithZ = 0, which
may illustrate the situation of non-smokers versus smokers. Non-Markovian data was
generated by including individual frailties on the transition to disability. The intuition
is that an individual who is currently healthy, but has a history of being disabled, would
more likely be a frail individual, which by construction has a higher transition intensity
to disability. The probability of making a transition therefore depends on the process
history, which is a violation of the Markov assumption.

For both the Markov and non-Markov setup a total of 1000 data sets, each with
2000 individuals, were simulated. In each data set one half of the subjects had Z = 0

and the other half had Z = 1. To mimic the setup of the HRS data, where subjects
were followed from approximately age 75 onwards, we simply added 75 (years) to all
simulated time values of the complete data. Subjects were followed for 35 years until
τ = 110. Six different scenarios of random right-censoring and left-truncation were
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subsequently imposed on the complete data.

Estimated- and true parameters

This section describes the models that were fitted to the simulated data using either the
pseudo-observations or the multi-state approach.

For the pseudo-observation approach landmarks from 75 to 105 at every 2.5were se-
lected and the corresponding pseudo-data created. The pseudo-data was then analyzed
using either fixed landmark models or a super model. Let Zgh(s) denote the target-
specific covariates of Z , which also include interactions with current state g. In the
fixed landmark models the mean was assumed to be

E

(∫ τ
s I(X(t) = h)dt

∣∣∣∣X(s) = g ∈ {1, 2}, Zgh(s)

)
= α(s) + β(s)Zgh(s) ,

(3.7)
where α(s) and β(s) are parameters. In the super model quadratic functions were
assumed for both the intercept and the effect ofZgh(s) over s,

E

(∫ τ
s I(X(t) = h)dt

∣∣∣∣X(s) = g ∈ {1, 2}, Zgh(s)

)
=

α1 + α2s+ α3s
2 + (β1 + β2s+ β3s

2)Zgh(s) ,
(3.8)

where the α’s and β’s are parameters and β(s) = β1 + β2s + β3s
2 is the effect of

the covariate at time s. All models were fitted with a working independence covariance
matrix.

In the multi-state approach the transition intensity from state g to h was assumed
to be

λgh(t|Z) = λ0,gh(t) exp(βZ) , (3.9)

whereλ0,gh(t) is the unspecifiedbaseline intensity andβ is the transition specific covari-
ate effect. Estimates of the transition intensities was then used for obtaining estimates
of the transition probabilitiesPgh(s, t). Finally, the area under the estimated transition
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probabilities was used as estimates of the conditional mean of interest.
The true effect of the covariate was approximated, since the simulation setup does

not allow explicit analytical expressions, unless in theMarkov case. The true effect β̄(s)
of Zgh(s) may depend on both time s, the current state g and the target state h. The
true value was therefore approximated by averaging the length of stay eh(s), over the
1000 complete data sets (before censoring or truncation was applied). This was done
separately for each landmark s and each current state g = 1, 2.

Comparison

The estimated effects were compared with the true effects β̄(s) by calculating the bias,
root mean square error (RMSE) and coverage as measures of performance. Let β̂(s)
denote the estimated effect ofZgh(s) in either the fixed landmark models or the super
model. For a given s and covariateZgh(s) the bias and RMSE are defined as

bias = E
(
β̂(s)− β̄(s)

)
& RMSE =

√
E
(
(β̂(s)− β̄(s))2

)
.

The coverage was estimated by the proportion of simulated data sets from which the
estimated confidence interval contained the true value. All three measures may depend
on the target- and the current state, but this is suppressed in the notation.

3.4.2 Results

This section describes the results of the simulation study, where the performance of
the method is evaluated. Figure 3.5 shows the results of the fixed landmark models us-
ing non-strict and strict pseudo-observations, as well as themulti-statemodel approach.
The models was fitted on non-Markov data with 20% truncation and 10% censoring.
The estimated effect of the covariate Zgh(s) for each of the 1000 data sets are depic-
ted with boxplots. The top left graph shows the results for Z11(s), i.e the effect of the
covariate on ELOS in health, given healthy at time s. The true value β̄(s) is denoted
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with a white diamond. The estimates of the strict approach are virtually unbiased, and
the variability is acceptable, although occasionally negative estimates for ELOS are ob-
tained. The non-strict approach show some bias, especially at earlier landmarks, for
which the degree of left-truncation is substantial. The bias disappears for later land-
mark time points. Interestingly (details not shown), RMSE for the strict and non-strict
approaches are comparable; coverage is very good for the strict approach and increasing
from 94% for earlier landmarks to 95% for later landmarks. The multi-state model is
biased, which is due to the non-Markovian nature of the data.

It is clear that the strict approach is favorable in this situation. However, for a small
data set with some truncation the non-strict version will be more stable, which is sup-
ported by the simulation study. This is due to the fact that the non-strict version bor-
rows information frommore individuals, without truncation the twowill coincide. As
expected, lower levels of censoring and truncation lead to smaller bias for the non-strict
approach. When applied to the Markov data there was no change in performance for
the pseudo-observations and the multi-state model performed reasonably. The super
model showed very similar results as the fixed landmark models and is therefore not
shown.

3.5 Discussion

In this paper we explored the use of pseudo-observations in combination with land-
marking to construct direct regressionmodels for the restricted residual expected length
of stay (ELOS) inmulti-statemodels. The traditional approach tomodel ELOS is to fit
regressionmodels for all the transition hazards. The estimated covariate effects in these
model, however, do not translate directly into the effect of the covariates on ELOS.Our
method conveniently avoids the need to fit this kind of, possibly complicated, multi-
state models and the estimated effect of the covariates have a direct interpretation. In
combination with landmarking it furthermore allows for time-dependent covariates
and time-varying effects.

97



●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●●

●

●

●

●●

●
●
●
●
●●●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●●

●
●

●

●

●

●

●●●

●●●
●
●●●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●
●●

●
●

●

●●

●●●

●●

●

●
●●●
●

●

●

●

●
●

●●

●

●●

●
●
●
●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●
●

●

●
●
●
●
●● ●●●

●

●
●
●●
●●

●

●

●●●

●

●●

●
●

●●

●
●
●

●

●
●

●

●

●

●●

●●

●

●

●

●

●

●

●
●●
●●●

●●

●

●
●

●

●● ●●●●

●

●●●●●

●

●
●

●●

●

●

●

●●
●

●

●●
●

●

●●
●

●

●
●

●
●
●●

●

●●
●

●
●

●

●

●●

●

●●

●

●●●●

●●●●●●

●

●●●●

●

●

●

●
●

●●

●

●

●

●

●
●
●

●●

●

●

●●

●
●

●
●●
●●
●
●

●

●

●●●

●

●●

●

●

●

●

●
●●
●
●●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●●
●

●

●

●

●
●

●●

●

●●
●
●
●

●

●

●

●
●
●●

●
●
●●

●

●

●

●

●●

●

●

●

●

●
●

●

●●

●
●

●
●

●

●
●

●●●

●

●

●

●
●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●●●●●

●

●

●

●

●
●

●●

●●

●
●●

●

●●

●

●

●

●
●

●

●

●

●

●

●
●●●

●

●●●
●●

●
●

●

●

● ●●●●●●

●●●●

●●●●

●●●●

●

●

●
●

●
●
●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●
●
●●

●

●

●

●

●

●

●●

●
●

●●

●

●

●

●

●

●

●

●●
●

●

●

●

●●
●

●
●

●

●●

●●

●

●

●

●
●

●●
●

●

●

●
●
●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●

●

●
●●

●

●

●
●

●

●

●
●●
●
●

●

●●

●●

●

●●

●●●

●

●

●

●

●

●●●

●

●

●
●
●

●

●

●
●●●●●

Expected time spent in disability,
 given healthy at s

Expected time spent in disability,
 given disabled at s

Expected time spent in health,
 given healthy at s

Expected time spent in health,
 given disabled at s

75  80 85 90 75  80 85 90

0

3

6

0

3

6

Time ( s )

E
ff

ec
t o

n 
E

L
O

S 
in

 y
ea

rs

Pseudo non−strict Pseudo strict Multi−state

Figure 3.5: Estimated effect of Zgh(s) in the 1000 non-Markov data sets with 10%
censoring and 20% truncation, using the fixed landmark models with non-strict and
strict pseudo-observations and the multi-state model respectively. The true value is
denoted with a white diamond.
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The proportional mean residual life model67 is a special case of the super models we
consider in this paper, namely for the alive-deathmulti-state model, with log-link func-
tion and covariate effects which do not vary over landmark time. The pseudo-obser-
vation approach thus provides a straightforward way of fitting the proportional mean
residual lifemodel, and extends it, bothby allowing formultiple states andother choices
of link function. Our choice of identity link function in the application has the disad-
vantage of not guaranteeing positive ELOS, but in our view the advantage of directly
interpreting the regression coefficients as adding/subtracting life years outweighs this
disadvantage. As in any situation, it would be appropriate to make a goodness-of-fit
assessment. It is however an open question how this could be achieved when pseudo-
observations are used and we did not pursue this.

We showed how the method can be applied in a reversible illness-death model to es-
timate the direct effects of socio-economic factors on ELOS in health and disability for
a population of elderly. The fixed landmark models had comparable standard errors
with the super model, but this model may be too rich. Although we did not pursue
it here, the method allows for model selection, and a more parsimonious model may
have been found for the super model. In general better efficiency, in terms of improved
standard errors, may be obtained by using a supermodel, at the possible expense of bias
introduced by incorrect specification of such a super model. Further improvements in
terms of efficiencymay be achieved by selecting an appropriateworking covariancemat-
rix, as long as observations between landmarks are taken as independent in the working
covariance matrix.

