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1

Introduction

A real vector space paired with a partial order that respects the linear structure is called
a partially ordered vector space, and in this case the set of positive elements forms a
cone. Conversely, any cone in a real vector space gives rise to a unique partial order
respecting the linear structure that has this cone as its positive elements. The duality
between an analytic structure of a partial order and the convex geometric structure
of a cone yields an interesting branch of mathematics. Ordered vector spaces were
developed parallel to functional analysis and operator theory from the start of the
twentieth century, but appear more sparsely in the literature than normed spaces and
topological vector spaces. The main focus of study in the area has been on Riesz spaces.
An excellent monograph by Jameson [Jam70] establishes partially ordered vector spaces
as a separate theory. More recently, Aliprantis and Tourky [AT07] outlined the theory
of partially ordered vector spaces from a contemporary perspective.

Motivating examples

Partially ordered vector spaces and their related cones appear naturally in various
fields. For instance, a space consisting of continuous functions on some topological
space appears frequently as state space in mathematical models. In the case that
these functions are real-valued, the pointwise order leads to a partially ordered vector
space. Likewise, the cone of positive definite matrices is often considered, for instance
in optimization theory and computational science. Even in Relativity, where the future
light cone is modelled as the 3-dimensional Lorentz cone, order structure is present. The
theory of partially ordered vector spaces is often used to derive results on monotone
dynamical systems and game theory used to model biological, chemical and economic
phenomena.

Having a linear partial order is a rather weak structure, and beyond elementary
observations not many results hold for general partially ordered vector spaces. It is
common to endow a partially ordered vector spaces with additional structure, for in-
stance a lattice structure, geometric properties of the cone or even algebraic structure.
In each of these cases it is interesting to understand the relation between this additional
structure and to that of the order. More precisely, we consider maps that preserve or-
der related properties and derive what additional structure on the spaces they induce.
Below we describe the different settings and the corresponding order preserving maps
that we consider. Rigorous definitions and examples of the objects discussed below are
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supplied in Chapter 1.

Pre-Riesz spaces and their homomorphisms

Among partially ordered vector spaces a widely studied class are the Riesz spaces, or
vector lattices. The additional structure they carry is that any pair of vectors has a least
upper bound. A rich theory of Riesz spaces and operators between Riesz spaces has
been developed in the past century, see [LZ71, dJvR77, Zaa83, Zaa97, AA02]. There
are, however, many natural partially ordered vector spaces in functional analysis that
are not Riesz space. For instance, a space of operators between Riesz spaces or a tensor
product of Riesz spaces generally fails to be a Riesz space itself. The more general
concept of a pre-Riesz space has been developed by van Haandel in [vH93]. These
pre-Riesz spaces are those partially ordered vector spaces that allow an order dense
embedding into a Riesz space. In this case, the smallest Riesz subspace containing the
embedded pre-Riesz space is considered the Riesz completion. Preceeding the work of
van Haandel, a theory for Archimedean spaces is due to Buskes and van Rooij [BvR93].
Many Riesz space concepts, such as disjointness, bands and ideals, have been generalised
to the setting of pre-Riesz spaces by Kalauch and van Gaans. A comprehensive overview
of the theory on pre-Riesz spaces is given in [vGK18]. Even though pre-Riesz spaces are
well understood, their class of corresponding homomorphisms has seen relatively little
research. First introduced by van Haandel, the Riesz∗ homomorphisms are those linear
maps between pre-Riesz spaces that extend to a Riesz homomorphism between their
Riesz completions. A natural family of questions arises. Given any result concerning
Riesz homomorphisms between Riesz spaces, one can ask whether an analogous result
holds for Riesz∗ homomorphisms between pre-Riesz spaces. In Chapter 2, we answer
a variety of such questions, mainly in the context of spaces of continuous functions.
Examples of pre-Riesz spaces consisting of continuous functions include the space of
differentiable functions on a smooth manifold or a Sobolev space on a sufficiently regular
domain. Our first notable result, Theorem 2.5, states that a Riesz∗ homomorphism
f : X → Y , between order dense subspaces X ⊆ C(S) and Y ⊆ C(T ) that separate the
points, is given by

f(x)(t) = w(t)x(π(t)), x ∈ X, t ∈ T,

for suitable w : T → R+ and π : T → S. A similar description of Riesz∗ homomorphisms
is given in Theorem 2.12 for the case where S and T are locally compact, X ⊆ C0(S)
and Y ⊆ C0(T ), by adapting the properties of w and π appropriately. Afterwards, we
investigate to what extent the following result generalises; a bijective Riesz homomor-
phism between Riesz spaces is necessarily a linear order isomorphism and its inverse is
again a Riesz homomorphism. We argue that a similar statement holds for bijective
Riesz∗ homomorphisms between pre-Riesz space that are pervasive, see Theorem 2.17,
and provide a counterexample for the general case. Finally, we consider the question
whether a linear positive disjointness preserving map between pre-Riesz spaces is nec-
essarily a Riesz∗ homomorphism, another assertion that holds in the Riesz space case.



INTRODUCTION 3

We provide a counterexample to this statement and exhibit a sufficient condition on
the pre-Riesz space under which it is valid.

Automatic linearity of order isomorphisms

After concluding our exploration of lattice structure preserving maps in pre-Riesz
spaces, we return to the setting of general partially ordered vector spaces, in Chap-
ter 3. A fundamental problem is to understand the structure of order isomorphims.
Here an order isomorphism is an order preserving bijection whose inverse is also order
preserving. There are spaces on which all order isomorphisms are linear up to transla-
tion. It is an intriguing problem to understand between which partially ordered vector
spaces it is the case that all order isomorphism are linear up to translation. Stated in
different words, when is the linear structure of a space fully determined by that of the
order? Research on this quesiton originates from Special Relativity. During the 1950s
and 1960s various results in this area appeared dealing with finite dimensional cones,
[AO53, Zee64, Ale67, Rot66]. In the 1970s Noll and Schäffer made numerous contri-
butions to this area in a series of papers, [NS77, NS78, Sch77, Sch78]. Most notably,
they showed that an order isomorphism between infinite dimensional cones that are
the sum of their engaged extreme rays are linear. In many natural settings, however,
such as in operator algebras, their result in not applicable. Molnár considered order
isomorphisms on the cone B(H)+sa, of positive semidefinite self-adjoint operators on a
Hilbert space, and showed in [Mol01] among other things, that all such order isomor-
phism are linear. We provide a generalisation of Noll and Schäffer’s result in Theorem
3.15, that provides a condition on infinite dimensional cones that guarantees that order
isomorphism are affine. This condition is sufficiently mild to include Molnár’s result.
Our approach to obtain this result is to use the fact that order isomorphisms preserve
infima and suprema. This allows us to weaken the necessary condition imposed on the
cone by Noll and Schäffer to the cone being merely equal to the inf-sup hull of the span
of its engaged extreme rays. From the results stated in [NS77] it is not clear, however,
how they can be extended with this method. Restricting an order isomorphism to the
span of the engaged extreme rays is, a priori, not possible. So we carefully rework the
ideas of their proofs to obtain a more general alternative to their result. We generalise
their assertion that all order isomorphism are affine provided that the cone is the sum
of its engaged extreme rays, to order isomorphims being affine on the sum of the en-
gaged extreme rays of the cone. From here we can extend the set on which the order
isomorphism is affine to all elements in the domain that we can reach by taking infima
and suprema of positive sums of engaged extreme vectors. In this manner we create a
framework to study the linearity of order isomorphisms that encompasses the existing
theories. In fact, in Chapter 5 we encounter that the classes of operator algebras called
the JB-algebras and JBW-algebras, naturally fit this framework. We elaborate on this
after we have introduced the terminology to do so.
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Monotone dynamical systems

Order structure also plays a role in a special class of dynamical systems. Economic and
biological models often describe competitive or cooperative relations between parties
and species. A prototypical example is a Kolmogorov model of cooperating species:

ẋi(t) = xi(t)Fi
(
x(t)

)
, x ∈ [0,∞)n, i ∈ {1, . . . , n},

where F : Rn+ → Rn is continuously differentiable. The cooperation between the differ-
ent species is then modelled by the assumption that ∂Fi/∂xj ≥ 0, for all i 6= j. Let us
assume that solutions of this model exist for all positive time. In this case, the corre-
sponding semiflow Φ: R×Rn+ → Rn+, which for each initial value x describes the solution
by t 7→ Φ(t, x), is monotone, in the sense that Φ(t, ·) is monotone for any t ≥ 0. These
monotone semiflows are the subject of pioneering studies by Hirsch [Hir82, Hir85, Hir88]
and numerous subsequent works, see [DH91, HS06, LN12, PT92, Smi95] and references
therein. Under suitable additional conditions the generic behaviour of dynamical sys-
tems corresponding to monotone semiflows cannot be very complex. The behaviour of
their discrete-time counterpart, where the evolution is described by an order preserving
map, is not well understood, without further assumption on the map. Recently, how-
ever, Hirsch [Hir17] showed that if the order is induced by a polyhedral cone, then the
system cannot display chaotic behaviour in the following sense. He showed that if such
a monotone dynamical system has a dense set of periodic points, then the whole system
is periodic. Furthermore, he conjectured that this result holds for general closed cones
in finite dimensional vector spaces. We confirm this conjecture in Chapter 4. During
our analysis, we point out a connection between monotone dynamical systems with
dense periodic points and the structure of order isomorphisms on intervals.

Symmetric cones and Jordan algebras

An open cone C in a finite dimensional inner product space is considered a symmetric
cone if it is self-dual (C = C∗) and homogeneous (the automorphism group Aut(C)
acts transitively on C). Typical examples of symmetric cones include the cone of real
positive definite n×n matrices and Lorentz cones. A detailed overview of the theory on
symmetric cones is given in the book of Faraut and Korányi [FK94]. Symmetric cones
have various connections with other fields of mathematics. A famous result, discovered
independently by Koecher [Koe57] and Vinberg [Vin60], states that symmetric cones
arise precisely as the interior of the cone of squares of a formally real Jordan algebra.
Originally introduced by Pascual Jordan (1936), as an attempt to find alternative formal
settings for quantum mechanics, a Jordan algebra is a real vector space with a bilinear
product that is commutative and satisfies the so-called Jordan identity. With the aid of
the characterisation of Koecher and Vinberg, one can endow a symmetric cone with a
Riemannian metric, making it a prime example of a Riemannian symmetric space. This
connection between symmetric cones, formally real Jordan algebras and Riemannian
symmetric spaces is outlined in more depth in Section 1.6.
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Koecher-Vinberg for JB-algebras

The notion of a formally real Jordan algebra has been generalised to the infinite dimen-
sional setting, by Alfsen, Schultz and Størmer [ASS78], to a Jordan Banach algebra,
or JB-algebra for short. One naturally wonders if an analogue of the Koecher-Vinberg
characterisation exists in inifite dimensions to describe the geometry of the interior of
the cone of squares in a JB-algebra. In general a JB-algebra cannot be realised as an
inner-product space, so there is no natural notion of self-duality, nor can one define
a Riemannian metric on the interior of the cone of squares. We start by exploring
an order theoretic approach to characterise the cone of a JB-algebra. In a JB-algebra
A, the inverse map ι : a 7→ a−1 on A◦+, is an antihomogeneous order antimorphism.
Recent work by Walsh [Wal13], has shown that a finite dimensional open cone is sym-
metric if and only if it admits an antihomogeneous order antimorphism. We make the
first steps towards extending this order theoretic charcterisation to classes of infinite
dimensional JB-algebras. A special class of JB-algebras are spin factors, an infinite di-
mensional analogue of the Lorentz cone. In Chapter 6, we show that a complete order
unit space (V,C, u) is a spin factor if and only if C is strictly convex and C◦ admits an
antihomogeneous order antimorphism.

Infinite dimensional symmetric cones

Alternatively, besides characterising the JB-algebras among the complete order unit
spaces in terms of the geometric structure of the cone, we aim to describe the infinite
dimensional analogue of a symmetric cone in order theoretic terms. In the setting of
a Hilbert space the notion of a symmetric cone of being homogeneous and self-dual
is valid. The connection with Jordan algebras is still valid in this setting. Indeed,
symmetric cones in a Hilbert space arise as the interior of the cone of squares of a so-
called JH-algebra, as in shown in [Chu17]. Here a JH-algebra is both a JB-algebra and
a Hilbert space such that the inner product is associative for the product. A JH-algebra
is a finite direct sum of factors that are either a formally real Jordan algebra or a spin
factor of arbitrary dimension, and in particular the cone of a JH-algebra is the sum
of its extreme rays. This last property is what characterises the infinite dimensional
symmetric cones among the interiors of cones in a complete order unit space that
admit an antihomogeneous order antimorphism, as we show in Theorem 7.16. A key
observation, that is used to obtain this characterisation, is that an antihomogeneous
order antimorphism on the interior of a cone maps any subcone spanned by finitely
many extreme rays surjectively onto another subcone that is spanned by finitely many
extreme rays, which allows us to apply the rich structure of finite dimensional symmetric
cones. This restriction property is based on the ideas of Noll and Schäffer that we further
develop in Chapter 3. Convenient properties that order isomorphisms have concerning
their relation to lines that are parallel to extreme rays, are equally shared with order
antimorphisms. The interplay between symmetric cones and order antimorphisms are
studied in Chapter 7.
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Order isomorphism in JB-algebras

Apart from special classes of JB-algebras being able to be characterised with order
theoretic terms, the order structure of a JB-algebra is closely related to its algebraic
structure. In [H-OS84] much of the theory on C∗-algebras and von Neumann alge-
bras has been lifted to the setting of JB-algebras and, their von Neumann analogues,
JBW-algebras. Later, Alfsen and Schultz [AS01, AS03] studied JB- and JBW-algebras
mainly in the perspective of the geometry of the state spaces. A classic result by
Kadison [Kad52, Corollary 5] states that any linear order isomorphisms between C∗-
algebras, that carries the unit of one algebra onto the unit of the other algebra, is a C∗-
isomorphism and, in particular, a Jordan isomorphism on the self-adjoint part. Based
on the work of Isidro and Rodŕıgues-Palacios in [IR-P95], concerning linear isometries
between unital JB-algebras, it is shown [LRW] that if unital JB-algebras are linearly
isomorphic then they are also Jordan isomorphic. This leads us to the interesting prob-
lem of classifying those JB-algebras for which any order isomorphism between cones is
linear. Surprisingly, the machinery we develop in Chapter 3, concerning the existence
of sufficiently many engaged extreme rays, is of use here. Indeed, a JB-algebra has a
linear isometric bipositive embedding into the atomic part of its bidual as a JB-algebra
subalgebra. The bidual of a JB-algebra is an example of a JBW-algebra. In a JBW-
algebra atoms, or minimal projections, are precisely the extreme vectors of the cone
of squares up to scaling. Furthermore, any element in the cone of an atomic JBW-
algebra is the supremum of positive linear combinations of pairwise orthogonal atoms,
due to the spectral theorem [AS03, Theorem 2.20]. In Proposition 5.9 we show that an
atomic JBW-algebra has an algebraic decomposition in a part containing the engaged
atoms and a part containing the disengaged atoms, and proceed to describe all order
isomorphism between cones of atomic JBW-algebras, in Theorem 5.12. Afterwards,
we investigate when an order isomorphism between cones of JB-algebras extends to an
order isomorphism between the cones of the atomic parts of the biduals. By a result
in [H-OS84], the Jordan analogue of Pedersen’s result [Ped72], we show in Proposi-
tion 5.16 that it is sufficient to extend to a homeomorphism with respect to a suitable
topology on the bidual. In order to subsequently apply our result concerning order
isomorphisms between cones of atomic JBW-algebras, we need to guarantee that the
bidual of a JB-algebra does not contain a disengaged atom. We classify that this holds
exactly for the JB-algebras that do not have a norm closed ideal of codimension one.
This leads to the result, Theorem 5.19, that an order isomorphism between cones of
JB-algebras, that do not contain any ideals of codimension one, is linear if and only if
it extends to a homeomorphism between the atomic parts of the biduals.
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Chapter 1

Preliminaries

Partially ordered vector spaces

Recall that a partial ordering ≤ on a set X is a binary relation which is reflexive,
anti-symmetric, and transitive. That is, the relation ≤ satisfies the properties

(reflexive) x ≤ x

(anti-symmetric) x ≤ y and y ≤ x imply x = y

(transitive) x ≤ y and y ≤ z imply x ≤ z,

for all x, y, z ∈ X. A pair (X,≤) of a real vector space X and a partial order ≤ on
X is called a partially ordered vector space if the order is stable under addition (x ≤ y
implies x + z ≤ y + z) and positive scalar multiplication (x ≤ y and α ∈ R≥0 imply
αx ≤ αy). A subset C ⊆ X is called a cone whenever it is closed under addition and
positive scalar multiplication (x, y ∈ C and α, β ≥ 0 imply αx + βy ∈ C) and does
not contain full lines (C ∩ (−C) = {0}). In a partially ordered vector space (X,≤) the
collection of all positive elements X+ = {x ∈ X : 0 ≤ x} is a cone, and is aptly called
the positive cone. Conversely, a cone C in a real vector space X gives rise to a partial
order by defining for x, y ∈ X that x ≤C y if and only if y − x ∈ C. The pair (X,≤C)
is a partially ordered vector space whose positive cone is exactly C. We often denote
the order ≤C induced by a cone simply by ≤ if no confusion can arise and (X,C) for
the pair (X,≤C).