We conjecture that the approach yields consistent estimates provided that the estim-
ator for the state-occupation probabilities is consistent and the regression model is cor-
rectly specified. We have chosen to use theAalen-Johansen estimator, which in the pres-
ence of independent right-censoring is consistent even under non-Markovianity23 and
left-truncation62. Depending on the setting alternatives to the Aalen-Johansen estim-
ator could be considered in order to obtain consistency and to improve efficiency. E.g.
in the situation with state dependent censoring, Datta and Satten 24 proposed an estim-
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ator for the state occupationprobabilities undernon-Markovianity, andothers 14,25 have
also considered different alternatives and settings. At present, as far as we know, there
has been nowork related to pseudo-observations under left-truncation. In ourmotivat-
ing examplewith theHRSdata bothnon-Markovianity and left-truncationwaspresent.
We therefore relied on a simulation study to evaluate bias and rootmean square error of
our approach in this context. Under right-censoring and even non-Markovianity, but
in the absence of left-truncation, the performance was good, which is in line with the
theory 23. The non-strict approach did seem to be sensitive to left-truncation, however.
The strict approach, which for landmark time s uses only the subjects alive and at risk
at time s in the calculation of the state occupation probabilities, performed quite well.
For a small to moderate degree of left-truncation, bias and root mean square error of
the non-strict approach are acceptable, but it is not completely clear how our approach
performswhen there is a considerable degree of left-truncation. Thus, the non-strict ap-
proach needs to be used with caution. The crucial issue might be in the correct choice
of n(s) in the definition of the pseudo-observations. We used the number of subjects
alive and at risk at time s, even though additional subjects were used for calculation of
the transition intensities and the state occupation probabilities. We also evaluated the
non-strict approach, takingn(s) to be the number of subjects used in the calculation of
the state occupation probabilities, but this also resulted in a moderate bias. Perhaps an
intermediate “effective sample size” governing the asymptotics of the state occupation
probability estimates should be used, but it is unclear as yet how to define this. Further
theoretical research and practical experience is needed in this case.

There are a number of directions for future research. First, the method is applic-
able for general multi-state models and is not restricted to the illness-death model. De-
pending on the objective of the data analysis it may also be of interest to select a predic-
tion window, instead of a time-horizon τ , i.e. to investigate the ELOS in health over
the next 10 years. Another possible extension of the pseudo-observation approach is
to consider other outcomes, where one important possibility is regression models for
quality-adjusted (remaining) life years. A utility qh (per time unit spent in state) is then
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assigned to each stateh, andone is interested in
∑

h qheh(s). In another application, qh
could be (medical) costs associated with being in state h. Another outcome of interest
may be the proportion of remaining life spent in health; in our setting that would be
eh=1(s)/(eh=1(s) + eh=2(s)).
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4
Pseudo-observations and

left-truncation

Pseudo-observations have been introduced as a way to perform regression ana-
lysis of amean value parameter related to a right-censored time-to-event outcome, such
as the survival probability or the restrictedmean survival time. Since the introductionof
the approach there have been several extensions from the original setting. However, the
proper definition and performance of pseudo-observations under left-truncation has
not yet been addressed. Here we look at two types of pseudo-observations under right-
censoring and left-truncation. We explored their performance in a simulation study and
applied them to data on diabetes patients with left-truncation.

103



4.1 Introduction

Inmany clinical settings the outcome is time to an event, such as time to death, which is
often incompletely observed due to right-censoring and sometimes also left-truncation.
One of the ways left-truncation can arise is when the timescale of interest is time from
diagnosis of some disease until death. Often the available data will be cross sectional,
in the sense that all subjects with the disease at a given point in time are sampled and
followed until death or censoring. As a result, subjects with short disease durations are
less likely to be sampled. This is illustrated in Figure 4.1, which shows survival data for
three imaginary patients, where one patient dies before entering into the study. The
disease duration timescale is oftenmore attractive than the time-on-study timescale, be-
cause the interpretation is clinically relevant. The time from diagnosis until entry into
the study is then the delayed entry or left-truncation time. Pseudo-observations have
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Figure 4.1: Lexis diagram of survival data for three imaginary patients. The lines
represent the disease duration of the patients and the solid lines represents the time-
on-study.
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been introduced as a way to perform regression analysis of a mean value parameter re-
lated to a right-censored time-to-event outcome, such as the survival probability or the
restricted mean survival time9. The pseudo-observations are jackknife estimates which
represent a subject’s contribution to thenonparametric estimator of theparameter of in-
terest. Under right-censoring, pseudo-observations are calculated for all subjects in the
sample and the regressionmodel parameters are obtained by solving the corresponding
generalised estimating equations using the pseudo-observations as outcome. The ques-
tion of how to use pseudo-observations with left-truncated data was raised byGrand&
Putter 35 . There the simulation study showed that the so-called strict approach, where
only subjects at risk at time 0 are used, worked reasonably well. However, the approach
is inefficient and it is obviously not feasible if there is no one at risk at time 0.

Here we considered two alternative ways of defining the pseudo-observations when
the data are left-truncated. To keep things simple we considered the case where the
objective is to perform regression of the survival probability. In this setting there are a
numberof alternatives such as the classic partial likelihood approach for theCoxpropor-
tional hazards model 22. This approach deals with left-truncation by adjusting the risk
sets in the partial likelihood 5, i.e. the subjects only contribute during the time they are
at risk, under the assumption that the left-truncation is independent of the event time
given the covariates. The accelerated failure time model is another alternative, where
left-truncation has been approached in a number of different ways see for example Lai
& Ying 57 . Another alternative is to use inverse probability weights, which for example
has been studied for themore general case with competing risks 34 and for the restricted
mean survival time 20.

The first part of Section 4.2 describes the pseudo-observation approach in the stand-
ard situation with right-censored data and without left-truncation. The second part
describes the situation where the data are also subject to left-truncation and two altern-
ative ways of defining the pseudo-observations are considered. The performance of the
two types of pseudo-observations was investigated in a simulation study described in
Section 4.3. The two types of pseudo-observationswere also applied to data on patients
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with diabetes in Section 4.4. All analyses were conducted in R (3.4.3).

4.2 Method

Consider a setting where the outcome of interest is time to an event T , and where the
mean value parameter of interest is the survival probability S(t) = P (T > t) = θ(t),
i.e. the probability of being event free at time t. The objective is to relate the survival
probability to a set of covariates. With complete data wewould observeN subjects and
their event timesTi and covariatesXi for i = 1, . . . , N . If the data were also subject to
right-censoring, we would only observe subjects up until the time of the event or right-
censoringC whichever comes first. That is, we observe the time T̃i = min(Ti, Ci) and
the event indicator δi = I(Ti ≤ Ci) for i = 1, . . . , N . In addition, if the data were
also subject to left-truncation, we only observe the n (≤ N) subjects where the time
of entryLi was smaller than T̃i. We assume that the subjects are independent and that
Ci, Li are independent of (Ti, Xi).

4.2.1 Without left-truncation

When the data are right-censored the pseudo-observation for subject i, at a fixed time
t0, is defined as

θ̂i(t0) = Nθ̂(t0)− (N − 1)θ̂−i(t0),

for i = 1, . . . , N . Where θ̂(t) and θ̂−i(t)denote theKaplan-Meier estimatorwith and
without subject i included in the sample. Hence, the pseudo-observation represents the
subject’s contribution to the Kaplan-Meier estimator at time t0. This leads to the idea
of using the pseudo-observations for regression instead of the incompletely observed
responses I(Ti > t). That is, once the pseudo-observations have been calculated for
every subject, they can be used to fit a generalised linear model for the survival probab-
ility using generalised estimating equations. For further details on how to do this, see

106



for example Andersen & Perme 10 .
Asymptotic results have so far been studied in the survival48 and competing risks

setting 39, and recently also in a general framework69. The results revolve around the
existence of a nonparametric asymptotically unbiased estimator θ̂ of the mean value
parameter of interest θ, as is the case with the Kaplan-Meier estimator and the survival
probability. It is possible to relax the independence assumption such that Ci, Li are
assumed to be independent of Ti givenXi by employing an inverse probability of cen-
soring and truncation weighted estimator to calculate the pseudo-observations 14.

It is straightforward to make an extension from the survival probability at a single
timepoint to the survival function. Insteadof a single timepoint, a set of timepoints are
selected and the corresponding pseudo-observations are calculated at each time point.
The stacked data set of these pseudo-observations can then be used to fit for example
a proportional hazards model with a nonparametric cumulative baseline, the value of
which is estimable at the selected time points. In theCoxmodel the cumulative baseline
hazard is estimable at all the observed event times, but the pseudo-observations have so
far only been shown to be consistent with a finite set of time points 39,48,69. For this
reason, we would recommend to use a finite set of time points in the range of the ob-
served event times, e.g. equidistant or quantiles.

4.2.2 With left-truncation

When the data are also left-truncated one way to define the pseudo-observations is to
use the same definition as before. Hence, the simple pseudo-observation is defined as

ϕ̂i(t0) = nθ̂(t0)− (n− 1)θ̂−i(t0),

for i = 1, . . . , n. With this definition a subject that enters the sample later than time
t0, i.e. whereLi ≥ t0, will have ϕ̂i(t0) = θ̂(t0). However, the subject did not actually
contribute to the Kaplan-Meier estimate at time t0. Thus, another idea would be to
only create pseudo-observations for subjects that actually contributed to the estimator.
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Hence, the alternative pseudo-observation for subject i is defined as

ρ̂i(t0) = n(t0)θ̂(t0)− (n(t0)− 1)θ̂−i(t0),

where i ∈ {i|Li < t0} and n(t0) denotes the number of such subjects. This is the
same as if we administratively censored the sample at time t0, since that would leave us
with exactly those that entered before time t0. The idea behind this pseudo-observation
is therefore similar to that of stopped Cox regression96, where subjects are administrat-
ively censored at time t0 to obtain more robust estimates. For this reason ρ̂i will be
referred to as the stopped pseudo-observation type. Without left-truncation the two
types of pseudo-observations are equal and identical to the standard definition. If t0 is
larger than the largest entry time the two will be identical.

Figure 4.2 illustrates the differences between the twopseudo-observations for a single
subject over time under different circumstances with or without right-censoring and
left-truncation. In the scenarios where data are right-censored the subject is either ob-
served or censored at time 1 and in the scenarios where data are left-truncated the sub-
ject enters either early or late. In the scenarios without left-truncation the two pseudo-
observations are both equal to the usual pseudo-observation and it behaves accord-
ingly 10. In the scenarios with left-truncation the two pseudo-observations are different
until all subjects have entered the data around time2. The simple pseudo-observation is
equal to the Kaplan-Meier estimate before the subject enters. The pseudo-observations
are also initially larger in the scenarios where the subject enters early on.

As was the case without left-truncation, it seems natural to assume the same con-
ditions to hold under which the nonparametric estimator is consistent for the pseudo-
observationswith left-truncation. TheKaplan-Meier estimator adapts to left-truncation
by adjusting the risk set from those i where t ≤ T̃i to Li < t ≤ T̃i

50,89. Accord-
ing to Andersen et al. 5 , sufficient conditions, in addition to the previously stated as-
sumptions, for consistency of the Kaplan-Meier estimator is that P (T > L) > 0 and
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Figure 4.2: Comparison of the simple and stopped pseudo-observations for a single
subject where T̃ = 1 under nine different scenarios. The data are either with or without
right-censoring and left-truncation. When the data are right-censored, the subject is
either observed or censored at time 1. When the data are left-truncated, the subject
enters at time 0 or 0.5.
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P (L < C) = 1. The Kaplan-Meier estimator is nonetheless consistent even when
P (L < C) < 1 as long as the independence assumption holds. However, it remains
to be formally shown that the pseudo-observations will have the desired properties un-
der these conditions.

4.3 Simulations

We explored the performance of the simple and stopped pseudo-observations in a sim-
ulation study with two baseline covariates.

4.3.1 Setup

The first covariate was categoricalX1 ∈ {0, 1} with an even distribution in the simu-
lated samples and the second covariatewas continuousX2 ∼ N(1, 1). The event times
were generated from aWeibull distribution (shape 2, scale exp[−1/2(β1X1+β2X2)])
which implies a proportional hazards model with baseline λ0(t) = 2t and log haz-
ard ratio βk for Xk for k = 1, 2. The hazard ratio for X1 was either 1.25, 1.5 or
2 and the hazard ratio for X2 was 0.8. Right-censoring times were generated from
a Weibull distribution (shape 5, scale 1.8). Left-truncation times were generated for
either 50%, 90% or 100% of the sample. The left-truncation times were generated
from a Weibull distribution (shape aL, scale 1), where aL was either 0.5, 1 or 2 which
resulted in eithermild,mediumor severe truncationof event times. If the generated left-
truncation time exceeded the generated right-censoring time, the left-truncationwas set
to the right-censoring time minus 0.1. Observations were generated until the desired
sample size was obtained. A total of 10000 data sets were simulated with sample sizes
of n = 100, 500 or 1000.

Pseudo-observations were calculated at 10 time points from 0.4 to 1.3 with a dis-
tance of 0.1. The stacked set of pseudo-observations from different time points was
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used to fit a proportional hazards model for the survival probability

S(t|X1, X2) = exp(− exp(β0(t) + β1X1 + β2X2)) .

To this end, the generalised linearmodel had a complementary log-log link function and
a nonparametric cumulative baseline with values estimated at the selected time points.
We also fitted a standard Cox model to serve as a benchmark for the performance.

The bias, variance, root mean squared error (RMSE) and the coverage probability
were calculated for the log hazard ratios. We used the sandwich estimator with work-
ing independence for the variance, however, it is known to be a bit conservative in the
setting with only right-censoring48, so it will likely be an issue with left-truncation as
well.

4.3.2 Results

The impact of the severity of the left-truncation on the estimated hazard ratios is shown
in Table 4.1. The bias when using the stopped pseudo-observation ρ̂i was smaller than
for the simple ϕ̂i for both covariates and the difference increased with the severity of
the left-truncation. In addition, the variance and RMSE of ρ̂i were smaller or equal to
those of ϕ̂i and the differences increased with the severity of the left-truncation. The
coverage probability was comparable for both and reasonably close to 0.95. The stand-
ard Cox model mostly outperformed both types of pseudo-observations, nevertheless
the pseudo-observations came close in some scenarios.

The impact of the sample size and the degree of left-truncation is shown in Table
4.2. The superscript indicates the number of failed estimations, which happened when
a subject entered and died early on in a sample with few at risk in the beginning. The
pseudo-observations for such a subject were very large and this caused the estimation
to fail. This happened more frequently when all subjects had delayed entry, the left-
truncation was severe, the sample size was small and the hazard ratio of X1 was large.
Forn = 1000 the bias increasedwith the degree of left-truncation for all threemethods,
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Table 4.1: Summary statistics from the simulation study in the scenarios where
β1 = log(2) and where around 90% of the sample had delayed entry. It shows the
severity (aL) of the left-truncation, along with the bias (Bias), variance (Var), root
mean squared error (RMSE) and coverage probability (CP) for the estimated log hazard
ratios β1 and β2.

β1 β2

aL Bias Var RMSE CP Bias Var RMSE CP

n = 1000
0.5 −0.0002 0.005 0.072 0.949 −0.0006 0.001 0.036 0.948

Cox 1 0.0006 0.005 0.072 0.949 −0.0007 0.001 0.036 0.952
2 0.0009 0.005 0.073 0.949 −0.0008 0.001 0.036 0.948

0.5 −0.0051 0.007 0.084 0.950 0.0009 0.002 0.042 0.948
Simple 1 −0.0060 0.008 0.091 0.950 −0.0007 0.002 0.046 0.949

2 −0.0117 0.011 0.106 0.954 −0.0040 0.003 0.055 0.954

0.5 −0.0012 0.007 0.083 0.949 −0.0007 0.002 0.042 0.948
Stopped 1 −0.0023 0.008 0.089 0.950 −0.0007 0.002 0.045 0.949

2 −0.0088 0.010 0.100 0.952 −0.0002 0.003 0.050 0.953

and in general the Coxmodel had the smallest bias followed by ρ̂i. For a fixed degree of
left-truncation both the bias and the number of errors decreased going from n = 100

to n = 1000. The variance and RMSE for ρ̂i were for most parts smaller than for ϕ̂i

and the coverage probabilities were comparable.

The scenario where a 100% of the sample have delayed entry is interesting as it oc-
curs frequently in practice, e.g. if the data are cross-sectional it is likely to be the case.
However, the scenario also presents some challenges for the simulations. In a sample
without anyone at risk at time0 the data contain no informationon the survival probab-
ility before the smallest observed entry time. In such a scenario, a practical recommend-
ation 5,54 is to restrict attention to estimation of the survival probability conditional on
survival up until some suitable time point s0 for which the risk set is not too small. For
this reason, the scenario without anyone at risk at time 0 is peculiar. Nonetheless, the
pseudo-observations still seemed to perform reasonably well.

We also looked at the impact of increasing the number of time points or decreasing
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Table 4.2: Summary statistics from the simulation study in the scenarios where
β1 = log(2) and aL = 1. It shows the percentage of the sample with delayed entry
(DE %), along with the bias (Bias), variance (Var), root mean squared error (RMSE)
and coverage probability (CP) for the estimated log hazard ratios β1 and β2. The
superscript after the percentage indicates the number of failed estimations out of the
10000 replications.

β1 β2

DE% Bias Var RMSE CP Bias Var RMSE CP

n = 100
50 0.0166 0.054 0.233 0.950 −0.0054 0.014 0.118 0.945

Cox 90 0.0147 0.056 0.237 0.949 −0.0049 0.015 0.121 0.945
100 0.0158 0.057 0.240 0.947 −0.0059 0.015 0.122 0.948

501 0.0268 0.072 0.270 0.947 −0.0089 0.019 0.137 0.947
Simple 903 0.0254 0.093 0.305 0.956 −0.0111 0.025 0.160 0.948

10059 0.0292 0.111 0.335 0.957 −0.0147 0.031 0.178 0.953

501 0.0283 0.072 0.269 0.946 −0.0092 0.018 0.135 0.945
Stopped 901 0.0282 0.089 0.300 0.952 −0.0104 0.023 0.153 0.946

10048 0.0311 0.104 0.324 0.954 −0.0128 0.028 0.167 0.948

n = 500
50 0.0018 0.010 0.100 0.951 −0.0008 0.002 0.050 0.951

Cox 90 0.0017 0.011 0.103 0.953 −0.0011 0.003 0.051 0.949
100 0.0022 0.011 0.103 0.952 −0.0012 0.003 0.051 0.952

50 0.0020 0.013 0.115 0.949 −0.0007 0.003 0.058 0.948
Simple 90 −0.0025 0.017 0.130 0.950 −0.0021 0.004 0.066 0.951

1002 −0.0033 0.020 0.142 0.953 −0.0028 0.005 0.074 0.955

50 0.0036 0.013 0.115 0.949 −0.0011 0.003 0.057 0.948
Stopped 90 0.0011 0.016 0.128 0.948 −0.0019 0.004 0.064 0.951

1002 0.0006 0.019 0.138 0.949 −0.0022 0.005 0.070 0.954

n = 1000
50 0.0005 0.005 0.070 0.953 −0.0006 0.001 0.035 0.948

Cox 90 0.0006 0.005 0.072 0.949 −0.0007 0.001 0.036 0.952
100 0.0010 0.005 0.073 0.952 −0.0008 0.001 0.036 0.948

50 −0.0009 0.007 0.081 0.950 −0.0002 0.002 0.041 0.948
Simple 90 −0.0060 0.008 0.091 0.950 −0.0007 0.002 0.046 0.949

100 −0.0076 0.010 0.100 0.953 −0.0013 0.003 0.051 0.954

50 0.0008 0.006 0.080 0.950 −0.0007 0.002 0.040 0.948
Stopped 90 −0.0023 0.008 0.089 0.950 −0.0007 0.002 0.045 0.949

100 −0.0033 0.009 0.097 0.951 −0.0009 0.002 0.049 0.952
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the hazard ratio of X1, but the results are not shown here. The bias of the log hazard
ratio was somewhat reduced with an increased number of time points in the model,
but in general it did not change much. There was no trend in the relative bias of X1

for both pseudo-observations, when the hazard ratio decreased, but the bias ofX2 was
slightly increased.