Let (X,C) be a partially ordered vector space. For x, y ∈ X with x ≤ y the set

[x, y] := {z ∈ X : x ≤ z ≤ y},

is called the order interval of x and y. A set Ω ⊆ X has an upper bound x ∈ X if for
all ω ∈ Ω one has ω ≤ x. The collection of all upper bounds of Ω is denoted by Ωu. A
vector x ∈ X is the least upper bound or supremum of Ω whenever y ∈ Ωu implies x ≤ y,
in this case we write x = sup Ω. In completely analogous fashion we define to notion of
lower bounds, the set of all lower bounds of Ω is denoted by Ωl and the greatest lower
bound or infimum of Ω is denoted by inf Ω.
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A set Ω ⊆ X is called majorizing if for all x ∈ X there is a ω ∈ Ω with x ≤ ω,
called bounded if there exist x, y ∈ X such that x ≤ ω ≤ y for all ω ∈ Ω and called
upward(downward) directed whenever for every pair x, y ∈ Ω has an upper(lower) bound
in Ω. For a linear subspace the notions of upward and downward directed coincide and
will simply be called directed. The set X is directed in (X,C) precisely whenever C
is generating (X = C − C). (X,C) is called Archimedean if for every x, y ∈ C with
nx ≤ y for all n ∈ N one has x ≤ 0.

Example 1.1. In Rn a cone C is called polyhedral if it is the intersection of finitely
many half-spaces, that is, there are linear functionals ϕ1, . . . , ϕm on Rn such that

C =
m⋂
k=1

{x ∈ Rn : ϕk(x) ≥ 0}.

The functional ϕ :=
∑m

k=1 ϕk is strictly positive, meaning ϕ(x) > 0 for all x ∈ C\{0},
and the corresponding cross-section Λ := {x ∈ C : ϕ(x) = 1} is a polyhedron. Let
{x1, . . . , xl} be the extreme points of Λ. Then the Krein-Milman theorem implies that
Λ is the closed convex hull of its extreme points, and therefore

C =

{
l∑

k=1

λkxk : λk ∈ R+ for all 1 ≤ k ≤ l

}
.

In the case that l = n and x1, . . . , xn are linearly independent, we say C is a simpli-
cial cone and C is linearly order isomorphic to the n-dimensional standard cone Rn+
consisting of vectors with all non-negative entries.

Let (X,C) and (Y,K) be partially ordered vector spaces, U ⊆ X and V ⊆ Y . A map
f : U → V is said to be order preserving or monotone if f(x) ≤ f(y) holds whenever
x ≤ y and x, y ∈ U . If for all x, y ∈ U one has x ≤ y if and only if f(x) ≤ f(y), then f
is called an order embedding. Remark that an order embedding is necessarily injective;
suppose f(x) = f(y) then both f(x) ≤ f(y) and f(x) ≥ f(y), hence we get x ≤ y and
y ≤ x and the anti-symmetry of the partial order yields x = y. An order isomorphism
is a surjective order embedding. In this case, U and V are called order isomorphic.
Note that in the sequel, order isomorphism are never implicitly assumed to be linear,
and we explicitly speak of a linear order isomorphism if we do consider the linear case.
In a similar fashion we say that f : U → V is order reversing or antitone if f(x) ≤ f(y)
holds whenever x ≥ y and x, y ∈ U , and we call f an order antimorphism if f is an
order reversing bijection whose inverse f−1 is also order reversing.

Let X and Y be vector spaces. A map f : X → Y is called linear if f(λx + µy) =
λf(x) + µf(y) holds, for all λ, µ ∈ R and x, y ∈ X. A map g : X → Y is called affine
if it is a translation of a linear map, that is, there is an a ∈ X such that f : X → Y
defined by f(x) := g(x + a) − g(a), for x ∈ X, is linear. We similarly define an affine
map f : U → Y , where U is an affine subspace of X. For a subset U ⊆ X, we say that a
map f : U → Y is linear or affine if it is the restriction of a linear map F : span(U)→ Y
or an affine map F : aff(U) → Y , respectively. We remark that in a directed partially
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ordered vector space (X,C), one has that aff(C) = X, and so the linear maps on the
cone C are precisely those that are restriction from linear map on the whole space.

It is straightforward to verify that a map f : U → Y is affine if and only if

f

(
n∑
i=1

λixi

)
=

n∑
i=1

λif(xi),

for all x1, . . . , xn ∈ U and λ1, . . . , λn ∈ R with λ1 + . . .+ λn = 1 such that λ1x1 + . . .+
λnxn. Moreover, if U is a convex set, then f : U → Y is affine if and only if f is convex
linear, that is, for x, y ∈ U and 0 ≤ λ ≤ 1 we have f(λx+(1−λ)y) = λf(x)+(1−λ)f(y).

Pre-Riesz spaces

A partially ordered vector space (X,≤) is called a Riesz space or a vector lattice if for
every pair x, y ∈ X the least upper bound or supremum of {x, y}, denoted by x ∨ y,
exists. This latter condition is equivalent to requiring that each pair x, y ∈ X has an
infimum x ∧ y. Let X be a Riesz space. For a vector x ∈ X we define its positive and
negative part by x+ = x ∨ 0 and x− = (−x) ∨ 0. Both x+ and x− are positive and we
have x = x+ − x−. The modulus of x ∈ X is now defined as |x| = x+ + x−. A pair of
elements x, y ∈ X is called disjoint whenever |x| ∧ |y| = 0.

Let X be a linear subspace of a Riesz space Y . Then X is said to be order dense in
Y whenever

y = inf{x ∈ X : y ≤ x}, for all y ∈ Y. (1.1)

For a majorizing Riesz subspace X of an Archimedean space Y , this property is equiv-
alent to

for all y ∈ Y+\{0} there exists a x ∈ X+\{0} with x ≤ y. (1.2)

In some literature [AB06, p.31], the latter is taken as the definition of being order
dense for Riesz subspace. Generally, in the setting of pre-Riesz spaces, which we will
introduce next, these notions do not coincide as we will see later in Example 1.8, even
for majorizing subspaces. For a partially ordered vector space X a pair (Y, i), consisting
of a Riesz space Y and a linear order embedding i : X → Y , is called a vector lattice
cover of X if i[X] is an order dense subspace of Y . In this case, we say that i[X]
generates Y as a Riesz space if all y ∈ Y are of the form

n∨
i=1

xi −
m∨
j=1

yj,

with all xi and yj in X.
First introduced by van Haandel in [vH93], the class of partially ordered vector

spaces that admit a vector lattice cover that they generated as Riesz space, is defined
as follows.
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Definition 1.2. A partially ordered vector space (X,C) is called a pre-Riesz space if
for every x, y, z ∈ X the inclusion {x+ z, y + z}u ⊆ {x, y}u implies z ∈ C.

Note that every Riesz space is a pre-Riesz space. The main property of pre-Riesz
spaces is the way they are embedded in a Riesz space, as shown in the following result
[vH93, Corollary 4.9].

Theorem 1.3. A partially ordered vector space X is a pre-Riesz space if and only if
there exists a Riesz space Y and a linear order embedding i : X → Y such that i[X] is
order dense in Y and generates Y as a Riesz space. Moreover, all Riesz spaces Y with
these properties are linearly order isomorphic.

The pair (Y, i) is called the Riesz completion of X and denoted by (Xρ, i) or simply
Xρ. Here we consider the Riesz completion as though it is unique while it is only
unique up to isomorphism. So when we speak of the Riesz completion we actually
mean a realization of it. The subsequent result [vH93, Theorem 1.7(ii)] ensures that
pre-Riesz space cover a wide class of partially ordered vector spaces.

Proposition 1.4. Every directed Archimedean partially ordered vector space is a pre-
Riesz space, and every pre-Riesz space is directed.

In a partially ordered vector space X, two elements x, y ∈ X are defined to be
disjoint, denoted by x ⊥ y, whenever

{x+ y,−x− y}u = {x− y,−x+ y}u.

The intuition of this definition is that the left- and right-hand side of this equality
replace the moduli of |x+ y| and |x− y|. In [vGK18, Proposition 4.1.4] it is shown that
two elements in a pre-Riesz space X are disjoint according to this definition if and only
if they are disjoint in any vector lattice cover of X.

Let Y be a partially ordered vector space and X ⊆ Y a linear subspace. We say that
X is order dense in Y if (1.1) is satisfied, and that X is pervasive in Y if (1.2) is satisfied.
In the case that X is a pre-Riesz space, we say that X is pervasive, if i[X] is pervasive in
Xρ where (Xρ, i) is the Riesz completion of X. We state the following results [vGK18,
Lemma 2.84], [vGK18, Proposition 2.8.5] and [vGK18, Proposition 2.8.8] regarding the
pervasive property that we will use in the sequel, for convenience of reference.

Lemma 1.5. Let E be an Archimedean Riesz space and X ⊆ E a linear subspace. Then
X is pervasive in E if and only if for all y ∈ E+ one has y = sup{x ∈ X : 0 ≤ x ≤ y}.
Lemma 1.6. Let E be an Archimedean Riesz space and X ⊆ E a linear subspace. If
X is majorizing and pervasive, then X is order dense in E.

Proposition 1.7. A pre-Riesz space X is pervasive if and only if X is pervasive in
any vector lattice cover.

As we will shall see later, pervasive pre-Riesz spaces share many properties with
their Riesz completion and, therefore, are an interesting subclass of pre-Riesz spaces
when generalising results from Riesz space theory.
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Example 1.8. Let S be a compact Hausdorff space and C(S) be the space of all
real-valued continuous functions on S. Consider the partial order C(S) defined for
x, y ∈ C(S) by x ≤ y if and only if x(s) ≤ y(s) for all s ∈ S. Equipped with this order
C(S) is an Archimedean Riesz space. Next we consider two natural subspaces of C(S)
in the case S = [0, 1].

For k ∈ N∪{∞} we denote by Ck[0, 1] the subspace of C[0, 1] consisting of k-times
differentiable functions. Remark that the functions x, y ∈ Ck[0, 1] given by x(s) = s and
y(s) = 1− s for s ∈ [0, 1] do not have a least upper bound in Ck[0, 1]. By Proposition
1.4, Ck[0, 1] is a pre-Riesz space. We will show later, in Theorem 2.25, that Ck[0, 1]
is pervasive and order dense in C[0, 1]. Consider the space P [0, 1] consisting of all
polynomial functions on [0, 1]. Since P [0, 1] is directed and Archimedean, it follows by
Proposition 1.4 that P [0, 1] is a pre-Riesz space. The Riesz completion of P [0, 1] is the
space of piece-wise polynomial functions on [0, 1]. Remark that P [0, 1] is not pervasive
as any polynomial that vanish on an open set must vanish everywhere. However, P [0, 1]
is order dense in C[0, 1], see for example [vGK18, Example 1.7.1].

We now discuss the natural class of homomorphisms in the setting of pre-Riesz
spaces.

Definition 1.9. Let X and Y be Riesz space. A linear map f : X → Y is called a
Riesz (or lattice) homomorphism if for all x, y ∈ X one has

f(x ∨ y) = f(x) ∨ f(y).

One easily verifies that a Riesz homomorphism also preserves the other lattice oper-
ations. In order to generalise results concerning Riesz homomorphisms between Riesz
spaces to the setting of pre-Riesz spaces, we are interested in those linear maps between
pre-Riesz spaces that extend to a Riesz homomorphism between the Riesz completions
of those pre-Riesz spaces. The following notion is first introduced by van Haandel in
[vH93, Definition 5.1].

Definition 1.10. Let X and Y be partially ordered vector spaces. A linear map
f : X → Y is called a Riesz∗ homomorphism if for every non-empty finite subset A ⊆ X
one has

f [Aul] ⊆ f [A]ul.

Here Aul is the set (Au)l of lower bounds of the set of upper bounds of A. In the
case that X and Y are Riesz spaces, this definition coincides with f being a Riesz
homomorphism. The core property of Riesz∗ homomorphism between pre-Riesz spaces
is described below, and is the content of [vH93, Theorem 5.6].

Theorem 1.11. A linear map f : X → Y between pre-Riesz spaces extends to a Riesz
homomorphism fρ : Xρ → Y ρ if and only if f is a Riesz∗ homomorphism.

There are many natural questions concerning Riesz∗ homomorphisms. Indeed, for
any statement about Riesz homomorphisms one might wonder whether that same state-
ment is true when replacing all instances of Riesz spaces for pre-Riesz spaces and all
instances of Riesz homomorphisms by Riesz∗ homomorphisms. We shall generalise a
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variety of classical results concerning Riesz homomorphism between Riesz spaces to
Riesz∗ homormorphism between pre-Riesz spaces consisting of continuous functions in
Chapter 2.

Extreme rays of a cone

Let (X,C) be a partially ordered vector space. For any x ∈ C\{0} the ray through x
or spanned by x is the set {αx : α ≥ 0}. A vector x ∈ C is called an extreme vector of
C whenever x 6= 0 and 0 ≤ y ≤ x implies y = αx for some α ≥ 0. A vector x ∈ X\{0}
is an extreme vector if x or −x is an extreme vector of C. We remark that if x ∈ C is
an extreme vector, then for any α > 0 the vector αx ∈ C is also extreme. A ray R ⊆ C
is called an extreme ray if it is spanned by a positive extreme vector. Since extreme
rays play an important role in the sequel, we give alternative descriptions of them in
terms of one-dimensional faces and extreme points of a base for the cone.

A non-empty convex subset F ⊆ C is called a face of C if αx + (1 − α)y ∈ F and
0 < α < 1 imply x, y ∈ F . A face F ⊆ C is a subcone. The faces {0} and C are
considered trivial. A linear functional ϕ : X → R is called positive if ϕ[C] ⊆ [0,∞). For
any positive linear functional ϕ : X → R, ker(ϕ)∩C is a face of C. In this terminology
the extreme rays of C are exactly the one-dimensional faces, see [AT07, Lemma 1.43].

A convex subset B ⊆ C\{0} is called a base for C if for each x ∈ C\{0} there
exist unique α ≥ 0 and y ∈ B such that x = αy. In general not every cone has
a base. Its existence depends on the presence of a strictly positive functional. A
linear functional ϕ : X → R is strictly positive if ϕ[C\{0}] ⊆ (0,∞). It is shown in
[AT07, Theorem 1.47] that a cone has a base if and only if it admits a strictly positive
functional. Moreover, given a strictly positive ϕ : X → R then for any α > 0 the cross-
section {x ∈ C : ϕ(x) = α} is a base for C. Suppose that a cone C has a base B. Then
a point x ∈ B is an extreme point of the convex set B if and only if x is an extreme
vector of C, see [AT07, Theorem 1.48].

Example 1.12. In R3 the Lorentz cone Λ3 is defined as

Λ3 =
{

(x, y, z) ∈ R3 : x2 + y2 ≤ z2
}
.

We remark that Λ3 has the circular base B = {(x, y, z) ∈ R3 : x2 +y2 ≤ 1, z = 1}. Any
point (x, y, 1) ∈ B with x2 + y2 = 1 is extreme and, hence all non-trivial faces of Λ3 are
extreme rays. Also, Λ3 is not a Riesz cone as will follow from Corollaries 1.17 and 1.18.

In general, for a Hilbert space (H, (· | ·)) we define the corresponding spin factor as
the space H ⊕ R equipped with the Lorentz cone

ΛH =
{

(x, λ) ∈ H ⊕ R :
√

(x | x) ≤ λ
}
.

The cone ΛH is closed for the norm ‖(x, λ)‖ =
√

(x | x) + λ2 on H ⊕ R and, hence by
[AT07, Lemma 2.4], ΛH is an Archimedean cone.



EXTREME RAYS OF A CONE 15

The following elementary property of extreme vectors will be used frequently in the
sequel.

Lemma 1.13 (Lemma 1.44 in [AT07]). Any three nonzero extreme vectors of a cone
in a vector space that generate three distinct extremal rays are linearly independent.

In an Archimedean partially ordered vector space one has that a vector r ∈ C is
extreme if and only if the order interval [0, r] is totally ordered. This observation follows
from the following lemma.

Lemma 1.14. Suppose (X,C) is an Archimedean partially ordered vector space. If
x, y ∈ X are such that 0 ≤ y ≤ x, and for each 0 ≤ λ ≤ 1 we have that y ≤ λx or
λx ≤ y, then there exists a µ ≥ 0 such that y = µx.

Proof. Let x, y ∈ X be as in the statement. We may assume without loss of generality
that x and y are non-zero. Now define µ := sup{λ ∈ R : λx ≤ y}. By assumption µ is
well-defined and 0 ≤ µ ≤ 1.

Note that µx ≤ y. Indeed, for n ≥ 1 we have that (µ − 1/n)x ≤ y, so that
n(µx− y) ≤ x, which implies that µx ≤ y, as (X,C) is Archimedean.

To show that y ≤ µx we distinguish two cases: 0 ≤ µ < 1 and µ = 1. In the case
0 ≤ µ < 1 we have that y ≤ (µ+1/n)x for all n sufficiently large. Thus, n(y−µx) ≤ x,
which shows that y ≤ µx as the space is Archimedean. If µ = 1, then x = y, as y ≤ x
by assumption, and x = µx ≤ y as showed above.

Extreme rays play a central role in the study of order isomorphisms. The main
reason for this is that line segments in a cone that are parallel to an extreme ray can
be characterized in a purely order theoretic way [NS78, Proposition 1] in Archimedean
spaces. Therefore, order isomorphisms preserve lines in the direction of extreme rays.
This will be described in full detail in Chapter 3.

There we encounter a crucial difference between extreme rays that are linearly inde-
pendent from the other extreme rays and those that are not. We introduce terminology
for this property as was originally defined in [NS78].

Definition 1.15. Let V ⊆ X be a collection of vectors. A vector v ∈ V is called
engaged in V whenever v lies in the linear span of V \{v}, and is called disengaged
otherwise.

We make some remarks on this definition. A ray R in a collection of rays R is called
either engaged or disengaged whenever any r ∈ R is engaged or disengaged, respectively,
in any set of representatives of the rays in R. As is apparent from the definition a ray
being engaged depends on the ambient collection of rays it is considered in. Mostly,
we need this property only for extreme rays and, hence, we drop the mention of the
ambient collection for convenience. This leads us to calling an extreme ray engaged if
it is engaged within the collection of all extreme rays of the cone.

Originally the concept of a pervasive pre-Riesz space was introduced in [vGK08]
as a sufficient condition such that there is a one-to-one correspondence between the
bands of the pre-Riesz space and the bands of its Riesz completion. Here we argue that
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this condition is also sufficient for a pre-Riesz space to have exactly the same extreme
vectors as its Riesz completion.

Proposition 1.16. Suppose X is a pervasive Archimedean pre-Riesz space with Riesz
completion (Xρ, i). A vector s ∈ Xρ is an extreme vector of Xρ

+ if and only if there
exists an extreme vector r ∈ X+ such that i(r) = s.

Proof. Let r ∈ X+ be an extreme vector. Suppose y ∈ Xρ satisfies 0 < y ≤ i(r). For
every x ∈ X with 0 ≤ i(x) ≤ y we have 0 ≤ i(x) ≤ i(r) so 0 ≤ x ≤ r. Hence, there
exists αx ∈ R such that x = αxr. By Lemma 1.5 we have

y = sup{i(x) : x ∈ X, 0 ≤ i(x) ≤ y} = sup{αxi(r) : x ∈ X, 0 ≤ i(x) ≤ y}.

SinceX is Archimedean, we have thatXρ is Archimedean by [vGK18, Proposition 2.4.12],
and it follows that y is a scalar multiple of i(r). Thus, i(r) is an extreme vector of Xρ

+.
Conversely, suppose that s ∈ Xρ

+ is an extreme vector. Since X is pervasive, there
exists an x ∈ X+ with 0 < i(x) ≤ s. Then i(x) = αs for some α > 0. Take r := α−1x.
Then i(r) = s and if 0 ≤ v ≤ r, then 0 ≤ αi(v) ≤ s so there is a β ≥ 0 with αi(v) = βs,
and hence v = βα−1r. This shows that r is an extreme vector of X+.

We exhibit interesting corollaries for pervasive pre-Riesz spaces concerning their
extreme vectors.

Corollary 1.17. The extreme rays of the cone in a pervasive pre-Riesz space are pair-
wise disjoint and disengaged.

Proof. Let X be a pervasive pre-Riesz space and r, s ∈ X be linearly independent
extreme vectors. By Proposition 1.16 we have that i(r) and i(s) are extreme vectors
of Xρ

+. There the infimum i(r) ∧ i(s) exists and must equal zero. Hence i(r) and
i(s) are disjoint and by [vGK18, Proposition 4.1.4], the vectors r and s are disjoint in
X. Suppose now that r ∈ X is an engaged extreme vector and let r1, . . . , rn ∈ X be
extreme with r =

∑n
i=1 ri. From r ⊥ ri for i = 1, . . . , n we get

r = r ∧ r = r ∧
n∑
i=1

ri =
n∑
i=1

r ∧ ri = 0.

We conclude that extreme rays in a pervasive pre-Riesz space are disengaged.

Corollary 1.18. A finite dimensional Archimedean pre-Riesz space X is pervasive if
and only if it is a vector lattice.

Proof. Let (X,C) be a finite dimensional Archimedean pre-Riesz space and d = dim X.
By the Krein-Milman theorem C equals the convex hull of its extreme rays. As C is
generating in X it has at least d extreme rays. By Proposition 1.16 all extreme rays
of C are disengaged. Therefore, C is spanned by exactly d extreme rays, say v1, ..., vd.
The basis transformation from (vi) to the standard basis of Rd is now a linear order
isomorphism from (X,C) to Rd equipped with coordinate-wise ordering. We conclude
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that (X,C) is a vector lattice. Conversely, for a vector lattice X we have X = Xρ. It
immediately follows that X is pervasive in Xρ and, hence, X is pervasive.

The statement of Proposition 1.16 fails to hold whenever X is not pervasive. We
illustrate this we a counterexample.

Example 1.19. Consider the space X = (c,K) where c is the space of all real-valued
convergent sequences and K is the cone given by K = {x ∈ c+ : ϕ(x) ≥ 0}, where
ϕ : X → R is the functional given by

ϕ(x) =
∞∑
n=1

xn
2n
− lim

n→∞
xn, x = {xn} ∈ X.

It is shown [vGK08, Example 2.2] that X is an Archimedean pre-Riesz space whose
Riesz completion equals Xρ = c×R equipped with the pointwise order on c. Moreover,
it is shown that X is not pervasive. We argue that Xρ has strictly more extreme vectors
than X.

Remark that for any standard unit vector en ∈ X we have ϕ(en) = 2−n and,
therefore, en ∈ K holds for all n ∈ N. Moreover, as K is contained in c+, we find that
en is an extreme vector in X. We argue that all extreme vectors of X arise in this way.
Suppose that a = {an} ∈ K is an extreme vector with an, am 6= 0 and m > n. Let us
define α := an/(an + 2n−mam) and construct a sequence ã ∈ c by

ãk :=


αak if k 6= m,n;
0 if k = m;
ak if k = n.

We observe that 0 < α < 1 since an and am are strictly positive. Therefore, 0 ≤c ã ≤c a
holds. We verify that ϕ(ã) = αϕ(a) holds. That conclusion yields 0 ≤K ã ≤K a which
contradicts our assumption that a ∈ (c,K) is an extreme vector. We compute

ϕ(ã) =
∞∑
k=1

ãk
2k
− lim

k→∞
ãk =

an
2n

+
∑
k 6=n,m

αak
2k
− α lim

k→∞
ak,

so that

ϕ(ã)− αϕ(a) = 2−nan − α(2−nan + 2−mam)

= 2−nα(an + 2n−mam)an − 2−nα(an + 2n−mam) = 0.

In conclusion, the extreme vectors of X = (c,K) are exactly the standard unit vectors.
However, the Riesz completion (Xρ, i), which as mentioned earlier equals c × R with
pointwise order, has an extreme vector (0, 1) ∈ c × R, which is not contained in the
image i[X].
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In an Archimedean Riesz space the notion of an extreme vector coincides with the
notion of a discrete point, introduced in [dJvR77]. Here a vector x ∈ C is called an
discrete point if for all 0 ≤ y, z ≤ x, y ⊥ z implies y = 0 or z = 0. This definition
is also valid in a general partially ordered vector space. Here any extreme vector is a
discrete point, but the converse generally fails to hold. A counterexample of the latter
is given in Example 1.21. We encounter that the situation is again more comparable to
the Riesz space case when we consider a pervasive pre-Riesz space.

Proposition 1.20. Let X be an Archimedean pervasive pre-Riesz space, then the fol-
lowing assertions hold:

(i) x ∈ Xρ is a discrete point if and only if there exists a discrete point y ∈ X such
that i(y) = x;

(ii) x ∈ X is an extreme vector if and only if x is a discrete point.

Proof. Let x ∈ X be a discrete point and suppose i(x) ∈ Xρ is not a discrete point.
Then there exist y, z ∈ Xρ with 0 ≤ y, z ≤ i(x), y ⊥ z and y, z 6= 0. Due to X being
pervasive there exist non-zero v, w ∈ X such that 0 ≤ i(v) ≤ y and 0 ≤ i(w) ≤ z. We
remark that i(v) ⊥ i(w). In particular, v ⊥ w in X. Moreover, we get 0 ≤ v, w ≤ x
and by the assumption that x is discrete this yields v = 0 or w = 0. This yields a
contradiction and shows that i(x) ∈ Xρ is discrete. Conversely, suppose y ∈ Xρ is a
discrete point. As Xρ is an Archimedean Riesz space, y is an extreme vector of Xρ.
By Proposition 1.16 we get an extreme vector x ∈ X such that i(x) = y. Invoking that
generally extreme vectors are discrete points yields (i).

Combining (i) with Proposition 1.16 yields the chain of equivalences, x ∈ X+ is
extreme if and only if i(x) ∈ Xρ

+ is extreme if and only if i(x) ∈ Xρ
+ is discrete if and

only if x ∈ X+ is discrete, and assertion (ii) follows.

Example 1.21. Consider the polyhedral cone C in R3 generated by the vectors v1 =
(1, 0, 1), v2 = (0, 1, 1), v3(−1, 0, 1) and v4 = (0,−1, 1). Or equivalently, C is the cone
with a square base whose corners are the points v1, . . . , v4. The extreme rays of C
are then exactly the rays spanned by the vi. In particular, all extreme rays of C are
engaged. It is shown [vGK06, Example 4.6] that the only pairs of distinct positive
disjoint elements in C are v1 ⊥ v3 and v2 ⊥ v4 up to positive scaling. Consequently,
one easily verifies that any vector in the boundary of C is a discrete point.

Order unit spaces

Let (X,C) be a partially ordered vector space. A vector u ∈ C is called an order unit
if for all x ∈ X there exists a α ≥ 0 such that −αu ≤ x ≤ αu. In this case, the formula

‖x‖u = inf{α ≥ 0 : −αu ≤ x ≤ αu},

defines a semi-norm, which is a norm whenever (X,C) is Archimedean. A triple
(X,C, u) of an Archimedean partially ordered vector space (X,C) and u ∈ C an order
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unit is called an order unit space. The norm ‖.‖u is called the order unit norm. With
respect to the order unit norm C is closed by [AT07, Theorem 2.55(2)]. We denote
the interior of C with respect to ‖.‖u by C◦. It follows from [AT07, Lemma 2.5] that
the set of all order units of C coincides with C◦. In particular, this shows that C◦ is
non-empty. We remark that the order unit norm is monotone, in the sense that for
x, y ∈ C with x ≤ y we have ‖x‖u ≤ ‖y‖u. Constructing a similar norm for another
order unit v ∈ C yields a norm ‖.‖v equivalent to ‖.‖u. A cone C in an order unit space
is called strictly convex if for every linearly independent x, y ∈ ∂C the line segment
{tx+ (1− t)y : t ∈ (0, 1)} is contained in C◦.

Let (X,C, u) be an order unit space. A linear functional ϕ : X → R is called positive
whenever ϕ[C] ⊆ [0,∞) and strictly positive whenever ϕ[C\{0}] ⊆ (0,∞). A positive
linear functional ϕ : X → R is called a state on X if ϕ(u) = 1. The collection of all
states on X is called the state space of X and is denoted by S(X). We remark that any
state is bounded and has norm ‖ϕ‖ = 1. In particular, the state space S(X) is a weak∗-
closed subset of the closed unit ball BX∗ in the norm dual X∗. By the Banach-Alaoglu
theorem S(X) is weak∗-compact. The Krein-Milman theorem implies that S(X) is the
closed convex hull of its extreme points. We refer to the extreme points of the state
space as pure states of X. It is shown in [AS01, Lemma 1.18] that the state space S(X)
of an order unit space (X,C, u) determines both the order and norm in the following
sense. For a vector x ∈ X we have x ∈ C if and only if ϕ(x) ≥ 0 for all ϕ ∈ S(X), and
‖x‖u = sup{|ϕ(x)| : ϕ ∈ S(X)}.
Example 1.22. For a compact Hausdorff space S the partially ordered vector space
C(S) with pointwise order is an order unit space. Any strictly positive function in
C(S)+ is an order unit. The order unit norm corresponding to the constant one
functions coincides with the supremum norm ‖.‖∞ on C(S). Now let S instead by
a locally compact Hausdorff space and consider the vector space C0(S) of continuous
functions on S that vanish at infinity, in other words, all functions f ∈ C(S) for which
{s ∈ S : |f(s)| ≥ α} is compact for any α > 0. Endowed with the pointwise order C0(S)
has no order unit in general.

Let Ω be the weak∗-closure of the pure states ofX. The canonical embedding i : X →
C(Ω) defined by i(x)(ϕ) = ϕ(x) for all x ∈ X and ϕ ∈ Ω is a linear order embedding.
It is shown in [vGKL14, Theorem 10] that this embedding has nice properties.

Proposition 1.23. Let (X,C, u) be an order unit space. There exists a compact Haus-
dorff space Ω and a linear order embedding i : X → C(Ω) such that i[X] separates the
points of Ω, contains the constant functions and is order dense in C(Ω). In particular,
we can take for Ω the weak∗-closure of the pure states of X.

Existence of an order unit in a partially ordered vector space implies that the space
is directed. Therefore, as order unit spaces are defined to be Archimedean, Proposition
1.4 yields that order unit spaces are always pre-Riesz spaces. Proposition 1.23 tells us
that we can obtain the Riesz completion of an order unit space by generating the Riesz
subspace in C(Ω) generated by i[X].

Most results in Chapter 2 apply to order dense subspace of C(Ω) for some compact
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Hausdorff space Ω. Proposition 1.23 shows that, in particular, all those results apply
to order unit spaces.

Metrics and geodesics

Useful tools in the analysis of cones in order unit space and maps between such cones
are Hilbert’s and Thompson’s metrics. In an order unit space (X,C, u) they are defined
on C◦ in terms of the following function. For x ∈ C and y ∈ C◦ let

M(x/y) := inf{β > 0: x ≤ βy}.

In some literature this map is called a gauge of the open cone C◦, see for example
[NS77]. Note that 0 ≤ M(x/y) < ∞ for all x ∈ C and y ∈ C◦, with strict positivity
whenever x ∈ C◦. Moreover, M(σx/µy) = σ

µ
M(x/y) for all σ, µ > 0 and x ∈ C and

y ∈ C◦.
Recall that S(X) denotes the state space of X and determines the order. Therefore,

as x ≤ βy is equivalent to ϕ(x) ≤ βϕ(y) for all ϕ ∈ S(X), we get that

M(x/y) = max
ϕ∈S(X)

ϕ(x)

ϕ(y)
for all x, y ∈ C◦. (1.3)

Example 1.24. Let n ∈ N and consider the partially ordered vector space Symn(R) of
symmetric n×n-matrices with real entries, ordered by the cone of positive semidefinite
matrices

Sym+
n (R) = {A ∈ Symn(R) : 〈Ax, x〉 ≥ 0, for all x ∈ Rn}

= {A ∈ Symn(R) : σ(A) ⊆ [0,∞)}.

For n = 2 this space is linearly order isomorphic to (R3,Λ3), see [vGK18, Example 1.7.4].
The identity matrix I is an order unit for Symn(R). A base for the cone is given by

{A ∈ Sym+
n (R) : tr(A) = 1}

and, in particular, the cone is Archimedean. The order unit norm induced by I coincides
with the trace norm. Let Sym+

n (R)◦ denote the interior with respect to this norm, and
remark that these are exactly the positive definite matrices. We can compute the
M -function in this case directly. For all A,B ∈ Sym+

n (R)◦ we get

M(A/B) = inf{β > 0: A ≤ βB}
= inf{β > 0: σ(βB − A) ⊆ [0,∞)}
= inf{β > 0: σ(B−

1
2AB−

1
2 ) ⊆ [0, β)}

= max(σ(B−
1
2AB−

1
2 ))

= max(σ(AB−1)).
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Let (X,C, u) be an order unit space. Now Hilbert’s metric on C◦ is defined by

dH(x, y) := logM(x/y) + logM(y/x),

and Thompson’s metric on C◦ is given by

dT (x, y) := max {logM(x/y), logM(y/x)}

for x, y ∈ C◦. Note that dH(σx, µy) = dH(x, y) for all x, y ∈ C◦ and σ, µ > 0. So, dH
is not a metric on C◦. However, for cones in an order unit space it is known [LN12,
Chapter 2] that dH is a metric between pairs of rays in C◦, as dH(x, y) = 0 if and only
if x = λy for some λ > 0 in that case. Thompson’s metric is a metric on C◦ in an order
unit space. Moreover, its topology coincides with the order unit norm topology on C◦,
see [LN12, Chapter 2].

A map f : X → Y between vector spaces is homogeneous of degree α if for all x ∈ X
and λ ∈ R one has f(λx) = λαf(x). In the case α = 1 we say that f is homogeneous,
and in the case α = −1 we say that f is antihomogeneous. Let (X,C, u) and (Y,K, v)
be order unit spaces. A map f : C◦ → K◦ is called gauge-preserving if for all x, y ∈ C◦
one has

M(x/y) = M(f(x)/f(y)),

where the gauges are computed in their respective cones C◦ and K◦. Similarly, we say
that f is gauge-reversing whenever for all x, y ∈ C◦ one has

M(x/y) = M(f(y)/f(x)).

It is shown [NS77, Proposition 7.2] that a map f : C◦ → K◦ is gauge-preserving if and
only if f is homogeneneous and monotone. Recall that f is monotone whenever x ≤ y
implies f(x) ≤ f(y). Moreover, it is shown [NS77, Proposition 7.3] that f is gauge-
reversing if and only if f is antihomogeneous and antitone. Here f is antitone whenever
x ≤ y implies f(y) ≤ f(x). From these results it is easy to see that homogeneous order
isomorphisms and antihomogeneous order antimorphisms between interiors of cones are
always isometries for Thompson’s metric. Another notable result [Sch78, Theorem B]
states that any gauge-preserving bijection is linear.

Recall that given a metric space (X, dX) a geodesic path γ : I → X, where I ⊆ R is
a possibly unbounded interval, is a map such that

dX(γ(s), γ(t)) = |s− t| for all s, t ∈ I.

The image γ[I] is simply called a geodesic, and γ[R] is said to be a geodesic line in
(X, dX).

We proceed to recall a few facts about geodesics for Thompson’s metric from [LR15,
Section 2]. If x ∈ (C◦, dT ), then there are two special types of geodesic lines through
x. There are the so-called type I geodesic lines γ, which are the images of the geodesic
paths,

γ(t) := etr + e−ts for t ∈ R, (1.4)
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with r, s ∈ ∂C and r+ s = x. The type II geodesic line µ through x is the image of the
geodesic path µ(t) := etx with t ∈ R. The type I geodesics γ have the property that
M(u/v) = M(v/u) for all u and v on γ, and the type II geodesics γ have the property
that M(u/v) = M(v/u)−1 for all u and v on γ.

A geodesic line γ is called unique if for each x and y on γ we have that γ is the
only geodesic line through x and y in (X, dX). Each unique geodesic line in (C◦, dT )
is either of type I or type II. Moreover, the type II geodesic is always unique [LR15,
Proposition 4.1], but the type I geodesics may not be unique. However, if C is strictly
convex, then all type I geodesic lines are unique, see [LR15, Theorem 4.3].