4.4 Application

The approaches were applied to data onDanish diabetes patients40,41, which have been
used previously as an illustration of left-truncated data 5 Example I.3.2. Out of the en-
tire population of the county of Funen in Denmark on 1 July 1973, a total of 1499were
identified as diabetes patients. The objective was to assess survival in diabetes patients
from the time of diagnosis. Hence, the timescale was time in years from diagnosis un-
til death or censoring (1 January 1982). The entry time was the time from the date of
diagnosis until study start (1 July 1973). The entry times had a median of 12.4 years
(minimum 1 month), and the times from entry until censoring or death, had a me-
dian of 8.5 years. Pseudo-observations were calculated at 10 time points, which where
the deciles of the observed death times. We fitted a proportional hazards model with
the simple and stopped pseudo-observations using a complementary log-log link and a
nonparametric baseline, including sex and age at diagnosis as covariates. We also fitted
a standard Cox proportional hazards model for comparison.

The estimates from the three approaches are shown in Table 4.3. All three gave com-
parable estimates for the hazard ratios, although the stopped pseudo-observations came
closer to the Cox model for sex and the simple pseudo-observations came closer to the
Cox model for age at diagnosis. The Cox model yielded the smallest standard errors
followed by the stopped pseudo-observations. This is in agreement with the results
from the simulations, where the estimates based on the stopped pseudo-observations
in general had less variance than the simple.

We also checked that the model assumptions, such as proportionality and linearity
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Table 4.3: Summary of the analyses of the Danish diabetes patients. It shows the
estimated log hazard ratio (log(HR)) for sex (reference female) and age at diagnosis
in years (centered at 31 and divided by 10) with corresponding standard error (SE),
hazard ratio (HR) and 95% confidence interval (CI).

Sex Age at diagnosis
log(HR) SE HR CI log(HR) SE HR CI

Cox 0.445 0.094 1.56 (1.30, 1.88) 0.659 0.033 1.93 (1.81, 2.06)

Simple 0.518 0.383 1.68 (0.79, 3.55) 0.659 0.122 1.93 (1.52, 2.45)

Stopped 0.477 0.282 1.61 (0.93, 2.80) 0.608 0.084 1.84 (1.56, 2.16)

of age at diagnosis, were reasonable. The checks for linearity of age at diagnosis are
shown in Figure 4.3. For the Cox model the relation between age at diagnosis and the
martingale residuals seems to be reasonably linear. The diagnostic plots for the pseudo-
observations t0 = 20.7 looked similar for the other time points. The largest positive
pseudo-observations belonged to subjects that entered early and ended up being admin-
istratively censored. The largest negative pseudo-observations belonged to subjects that
entered early and died quickly thereafter.

4.5 Discussion

We looked at two different ways of defining pseudo-observations for regression of the
survival probability with right-censored and left-truncated data. The performance of
the two was investigated in a simulation study that overall showed that the stopped
pseudo-observation performed better than the simple pseudo-observation. So despite
the fact that the simple pseudo-observationusesmore subjects than the stoppedpseudo-
observation, those extra subjects do not seem to add any information of value. The
differences between the two depended upon the severity and degree of left-truncation.
Notably both approaches may fail in situations where there are very few at risk in the
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beginning. In a sense this is also a useful property that the pseudo-observations will
indicate when the information in the data is sparse. In practice, if the estimation pro-
cedure fails it may help to select a different set of time points where the information is
less sparse.

The fact that one has to be careful when selecting times at which to compute pseudo-
observations when data are left-truncated is closely connected with the problem dis-
cussed by Andersen et al. 5, Example IV.3.4. Namely that, with left-truncated data one
has to settle for estimating the conditional survival distribution given that the survival
time exceeds some suitable time value s0, for which P (L < s0) is not too small. Since
there is little information on the distribution of the probabilitymass before s0. For this
reason one may encounter problems with bias for the estimated intercepts, which are
transformed values of S(tj) for the chosen time point tj . We observed this problem in
our simulations.

For simplicity, we illustrated the method in a survival setting with the survival prob-
ability as the parameter of interest, but here the Cox model approach is in many in-
stances an attractive choice. The pseudo-observations become especially useful in other
settings where there are no other regressionmethods available. Without left-truncation
the pseudo-observations have been applied to many other settings and other paramet-
ers of interest. One such parameter is the restricted mean survival time, which is ob-
tained by integrating S(t) from 0 to some threshold τ . The pseudo-observations that
we presented here can also be extended to this parameter. Although if there is little in-
formation on the distribution of the probabilitymass before some timepoint s0, the be-
forementionedbias problem is potentially enhancedby the integration, andone should
therefore aimat estimating a conditional restrictedmean survival timeE(min(T, τ)|T >

s0).
We applied the pseudo-observations to data on Danish diabetes patients and com-

pared them with the Cox model approach. The estimated hazard ratios were com-
parable with all three methods, but the simple pseudo-observations yielded the largest
standard errors.
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Figure 4.3: Model diagnostics for linearity of age at diagnosis. For the Cox model the
martingale residuals under the null is plotted against age at diagnosis. The pseudo-
observations at t0 = 20.7 are plotted against age at diagnosis. A loess smoother have
been added to each graph indicated by the grey line.117
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5
Dynamic prediction with a joint

model

Uveitis is characterised as a recurrent inflammation of the eye and an ongoing
inflammation can have severe impact on the visual acuity of the patient. The Rotter-
dam Eye Hospital has been collecting data on every uveitis patient visiting the hospital
since 2000. We propose a joint model for the inflammation and visual acuity with the
purpose ofmaking dynamic predictions. Dynamic predictionmodels allowpredictions
to be updated during the follow-up of the patient based on the patient’s disease history.

The joint model consists of a submodel for the inflammation, the event history out-
come, and one for the visual acuity, the longitudinal outcome. The inflammation pro-
cess is describedwith a two state reversiblemulti-statemodel, where transition times are
interval censored. Correlated log-normal frailties are included in the multi-state model
to account for the within eye and within patient correlation. A linear mixed model is
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used for the visual acuity. The joint model is fitted in a two-stage procedure and we il-
lustrate how the model can be used to make dynamic predictions. The performance of
the method was investigated in a simulation study. The novelty of the proposedmodel
includes the extension to a multi-state outcome, whereas previously the standard has
been to consider survival or competing risk outcomes. Furthermore, it is usually the
case that the longitudinal outcome affects the event history outcome, but in this model
the relation is reversed.

5.1 Introduction

Uveitis is an intraocular inflammation of the uvea, which typically is episodic. An act-
ive inflammation can be very painful for the patient. After the onset of the disease it is
vital that the patient is provided with proper treatment to keep the inflammation un-
der control. An untreated inflamed eye will over time progress towards poorer visual
acuity, but correct treatment can suppress the inflammation, and the eyemay over time
recover and regain visual acuity. In 35 − 50% of cases, there is no known cause 31 and
the interplay between the two eyes is unresolved. Unlike other eye diseases, that usually
affect the elderly, uveitis affects all ages. Accurate assessment of the risk of inflamma-
tion and poor visual acuity is highly relevant for these patients as uveitis is one of the
leading causes of preventable legal blindness in developed countries 31.

We propose a joint model for dynamic prediction of visual acuity and inflammation
for patients with uveitis. The data that motivated the joint model was collected at the
Rotterdam EyeHospital, and it is comprised of uveitis patients that started visiting the
hospital in the period from 2000 to 2014. Most previous studies on uveitis have been
cross-sectional, so the longitudinal data collected in Rotterdam offers unique possibil-
ities to understand how different risk factors affect the disease progression.

Early keypapers on jointmodels for event history and longitudinal outcomes include
Faucett andThomas 28 andWulfsohn andTsiatis99, and jointmodels have since been an
increasingly popular research field. A somewhat recent overview can be found inDiggle
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et al 27. The classical example is when a biomarker is measured repeatedly over time
which may be related to a time to event outcome such as death. There are three main
objectives for employing a joint model. The objective can be to analyse either the time
to event outcome or the longitudinal outcome or to study the relationship between the
two. Our main objective is to analyse the longitudinal outcome, since visual acuity is
what ultimately matters for the patients. However, the inflammation process, which
we consider as a time to event outcome, is also of secondary interest. Often when the
longitudinal outcome is the object of interest the joint model approach is used to cor-
rect for informative censoring98,84. This is however not the case here, since the changes
in the inflammation do not terminate the measurements of the visual acuity, which
would otherwise be the case if the time to event outcome where death. Instead, our
motive to employ a joint model is based on clinical considerations; that the time spent
with an active inflammation or the time spent in recovery is what drives the progression
of the visual acuity 31. However, the exact time of transition from one state to another
is interval censored in our data, since the inflammation status is only observed at the
visits to the hospital. Other examples of joint models for an interval censored time to
event outcome can be found in Gueorguieva et al44 and Rouanet et al79. We used ran-
dom effects both to account for the dependence of observations within an individual
and within an eye as well as to allow for individualised predictions. Using correlated
random effects, rather than just one shared random effect, has been a popular way of
connecting the longitudinal and time to event outcomes43,87. Given the complexity of
the joint model, particularly the random effects structure, we employed a two-stage ap-
proach to estimating the parameters of the jointmodel. Two-stage approaches has been
criticized as being subject to possible bias and poor coverage 86. Nevertheless our two-
stage approach differs from the conventional approach in a number of ways and we
conducted a simulation study to evaluate the performance of the proposed estimation
procedure.

Jointmodels can be used for dynamic prediction70,76, where predictions are updated
based on the information that is available on the patient at a given time during follow-
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up. Predictionsmay change over the follow-updue to changes in the patient’s covariates
or due to changes in the effect of the covariates or the baseline. Early work on dynamic
predictionused aCoxmodelwith time-varying covariates47,95, and vanHouwelingen92

proposed to use landmarking 11. Although joint models are usually more complex than
the alternatives, they may also provide more insight, as both the longitudinal and time
to event outcome are modelled.

We start by describing the data from the Rotterdam Eye Hospital in Section 5.2. In
Section 5.3 we describe the joint model, how the estimation is carried out and how the
jointmodel can be used tomake dynamic prediction of both outcomes. To evaluate the
performance of the proposed estimation procedure we conducted a simulation study
described in Section 5.4. In Section 5.5 we show the results of fitting the joint model
to the uveitis data along with the results from a sensitivity analysis of the assumptions.
Section 5.6 is devoted to discussion. Additional results from the uveitis data and the
simulation study are provided in the Supporting Information.