Symmetric cones

Let (V, (· | ·)) be a finite dimensional real inner product space and C a closed cone in
V . Then the interior C◦ is called a symmetric cone if it is self-dual, that is

C◦ = {v ∈ V : (v | x) > 0 for all x ∈ C\{0}},

and homogeneous, meaning the group Aut(C) of linear automorphisms acts transitively
on C◦. Symmetric cones arise precisely as the interiors of cones of squares in a formally
real Jordan algebra. This celebrated result was independently discovered by Koecher
[Koe57] and Vinberg [Vin60]. Euclidean Jordan algebras were originally introduced by
Jordan, who gave a complete characterisation of them in work with Wigner and von
Neumann [JvNW34]. Beyond quantum mechanics Jordan algebras turned out to have
deep connections with diverse areas of mathematics including Lie theory, differential
geometry and mathematical analysis, see for example [Hel62, Koe62, Jac71, McC78].

A real Jordan algebra is a real vector space A with a bilinear product (a, b) 7→ a ◦ b
which is commutative, that is a ◦ b = b ◦ a for all a, b ∈ A, and satisfies the so-called
Jordan identity

a2 ◦ (a ◦ b) = a ◦ (a2 ◦ b).
In general, the Jordan product ◦ is not associative. Throughout this section we consider
finite dimensional Jordan algebras with an algebraic unit, denoted by e. A Jordan
algebra A is said to be formally real if a2 + b2 = 0 implies a = 0 and b = 0, for all
a, b ∈ A. The set of squares A+ = {a2 : a ∈ A} is a closed cone in A. The spectrum
of a ∈ A is given by σ(a) = {λ ∈ R : a − λe is not invertible}. An element c ∈ A is
called an idempotent if c2 = c is satisfied, and is said to be a primitive idempotent if
it cannot be written as the sum of two non-zero idempotents. A set {c1, . . . , cn} ⊆ A
of primitive idempotents is called a Jordan frame if ci ◦ cj = 0 holds for all i 6= j, and
c1 + . . . + cn = e. The Spectral Theorem [FK94, Theorem III.1.2] says that for each
a ∈ A there exists a Jordan frame {c1, . . . , cn} and uniquely determined real numbers
λ1, . . . , λn such that a = λ1c1 + . . . + λncn. In fact, σ(a) = {λ1, . . . , λn}. We remark
that some of the λi may be equal. Using this fact it can be shown that the interior of
the cone of squares A+ is given by

A◦+ = {a ∈ A : σ(a) ⊆ (0,∞)} = {a2 : a ∈ A invertible}.
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By the Koecher-Vinberg theorem this cone is symmetric and all finite dimensional
symmetric cones arise this way. We illustrate this connection with a prime example of
a formally real Jordan algebra.

Example 1.25. Let n ∈ N be given. Consider the space V = Symn(R) as before,
endowed with the inner product (A | B) = tr(AB). The product defined by

A ◦B =
1

2
(AB +BA),

for all A,B ∈ V , turns V into a formally real Jordan algebra with algebraic unit e = In.
Remark that the cone of squares and its interior are exactly the positive semidefinite
matrices and positive definite matrices, respectively, as in Example 1.24. We verify
that indeed

V ◦+ = {A2 : A ∈ Symn(R) invertible},
is a symmetric cone.

We remark that for B ∈ V+, trace(AB) > 0 holds if and only if σ(AB) ⊆ (0,∞).
This is guaranteed for all B ∈ V+\{0} exactly when σ(A) ⊆ (0,∞). Therefore,

V ◦+ = {A ∈ V : (A | B) > 0 for all B ∈ V+\{0}},

and V ◦+ is self-dual. Next consider the quadratic representation QB : V → V , for some
B ∈ V , given by QB(A) = BAB. For B ∈ V invertible QB is a linear order isomor-
phism, see for example [FK94, Proposition III.2.2]. Now suppose A,B ∈ V ◦+ are given.
Then the composition S := QB1/2 ◦QA−1/2 is an automorphism of V and satisfies

S(A) = QB1/2(I) = B.

This shows that V ◦+ is a homogeneous cone.

We remark that, in general, the quadratic representation Qa : A → A of an element
a ∈ A is given by

Qa(b) = 2(a ◦ (a ◦ b))− a2 ◦ b,
for all b ∈ A, and the result [FK94, Proposition III.2.2], which states that Qa is a linear
order isomorphism for all a ∈ A invertible, is valid. In the case exhibited in Example
1.25 where A = Symn(R), this yields QA(B) = BAB, for all A,B ∈ A.

This characterisation of symmetric cones as the interior of the cone of squares in a
formally real Jordan algebra, provides a connection with the geometry of real manifolds.
Indeed, symmetric cones are prime examples of Riemannian symmetric spaces. To
illustrate this, consider a finite dimensional symmetric cone C and let A be the formally
real Jordan algebra such that A◦+ = C◦. We can endow C◦ with a Riemannian metric,

δ(a, b) = ‖ logQa−1/2 b‖2

=

√√√√ k∑
i=1

log2 λi(Qa−1/2 b),
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where the λi(Qa−1/2 b) are the eigenvalues of Qa−1/2 b, including multiplicities. It can
be shown that δ is a length metric. Indeed, for a, b ∈ C◦

δ(a, b) = inf
γ
L(γ),

where the infimum is taken over all piece-wise smooth paths γ : [s, t]→ C◦ from a to b,
and the length of γ is given by

L(γ) =

∫ t

s

‖Qγ(t)−1/2γ′(t)‖2 dt.

The Riemannian manifold (C◦, δ) is a symmetric space, in the sense that, for all
a ∈ C◦ the map Sa : C◦ → C◦ given by

Sa(b) = Qab
−1, for b ∈ C◦,

is a symmetry at a, i.e., a δ-isometry that is an involution and has a as an isolated fixed
point.

Yet another characterization of symmetric cones is given by Walsh. In a formally
real Jordan algebra A the inversion map ι : A◦+ → A◦+ given by ι(a) = a−1 is a gauge-
reversing bijection, or in other words an antihomogeneous order antimorphism. In
[Wal13] Walsh showed that the interior of a finite dimensional cone is symmetric if and
only if it admits a gauge-reversing bijection.

Whether any of these characterisation results hold in setting of infinite dimensional
space is presently largely unknown. In Chapters 6 and 7, we make pioneering steps
towards developing infinite dimensional analogs of these characterisation, from the order
theoretic perspective.

Jordan Banach algebras

An infinite dimensional generalisation of the Euclidean Jordan algebra is due to Alfsen,
Schultz and Størmer [ASS78], which are called the Jordan Banach algebras, or JB-
algebras for short. A Jordan algebra (A, ◦) is a commutative, not necessarily associative
algebra such that

x ◦ (y ◦ x2) = (x ◦ y) ◦ x2 for all x, y ∈ A.

A JB-algebra A is a normed, complete real Jordan algebra satisfying,

‖x ◦ y‖ ≤ ‖x‖ ‖y‖ ,∥∥x2∥∥ = ‖x‖2 ,∥∥x2∥∥ ≤ ∥∥x2 + y2
∥∥

for all x, y ∈ A. In finite dimensions this definition coincides with the formally real
Jordan algebras by the last property. An important class of examples of JB-algebras are
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the self-adjoint parts of C∗-algebras equipped with the Jordan product x◦y := (xy+yx)/
2. A triple (A,A+, e) of a JB-algebra A, its cone of squares A+ and a unit e is a complete
order unit space, where e is an order unit and the JB-algebra norm on A coincides with
the order unit norm induced by e.

Example 1.26. Recall from Example 1.12 that for a Hilbert space (H, (· | ·)) we define
the corresponding spin factor as the space H ⊕ R equipped with the Lorentz cone

ΛH =
{

(x, λ) ∈ H ⊕ R :
√

(x | x) ≤ λ
}
.

The cone ΛH arises as the cone of squares for the Jordan product defined by

(x, λ) ◦ (y, µ) = (µx+ λy, (x | y) + λµ),

that turns H ⊕R into a JB-algebra for the norm ‖(x, λ)‖ := ‖x‖H + |λ|, where ‖.‖H is
the norm on H. In this case, (0, 1) is the algebraic unit. In Chapter 6, we characterise
spin factors as the complete order unit spaces (V,C, u) with dimV ≥ 3 and C a strictly
convex that admits an antihomogeneous order antimorphism on C◦.

A JBW-algebra is the Jordan analogue of a von Neumann algebra; a JB-algebra
that is a dual space. An element p of a JBW-algebra M is called a projection whenever
p2 = p. A non-zero projection that does not dominate another non-zero projection is
called an atom. A JBW-algebra in which every non-zero projection dominates an atom
is considered atomic.

We remark that the spin factor, as in Example 1.26, is self-dual as JB-algebra. In
particular, a spin factor is a JBW-algebra. Another prime example of a JBW-algebra
is given below.

Example 1.27. Let H be a Hilbert space and consider the space B(H) of bounded
linear operators on H. The self-adjoint operators B(H)sa now form a real vector space.
Endowing this space with the Jordan product given by

T ◦ S =
1

2
(TS + ST ),

for T, S ∈ B(H)sa, where TS and ST denote compositions, yields a JBW-algebra for the
operator norm. Projections with respect to ◦ are exactly the orthogonal projections onto
a closed subspace of H. Therefore, the atoms of B(H)sa are precisely the orthogonal
projections of rank one, which shows that B(H)sa is atomic. We remark that in the
cone B(H)+sa of positive semi-definite operators the projections of rank one are precisely
the extreme vectors.

The connection exhibited in B(H)sa, as well as in Example 1.27, between the alge-
braic concept of atoms and extreme vectors of the cone, holds generally in the setting
of atomic JBW-algebras. Furthermore, the atoms corresponding to disengaged extreme
vectors, are precisely those that are orthogonal to the other atoms, which we will show
in Lemma 5.6. Interplay between the algebraic structure of an atomic JBW-algebra
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and the order structure induced by its cone, will be used in our study on order isomor-
phisms between cones of JB-algebras in Chapter 5. There, a more detailed overview
of the theory on JB-algebras, as developed by Alfsen and Schultz [AS01, AS03] and
Hanche-Olsen and Størmer [H-OS84], will be given.
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Chapter 2

Lattice structure preservers in C(S)

For a compact Hausdorff space S the space C(S) of real valued continuous functions
on S endowed with pointwise order is an example of a Riesz space. Indeed, any pair of
functions x, y ∈ C(S) has a supremum x ∨ y ∈ C(S) given by

x ∨ y(s) = max{x(s), y(s)}, for s ∈ S.

The other lattice operations of C(S) are also determined pointwise. A classic result of
Kaplansky [Kap47] states that compact Hausdorff spaces S and T are homeomorphic
if and only if C(S) and C(T ) are lattice isomorphic, here a bijection f : C(S)→ C(T )
is considered a lattice isomorphism whenever f(x ∨ y) = f(x) ∨ f(y) holds for all
x, y ∈ C(S). This reinforces the idea that the lattice structure of C(S) has a strong
connection with the underlying topological space. It is therefore unsurprising that Riesz
homomorphisms on C(S), as defined in 1.9, which preserve the lattice structure, have
a simple description.

Theorem 2.1 (Theorem 4.25 in [AA02]). Let S and T be compact Hausdorff spaces.
A positive linear map f : C(S) → C(T ) is a Riesz homomorphism if and only if there
exist a map π : T → S and a weight w ∈ C(T )+ such that we have

f(x)(t) = w(t)x(π(t)), x ∈ C(S), t ∈ T. (2.1)

Moreover, in this case, w = f(1S) and the map π is uniquely determined and continuous
on the set {w > 0}.

One naturally wonders whether such a result can be extended to a variety of sub-
spaces of C(S) and C(T ). However, many natural subspaces of C(S) are themselves not
a Riesz space. For example, in the case S = [0, 1], the spaces C1[0, 1] and P [0, 1] con-
sisting of the continuously differentiable functions and polynomial functions on [0, 1],
respectively, are not Riesz spaces. However, C1[0, 1] and P [0, 1] are examples of pre-
Riesz spaces. We can therefore attempt to generalise Theorem 2.1 to an analogous
statement concerning Riesz∗ homomorphism between pre-Riesz subspaces of C(S) and
C(T ).
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An overview of pre-Riesz spaces is given in Section 1.2. We briefly recall some
terminology for the reader’s convenience. A partially ordered vector space X is a pre-
Riesz space if it admits a vector lattice cover, here a pair (E, i) of a Riesz space E and
a linear order embedding i : X → E is a vector lattice cover of X if i[X] is order dense
in E. If, in addition, i[X] generates E as a Riesz space then the pair (E, i) is unique
up to isomorphism for these properties and is called the Riesz completion of X. For
short, we denote the Riesz completion of a pre-Riesz space X by Xρ. Recall that a
linear map f : X → Y between pre-Riesz spaces is a Riesz∗ homomorphism if and only
if f extends to a Riesz homomorphism fρ : Xρ → Y ρ.

The aim of this chapter, which is based on [vI18], is to generalise classic results
concerning Riesz homomorphisms to the setting of Riesz∗ homomorphisms between
pre-Riesz spaces. We start, as mentioned earlier, by generalising Theorem 2.1 to the
setting of Riesz∗ homomorphisms between order dense subspace of C(S) and C(T ).
In doing so, we also highlight differences between Riesz∗ homomorphisms and other
classes of operators, which appear in literature, that extend the notion of a Riesz
homomorphism. After that we consider the case where S and T are locally compact
spaces and our pre-Riesz spaces are order dense in C0(S) and C0(T ), respectively. We
find that any Riesz homomorphism is still of the form (2.1), but with more restriction
on the maps w and π. The second vector lattice result we consider is the following.

Theorem 2.2 (Theorem 2.15 in [AB06]). Let E and F be Riesz spaces and f : E → F
a bijective Riesz homomorphism. Then f−1 is a Riesz homomorphism.

An analogous statement for Riesz∗ homomorphisms fails to hold in general. We
provide a counterexample in 2.19. However, on a pervasive pre-Riesz space it is true that
the inverse of a bijective Riesz∗ homomorphism is again a Riesz∗ homomorphism. We
then continue by studying the linear order isomorphisms of again order dense subspaces
of C0(S) and C0(T ), using our knowledge on Riesz∗ homomorphism obtained earlier.
We then turn our attention to the last result we examine.

Theorem 2.3. Let E and F be Riesz spaces. A linear map f : E → F is a Riesz
homomorphism if and only if f is positive and disjointness preserving.

We illustrate with an example, that it is not true in general, that a positive linear
disjointness preserving map between pre-Riesz spaces is necessarily a Riesz∗ homomor-
phism. This example is based on a pre-Riesz space that does not contain a pair of
non-trivial positive disjoint elements. It is reasonable to expect that on a pervasive
pre-Riesz space any positive linear disjoint preserving operator is a pre-Riesz space.
However, we are only able to prove this assertion under stronger conditions.

Weighted composition maps

Let S and T be compact Hausdorff spaces and X ⊆ C(S) and Y ⊆ C(T ) linear sub-
spaces. A map f : X → Y that satisfies (2.1) for some w and π is called a weighted
composition map. We argue that if X and Y are order dense that any Riesz∗ homo-
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morphism from X to Y is such a weighted composition map. We elaborate on this
setting. Let X ⊆ C(S) and Y ⊆ C(T ) be order dense. By Proposition 1.4, both
X and Y are pre-Riesz spaces, as they are directed and Archimedean. Moreover, we
can describe their Riesz completions as follows. Consider L(X) to be the Riesz sub-
space of C(S) generated by X, in other words, x ∈ L(X) if and only if there exist
x1, . . . , xn, y1, . . . , ym ∈ X such that

x =
n∨
i=1

xi −
m∨
j=1

yj.

By construction L(X) is a Riesz subspace of C(S). Remark that X is order dense in
L(X), since X is order dense in C(S). Therefore, we can identify the Riesz completion
(Xρ, i) of X as the pair (L(X), i), where i : X → L(X) is the canonical embedding. In
conclusion, we can view the Riesz completion Xρ of X as a majorizing Riesz subspace of
C(S). Analogously, we identify the Riesz completion Y ρ as a majorizing Riesz subpsace
of C(T ). We use this observation freely throughout.

Riesz∗ homomorphisms

Let f : X → Y be a Riesz∗ homomorphism and fρ : Xρ → Y ρ denote the Riesz ho-
momorphism that extends f . An intuitive approach to show that f is a weighted
composition operator is to extend fρ further to a Riesz homomorphism between C(S)
and C(T ) and apply the general theory, namely Theorem 2.1. However, generally not
every Riesz∗ homomorphism on X is the restriction of a Riesz homomorphism on C(S),
which we illustrate with the following example.

Example 2.4. Consider the subspace X of C[0, 1] consisting of functions x ∈ X that
satisfy x(0) = x(1). Straightforward verification yields that X is an order dense Riesz
subspace of C[0, 1]. We consider the inside-out operator f : X → X defined by f(x)(t) =
x(π(t)) for all x ∈ X and t ∈ [0, 1], where

π(t) =
1

2
− t+ 1[t> 1

2
].

For all x ∈ X the defining property x(0) = x(1) guarantees that f(x) is continuous.
Moreover, we obtain from f(x)(0) = x(1

2
) = f(x)(1) that f maps into X. Since the

lattice structure is determined pointwise, it is clear that f is a Riesz homomorphism.
Suppose that g : C[0, 1]→ C[0, 1] is a Riesz homomorphism that extends f . By Theo-
rem 2.1, there exist w : [0, 1]→ R+ and τ : [0, 1]→ [0, 1] such that g(x)(t) = w(t)x(τ(t))
for all x ∈ C[0, 1] and t ∈ T . As X contains the constant functions we get w(t) = 1 for
all t ∈ T . We get τ = π, which contradicts that τ is continuous. We conclude that f
does not extend to a Riesz homomorphism on C[0, 1].

As we will see in the following result, requiring our subspaces to separate the points
of the underlying topological space, guarantees that the weight and composition map
are automatically continuous. This leads to the following characterisation.
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Theorem 2.5. Let X and Y be order dense subspaces of C(S) and C(T ), respectively.

(i) For every Riesz∗ homomorphism f : X → Y there exist w : T → R+ and π : T → S
such that

f(x)(t) = w(t)x(π(t)), x ∈ X, t ∈ T. (2.2)

Moreover, if in addition X separates the points of S, then w is continuous on T
and π is continuous and uniquely determined on {w > 0}.

(ii) A linear map f : X → Y that satisfies (2.2) for some w ∈ C(T )+ and π : T → S
continuous on {w > 0} is a Riesz∗ homomorphism.

Proof. Suppose X and Y are given as in the first statement of (i) and f : X → Y is
a Riesz∗ homomorphism. Let fρ : Xρ → Y ρ be the Riesz homomorphism that extends
f . We fix t ∈ T . Consider the Riesz homomorphism ft : X

ρ → R as the composition
of fρ with the point evaluation at t, i.e., ft(x) = fρ(x)(t) for all x ∈ Xρ. We apply
the Lipecki-Luxemburg-Schep Theorem [AA02, Theorem 4.36] to ft to obtain a Riesz
homomorphism f̂t : C(S) → R that extends ft. The conditions of this theorem are
satisfied as Xρ is a majorizing Riesz subspace of C(S) and R is Dedekind complete.
Riesz homomorphims from C(S) to R are characterized as scalar multiples of point
evaluations, see for example [AA02, Lemma 4.23]. In other words, there exist w(t) ∈ R+

and π(t) ∈ S such that f̂t(x) = w(t)x(π(t)) holds for all x ∈ C(S). As t ∈ T was chosen
arbitrarily we obtain that f satisfies (2.2).

Suppose now that X separates the points of S. We redefine if necessary w(t) to
equal zero whenever f(x)(t) = 0 holds for all x ∈ X. Equation (2.2) remains satisfied.
Let x ∈ X be greater than the constant one function. Then f(x) is a bounded function
as element of C(T ), which implies by (2.2) that w is a bounded map. Fix t ∈ T . We
argue that w is continuous at t and that π is continuous at t whenever w(t) is non-zero.

Let (tα) in T be a net that converges to t. We show that (tα) has a subnet (tβ) such
that limβ w(tβ) = w(t) and that limβ π(tβ) = π(t) whenever w(t) is non-zero. For x ∈ x
we get by continuity of f(x) and application of (2.2) that

w(t)f(π(t)) = f(x)(t) = lim
α
f(x)(tα) = lim

α
w(tα)x(π(tα)). (2.3)

As we have shown that w is bounded, the fact that S is compact yields the existence of
a subnet (tβ) of (tα) such that (w(tβ)) converges to some a ∈ R and (π(tβ)) to s ∈ S.
Therefore, for any x ∈ X equation (2.3) yields f(x)(t) = a limβ x(π(tβ)). Moreover, by
continuity of the functions x ∈ X we obtain f(x)(t) = ax(limβ π(tβ)) = ax(s) and, in
particular, that w(t)x(π(t)) = ax(s).

We remark that a = 0 whenever w(t) = 0 as X contains an element for which x(s) 6=
0 and, hence, we are done in that case as then w(t) = a = limβ w(tβ). We consider
the remaining case where w(t) > 0 holds. It is evident that a > 0. Consequently,
for any x ∈ X the equation x(s) = cx(π(t)) is satisfied, where c = w(t)/a is non-
zero and independent of f . As X separates the points of S we obtain the equalities
s = π(t) and c = 1. In other words, π is continuous at t. Plugging this into (2.3) yields
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w(t)x(π(t)) = limβ w(tβ)f(π(t)) and, hence, applying that to a x ∈ X with x(π(t)) 6= 0
yields that w is continuous at t. We conclude that w and π are continuous on T and
{w > 0}, respectively. Additionally, π is uniquely determined on {w > 0} due to
separating property of X.

Lastly, suppose that f : X → Y satisfies (2.2) for suitable w ∈ C(T )+ and π : T → S
continuous on {w > 0}. The weighted compostion operator between the Riesz comple-
tions Xρ ⊆ C(S) and Y ρ ⊆ C(T ) defined by w and π is a well-defined Riesz homomor-
phism that extends T , hence T is a Riesz∗ homomorphism.

Henceforth, for notational convenience let fw,π : X → Y denote the weighted com-
position operator between X and Y with weight map w : T → R+ and composition
map π : T → S that satisfies (2.2).

Riesz homomorphisms

A predecessor of the Riesz∗ homomorphism is the Riesz homomorphism, an alterna-
tive class of operators on a pre-Riesz space X that extend to Riesz homomorphisms
on Xρ. A linear operator f : X → Y between pre-Riesz spaces is called a Riesz ho-
momorphism whenever f({x, y}u)l ⊆ {f(x), f(y)}ul holds for all x, y ∈ X. Similarly
to Riesz∗ homomorphisms these operators extend to Riesz homomorphisms. However,
not all Riesz homomorphisms between the completions are obtained as such extensions.
Another disadvantage of the class of Riesz homomorphisms is that it is not stable under
composition, see [vH93]. We use our knowledge on the weighted composition structure
of Riesz∗ homomorphisms to investigate similarities and differences between these two
classes of operators.

Suppose f : X → Y is a positive linear operator. Positivity of f immediately yields
that for any finite A ⊆ X we have f [Aul] ⊆ f [Au]l. We infer that any Riesz homomor-
phism is a Riesz∗ homomorphism. A converse statement does not generally hold on
pre-Riesz spaces, which will be illustrated later by a counterexample in Example 2.8.
However, we show that on a wide class of subspaces of C(S), which is contained in the
class of separating order dense subspaces, the notions of a Riesz homomorphism and a
Riesz∗ homomorphism coincide.

A linear subspace X of C(S) is called pointwise order dense if it satisfies

y(s) = inf{x(s) : x ∈ X, x ≥ y}

for all y ∈ C(S) and s ∈ S. Straightforward verification yields that any pointwise order
dense subspace X of C(S) is separating and order dense. Moreover, it is routine to show
that a norm dense subspace of C(S) containing the constant functions is pointwise order
dense.

Example 2.6. Consider the so-called Namioka space defined as N = {x ∈ C([0, 1]) : x(0)+
x(1) = 2x(1

2
)}. N is a pervasive and order dense subspace of C([0, 1]), which is not

pointwise order dense.
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We consider an equivalent defining property of a Riesz homomorphism. A linear
map f : X → Y is a Riesz homomorphism if and only if

inf{f(z) : z ∈ X, z ≥ x, y} = f(x) ∨ f(y) in Y ρ, x, y ∈ X. (2.4)

Here the infimum and supremum are taken within the Riesz space Y ρ. We use this char-
acterisation and Theorem 2.5 to prove that any Riesz∗ homomorphism on a pointwise
order dense subspace of C(S) is automatically a Riesz homomorphism.

Theorem 2.7. Let X be a pointwise order dense subspace of C(S), Y an order dense
subspace of C(T ) and f : X → Y a linear operator. Then f is a Riesz∗ homomorphism
if and only if f is a Riesz homomorphism.

Proof. LetX and Y be as in the statement and suppose f : X → Y is a Riesz∗ homomor-
phism. Due to Theorem 2.5 there exist suitable w and π such that f = fw,π : X → Y .
Suppose x, y ∈ X are given. We argue that (2.4) is satisfied. As f is positive f(x)∨f(y)
is a lower bound of {f(z) : z ∈ X, z ≥ x, y} in Y ρ. Suppose w is another lower bound
of {f(z) : z ∈ X, z ≥ x, y} in Y ρ. We compute for all t ∈ T

w(t) ≤ inf{f(z)(t) : z ∈ X, z ≥ x, y}
= inf{w(t)z(π(t)) : z ∈ X, z ≥ x, y}
= w(t)[inf{z(π(t)) : z ∈ X, z ≥ x, y}]
= w(t)(x ∨ y)(π(t)) = (f(x) ∨ f(y))(t).

Here we used that X is pointwise order dense in C(S) in the second last equality on
x∨y ∈ C(S) and π(t) ∈ S. This shows that w ≤ f(x)∨f(y) holds in the order induced
by C(T ), which shows that f satisfies condition (2.4). Recall that the other implication
holds for general pre-Riesz spaces as discussed earlier.

We consider an example that shows that the above theorem fails to hold generally
for separating order dense subspaces of C(S).

Example 2.8. Let N be the Namioka space as considered in Example 2.6 and recall
that N is indeed separating and order dense, however, not pointwise order dense in C(S).
Let ϕ : N → R be the functional that composes any x ∈ N with the point evaluation
at s = 1

2
. Evidently ϕ is a Riesz∗ homomorphism by Theorem 2.5. However, letting

x, y ∈ N be defined by x(s) = s and y(s) = 1− s, we obtain ϕ(x) ∨ ϕ(y) = 1
2
∨ 1

2
= 1

2
,

while for any z ∈ N with z ≥ x, y we get z(0) ≥ y(0) ≥ 1 and z(1) ≥ x(1) ≥ 1, hence
ϕ(z) = z(1

2
) ≥ 1. Therefore, ϕ does not satisfy condition (2.4) and, hence, is not a

Riesz homomorphism.

Complete Riesz Homomorphisms

First introduced and studied by Buskes and van Rooij in [BvR93] is the class of complete
Riesz homomorphisms. Between Riesz spaces these complete Riesz homomorphisms are



WEIGHTED COMPOSITION MAPS 33

exactly the order continuous Riesz homomorphisms. Between pre-Riesz spaces the com-
plete Riesz homomorphisms are exactly the operators that extend to order continuous
Riesz homomorphisms between the completions [vH93, Theorem 5.12]. Our aim is
to characterize the complete Riesz homomorphisms between order dense subspaces of
C(S) and, in doing so, characterize the order continuous Riesz homomorphisms be-
tween Riesz subspaces of C(S). More specifically, our aim is to determine a necessary
condition imposed on w and π that when imposed guarantees fw,π : X → Y to be a
complete Riesz homomorphism.

A linear map f : X → Y between partially ordered vector spaces is called a complete
Riesz homomorphism whenever Z ⊆ X with inf Z = 0 implies inf f(Z) = 0. As not all
Riesz homomorphism are order continuous we easily construct an example of a Riesz∗

homomorphism that is not a complete Riesz homomorphism. Consider a weighted
composition operator fw,π : C[0, 1] → C[0, 1] where w is positive and non-vanishing
and π is constant. There exists a sequence in C[0, 1] that descends to zero and is
constantly one on the singleton π

[
[0, 1]

]
. Therefore, f is indeed not a complete Riesz

homomorphism. It holds generally, however, that for w ≥ 0 non-vanishing and π an
open map that fw,π is a complete Riesz homomorphism. It turns out that π being an
open map is not a necessary condition, as will be shown in Theorem 2.10.

A function π : T → S is called weak-open if for all non-empty open U ⊆ T the image
π[U ] is dense somewhere, i.e., there exists a non-empty V ⊆ S open such that π[U ]∩V
is dense in V , and π is called nowhere constant if for all non-empty U ⊆ T open the
image π[U ] is not a singleton. One easily verifies that the former implies the latter and
π being open implies both properties.

We characterise subsets in C(S) whose infimum exist and equal zero.

Lemma 2.9. Let X be an order dense subspace of C(S) and let Z ⊆ X+ be given.
Then inf Z = 0 holds in X if and only if Z satisfies the following property

∀ε > 0, U ⊆ S\{∅} open ∃z ∈ Z, s ∈ U such that z(s) ≤ ε. (2.5)

Proof. Let Z ⊆ X with inf Z = 0. Suppose that the converse of (2.5) holds. Let ε > 0
and U ⊆ S be non-empty and open such that for all z ∈ Z and s ∈ U we have z(s) > ε.
An application of Urysohn’s Lemma yields a non-zero positive y ∈ C(S) whose support
is contained in U . After rescaling if necessary y is a lower bound of Z in C(S). As
X is order dense in C(S) there exists a x ∈ X with x � 0 and x ≤ y. This yields a
contradiction with the assumption that inf Z = 0.

Suppose Z ⊆ X+ does not satisfy inf Z = 0. Then there exists a lower bound x ∈ X
of Z such that x � 0. Remark that the positive part x+ of x is a non-zero positive
element of C(S) and a lower bound of Z. By continuity there exists an ε > 0 and
U ⊆ S non-empty and open such that z(s) ≥ x+(s) > ε holds for all s ∈ U, z ∈ Z.

We are now ready to characterize complete Riesz homomorphisms on order dense
subspaces of C(S) and note that no additional conditions are imposed on the subspace
Y of C(T ).
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Theorem 2.10. Let X be an order dense subspace of C(S) and Y a subspace of C(T ).
Let w ∈ C(T )+ and π : T → S be such that fw,π : X → C(T ) maps into Y . Then
fw,π : X → Y is a complete Riesz homomorphism if and only if π is weak-open on
{w > 0}.

Proof. Let w and π be as in the statement and let us denote fw,π by f . Suppose π is
weak open on {w > 0}. Let Z ⊆ X with inf Z = 0. Fix δ > 0 and U ⊆ T non-empty
and open. Due to Lemma 2.9 it suffices to show existence of an z ∈ Z and t ∈ U such
that f(z)(t) ≤ δ holds. Suppose there exists a t ∈ U ∩ {w = 0}. Then for all z ∈ Z we
have f(z)(t) = 0 < δ and, hence, we are done. Therefore, we assume that U ⊆ {w > 0}
holds. In particular, there exists a non-empty open V ⊆ S with π[U ]∩V dense in V , as
π is weak-open on {w > 0}. Put ε := δ(m+1)−1 > 0, where m := sup{w(t) : t ∈ T}. As
inf W = 0 holds Lemma 2.9 yields a z ∈ Z and s ∈ V such that z(s) ≤ ε

2
. Therefore,

by continuity there exists an s0 ∈ π[U ]∩V with f(s0) ≤ ε. Let t0 ∈ π−1({s0})∩U . We
compute

f(z)(t0) = w(t0)z(π(t0)) ≤ m · z(π(y0)) = m · z(s0) ≤Mε ≤ δ,

and conclude that due to Lemma 2.9 f is a complete Riesz homomorphism.

Conversely, suppose that π is not weak open on {w > 0}. In other words, there exist
δ > 0 and non-empty and open U ⊆ T with U ⊆ {w ≥ δ} and π[U ] is nowhere dense in
S. We recall that generally a complete Riesz homomorphism between pre-Riesz spaces
extends to a order continuous Riesz homomorphism between the Riesz completions,
which, therefore, is itself is a complete Riesz homomorphism. Hence, it suffices to show
that f̂ = fw,π : Eρ → F ρ is not a complete Riesz homomorphism. We define

Z : = {z ∈ Xρ : z ≥ 0 and z ≥ 1 on π[U ]}.

We argue by contradiction that inf Z = 0. Suppose there exists a lower bound z ∈ Xρ
+

of Z not smaller than zero. As Xρ is a Riesz space we replace z by z+ if necessary
to obtain a non-zero positive lower bound z of Z. In particular, there exist ε > 0
and W ⊆ S non-empty and open such that z ≥ ε on W . Recall that π[U ] is nowhere
dense, so π[U ] ∩W is not dense in W . Therefore, the closure V of π[U ] ∩W in W is
a closed strict subset of W . Let W0 ⊆ W be non-empty and open with W 0 ∩ V = ∅.
By Urysohn’s lemma there is a z0 ∈ C(S)+ with z0 = 1 on V ⊇ π[U ] and z0 = 0 on
W0. As Xρ is order dense in C(S) there exists an x ∈ Xρ with x ≥ z0 and x(s) < ε for
some s ∈ W0. By construction x ≥ z0 yields x ∈ Z and from W0 ⊆ W we infer that
z � x. This yields a contradiction with z being a lower bound of Z and we conclude
that inf Z = 0.

On the other hand, however, we argue that f [Z] has a lower bound that is not
negative. By construction of U any y ∈ f [Z] satisfies y ≥ δ on U . Since Y ρ is an order
dense Riesz subspace of C(T ), there exists a lower of f [Z] in Y ρ that is strictly positive
on U .
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Let us remark that Theorem 2.10 shows, in particular, that the order continuous
Riesz homomorphisms between order dense Riesz subspaces of C(S) and C(T ) are
exactly the composition multiplication operators where the composition map is weak
open on the set where the multiplication map is non-zero.

Concluding this section we remark that, in the special case that S and T are compact
intervals of R, the condition that π is weak-open on {w > 0} in the above theorem can
be relaxed to π being nowhere constant on {w > 0}. The proof follows immediately
from the following lemma.

Lemma 2.11. Let I and J be intervals in R and π : I → J a map. For all U ⊆ I
which are open in R, π is weak-open on U if and only if π is nowhere constant on U .

Proof. As mentioned earlier, it is evident that the former implies the latter. Let U ⊆ I
is open in R. Without loss of generality we assume that U is non-empty. Suppose that
π is nowhere constant on U . Then we can find distinct points s, t ∈ J contained in π[U ]
and say s < t. Consequently, there are a, b ∈ U with a < b such π(a) = s and π(b) = t
or vice versa. We restrict π to the continuous map π̂ : [a, b]→ J . For any r ∈ (s, t) we
can find, by the Intermediate Value Theorem, a c ∈ (a, b) with π(c) = z. Therefore,
(s, t) is contained in π[U ] and we conclude that π is weak open on U . In the case that
π(a) = t and π(b) = s we can interchange the roles of s and t and obtain similarly that
(t, s) is contained in π[U ].

Locally compact spaces

We have investigated Riesz∗ homomorphisms on separating order dense subspaces of
the space of continuous functions on some compact Hausdorff space. With similar tech-
niques we characterize the Riesz∗ homomorphisms between pre-Riesz spaces of contin-
uous functions as weighted composition maps with some additional conditions on the
weight and composition map.

In this section S and T are locally compact Hausdorff spaces. Consider the subspace
C0(S) of C(S) consisting of all functions x ∈ C(S) that vanish at infinity, i.e., for all
ε > 0 the set {x ≥ ε} is compact in S. Evidently, C0(S) is a Riesz space and it coincides
with C(S), whenever S is compact. We generalise the results in Theorem 2.5 to the
setting of vanishing functions on locally compact spaces. We use the following result
from [Fol84, 7.3]: the positive norm-bounded linear functionals on C0(S) are exactly
those functionals that are given by integration against a finite Radon measure.