5.2 Uveitis data

The data consists of 366 uveitis patients that started frequenting the Rotterdam Eye
Hospital in the period from 2000 to 2014. These patients contributed with data on
714 eyes and 10816 observations, with a mean follow-up time of 2.5 years and the
mean number of visits was 15. The visits were in principle prescheduled, and patients
would only be discharged from the hospital after five years without any inflammation
episodes. At each visit informationwas collected on the inflammation status, visual acu-
ity and covariates. The inflammation statuswas either observed to be active (present) or
quiescent (inflammation free). However, the exact transition times are unknown, since
the inflammation status was only observed at the visits. The total number of observed
transitions was 980 to quiescent and 657 to active. The visual acuity was measured
on the Snellen scale, where an eye with normal vision would score 20/20 = 1 and a
completely blind eye would score 0.
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Data collected on three patients are shown in Figure 5.1. It shows the inflammation
status and visual acuity measured at every visit since the patients’ first visit to the hos-
pital. Patient A has close to two years of follow-up, where the left eye started out with
inflammation and declining visual acuity, but after a while the eye turned quiescent and
the visual acuity recovered somewhat. The right eye only had one visit with an active in-
flammation, and the visual acuity did not change asmuch as it did in the left eye. Patient
B is an example of a patient where only one eye seemed to be affected by the disease. In
contrast to patient B, patient C is an example of a patient where the visual acuity and to
some degree the inflammation on both eyes followed similar patterns. Patients B and
C illustrate that for most patients uveitis takes on a chronic nature and in these cases
only proper treatment may help suppress future episodes. Furthermore, Figure 5.1 il-
lustrates that there is a high level of heterogeneity between these patients and that the
visual acuity is affected by the status of the inflammation process.

The covariates include age, early onset, treatments, surgeries and complications. Table
5.1 contains a summary of the covariates in the data set. The fewmissing values (< 5%)
have been replaced by the value at the previous visit. The patient level covariates are
also baseline covariates. Age is defined as the patient’s age at the first visit to the hos-
pital. Visual acuity is expected to decline with age in the general population. Early
onset denotes the patients that had more than six weeks between the onset of the first
complaints and the first visit to the hospital. Although the number of patients with
early onset is small, it is believed to be an important predictor of the outcomes, as early
treatment of uveitis is considered to be crucial for future recovery. The eye level co-
variates are also time-varying, and they are therefore presented on an aggregated level.
The patients could receive a whole range of treatments in the form of eye drops, pills
or injections in various combinations and with varying intensities. A high intensity
treatment increases the suppression of the inflammation, but it also increases the risk
of adverse events. All the treatments have been grouped according to intensity as either
maintenance or active treatment, i.e. medium or high intensity. The surgeries that
were considered clinically relevant for the inflammation were phaco, YAG and vitrec-
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Figure 5.1: Illustration of data collected on both eyes from three selected uveitis
patients. The x-axis is time since the first visit, where the patients came to the Rotter-
dam Eye Hospital with complaints. Every dot is a visit and the observed inflammation
status is represented by shape and colour. The visual acuity is depicted on the y-axis,
where normal vision is 1 and blind is 0.
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Table 5.1: Summary of the covariates in the uveitis data set. All the patient level
covariates are also baseline covariates. The eye level covariates are time-varying, and
they are therefore presented on an aggregated level.

Covariate Number %
Patient level
Age (mean,sd) 45 18
Early onset

no 358 98
yes 8 2

Eye level
Treatment

no 122 17
maintenance 43 6
active 547 77
missing 2 0

Surgery
no 598 84
yes 116 16

Complication
no 456 63
yes 244 34
missing 14 2

tomy surgery. The complications that were considered relevant were macular edema,
macular pucker, atrophy, choroidal neovascularization and retinal detachment, and the
presence of either one was recoded at each visit. Table 5.1 shows the number of eyes that
never received any treatment (no) and how many that had treatment at least once dur-
ing follow-up (maintenance or active). It also shows howmany eyes had at least one of
the relevant surgeries performed during follow up (yes) and at least one of the relevant
complications (yes).
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5.3 Method

Letnbe thenumber of subjects in the sample and letv0, . . . , vNi denote theNi+1 visit
times for the ith patient. The visit times are not necessarily the same for every patient.
The time scale is time since the first visit to the hospital, which for most patients is the
same as the onset of the disease (Table 5.1). The information collected at the time of
the first visit, v0 = 0, is used as baseline information. At each visit we observe the
inflammation status Xil(t), the visual acuity Y ′

il(t) and the covariates Zil(t) on both
eyes l ∈ {R,L}. Throughout Zil(t) will denote the value of the covariates just prior
to time t. The joint model consists of two parts; a model for the inflammation and a
model for the visual acuity.

5.3.1 Models

Inflammation model

The inflammation process Xil(t) can be described by the multi-state model in Figure
5.2. The process canmove back and forth between the two states quiescent 1 and active
2. We assume that the transition intensity for making a transition into state g, for eye l
of subject i, takes the form

λg(t|Zil(t), bilg) = λg,0 exp(Zil(t)βg + bilg) for g ∈ {1, 2} . (5.1)

The baseline transition intensity λg,0 is assumed to be constant, which is considered
to be reasonable in view of the chronic nature of the disease. The smaller the trans-
ition intensity the longer time the process will spend in the current state. The effect
βg of the time-varying covariates Zil(t) is assumed to be time-constant. The eye and
subject specific frailty is denoted by bilg . It is expected that the frailties between the
two transitions will be negatively correlated. The frailties are therefore assumed to be
multivariate normal, which unlike the gamma distribution also allows the correlation
to be negative. It would however be too ambitious to attempt to estimate all variance
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and correlation parameters in an unstructured covariance matrix, so we impose some
structure. We assume that the vector of frailties bi for subject i can be decomposed into
a component that is common for both eyes and a component that is unique for each
eye. Let b′i ∼ N2(0,Σb′) denote the common component and let b′il ∼ N2(0,Σb′′)

denote the component that is unique for eye l. We assume that b′i, b′iR and b′iL are in-
dependent. As a result we have that

bi =


biR1

biR2

biL1

biL2

 =

[
b′i + b′iR
b′i + b′iL

]
∼ N4(0,Σb) ,

where the variance matrix, due to independence, can be decomposed as

Σb =

[
Σb′ +Σb′′ Σb′

Σb′ Σb′ +Σb′′

]
.

We assume that the inflammation status can change atmost once between two visits. In
this way we are certain whether or not there was a transition between two visits. So if
the inflammation status between two visits was unchanged, then we assume that there
were no transitions. If there was a change, then we assume that only one transition
took place. Let Til1, . . . , TilMil

denote theMil unobserved transition times. The first
period between the first visit and the first transition will be referred to as spell 0, and
the period between the first and the second transition will be referred to as spell 1 etc.
Hence, withMil transitions we will haveMil + 1 spells.
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Visual acuity model

The visual acuity is first transformed from the Snellen scale y′ to a new scale y given by

y = log
(

y′ + ϵ1
1− y′ + ϵ2

)
,

where ϵ1, ϵ2 > 0 are small. The reasoning behind the transformation is that y′ is on the
Snellen scale, which is bounded and in order to ensure that predictions will stay within
the range of the visual acuity scale we transform it to an unbounded scale. Furthermore,
the model assumption about normality is more appropriate after the transformation.
The visual acuity on the new scale is assumed to follow a linear mixed model

Yil(vj) = µil(vj) + ϵilj for l ∈ {R,L} and j ∈ {1, . . . , Ni} ,

whereYil(t) is the visual acuity on the transformed scale at visit time vj andµil(t) is its
expectation given random effects, whichwill be specified in amoment. The error terms
ϵilj are assumed to be independent and identically distributed withN(0, σ2

ϵ ).

The key motivation for the joint model, and hence the visual acuity model, is that
the time that the eye spent with a quiescent or active inflammation, is the driving force
behind changes in the visual acuity 31. We therefore assume that µil(t) is a linear func-
tion of the time that the eye has spent in the quiescent and active inflammation state.

Quiescent 1 Active 2

λ2(t)

λ1(t)

Figure 5.2: Multi-state model describing the inflammation process within the eye.
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For now we will carry on as if the transition times of the inflammation process were
known. We will discuss later how to incorporate the inherent uncertainty arising from
the fact that the transition times are unobserved. Let t1 and t2 denote the time that the
eye has spent in the quiescent and active inflammation state up until time t, such that
t = t1 + t2. The part of µil(t) that does not depend on t1 or t2 is referred to as the
intercept and the part that does is referred to as the progression of µil(t).

The progression part of µil(t) is given by

(
Z⊤
il (t)α1 + ailm1

)
t1 +

(
Z⊤
il (t)α2 + ailm2

)
t2 form ∈ {0, . . . ,Mil} ,

where the vectorsα1 andα2 are the fixed effects of the covariatesZil(t) on the progres-
sionpart. Hence,Z⊤

il (t)α1 andZ⊤
il (t)α2 are the fixed effect slopes for time spent in the

quiescent or active state. They depend on the covariates, since the presence of complic-
ations is expected to have an effect on the slopes. Furthermore, ailm1 and ailm2 denote
the random effect part of the slopes. They also depend on time as they are spell-specific
andm indicates what spell the eye is in at time t.

The intercept of µil(t) is given by

Z⊤
il (t)α0 + ailm0

where α0 is a vector of fixed effect of the covariates Z⊤
il (t) and ailm0 denotes the ran-

dom intercept for spell m and eye l. Since the random intercept is spell-specific, the
model allow for discontinuities at the transition times between spells.

Similar to the inflammation model, we also simplify the random effect structure in
the visual acuity model by decomposing it into a part that is common within the eye
and one that is specific for each spell, as we assume that the random effects between
the two eyes are independent. Let ailm = [ailm0, ailm1, ailm2]

⊤ denote the vector of
the spell specific random effects for eye l on subject i. The vector of all random effects
ail = [a⊤il0, . . . , a

⊤
ilMil

]⊤ for eye l on subject i can be decomposed into a contribution
from the eye a′il ∼ N3(0,Σa′) and from the spells a′ilm ∼ N3(0,Σa′′). We assume
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that a′il, a
′
il0, . . . , a

′
ilMil

are independent. As a result we have that

ail =


ail0
...

ailMil

 =


a′il + a′il0

...
a′il + a′ilMil

 ∼ N3(Mil+1)(0,Σa) .