Theorem 2.12. Let X and Y be separating order dense subspaces of C0(S) and C0(T ),
respectively. A linear map f : X → Y is a Riesz∗ homomorphism if and only if T = Tw,π
for some w ∈ Cb(Y )+ and π : Y → X continuous on {w > 0}. Moreover, in this case
π is proper on {w ≥ ε} for each ε > 0, i.e.,

K ⊆ S is compact, ε > 0 ⇒ π−1(K) ∩ {w ≥ ε} is compact. (2.6)

Proof. Let f : X → Y be a Riesz∗ homomorphism and let fρ : Xρ → Y ρ be the Riesz
homomorphism that extends f . Fix t ∈ T . We define a positive linear functional
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ft : X
ρ → R by ft(x) : = fρ(x)(t) for x ∈ Xρ. We extend ft to a Riesz homomorphism

f̂t : C0(S)→ R using the Lipecki-Luxemburg-Schep extension theorem. By [Fol84, 7.3]
the functional ft is given by integration against a finite Radon measure, say µt. This
result applies since positive operators between Banach lattices are norm continuous by
[AB06, Theorem 4.3], and hence, ft is norm-bounded.

We argue that µt is supported in at most a single point. Suppose that s and t
are distinct points in the support of µt. Here the support of µt, denoted by supp(µt),
consists of all s ∈ S such that for all open U ⊆ S that contain s we have µt(U) > 0. By
the Hausdorff property of S we obtain disjoint open sets U, V ⊆ S with s ∈ U , t ∈ V . In
particular, we get µt(U), µt(V ) > 0. Furthermore, since the Radon measure µt is inner
regular, we can assume without loss of generality, that U and V are contained in some
compact set K ⊆ S. Applying Urysohn’s lemma yields continuous x, y : S → [0, 1]
with x(s) = 1 and x = 0 on S\U , and y(t) = 1 and y = 0 on S\V . We remark
that x, y ∈ C0(S) as both x and y are zero outside the compact set K. Moreover, by
construction x and y are disjoint. As f is a Riesz homomorphism, we infer ft(x) ⊥ ft(y).
However, for ε ∈ (0, 1], we have

ft(x) =

∫
S

x dµt ≥
∫
{x≥ε}

ε dµt = ε · µt({x ≥ ε}) > 0,

since the set {f ≥ ε} contains s and, therefore, has strictly positive measure, as s is in
the support of µt. Analogously, ft(y) > 0. This contradicts our earlier conclusion that
ft(x) ∧ ft(y) = 0. Therefore, the support of µt is either a singleton or the functional ft
is identically zero.

Suppose t ∈ T is given such that ft 6= 0. Let π(t) ∈ S be the unique element in the
support of µt and w(t) := µt({π(t)}) > 0. For x ∈ C0(S) we obtain the desired formula

ft(x) =

∫
S

x dµt =

∫
{π(t)}

x dµt = w(t)x(π(t)).

We put w(t) := 0 whenever the corresponding functional ft equals zero. We conclude
that f is a weighted composition map and f = fw,π.

In the proof of Theorem 2.5, where we considered the C(S) case, we showed that
w and π are automatically continuous on T and {w > 0}, respectively. Our arguments
made there only used that any bounded net in S has a convergent subnet, as property
of the topological space S. As any locally compact topological space has this property
we infer that w and π are continuous on Y and {w > 0}, respectively. Straightforward
verification yields that w inherits the positive and bounded property from f .

We argue that any weighted composition map fw,π : X → Y satisfies (2.6). Let
K ⊆ S be compact and ε > 0. Let x ∈ C0(S) be equal to one on K; such an x as K is
compact. For t ∈ π−1(K) ∩ {w ≥ ε} we have

f(x)(t) = w(t)x(π(t)) = w(t) ≥ ε.

Therefore, π−1(K) ∩ {w ≥ ε} is compact since f(x) ∈ C0(T ).
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Let f = fw,π : X → Y for suitable w and π. By the previous paragraph equation
(2.6) is satisfied. Therefore, the weighted composition map fρ = fw,π : Xρ → Y ρ is
well-defined, as any fρ(x) vanishes at infinity for x ∈ Xρ by (2.6). Moreover, fρ

is clearly a Riesz homomorphism that extends f . We conclude that f is a Riesz∗

homomorphism.

An application: Sobolev spaces

A result by Biegert [Bie10, Theorem 4.4] states that any Riesz homomorphism on the
Sobolev space W 1,p

0 (Ω) is a weighted composition map, where Ω ⊆ Rd is open. A higher
order Sobolev space Wm,p

0 (Ω) with m > 1 is generally not a Riesz space. Our aim is
to extend Biergert’s characterization to Riesz∗ homormorphisms on the pre-Riesz space
Wm,p

0 (Ω). Our strategy is to use the classical Sobolev Embedding Theorem to embed
the Sobolev space into C0(Ω) and show that this embedding satisfies the conditions of
Theorem 2.12.

We start by describing the setting and giving the necessary definitions. All defini-
tions and terminology we introduce here are taken from Adams [Ada75]. Let d ∈ N be
given and Ω a domain in Rd, i.e., Ω ⊆ Rd is open. For any m ∈ N and 1 ≤ p < ∞ we
define the Sobolev space Wm,p(Ω) as the space consisting of Lp-functions x on Ω for
which all distributional partial derivates Dαx, with 1 ≤ |α| ≤ m, are in Lp. Equipped
with the norm ‖.‖m,p defined by

‖x‖m,p = (
∑

0≤|α|≤m

‖Dαx‖pp)
1
p ,

the space Wm,p(Ω) is a Banach space. For smooth functions the distributional and
classical partial derivatives coincide, hence, we infer C∞(Ω) ⊆ Wm,p(Ω).

Under some regularity conditions imposed on the domain Ω every equivalence class
u ∈ Wm,p(Ω) contains a unique continuous function. In this case we define Wm,p

0 (Ω) as
the norm-closure of C∞0 (Ω) in Wm,p(Ω). For the reader’s convenience we include these
conditions here. They can be found on page 66 of [Ada75].

Definition 2.13. Let d ∈ N and Ω ⊆ Rd open be given.

(i) Let x ∈ Rd and B1 and B2 open balls in Rd with x ∈ B1 and x /∈ B2. The set
Cx : = B1 ∩ {x+ λ(y − x) : y ∈ B2, λ > 0} is a finite cone with vertex x.

(ii) Every domain Ω for which there exists a finite cone C such that each x ∈ Ω is the
vertex of a finite cone Cx contained in Ω and congruent to C is said to have the
cone property.

The classical Sobolev Embedding Theorem [Ada75, Theorem 5.4 part III(C)] states
that if Ω is a domain in Rd which has the cone property and mp > d holds, then
Wm,p

0 (Ω) ⊆ C0(Ω) holds. In this case, we therefore get

C∞0 (Ω) ⊆ Wm,p
0 (Ω) ⊆ C0(Ω).
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In particular, Wm,p
0 (Ω) is separating and order dense in C0(Ω). Therefore, Theorem

2.12 yields the following.

Theorem 2.14. Suppose Ω1 and Ω2 are domains in Rd having the cone property,
1 ≤ p, q < ∞ and m,n ∈ N be such that pm > d and qn > d hold. Any Riesz∗

homomorphism f : Wm,p
0 (Ω1)→ W n,q

0 (Ω2) is a weighted composition map.

In his proof, Biegert does not use the order structure of the space W 1,p(Ω) nor the
Sobolev Embedding Theorem. Due to the latter he does not need to impose the cone
property on Ω or any condition on p and d. However, Theorem 2.14 can deal with
Sobolev spaces up to arbitrary order. Remark that Wm,p(Ω) is a Riesz space exactly
when m = 1 holds. In conclusion, under additional regularity conditions on the domain,
we extend the result of Biegert to higher order Sobolev spaces by considering Riesz∗

homomorphisms.

Linear order isomorphisms

We have considered three types of homomorphisms defined on pre-Riesz spaces. In
order from weak to strong, Riesz∗ homomorphisms, Riesz homomorphisms and complete
Riesz homomorphisms. Analogous to Theorem 2.2, we consider whether the inverse of
a bijective homomorphism of on of these types is again of the same type. Since the
results that we obtain hold in general partially ordered vector spaces, we shall consider
them in that setting.

Secondly, returning to the setting of order dense subspaces in spaces of continuous
functions, we study linear order isomorphisms. Combining our observations with Theo-
rem 2.5 we obtain a method of describing the automorphism group for any order dense
subspace of C(S). We then apply this method to the space of differentiable functions
on a smooth manifold.

Inverses of Riesz∗ homomorphisms

We start with an elementary observation on linear order isomorphisms.

Proposition 2.15. Suppose X and Y are partially ordered vector spaces and f : X →
Y is a linear map. Then f is an order isomorphism if and only if f is bijective and
both f and f−1 are complete Riesz homomorphisms.

Proof. Suppose f is a linear order isomorphism. It suffices to show that f is a complete
Riesz homomorphism, as f−1 is also a linear order isomorphism. Let Z ⊂ X with
inf Z = 0. Suppose y ∈ Y is a lower bound of f [Z], then f−1(y) is a lower bound of
Z. Therefore, f−1y ≤ 0 holds as the infimum of Z equals zero. Applying the positivity
of f again yields f(f−1(x)) = x ≤ 0, which proves that inf f [Z] = 0.

For the converse, it suffices to observe that complete Riesz homomorphisms are
positive. Let x ∈ X be positive. We put Z : = {0, x}. Evidently inf Z = 0 holds and,
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hence, if f : X → Y is a complete Riesz homomorphism, this yields inf f [Z] = 0, which
shows, in particular, f(x) ≥ 0.

In the following result we highlight the usefulness of the pervasive property.

Lemma 2.16. Let X and Y be pre-Riesz spaces, f : X → Y a Riesz∗ homomorphism
and fρ : Xρ → Y ρ the Riesz homomorphism that extends f . The following assertions
hold:

(i) If f is surjective, then fρ is surjective;

(ii) If X is pervasive and f is injective, then fρ is injective.

Proof. Suppose f is surjective. Let y ∈ Y ρ be given. Recall that Y ρ is generated as
Riesz space by Y . Let x1, ..., xn, y1, ..., ym ∈ Y be such that y =

∨n
i=1 xi−

∨m
j=1 yj in Y ρ.

Using that f is surjective we let a1, ..., an, b1, ..., bm ∈ X with xi = f(ai) and yj = f(bj),
i = 1, ..., n and j = 1, ...,m. We define x :=

∨n
i=1 ai −

∨m
j=1 bi ∈ Xρ. The image of x

under fρ is computed as follows

fρ(x) = fρ(
n∨
i=1

ai −
m∨
j=1

bj)

=
n∨
i=1

fρ(ai)−
m∨
j=1

fρ(bj)

=
n∨
i=1

xi −
m∨
j=1

yj = y,

and, hence, f is surjective.
Suppose X is pervasive and f is injective. Let x ∈ Xρ be non-zero and positive.

As X is pervasive there exists a y ∈ X+ with 0 < y ≤ x. Since fρ is positive this
yields 0 ≤ f(y) = fρ(y) ≤ fρ(x). The injectivity of f yields fρ(x) 6= 0. From this we
conclude that for any x ∈ Xρ with fρ(x) = 0 that x = 0, since fρ(x+) = f(x)+ = 0
and fρ(x−) = f(x)− = 0 hold and both x+ and x− are positive.

In particular, Lemma 2.16 shows that a bijective Riesz∗ homomorphism on a perva-
sive pre-Riesz space extends to a bijective Riesz homomorphism on the Riesz comple-
tion. This is fact is useful in studying properties of the inverse of bijective homomor-
phisms.

Theorem 2.17. Suppose X and Y are pre-Riesz spaces, X is pervasive and that
f : X → Y is a bijective Riesz∗ homomorphism. Then f−1 is a Riesz∗ homomorphism
and, hence, f is an order isomorphism.

Proof. Suppose f is a bijective Riesz∗ homomorphism. Lemma 2.16 yields that f ex-
tends to a bijective Riesz homomorphism fρ : Xρ → Y ρ. The inverse (fρ)−1 : Y ρ → Xρ

is a Riesz homomorphism by Theorem 2.2 that extends f−1 : Y → X and, hence, f−1

is a Riesz∗ homomorphism.
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In conjunction with Proposition 2.15 this yields the following list of equivalent state-
ments.

Corollary 2.18. Let X and Y be pre-Riesz spaces and X pervasive. For a linear
bijection f : X → Y the following statements are equivalent:

(i) f is a Riesz∗ homomorphism.

(ii) f is a Riesz homomorphism.

(iii) f is a complete Riesz homomorphism.

(iv) f−1 is a Riesz∗ homomorphism.

(v) f−1 is a Riesz homomorphism.

(vi) f−1 is a complete Riesz homomorphism.

(vii) f is an order isomorphism.

The main implication of Corollary 2.18 is that a bijective Riesz∗ homomorphism
between pervasive pre-Riesz spaces is an order isomorphism, just as in the vector lat-
tice case. We consider an example of a non-pervasive pre-Riesz space for which the
statement in Theorem 2.17 fails to hold.

Example 2.19. Let X be the subspace of C([0, 1]) consisting of all polynomials. Then
X is a pre-Riesz space and its Riesz completion Xρ is the Riesz subspace of C([0, 1])
consisting of all piecewise polynomial functions. Since non-constant polynomials can
only be zero in finitely many points, one easily verifies that X is not pervasive. We
consider f = fw,π : X → X, where w = 1 and π(s) = 1

2
s for s ∈ [0, 1]. Theorem

2.5 yields that f is a Riesz∗ homomorphism. Moreover, since π is a weak-open map,
f is even a complete Riesz homomorphism by Theorem 2.10. We argue that f is a
bijective map. By definition it is evident that f is injective. Let y ∈ X be of the form
y(s) = αns

n + ...+ α1s+ α0, for s ∈ [0, 1] with α0, ..., αn ∈ R. The pre-image f−1(y) is
given by x(s) =

∑n
i=0 βis

i ∈ X, where βi : = 2iαi for 0 ≤ i ≤ n. We conclude that T
is a bijective Riesz∗ homomorphism.

Suppose there exist v : [0, 1] → R continuous and τ : [0, 1] → [0, 1] continuous on
{θ > 0} such that f−1 = fv,τ on X. The equality f(1) = 1, where 1 denote the constant
one functions, immediately yields that v is identically zero. Let x ∈ X satisfy x(s) = s
for all s ∈ [0, 1]. We compute for all s ∈ [0, 1] that

s = f−1(f(x))(s) = f(x)(τ(s)) = x(1
2
(τ(s))) = 1

2
τ(s).

However, the equality τ(s) = 2s can not be satisfied on all of [0, 1], therefore, f−1 is
not a weighted composition operator. In particular, Theorem 2.5 yields that f−1 is not
a Riesz∗ homomorphism.
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Automorphism groups

Combining our characterisation of Riesz∗ homomorphisms on spaces of continuous func-
tions, obtained in Theorem 2.12, and the general observation made in the previous
section concerning linear order isomorphisms, we can describe the linear order isomor-
phisms between order dense subspaces X ⊆ C0(S) and Y ⊆ C0(T ) that separate the
points, where S and T are locally compact Hausdorff spaces.

Theorem 2.20. A linear map f : X → Y is an order isomorphism if and only if
f = fw,π, where w ∈ C(T ) satisfies 0 < δ1 ≤ w ≤ D1 for some δ,D > 0 and π : T → S
is a homeomorphism. In this case, w and π are uniquely determined by f .

We remark that a homeomorphism is proper and, therefore, (2.6) is satisfied in this
case.

Proof. Let f : X → Y be a linear order isomorphism. Due to Proposition 2.15, f
is a complete Riesz homomorphism and, in particular, f is a Riesz∗ homomorphism.
Therefore, Theorem 2.12 yields the existence of maps w ∈ Cb(T )+ and π : T → S
continuous on {w > 0} such that f = fw,π.

Suppose that w(t) = 0 holds for some t ∈ T . In that case, we get y(t) = 0 for all
y ∈ f(X). This yields an immediate contradiction with the fact that f is surjective and
Y is majorizing. We conclude that w is indeed non-vanishing. We remark that, since
{w > 0} = T holds, π is continuous and uniquely determined everywhere.

Suppose π is not injective. Let t1, t2 ∈ T be such that t1 6= t2 and π(t1) = π(t2).
We obtain for all x ∈ X that

f(x)(t1) = w(t1)x(π(t1)) = w(t2)
w(t1)

w(t2)
x(π(t2)) =

w(t1)

w(t2)
f(x)(t2).

Therefore, any g ∈ f(X) satisfies g(t1) = λg(t2), where λ = w(t1)/w(t2). Since Y
separates the points of T this contradicts the surjectivity of f and we conclude that π
is injective.

We argue that π is surjective. Recall that π is continuous. Hence, π(T ) is compact
and, hence, π(T ) is closed in S. Therefore, supposing that π is not surjective yields a
non-empty open U ⊆ S\π(T ). Due to Urysohn’s lemma we find a non-zero negative
y ∈ C(S) with supp(y) ⊆ U . We infer the existence of an x ∈ X that satisfies x ≥ y
and x � 0, from the fact X is order dense in C(S). We remark that x ≥ y yields
x(s) ≥ 0 for all s ∈ π(T ). Therefore, for all t ∈ T we get f(x)(t) = w(t)x(π(t)) ≥ 0 as
w is positive. This contradicts that f−1 is positive as f(x) ≥ 0 and x � 0.

Consider the weighted composition map g : Y → X with weight map η the reciprocal
of w ◦ π−1 and composition map π−1. This is well-defined as we have shown that w
does not vanish and π is bijective. We verify that g is the inverse of f . For all y ∈ Y
and t ∈ T we compute

f ◦ g(y)(t) = w(t)g(y)(π(t)) =
w(t)

η(π(t))
y(π−1(π(t))) = y(t).
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Completely analogously one verifies that g ◦ f equals the identity on X. We conclude
that g = f−1. Theorem 2.12 applied to the linear order isomorphism g yields that η
is bounded and π−1 is continuous. In particular, 0 < δ1 ≤ w ≤ D1 holds for some
δ,D > 0 and π is a homeomorphism.

Conversely, suppose f = fw,π : X → Y with w and π as in the assertion. The
weighted composition map g = gη,π−1 : Y → X, where η is the reciprocal of w ◦ π−1, is
a well-defined inverse of f by the assumptions on w and π. Therefore, f is bijective.
Moreover, as both w and η are positive we get that f and f−1 = g are positive. Indeed
f is an order isomorphism.

Remark 2.21. A class result [Kap47] by Kaplansky states that you can recover a
locally compact Hausdorff space S from the lattice structure of C(S), or in other words,
that if there exists a lattice isomorphism from C(S) to C(T ) then S and T must be
homeomorphic. We remark that a lattice isomorphism here is not necessarily linear.
One could ask whether a compact Hausdorff space S is also fully determined by the
order structure of subspaces of C(S). Theorem 2.20 yields a partial answer, namely we
can determine S by the linear order structure of any order dense separating subspace
of C(S). This question is also studied in [LL13]. Their result [LL13, Theorem 1],
for the case where S is compact, states that if X ⊆ C(S) and Y ⊆ C(T ) contain the
constant functions and precisely separates points from closed sets, then any linear order
isomorphism f : X → Y is a weighted composition map, where the composition map
is a homeomorphism from S to T . Here X precisely separates points from closed sets
whenever for any closed F ⊆ S and s /∈ F there exists an x ∈ X with x[S] ⊆ [0, 1],
x[F ] ⊆ {0} and x(s) = 1. We remark that these conditions in [LL13, Theorem 1] are
more restrictive than ours in Theorem 2.20. Suppose X ⊆ C(S) contains the constant
functions and precisely separates the points from closed sets. The former conditions
implies that X is majorizing in C(S), and the latter yields both that X separates the
points of S and that X is pervasive. Now Lemma 1.5 yields that X is order dense in
C(S).

Let (X,C) be a partially ordered vector space. The automorphism group of X,
denoted by Aut(X), is the set consisting of all linear order isomorphisms from X onto
itself equipped with the group action of composition. Due to Theorem 2.20 we can
describe the automorphism group of C0(S).

Consider the group Cb(S)+ consisting of all positive bounded continuous functions
on S equipped with pointwise multiplication. We denote the interior of Cb(S)+ relative
to the maximum norm by Cb(S)◦+. Note that w ∈ Cb(S)◦+ exactly when w ∈ C(S)
satisfies 0 < δ1 ≤ w ≤ D1 for some δ,D > 0. We denote the group consisting of
all homeomorphisms from S to itself equipped with the group action composition by
Hom(S).

Theorem 2.22. Aut(C0(S)) is isomorphic to Cb(S)◦+ × Hom(S) endowed with the
group action (w, π) • (η, ρ) = (η(w ◦ ρ), π ◦ ρ). Here the group isomorphism is given by
(w, π) 7→ fw,π.
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Proof. We verify that (Cb(S)◦+ × Hom(S), •) is a group. The operation • is closed as
composition with a homeomorphism ρ : S → S leaves Cb(S)◦+ invariant. Straightforward
verification yields that • is associative. For any pair (w, π) the inverse with respect to
• is given by ((w ◦ π−1)−1, π−1). Lastly, the identity element is (1, IdS).

Theorem 2.20 yields that the map (w, π) 7→ fw,π is a bijection. The group action •
is constructed to make (w, π) 7→ fw,π a group homomorphism.

Let X ⊆ C0(S) be a separating and order dense subspace. Due to Theorem 2.20
any f ∈ Aut(X) is of the form f = fw,π with (w, π) ∈ Cb(S)◦+ × Hom(S). Therefore,
Aut(X) is a subgroup of Aut(C0(S)). In particular, this shows that automorphisms
on X extend to automorphisms on C0(S). The observation to use Theorem 2.20 to
extend linear order isomorphisms, leads to a general statement in the setting of order
unit spaces.

Theorem 2.23. Let (V,C, u) and (W,K, u′) be order unit spaces. A linear order iso-
morphism f : V → W extends to a linear order isomorphism fρ : V ρ → W ρ between
their Riesz completions.

Proof. By Proposition 1.23 it suffices to verify the statement for separating order dense
subspaces X ⊆ C(S) and Y ⊆ C(T ), with S and T compact Hausdorff spaces. Let
f : X → Y be an order isomorphism. Due to Theorem 2.20 we have f = fw,π with

w ∈ C(T )◦+ and π : T → S a homeomorphism. Therefore, f̂ = fw,π : C(S)→ C(T ) is a

well-defined linear order isomorphism that extends f . The restriction of f̂ toXρ ⊆ C(S)
now maps into Y ρ, as a linear order isomorphism preserves infima, suprema and linear
combinations and Xρ is generated as a Riesz space by X. Similarly, the inverse f̂−1

restricted to Y ρ maps into Xρ. We conclude that fρ = f̂ |Xρ is the desired linear order
isomorphism.

Generally, automorphisms of C0(S) do not restrict to separating order dense sub-
space. For example, an automorphism fw,π on C[0, 1] with either w or π not differen-
tiable does not restrict to an automorphism on Ck[0, 1]. It is possible, however, to fully
describe the automorphism group of the differentiable functions up to arbitrary order
on a locally compact space. We do so in the general context of smooth manifolds.

Smooth Manifolds

We recall several elementary definitions concerning smooth manifolds (see [Lee03]). Let
(M, τ) be a second countable Hausdorff space. M is called a d-dimensional topological
manifold if there exists an open cover (Ui)i∈I of M such that for all i ∈ I, Ui is
homeomorphic to an open subset Vi of Rd. In that case, the collection of triplets A =
{(Ui, hi, Vi) : i ∈ I} is called an atlas of M , where hi : Ui → Vi are homeomorphisms.
One such a triplet is then called a chart of the atlas A. M = (X,A) is an m-smooth
manifold if in addition for all i, j ∈ I the gluing map (hi ◦ h−1j )|hj(Ui∩Uj) : hj(Ui ∩Uj)→
hi(Ui ∩ Uj) is m-times differentable as a map on Rd, or simply a smooth manifold
whenever m =∞.
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Let M be an m-smooth d-dimensional manifold. A continuous map x : M → R is
called m-times differentiable if for all charts (U, h, V ) of M the map (x◦h−1) : V ⊆ Rd →
R is m-times differentiable. Let C∞0 (M) be the space consisting of continuous functions
from M to R that vanish at infinity and are infinitely many times differentiable. A
useful tool when dealing with the space C∞0 (M) is the notion of a partition of unity.
Suppose U = (Uα)α∈A is an open cover of M . A partition of unity subordinate to U is
a collection of continuous functions ϕα : M → [0, 1], α ∈ A, such that supp(ϕα) ⊆ Uα,
{supp(ϕα) : α ∈ A} is a locally finite cover and

∑
α∈A ϕα = 1. Since the supports of

the ϕα form a locally finite cover,
∑

α ϕα has only finitely many non-zero terms in a
neighborhood around every point and we encounter no convergence problems. Such a
partition of unity is called m-smooth if every ϕα is a m-smooth function. An important
result in the study of m-smooth manifolds is the existence of a m-smooth partition of
unity subordinate to any given open cover (see [Lee03, Theorem 2.25, p.54]). A useful
consequence of the existence of an m-smooth partition of unity is the existence of m-
smooth bump functions on M . Let U and V be open subsets of M such that V ⊆ U
holds. Letting U1 = U and U2 = M\V we get an open cover {U1, U2} of M , hence
there exists a subordinated m-smooth partition of unity {ϕ1, ϕ2}. Observe that ϕ1 is
an m-smooth map on M with values in [0, 1], supported in U and constantly one on
V . A map ϕ1 satisfying these properties is called an m-smooth bump function of V
supported in U .

For the remainder of this section let M be an n-dimensional locally compact m-
smooth manifold with m ∈ N ∪ {∞} and k ≤ m an integer or k = ∞. We argue that
our results concerning Riesz∗ homomorphisms and order isomorphisms apply to Ck

0 (M)
in Proposition 2.25. Before proving this it is convenient to understand the pervasive
property of spaces of continuous functions.

Lemma 2.24. Let S be a compact Hausdorff space and X ⊆ C0(S) a pre-Riesz space.
Then X is pervasive in C0(S) if and only if for every non-empty open U ⊆ S there
exists a positive non-zero x ∈ X with supp(x) ⊆ U .

Proof. Suppose X is pervasive in C0(S) and U ⊆ S is non-empty and open. By
Urysohn’s lemma there exists a non-zero y ∈ C0(S)+ with supp(y) ⊆ U . Due to
the pervasive assumption on X, there exists a non-zero x ∈ X with 0 ≤ x ≤ y. In
particular, we get supp(x) ⊆ supp(y) ⊆ U .

Conversely, suppose that latter condition is satisfied. Let y ∈ C0(S)+ be non-zero.
We fix 0 < ε < ‖y‖∞. Now the set U := {s ∈ S : y(s) > ε} is a non-empty open subset
of S. Let z ∈ X with supp(z) ⊆ U . Then x = εz/‖z‖∞ ∈ X is non-zero and positive
and is constructed to satisfy x ≤ y. We conclude that X is pervasive in C0(S).

Proposition 2.25. The space Ck
0 (M) is a separating, pervasive and order dense sub-

space of C0(M).

Proof. It is sufficient to argue the case where k = ∞. The existence of smooth bump
functions in C∞0 (M) described above, immediately yields that C∞0 (M) separates the
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points of M , and is pervasive due to Lemma 2.24. Due to Lemma 1.6 it suffices to show
that C∞0 (M) is majorizing in C0(M) to obtain order denseness.

Lemma 2.23 in [Lee03] states that there exists a countable locally finite cover (Un)∞n=1

of M consisting of precompact open sets. Let W1 = U1 and observe that (Un) covers
the compact set W 1, hence there exist n1, ..., nk ∈ N such that W 1 ⊆

⋃k
j=1 Unj =: W2.

Inductively, we obtain a cover (Wn) of M consisting of precompact open sets satisfying
W n ⊆ Wn+1, for all n ∈ N. For n ∈ N let zn ∈ C0(M) be a bump function of Wn

supported in Wn+1 and let z =
∑

n 2−nzn. We conclude that z ∈ C0(M) is positive and
vanishes nowhere.

Suppose x ∈ C0(M) is positive. We aim to construct a y ∈ C∞0 (M) that dominates
x. Remark that we may assume without loss of generality that f vanishes nowhere as
we can replace x by x ∨ z. For convenience sake we rescale x to have sup-norm equal
to one. For n ∈ N we define the open set Vn = {p ∈ M : 2−(n+2) < x(p) < 2−n} and
V0 = {p ∈ M : x(p) > 2−2}. The collection (Vn)∞n=0 is a locally finite countable open
cover of {x > 0}, which equals M . Let (ϕn : M → R)∞n=0 be a smooth partition of unity
subordinate to (Vn)∞n=0 and define

y(p) :=
∞∑
j=0

2−jϕj(p), p ∈M.

For any point p ∈ M only finitely many terms are non-zero in a neighborhood of p,
hence y is well-defined and smooth. Let ε > 0 be given and let j0 ∈ N be such that
ε >

∑∞
j=j0

2−j, then we get

{y ≥ ε} ⊆
j0⋃
n=0

Vn ⊆ {x ≥ 2−(j0+2)}. (2.7)

Indeed, whenever p ∈ M\
⋃j0
n=0 Vn we have y(p) =

∑∞
j=j0

2−jϕj(p) ≤
∑∞

j=j0
2−j < ε,

showing the first inclusion while the second inclusion follows from the construction of
the set Vn. Since x vanishes at infinity, the set on the right hand side of (2.7) is compact.
Therefore, the closed set {y ≥ ε} is compact, showing that y vanishes at infinity. We
are left to show that y ≥ x holds. Let p ∈ M and n ∈ N the largest index such that
p ∈ Vn. Then we have y(p) =

∑n
j=0 2−jϕj(p) ≥ 2−n

∑n
j=0 ϕj(p) = 2−n. On the other

hand, we have x(p) < 2−n ≤ y(p) as p ∈ Vn holds.

We consider for a moment an open subset S ⊆ Rd with d ∈ N. The following chain
of inclusions is satisfied

Ck
0 (S) ⊆ LC0(S) ⊆ Ck,α

0 (S) ⊆ UC0(S) ⊆ C0(S).

Here LC0(S) denotes the Lipschitz continuous functions on S that vanish at infinity,
Ck,α

0 (S) is the subspace of Ck
0 (S) consisting of functions that are Hölder continuous

with exponent 0 ≤ α ≤ 1, meaning that |x(s)− x(t)| ≤ C‖s− t‖α holds for all s, t ∈ S
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and some constant C > 0, and UC0(S) denotes the space of all uniformly continuous
functions on S that vanish at infinity. Proposition 2.25 yields that LC0(S), Ck,α

0 (S) and
UC0(S) are separating, pervasive and order dense subspaces of C0(K).

Suppose M and N are m- and n-smooth manifolds of independent dimension and let
k ≤ n,m be an integer or k =∞. Combining Theorem 2.12 and Proposition 2.25 yields
that any Riesz∗ homomorphism f : Ck

0 (M) → Ck
0 (N) is a weighted composition map

f = fw,π, where w ∈ Cb(N)+ and π : N →M is continuous and proper on {w > 0}. As
discussed in the previous section Aut(Ck

0 (M)) is a subgroup of Aut(C0(M)). We aim to
give a full description of this subgroup. To this end we show that any bijective weighted
composition operator on Ck

0 (M) has automatically k-smooth weight and composition
maps. This is the content of Lemma 2.27. We consider an intermediate result concerning
the existence of k-smooth maps on M that locally behave like coordinate projections
in Rd.
Lemma 2.26. Let p ∈ M and (U, h, V ) a chart of M with p ∈ U . For any index 1 ≤
n ≤ d there exists a k-smooth function x ∈ C0(M) and a neighborhood U0 of p contained
in U such that x = xn ◦ h on U0, where xn(v1, ..., vd) = vn, for all (v1, .., vd) ∈ V .

Proof. Suppose p ∈ M is given and (U, h, V ) is a chart in M containing p. Let U0

be a neighborhood of p with U0 ⊆ U and ϕ : M → R a k-smooth bump function of
U0 supported in U . Define y : M → R by y(q) = xn(h(q)) for all q ∈ U and y(q) = 0
elsewhere, where xn is the n-th coordinate projection in Rd as in the statement. Since ϕ
is supported in U the map x on M defined by x = ϕ · y is k-smooth. As ϕ is constantly
equal to one on U0 we conclude that x = xn ◦ h on U0.

Lemma 2.27. If f = fw,π : Ck
0 (M) → Ck

0 (N) is a linear order isomorphism, then w
and π are k-smooth.

Proof. Recall from Theorem 2.20 and Proposition 2.25 that there exist δ,D > 0 such
that δ1 ≤ w ≤ D1 and that π is a homeomorphism. Let q ∈ N be given and C be a
compact neighborhood of q in N . Then π(C) is compact in M . Let K be a compact
neighborhood of π(C) and x ∈ Ck

0 (M) be a bump function of K. For all p ∈ N we have
f(x)(p) = w(p)x(π(p)). The functions f(x) and w coincide on π−1(K), which contains
C. As f(x) ∈ Ck

0 (N) is k-smooth, we infer that w is k-times differentiable at q.
Fix q ∈ N . Let (U, h, V ) a chart of N with q ∈ U and (U ′, h′, V ′) be a chart of M

with π(q) ∈ U ′. Let 1 ≤ n ≤ d. Due to Lemma 2.26 we obtain an x ∈ Ck
0 (M) and some

neighborhood Un of π(q) contained in U ′ such that x = xn ◦ h′ holds on Un, where xn
is the n-th coordinate projection on Rd. Since the reciprocal of w is well-defined and
k-times differentiable on N , we get w−1 · f(x) = x ◦ π and, hence, (x ◦ π) is k-times
differentiable on N . Therefore, the map (xn ◦h′ ◦π) is k-times differentiable on π−1(Un)
which is a neighborhood of q, since π is bijective. In particular, (fn ◦ h′ ◦ π ◦ h−1) is
k-times differentiable on h(π−1(Un)).

Let W : = h(π−1(U1)) ∩ ... ∩ h(π−1(Ud)). W is a neighborhood of q. We observe
that the map (h′ ◦ π ◦ h−1) is k-times differentiable on W when composed with any of
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the coordinate projection on Rd. In conclusion, (h′ ◦ π ◦ h−1) is k-times differentiable
at q and, hence, q is k-smooth.

We obtain the following description of the automorphism group of Ck
0 (M) as a

corollary of Theorem 2.22 and Lemma 2.27.

Theorem 2.28. Let M be an m-smooth manifold of arbitrary dimension and let k ≤ m
be given, where m, k ∈ N ∪ {∞}. The automorphism group of Ck

0 (M) can be described
by

Aut(Ck
0 (M)) ' (Ck

0 (M)◦+ ×Diffk(M), •),

where Diffk(M) denotes the space of all k-diffeomorphisms on M and the group action
is given by (w, π) • (η, ρ) = (η(w ◦ ρ), π ◦ ρ).

Positive disjointness preserving operators

In a Riesz space X two elements x, y ∈ X are called disjoint, denoted by x ⊥ y,
whenever |x| ∧ |y| = 0. A linear map f : X → Y between Riesz spaces is disjointness
preserving whenever x ⊥ y implies f(x) ⊥ f(y). Recall Theorem 2.3 that states that
a linear map f : X → Y between Riesz spaces is a Riesz homomorphism if and only if
f is positive and disjointness preserving. We investigate whether an analogous result
holds in the setting of Riesz∗ homomorphisms between pre-Riesz spaces.

We recall the concept of disjointness in general partially ordered vector spaces. A
pair of elements x, y ∈ X are defined to be disjoint, denoted by x ⊥ y, whenever

{x+ y,−x− y}u = {x− y,−x+ y}u.