Hence, the intercept and slopes between spells on the same eye are allowed to be de-
pendent. As mentioned earlier, the random effects between the two eyes on the same
subject, aiR and aiL, are assumed to be independent. Furthermore, the random effects
from the inflammation model are assumed to be independent from the random effects
and error terms from the visual acuity model. The visual acuity model could be simpli-
fied by assuming that the random effects are the same for all spells within an eye, and
thus that there is only one random intercept and slope for each eye. We explore this
later in Section 5.5.

Joint model

An illustration of the dependence between the variables and the random effects in the
joint model is shown in Figure 5.3. It includes both the unobserved (circles) and ob-
served variables (squares). It illustrates that any correlation between two eyes’ visual
acuity is induced by the frailty term in the inflammation model. The joint model relies
on a number of assumptions, and we list the essential ones below:

• The visit times are non-informative.

• Missing values are missing at random 80.

• The inflammation process changes at most once between two visit times.

• The baseline transition intensities are constant.

• Given the inflammation status the visual acuity processes from the two eyes are
independent.
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• Expected visual acuity, on the new scale, is a linear function of time spent with
and without inflammation.

• Censoring is independent of the inflammation and visual acuity processes.

Most of these assumptions are based on clinical input. Nonetheless it is important,
if possible, to verify them from the data or conduct sensitivity analyses. To this end, we
performed a sensitivity analysis of the first assumption in Section 5.5 and the rest is left
for the discussion.

Right eye Left eye

TiR bi TiL

aiR aiL

ϵiR ϵiL

XiR XiL

YiR YiL

ZiR ZiL

β

α

β

α

Figure 5.3: Illustration of the dependencies in the joint model between unobserved
(circles) and observed variables (squares).

5.3.2 Estimation

Let X , Y and Z = (ZY , ZX) denote the observed data, i.e. the status of the inflam-
mation, the visual acuity and the covariates, which are all observed at every visit. Let T
denote the unobserved transition times and let a, b denote the unobserved random ef-
fects of the visual acuity and inflammation model. Let θ = (θY , θX) =

(
(α,Σa, σϵ),

(β,Σb)
)
be the collection of all the parameters in the joint model. The observed data
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likelihood, conditional on the covariates, can be decomposed as

L∗(θ|Y,X,Z) = P (Y,X|Z, θ)
= P (Y |X,Z, θ) P (X|Z, θ)
= E

(
P (Y |T,ZY , θY )

∣∣∣X,Z, θ
)
P (X|ZX , θX) .

Maximization of the observed likelihood is complicated as Y depends on the unob-
served transition times. Furthermore, the observed data likelihood consists of integrals
which have no closed form solution and thus would need to be approximated, which is
computationally intractable with the available software. For joint models with random
effects the expectation maximisation (EM) algorithm has proven to be a convenient
estimation approach99, as the random effects can be considered as missing data. How-
ever, in our settingwehavebothunobserved randomeffects and transition times, which
make a classic EM algorithm approach intractable. Instead the joint model is fitted in
two steps. First the parameters of the inflammation model are estimated and the out-
put, along with its uncertainty, is used to estimate the parameters of the visual acuity
model.

Inflammation model

The parameters of the inflammation model θX are estimated using Poisson regression
with random effects. Poisson regression with random effects can be performed in R
using glmer from the package lme4 13 when the transition times are known. We use an
EM type algorithm where we consider the unobserved transition times as missing data,
calculate their expectations using current values of the estimates (E-step), then use these
expectations to obtain updated estimates of the parameters using glmer (M-step).

More specifically, for the E-step we use the empirical Bayes estimates of the random
effects for each subject to calculate the expected transition time within each interval
where a transition took place. We obtain the empirical Bayes estimates via ranef func-
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tion, which calculates the conditional mode given by

b̄i = argmaxb log
(
f(b|Ti, Xi, Zi)

)
,

where f(b|Ti, Xi, Zi) is the conditional density of the random effect. To calculate the
expected transition timeswe assume that a transition took place between two visit times
vj and vj+1 if Xil(vj) ̸= Xil(vj+1). Let ∆j = vj+1 − vj denote the length of the
interval and define the intensity in the interval as

γilj =

{
λ1(vj |Zil(vj), bil1) forXil(vj−) = 2

λ2(vj |Zil(vj), bil2) forXil(vj−) = 1

whereXil(vj−) is the value of the inflammation just prior to time vj . The expectation
of the unobserved transition time T given the observed data and the frailties is given by

E
(
T |Xil(vj), Xil(vj+1), Zil(vj), bi

)
= E

(
TI(vj ,vj+1)(T )|Zil(vj), bi

)/
P
(
T ∈

(
vj , vj+1

))
=

vj+1∫
vj

s exp
(
− γiljs

)
γiljds

/ vj+1∫
vj

exp
(
− γiljs

)
γiljds

=
(
vj +

1
γilj

−
(
vj+1 +

1
γilj

)
exp

(
− γilj∆j

))/ (
1− exp

(
− γilj∆j

))
,

(5.2)
which is straightforward to calculate given β and bi. Thus, the expectations of the un-
observed transition times are estimated by plugging in β̂ and b̄i.

Visual acuity model

Once the inflammationmodel has been fitted we use the estimated parameters as input
to estimate the parameters of the visual acuity model. Rather than using the estimated
parameters from the inflammation model to obtain the unobserved transition times
we use multiple imputation. Hence, we start by imputing the transitions times given
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the observed data and the estimated parameters from the inflammationmodel. That is,
between two visit times vj and vj+1 with a transition we impute the unobserved event
time T by drawing a p ∼ uniform[0, 1] and letting

Tilj = − 1
γilj

log
(
exp(−γiljvj)−

(
exp(−γiljvj)− exp(−γiljvj+1)

)
p
)
.

From the imputed transition times we can calculate the time each eye has spent with
an quiescent or active inflammation prior to each visit time. Let δilj = I(Xil(vj) ̸=
Xil(vj+1)) denote the indicator for a transition between visit vj and vj+1. We com-
pute the time eye l has spent in state g prior to visit vj by

tilg(vj) =
∑j−1

k=1

(
(1− δilk)I(Xil(vk) = g)∆k

+ δilk
(
I(Xil(vk) = g)(Tilk − vk) + I(Xil(vk) ̸= g)(vk+1 − Tilk)

))
,

and for short we use tg to denote tilg(vj) for g = 1, 2. After calculating t1 and t2 for
each visit it is straightforward to estimate the parameters of the visual acuity model by
maximising P (Y |T,Z, θY ) , as it is a standard linear mixed model. This procedure is
repeated a number of times and the estimated parameters are then pooled. The pooled
estimate of the parameters in α are obtained by taking the mean of the estimate of α
obtained in each imputation.

Variance estimation

The estimated standard errors obtained within the fitting procedure do not account
for the two-stage estimation of the parameters and are therefore most likely too small.
The standard errors of the estimates in the joint model are therefore obtained by boot-
strapping. A bootstrap sample is obtained by sampling from the pool of subjects with
replacement until the sample has the same number of subjects as in the original data set.
Hence, the same subject can appear more than once and the number of observations is
not necessarily the same as in the original sample. The bootstrap sample is then used
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to re-estimate the model parameters. This is repeated a large number of times and the
variance of the estimates are calculated as the variance of the estimated parameters in
the bootstrap samples.

5.3.3 Dynamic prediction

Here we describe how we use the joint model to make dynamic predictions by simula-
tion. Consider a patient iwith a current follow-up time of s years after the first visit to
the hospital. For this patient we wish to predict the inflammation status and visual acu-
ity for the lth eye up until a horizon τ . We first estimate the expected transition times
in the past and then simulate the future transitions times up until τ . Both the past and
future transition times are then used to predict the visual acuity from s up until τ . All
time-dependent covariatesZil(t) need to be specified beforehand. In other words, the
predictions will be for a predetermined set of treatment decisions etc., which will typic-
ally be taken as constant and in what follows we describe them as constant.

First the empirical Bayes estimates of the frailties b̄i = (b̄iR1, b̄iR2, b̄iL1, b̄iL2) are
calculated. The expected transition times in the past are obtained by using equation
(5.2). For the future transition times, the transition intensities for eye l on subject i are
obtained by replacing the parameters with their estimates β̂ = (β̂1, β̂2) and b̄i into

λ̂ilg = λ̂g,0 exp
(
Zil(s)β̂g + b̄ilg

)
for g ∈ {1, 2} .

We can then simulate the time to the next transition by drawing a u ∼ uniform[0, 1]

and letting

∆T =
− log(u)
exp(λ̂ilg)

, (5.3)

where g is determined by what state the previous transition was made from. The kth
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transition time after time s is given by

T̂ilk = s+
k∑

j=1

∆Tj .

This is repeated until T̂ilk > τ . The time the eye will spend in either the quiescent t1
or active state t2 up until τ is calculated from the past and future transition times. The
procedure generates a single trajectory for the inflammation process.

After generating the transition times for a single trajectory of the inflammation pro-
cess, we generate a single trajectory from the predictive distribution of Yil(t), for s <

t ≤ τ given these transition times. Let t1(s) and t2(s) denote the time the eye has
spent in quiescent and active state up until time s and let m denote the current spell
the eye is in at time s. First the empirical Bayes estimates of the decomposed eye spe-
cific random effects ā′il = [ā′il0, ā

′
il1, ā

′
il2]

⊤ and current spell specific random effects
ā′ilm = [ā′ilm0, ā

′
ilm1, ā

′
ilm2]

⊤ are calculated. Then we determine the current true
value of the visual acuity

Ŷil(s) = Z⊤
il (s)α̂0 + Z⊤

il (s)α̂1t1(s) + Z⊤
il (s)α̂2t2(s) (fixed)

+ ā′il0 + ā′il1t1(s) + ā′il2t2(s) (eye)
+ ā′ilm0 + ā′ilm1t1(s) + ā′ilm2t2(s) (spell) .

Subsequently, we predict Ŷil(t) until the first transition time after s as a straight line
with slopeZ⊤

il (s)α̂1+ ā′il1+ ā′ilm1 if the current state is quiescent, or withZ⊤
il (s)α̂2+

ā′il2+ā′ilm2 if the current state is active. Every time a transition time T̂ilk is encountered
a new set of spell specific random effects are drawn from the estimated distribution.
The new set of spell specific random effects ā′il(m+k) replaces the set from the previous
spell. Using the updated spell specific random effects, t1(T̂ilk) and t2(T̂ilk), we can
determine the true value of the visual acuity at the transition time Ŷil(T̂ilk) as before.
The visual acuity Ŷil(t) is then predicted as a straight line with slopeZ⊤

il (s)α̂1+ ā′il1+

ā′il(m+k)1 if the state is quiescent, or with Z⊤
il (s)α̂2 + ā′il2 + ā′il(m+k)2 if the state is
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active, until the next transition time is encountered. The procedure is repeated until
the horizon τ .

After having generated a number of trajectories, the results are gathered, and the
mean and 2.5% and 97.5% percentiles are used to obtain a point prediction and 95%
prediction interval.

5.4 Simulations

In order to evaluate the performance of the proposed estimation procedure we conduc-
ted a simulation study. The main objective were to evaluate the estimates of the fixed
effects and the variance of the random effects under the assumption that the model is
correctly specified in a scenario resembling the uveitis data. In addition, we also looked
at the performance of the estimates when the model would be misspecified to not take
into account the dependence between the eyes.

5.4.1 Setup

To generate the data for a single subject i, we first generated three patient level baseline
covariates, where Z1i and Z2i are binary and each level were sampled with equal prob-
ability and Z3i ∼ N(0, 15). Then we generated the subject b′i ∼ N2(0,Σb′) and
eye b′il ∼ N2(0,Σb′′) specific frailty components. The specific parameters values are
reported in the Supporting Information. The parameters were chosen such that the
simulated data resembled the uveitis data. The transition intensities for subject i were
assumed to be given by

λg(t|Z1i, bilg) = λg,0 exp(Z1iβg + bilg) for g ∈ {1, 2} .

The initial states were also random, that is there was a 50% chance that one of the
eyes were inflamed, a 40% chance that bothwere inflamed and a 10% chance that none
of the eyes had an active inflammation at time 0. Given the random effects and the
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baseline information we then generated the time to the next transition by employing
the same strategy as in (5.3). New transition times were generated until the sum reached
the time horizon of 5 years for each eye. In order to induce the interval censoring of
the event times, we simulated a number of prescheduled visit timesNi ∼ Poisson(λN )

with equal distance between time 0 and 5 years. It was possibly for the subject to receive
extra visits to ensure that every transition was observed. Every subject had a minimum
of two visits. We generated the eye a′il ∼ N3(0,Σa′) and spell a′ilm ∼ N3(0,Σa′′)

specific random effect components, where the number of spells was determined by the
simulated transitions. The transformed visual acuity was simulated at each visit time
based on the true history of the inflammation process according to the model

Yil(vj) = α0+α1t1+α2t2+α3Z2i+α4Z3i+ailm0+ailm1t1+ailm2t2+ ϵilj ,

where ϵilj ∼ N(0, 0.36). We generated data with sample sizes of 100 or 300 with an
average of 15 or 30 visits per subject and repeated the simulations 1000 times. In scen-
ario Awe analysed the simulated interval censored data using the correct submodels for
the inflammation and visual acuity, but in scenario B we used an inflammation model
which assumed that the eyeswere independent. The performance of the estimationpro-
cedurewas evaluated by calculating the bias, variance, rootmean squared error (RMSE)
of the fixed effects, along with the coverage rate of the 95% confidence intervals based
on the variance estimate with or without bootstrap. Due to computation time, the
bootstrapped coverage rates were only based on 100 repetitions and not 1000. We also
calculated the bias, variance and RMSE of the variance estimates of the random effects.

5.4.2 Results

The results from the simulation study can be found in the Supporting Information. In
scenario A with sample sizes of 100 or 300 and an average number of visits of 15, the
bias of the fixed effects in both submodels was overall of a reasonable size compared
to the true effect size even with a sample size of 100. In general the bias, variance and

138



RMSE improvedwith an increase in sample size, although the improvement in bias was
less for the inflammation model parameters. The coverage rate without bootstrapping
the variancewas lower than the nominal95% for the inflammation, but itwas adequate
for the visual acuity. The bootstrapped confidence intervals in the inflammationmodel
had a somewhat better coverage rate. The conclusion for the variance of the random
effects is broadly the same as for the fixed effects.

In scenario A it was found that an increase in the average number of visit times im-
proved the bias for both the fixed effects and the variance of the random effects, but
had less of an impact on the variance and RMSE. Even with an increase in visits the
coverage rate without bootstrapping was still too low. The boostrapped coverage rate
performed reasonable, although somewhat variable probably due to the low number
of repetitions.

In scenario B the misspecification of the inflammation model lead to an increased
bias of both the fixed and random effects in the inflammation model, but did not have
a sizeable effect on the estimation of the visual acuity model parameters.

All in all the simulation study suggests that the two-stage estimation procedure with
multiple imputation performed satisfactory.

5.5 Uveitis results

The jointmodel was applied to the uveitis data using early onset, treatment and surgery
for the inflammation model and patient age, centred at age 43, and complications for
the visual acuitymodel. The estimated fixed effects for the two submodels can be found
in Table 5.2. The estimated baseline transition intensities λ1,0 and λ2,0, the Intercept
in Table 5.2, imply that the eyes in general move quicker to the quiescent state than to
the active state. Moreover, since the baseline is time-constant, it also implies that the ref-
erence group is expected to spend 1/λ2,0 ≈ 1 years in the active state and 1/λ1,0 ≈ 3

years in the quiescent state. Maintenance or active treatments increase the transition in-
tensity to the quiescent state considerably, but they did not have a significant effect at
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the5% level on the transitions to the active state. Surgery increases the transition intens-
ity to active inflammation, which was expected since surgery may distress the eye and
thereby cause more inflammation. The estimated slopes in the visual acuity submodel
imply that the visual acuity improves with time, although the time spent with an active
inflammation was not found to be significant. The explanation for the increase over
time may be due to our relatively young population. At baseline the older ages have a
lower intercept and we investigated if there was an interaction between time spent in
quiescent or active state and age, but it was found not to be significant. The presence of
complications had a significant negative impact on the intercept and a nonsignificant
negative impact on the progression of visual acuity over time.

The estimated variances of the random effects are shown in Table 5.3. From Σ̂b′ and
Σ̂b′′ we can see that there is a negative correlation between the two transitions both
within the patient and within an eye. Furthermore, the variance is larger for transitions
to active than to quiescent. In addition, we can see that there largely is a negative cor-
relation between the intercept and the two slopes in the visual acuity model, and that
the variance of the slope for time spent with inflammation is larger than of the slope for
time spent without inflammation.

We investigated whether it would be sufficient to have random effects in the visual
acuitymodel on the eye level, instead of a set for each spell. All the same, a likelihood ra-
tio test strongly suggested that the more complex model was preferable. The estimates
from the model without spell specific random effects can be found in the Supporting
Information.

Figure 5.4 shows the model estimates of the inflammation and visual acuity for the
three patients from Figure 5.1. The y-axis depicts the visual acuity on the new scale used
in themodel, instead of the Snellen scale. On the new scale higher values correspond to
better visual acuity and lower values to poorer visual acuity. Themodel estimates are de-
picted as lines eitherwith orwithout the empirical Bayes estimates of the randomeffects.
The fixed effect estimates are straight lines with an intercept and slope that depends on
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Table 5.2: Estimates of the fixed effects parameters in the inflammation and visual
acuity model for the uveitis data with 95% bootstrapped confidence intervals (CI).

In
fla

m
m

at
io
n

Tr
an

sit
io
ns

to
Q

ui
es
ce
nt

A
ct
iv
e

Co
va

ria
te
s

ex
p(
β
1
)

CI
ex

p(
β
2
)

CI
In

te
rc
ep

t
0.
98
4

(0
.7
1
,1
.3
7)

0
.3
03

(0
.2
4
,0
.3
8)

Ea
rly

on
se
t

ye
s

1.
23
3

(0
.7
7
,1
.9
6)

1
.3
94

(0
.7
7
,2
.5
1)

Tr
ea

tm
en

t
m

ain
te
na

nc
e

3.
42
9

(2
.3
3
,5
.0
4)

1
.2
87

(0
.9
3
,1
.7
9)

ac
tiv

e
4.
42
5

(3
.0
2
,6
.4
8)

1
.3
5

(0
.9
,2
.0
2)

Su
rg
er
y

ye
s

0.
78
7

(0
.1
1
,5
.7
4)

5
.6
95

(3
.3
3
,9
.7
5)

V
isu

al
ac

ui
ty

Co
va

ria
te
s

α
CI

In
te
rc
ep

t
1.
1
1
1

(
0
.9
6
,

1
.2
7
)

t 1
0.
0
5
5

(
0
.0
0
,

0
.1
1
)

t 2
0
.0
7
1

(−
0.
1
9
,

0.
3
3
)

A
ge

−
0
.0
1
9

(−
0.
0
2
,−

0.
0
1
)

A
ge

2
−
0
.0
0
1

(
0
.0
0
,

0 .
0
0
)

Co
m

pl
ica

tio
n

ye
s

−
0
.5
2
5

(−
0
.7
4
,−

0.
3
1
)

t 1
0
.0
7
7

(
0
.0
0
,

0.
1
5
)

t 2
−
0
.0
8
2

(−
0
.2
3
,

0.
0
7
)

141



Table 5.3: Estimates of the variance of the frailties and random effects in the joint
model.

Σ̂b′1
=

[
0.35 −0.01

−0.01 0.63

]
Σ̂b′2

=

[
0.001 −0.02

−0.02 0.37

]

Σ̂a′1
=

 1.77 0.01 −0.60
0.01 0.15 −0.12

−0.60 −0.12 2.28

 Σ̂a′2
=

 0.40 −0.05 −0.13
−0.05 0.03 −0.05
−0.13 −0.05 0.24



the estimated time spent in the two states. The lines are not continuous, because the
time-varying covariates can modify both the intercept and the slopes. The lines where
the empirical Bayes estimates are included allow the lines to be even more discontinu-
ous, as the inclusion of spell specific intercepts allow the visual acuity to jump at the
transition times.

An illustration of dynamic predictions of inflammation and visual acuity based on
data from the three patients can be found in the Supporting Information.

We also conducted a sensitivity analysis of the assumption of non-informative vis-
its. The assumption was based on the input that visits were prescheduled. However,
since the inflammation can be very painful, it is possible that some patients requested
an earlier appointment due to an onset of an inflammation episode. In order to address
this concern, we refitted the model under the assumption that the onset of an inflam-
mation episode happened exactly at the visit time, where an onset was registered. The
offset of an inflammation episode was still assumed to be subject to interval censoring.
It was simple to implement, as the only thing that changed in the estimation procedure
in Section 5.3.2, was that only the transition times going fromactive to quiescent needed
to be updated. The estimates of the fixed effects are given in Table 5.4. In the inflam-
mation model the baseline transition intensity for transitions to quiescent went from
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Figure 5.4: Illustration of the model applied to data from three patients. The observed
inflammation (colour) and visual acuity on the model scale (y-axis) is indicated with
transparent dots. The lines depicts the model estimates of the inflammation and visual
acuity either with (Fixed + random) or without (Fixed) the empirical Bayes estimates
of the random effects.
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0.984 to 3.599 under the new assumption. Considering that the assumption leads to
less time being spent in the active inflammation state, this is not surprising. However,
what is surprising is that the treatment effects on transitions to quiescent were also no-
ticeably reduced. In the visual acuity model results were qualitatively the same, except
for the effect of time in the quiescent state, which increased from 0.055 to 0.1.

To evaluate the model predictions we looked at the Brier Score for the inflamma-
tionmodel, and for the visual acuity we looked at the bias and root mean squared error
(RMSE). The evaluation measures were calculated for three different time points dur-
ing the patients’ follow-up at 0, 1 and 2 years. Using the data that were available at a
given follow-up time point predictions were assessed at 1 and 3 years ahead in time. We
compared predictions from three joint models. The first model (Model 1.a) did not in-
clude any covariates in the two submodels and it was fitted under the assumption that
the transition times of the inflammation process were interval censored. The second
model (Model 1.b) is the one that was reported in Table 5.2. It was fitted under the
same assumption, but it included covariates. The last model (Model 2) was reported
in Table 5.4. The model included covariates, but it was fitted under the assumption
that the onset of inflammation episodes were observed and happened at the visit time.
For each patient 50 simulated predictions were obtained from each of the threemodels.
Although it arguably is an imperfect solution, we compared the mean of the 50 predic-
tions to the last observed value of either the inflammation or the visual acuity. Figure
5.5 show the results of the evolutions. In general Model 1.a has the lowest Brier Score
andModel 2 has the lowestRMSE. In terms of bias there is no onemodel that performs
better than the others. Since the primary concern of the patients is their visual acuity
we tend to favour the models that perform better on the visual acuity scale. For this
reason we ultimately decided to favour Model 2 and furthermore the implied assump-
tion about the interval censoring seems reasonable for the uveitis data.

Albeit, thepredictionswere evaluatedon the samedata thatwereused to estimate the
models’ parameters, it is still reasonably to compare themodels basedon their predictive
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Table 5.4: Estimates of the fixed effects parameters in the inflammation and visual
acuity model for the uveitis data with 95% bootstrapped confidence intervals (CI),
where it was assumed that onset of inflammation happened at the visit time.
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performance. Nonetheless, the final model should be evaluated on a new data set to
avoid overoptimism.

5.6 Discussion

We have proposed a joint model for dynamic prediction of visual acuity and inflam-
mation in uveitis patients, which accounts for the special features of the data. The
proposed joint model distinguishes itself by dealing with an episodic interval censored
multi-state outcome. In addition it is unusual in that the multi-state outcome affects
the longitudinal outcome and not the other way around.

The joint model is complicated by the need to account for the special dependence
structure in the uveitis data. We employed random effects both to account for the de-
pendence structure and to obtain subject-specific predictions. However, a classic cri-
ticism of random effect models is that the assumed distribution is difficult to verify
from the data, and instead the choice is often based on what is computationally con-
venient. For other applications the structure could be simplified, which would reduce
the dimensions of the random effects, and such a model would probably prove easier
to estimate in one step instead of two. The current estimation procedure could be im-
proved by finding away to directly estimate all the parameters in one step. Ways to solve
the problem of computational intractability could be to use Laplace approximations 102

or adaptiveGaussian quadratures, whichwould likely bemuch faster than using an EM
algorithm. Due to the complexity of the uveitis data and consequently the joint model,
we employed a two-stage estimation procedure. Although two-stage procedures can
lead to bias and loss of efficiency compared to other procedures 3,86,101, our simulation
study showed that the estimation procedure performed satisfactory when the model
was correctly specified. It is however a disadvantage of the two-stage procedure that we
cannot compute a full likelihood.

The model relies on a number of assumptions, which were largely motivated by
clinical insight. One of the assumptions was that the baseline transition intensities
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were constant. This was believed to be reasonable for this application, since uveitis is
a chronic disease in most cases. However, for other applications it would be a natural
extension of the model to allow the baseline to be time-varying. This could also be a
way of confirming the assumption about the constant baseline. A necessary assump-
tion to fit themodel was that all transitions between the quiescent and active state were
observed. The assumption is believed to be reasonably for the uveitis data, however it
could be an issue if the assumption is violated. Dropout from the study could be a cause
for concern as well for the missing at random assumption. The standard procedure at
the Rotterdam EyeHospital was to only discharge a patient after five years without any
inflammation episodes, unfortunately information about discharges was not available
to us. In addition, it is also imaginable that patients could have neglected to turn up
for the appointments if their eyes had been improving over a longer period of time.
We investigated the consequences of one of the other assumptions in a sensitivity ana-
lysis. There we either assumed that the onset of an inflammation episode was always
observed or interval censored. It turned out to result in a higher baseline transition rate
to quiescent and smaller treatment effects. It is likely that the truth is somewhere in
between.
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Samenvatting

Binnen de gezondheidszorg is het doorgaans van groot belang om te kunnen
voorspellen welke gebeurtenissen zich in de toekomst zullen voordoen. Meestal wil
men kunnen voorspellen wat de kans is dat een patiënt op een bepaald moment in de
toekomst nog in leven zal zijn. In dat geval is de gebeurtenis de dood van de patiënt,
maar de gebeurtenis kan ook vele andere dingen zijn, zoals de diagnose van een ziekte
of hetmoment van ontslag uit het ziekenhuis. Omdergelijke voorspellingen te kunnen
doen, worden gegevens over het al dan niet optreden van dergelijke gebeurtenissen rou-
tinematig verzameld, ofwel als onderdeel van een (klinische) studie ofwel in gezond-
heidsregisters, en gebruikt om voorspelmodellen te maken. Deze voorspelmodellen
kunnen worden gebruikt om op individueel niveau voorspellingen te doen door rek-
ening te houden met specifieke kenmerken van de patiënt. Van oudsher worden voor-
spelmodellen gebruikt om voorspellingen te doen over de toekomst, gezien vanaf een
vast tijdstip, de zogenaamde baselinetijd. De baselinetijd zou bijvoorbeeld de starttijd
van een behandelingsregime kunnen zijn of de eerste dag van een opname in het ziek-
enhuis. Dynamische voorspelmodellen zijn ontworpen om niet alleen voorspellingen
te doen vanaf de baselinetijd, maar juist ook tijdens de follow-up van de patiënt. Bij
dit type modellen worden voorspellingen dus bijgewerkt naarmate de tijd vordert en
wordt informatie meegenomen die pas beschikbaar komt gedurende de follow-up van
de patiënten.

In de afgelopen jaren zijn een aantal nieuwe methoden geïntroduceerd om toekom-
stige gebeurtenissen zo goed mogelijk te kunnen voorspellen, zoals methoden die ge-
baseerd zijn op het gebruik van “inverse probability weights” of op het gebruik van
pseudo-observaties. Het doel van dit proefschrift is om de beschikbare methoden uit
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te breiden, zodat deze modellen ook gebruikt kunnen worden voor het maken van
dynamische voorspellingen. Een van de kenmerkende eigenschappen van data over
toekomstige gebeurtenissen, is dat de gebeurtenistijden soms onvolledig worden waar-
genomen, bijvoorbeeld als gevolg van right-censoring (waarbij aan het eind van de ob-
servatieperiode alleen bekend is dat een gebeurtenis nog niet heeft plaatsgevonden) of
left-truncation (waarbij inclusie in een studie alleen mogelijk is indien een bepaalde ge-
beurtenis nog niet heeft plaatsgevonden). De manier waarop met deze onvolledigheid
wordt omgegaan, kan van methode tot methode flink verschillen. Bovendien verschil-
len de methoden in de manier waarop ze omgaan met tijdsafhankelijke covariaten en
mogelijk tijdsvariërende effecten van de covariaten. Dit proefschrift richt zich op twee
benaderingen voor het maken van dynamische voorspellingen, bekend onder de naam
landmarking en joint modelling.

Het proefschrift bestaat uit vijf hoofdstukken. Het eerste hoofdstuk illustreert hoe
een dynamisch voorspelmodel kan worden gebruikt om complexe prognostische prob-
lemen bij borstkanker aan te pakken. In de volgende drie hoofdstukken wordt telkens
een bestaande methode uitgebreid met het oog op het maken van dynamische voor-
spellingen. In twee van de drie hoofdstukken staat landmarking centraal, terwijl het
derdehoofdstukdraait omeen joint-modelling aanpak. Het vijfdehoofdstukonderzoekt
hoe pseudo-waarnemingen te gebruiken zijn, wanneer in de data zowel right-censoring
als left-truncation voorkomt.
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