Here the intuition is that the left- and right-hand side of this equality replace the
moduli |x + y| and |x − y|, which are equal for disjoint elements in a Riesz space. In
[vGK18, Proposition 4.1.4] it is shown that two elements in a pre-Riesz space X are
disjoint if and only if they are disjoint in a vector lattice cover of X in the usual sense.
Therefore, if X is a pre-Riesz space as an order dense subspace of some C(S), then
elements x, y ∈ X are disjoint if and only if for all s ∈ S either x(s) or y(s) equals zero,
as C(S) is a vector lattice cover.

We start by considering a counterexample that shows that generally in pre-Riesz
space not all positive disjointness preserving maps are Riesz∗ homomorphisms.

Example 2.29. Consider the pre-Riesz space P [0, 1] of all polynomials on the unit
interval and the map f : P [0, 1] → P [0, 1] defined by x 7→ (s 7→

∫ s
0
x(t)dt). One easily

verifies that f is positive. As P [0, 1] does not contain a non-trivial pair of disjoint
elements, f is disjointness preserving. Suppose that f is a Riesz∗ homomorphism,
then by Theorem 2.5 there exist w : [0, 1] → R+ and π : [0, 1] → [0, 1] such that for
all x ∈ P [0, 1] and s ∈ [0, 1] we have f(x)(s) = w(s)x(π(s)). From the equality
f(t 7→ 1) = (s 7→ s) we obtain w(s) = s for all s ∈ [0, 1] and, moreover, the equality
f(t 7→ t) = (s 7→ 1

2
s2) then yields π(s) = 1

2
s for all s ∈ [0, 1]. Considering the
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polynomial (t 7→ t2) on the one hand yields f(t 7→ t2) = (s 7→ w(s)(π(s))2 = 1
2
s3),

while integration of the same polynomial yields (s 7→ 1
3
s3). This contradiction yields

that f is not a Riesz∗ homomorphism.

Example 2.29 is based on the fact that the pre-Riesz space P [0, 1] does not contain
a non-trivial pair of disjoint elements. Therefore, it is natural to consider pervasive
pre-Riesz spaces, since they contain pairs of positive disjoint elements below any pair
of positive disjoint elements in the Riesz completion. We remark that P [0, 1] is indeed
not pervasive.

A potential generalisation of the classical result in vector lattice theory then becomes
that any linear map between pervasive pre-Riesz spaces is positive and disjointness
preserving if and only if it is a Riesz∗ homomorphism. We contribute to this, currently
open, problem with a less general statement. We consider pre-Riesz subspaces of C(S)
that have satisfy a property stronger than being prevasive. Recall that X ⊆ C(S) is
pervasive whenever for all non-empty and open U ⊆ S there exists an x ∈ X+ non-zero
with coz(x) ⊆ U , where coz(x) = {s ∈ S : x(s) 6= 0} denotes the co-zero set. We say
that X is pointwise pervasive in C(S) if for every s ∈ S and neighborhood U of s there
exists an x ∈ X+ such that s ∈ coz(x) ⊆ U .

Many ideas in the proof of the following theorem are inspired by [Jar90].

Theorem 2.30. Suppose S and T are compact Hausdorff spaces and X ⊆ C(S) and
Y ⊆ C(T ) are pointwise pervasive order dense subspaces. Any linear positive disjoint-
ness preserving map f : X → Y is a weighted composition map and, in particular, a
Riesz* homomorphism.

Proof. Fix t ∈ T . We consider the functional ϕt : X → R defined as the composition of
f with the point evaluation at t:

ϕt(x) = f(x)(t), ∀x ∈ X.

We remark that ϕt is linear, positive, disjointness preserving and, in particular, order
bounded. We aim to show that ϕt is given by integration against a point measure to
obtain the desired w(t) and π(t). Even though we can not immediately construct a
measure, we introduce the notion of a support for our functional ϕt. The support of ϕt,
denoted by supp(ϕt), is the set of all s ∈ S such that for all neighborhoods U of s there
is an x ∈ X with coz(x) ⊆ U and ϕt(x) 6= 0.

Suppose that t ∈ T is such that supp(ϕt) contains at least two distinct points.
Using that S is Hausdorff we obtain disjoint open set U1, U2 ⊆ S and, hence, by the
pervasive property of X this yields x1, x2 ∈ X with coz(xi) ⊆ Ui and ϕt(xi) 6= 0 for
i = 1, 2. However, this yields that x1 ⊥ x2 and, hence, contradicts ϕt being disjointness
preserving.

We argue that supp(ϕt) = ∅ if and only if ϕt = 0. Suppose the former. For all
s ∈ S there exists an open Us ⊆ S with s ∈ Us such that x ∈ X with coz(x) ⊆ Us
implies ϕt(x) = 0. Fix ε > 0. As X is pointwise pervasive there exist xs ∈ X with
s ∈ coz(xs) ⊆ Us. After rescaling if necessary we assume without loss of generality
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that fs(s) > ε. We define Vs := {t ∈ S : fs(t) ≥ ε} for all s ∈ S. We remark that
the Vs are non-empty open neighborhoods of the s ∈ S, respectively. By compactness
of S there exists a finite set {s1, ..., sn} ⊆ S such that S ⊆ Vs1 ∪ ... ∪ Vsn . Therefore,
x := x1 + ... + xn ∈ X satisfies x ≥ ε1S. Now for any y ∈ X, letting λ = ‖y‖∞/ε, we
get

0 = −λ
n∑
i=1

ϕt(xi) = −λϕt(x) ≤ ϕt(y) ≤ λϕt(x) = λ

n∑
i=1

ϕq(xi) = 0.

This show that ϕt = 0. Conversely, the support of the zero functional is empty. We
conclude for each t ∈ T that supp(ϕt) consists of exactly one point, or is empty in
which case ϕt = 0.

Let TN := {t ∈ T : ϕt = 0} and TC := T\TN . The map π : TC → S that satisfies
supp(ϕt) = {π(t)} is well-defined. We argue that π is continuous. Supposing the
converse, yields a net (tα)α∈A in TC converging to t0 ∈ TC such that sα := π(tα)
converges to s1 6= s0 := π(t0). By the Hausdorff property of S there exists disjoint
open neighborhoods U0 and U1 of s0 and s1, respectively. Let x0 ∈ X be such that
coz(x0) ⊆ U0 and ϕt0(x0) 6= 0. There is an α0 ∈ A such that sα0 ∈ U1, as sα → s1,
and simultaneously that f(x0)(sα0) 6= 0, as tα → t0 and f(x0) ∈ C(T ). However, now
we can find x1 ∈ X with coz(x1) ⊆ U1 and f(x1)(tα0) 6= 0, which by construction
contradicts f from being disjointness preserving.

For any t ∈ T we extend ϕt to a positive linear functional ϕ̃t : C(S)→ R, using the
extension theorem of Kantorovich. The Riesz-Markov-Kakutani representation theorem
now yields a Borel measure µt such that

ϕ̃t(x) =

∫
S

x dµt, x ∈ C(S).

We aim to show for t ∈ TC that µt is the Dirac measure at π(t). Let t ∈ TC be given.
It suffices to argue that the support of the measure µt, which we denote by supp(µt),
equals the singleton {π(t)}. By construction it is clear that π(t) ∈ supp(µt). In order
to verify the other inclusion we let s ∈supp(µt)\{π(t)}. Let U ⊆ S open with s ∈ U
and π(t) 6= U . Using the pointwise pervasive property of X yields an x ∈ X such
that s ∈coz(x) ⊆ U . As {s > 1

2
} is an open neighborhood of s it has strictly positive

measure and, hence ∫
S

x dµt ≥
1

2
µt({x >

1

2
}) > 0.

In particular, this yields ϕt(x) =
∫
S
x dµt > 0, which contradicts π(t) being the unique

supporting point of ϕt. We conclude that for all t ∈ TC and x ∈ X we have∫
S

x dµt = x(π(t))ϕ̃t(1S).

For t ∈ TC letting w(t) : = ϕ̃t(1S) > 0, we obtain for all x ∈ X

ϕt(x) = w(t)x(π(t)). (2.8)
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Now we extend π to a map from T to S and put w(t) := 0 for all t ∈ TN . We remark
that (2.8) is now satisfies for all x ∈ X and t ∈ T . As X is majorizing in C(S), X
contains a strictly positive function x ∈ X. The fact that f(x) is continuous on T , and
x ◦ π does not vanish, ensures that w is continuous on T .

The last part of the assertion, which states that f is a Riesz* homomorphism, follows
from Theorem 2.5(ii).
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Chapter 3

Linearity of order isomorphisms

A fundamental problem in the study of partially ordered vector spaces is understanding
the structure of order isomorphisms, i.e., an order preserving bijection whose inverse
is also order preserving. Of particular interest is understanding in which partially
ordered vector spaces all order isomorphisms are linear after translation. Research on
this question originates from Special Relativity where causal order is considered on the
Minkowski spacetime. During the 1950s and 1960s various results appeared dealing with
finite dimensional spaces. Alexandrov and Ovčinnikova [AO53] and Zeeman [Zee64]
have shown that the order isomorphisms from the causal cone onto itself are linear.
Alexandrov [Ale67] extended his result to order isomorphisms on finite dimensional
spaces ordered by a cone of which every extreme ray is engaged, where an extreme
ray is considered engaged whenever it is contained in the linear span of the other
extreme rays. Rothaus [Rot66] proved a similar result where the domain of the order
isomorphism could also be the interior of the cone. In the 1970s Noll and Schäffer made
numerous contributions to this area in a series of papers, [NS78] [NS77] [Sch77] [Sch78].
Like Alexandrov they considered the case where the cone is the sum of engaged extreme
rays viewed in the general setting of infinite dimensional spaces.

In many natural settings, such as in operator algebras, their result however is not
applicable. Molnár in [Mol01] considered order isomorphisms on B(H)+sa, the cone
consisting of self-adjoint positive semi-definite operators on a Hilbert space H, and
showed among other results that they are linear. While B(H)+sa contains many engaged
extreme rays, namely those rays spanned by projections of rank 1, B(H)+sa does not
satisfy the conditions of Noll and Schäffer’s result. Molnár’s proof uses the spectral
theorem to reduce to Rothaus’s finite dimensional case and is, therefore, not suitable
for extension to a larger class of partially ordered vector spaces. In this chapter, which
is based on [LvGvI], we provide a generalisation of Noll and Schäffer’s result in the form
of a condition on infinite dimensional cones that guarantees that all order isomorphisms
are affine, which is sufficiently mild to include Molnár’s result.

Before outlining our approach and results, we interpose with a short discussion con-
cerning the domains of the order isomorphisms we study. Šemrl in [Sem17] characterised
order isomorphisms on order intervals of B(H)sa. From his results we see that all or-
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der isomorphisms on an interval are affine only when the interval is unbounded from
above. Our results concern domains, which contain all upper bounds of their elements,
called upper sets. In particular, the whole space, the cone, the interior of the cone and
translations thereof are upper sets.

Our approach is to use the fact that order isomorphisms preserve infima and suprema.
This allows us to weaken the necessary condition imposed on the cone by Noll and
Schäffer to the cone being merely equal to the inf-sup hull of the span of its engaged
extreme rays. From the results stated in [NS77] it is not clear, however, how they can
be extended with this method. Restricting an order isomorphism to the span of the
engaged extreme rays is generally not possible. So we carefully rework the ideas of their
proofs to obtain a more general alternative to their result. We change their assertion
that all order isomorphism are affine provided that the cone is the sum of its engaged
extreme rays, to order isomorphims being affine on the sum of the engaged extreme rays
of the cone. From here we can extend the set on which the order isomorphism is affine
to all elements in the domain that we can reach with taking infima and suprema of pos-
itive sums of engaged extreme vectors. This approach also leads us to some interesting
corollaries.

In finite dimensions the existence of a disengaged extreme ray always yields a
non-linear order isomorphism. This for example follows from the work by Artstein-
Avidan and Slomka [A-AS11], where they show in Theorem 1.7 that order isomor-
phisms have a certain diagonal form as follows. Let K be a closed generating cone
in Rn and f : X → X and order isomorphism, where X is K, K◦ or Rn, then there
exist linearly independent extreme vector v1, . . . , vn ∈ K and bijective increasing maps
f1, . . . , fn : R→ R such that

f(
n∑
i=1

λivi) =
n∑
i=1

fi(λi)f(vi).

In this case, we have fj(λ) = λ for all λ ∈ R whenever the corresponding vj is engaged.
We provide an infinite dimensional analogue to this description of order isomorphisms.

Another example of a non-linear order isomorphism is taking the piontwise third
power in a space of continuous functions. More precisely, for a compact Hausdorff space
S the map f : C(S) → C(S) defined by f(x)(s) = x(s)3 for all x ∈ C(S) and s ∈ S
is a non-linear order isomorphism. Schäffer [Sch77] shows that a homogeneous order
isomorphisms on C(S)◦+, and on suitable subcones, are always linear. In [Sch78] he
further strengthens this result by showing that the same result holds for the interior of
a cone in an order unit space. We are able to apply our infinite dimensional analogue
of the diagonal form of Artstein-Avidan and Slomka to derive a condition, alternative
to the result of Schäffer, under which homogeneous order isomorphism are necessarily
linear.
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Noll and Schäffer’s approach

Throughout this section (X,C) and (Y,K) will be Archimedean partially ordered vector
spaces. We briefly recall the definitions of linear and affine maps, as introduced in
Section 1.1. Let U ⊆ X be a subset. A map f : U → Y is called linear of affine if it
is the restriction of a linear map F : span(U)→ Y or a an affine map F : aff(U)→ Y ,
respectively.

Initially we only consider order isomorphisms f : [a,∞)→ [b,∞), where a ∈ X and
b ∈ Y . However, in the main result, Theorem 3.15, we remove this constraint and
obtain a result that holds for more general domains.

A key idea to analyse order isomorphisms is to consider extreme half-lines. This
idea has been exploited to study order isomorphism on finite dimensional partially
ordered vector space [A-AS11], as well as in infinite dimensions in [NS77]. In finite
dimensions, a closed cone equals the positive linear span of its extreme rays. In infinite
dimensions, however, the extreme rays are not necessarily so plentiful. Namely, there
exist non-trivial cones that have none or only very few extreme rays.

We briefly recall some terminology on extreme rays, for a thourough overview see
Section 1.3. A vector s ∈ C\{0} is called an extreme vector (of the cone C) if 0 ≤ x ≤ s
implies that x = λs for some λ ≥ 0. For an element x ∈ C\{0} we define the ray
through x as Rx = {λx : λ ≥ 0}. If e ∈ C is an extremal vector, Re is said to be
an extreme ray. Given an extreme ray R and z ∈ X, then we call z + R an extreme
half-line with apex z. In the sequel we encounter the use of negative extreme vectors
and hence we adopt the following terminology. A vector x ∈ X is an extreme vector in
X if x ∈ (R ∪ −R)\{0} for an extreme ray R of the cone, in the case that x ∈ R\{0}
we say that x is an extreme vector of C.

The following order theoretic characterisation of extreme half-lines is due to Noll
and Schäffer, see [NS77, Proposition 1]. For completeness we provide a proof.

Proposition 3.1. Let x ∈ X be given. A subset H ⊆ [x,∞) is an extreme half-line
with apex x if and only if H is maximal among subsets G ⊆ [x,∞) with x ∈ G that
satisfy:

(P1) G is directed.

(P2) For any y ∈ G the order interval [x, y] is totally ordered.

(P3) G contains at least two distinct points.

Proof. Suppose H ⊆ X is maximal among subsets G ⊆ [x,∞) that satisfy properties
(P1)–(P3). We first argue that H is contained in a half-line. Let y, w ∈ H be given, so
x ≤ y, w. Due to (P1) there exists a z ∈ H such that y, w ≤ z. Since ≤ is preserved
under addition, (P2) guarantees that the order interval [0, z − x] is totally ordered.
Clearly, it contains y− x, w− x, and λ(z − x) for all 0 ≤ λ ≤ 1. Therefore, by Lemma
1.14 there exist α, β ≥ 0 such that y− x = α(z− x) and w− x = β(z− x). This shows
that y and w are on the half-line through z with apex x. We conclude that any pair of
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points in H lie on a half-line with apex x, and hence H is contained in a half-line with
apex x. Let R be a ray in C such that H ⊆ x+R.

By (P3) there exists an r ∈ C \{0} such that x+r ∈ H, so x+R = {x+λr : λ ≥ 0}.
Clearly x+R satisfies properties (P1) and (P3). We now show that x+R also satisfies
(P2). Consider y = x+λr with λ > 0. Then [x, y] = [x, x+λr] equals the interval [x, r]
up to dilation. We know that [x, x+ r] is totally ordered, as x+ r ∈ H and H satisfies
property (P2). Hence [x, y] is also totally ordered. It now follows from the maximality
assumption on H that H = x+R.

To see that x + R is an extreme half-line, we note that [0, r] is totally ordered, as
[x, x+ r] is totally ordered. It follows from Lemma 1.14 that r is an extreme vector.

Conversely, suppose H = x+R is an extreme half-line. Clearly H satisfies properties
(P1)–(P3). Suppose G ⊇ H also satisfies (P1)–(P3) and y ∈ G. Since G is directed,
there exists a z ∈ G with z ≥ y, x + r. Moreover, [x, z] is totally ordered by (P2).
Hence, [0, z − x] is totally ordered and y − x, r ∈ [0, z − x]. If y − x ≤ r, then there is
a µ ≥ 0 such that y − x = µr, as r is extreme, so that y = x+ µr ∈ H. Otherwise, we
have r ≤ y− x and for each 0 ≤ λ ≤ 1 we have λ(y− x) ∈ [0, z− x], so r ≤ λ(y− x) or
λ(y − x) ≤ r. By Lemma 1.14 it follows that there is a σ ≥ 0 such that r = σ(y − x).
Then σ 6= 0 and y = x+ σ−1r ∈ H.

We note that property (P3) is only a necessary condition if C does not have any
extreme rays and can be dropped otherwise.

As a direct corollary we obtain the following result.

Corollary 3.2. If f : [a,∞)→ [b,∞) is an order isomorphism, then f maps an extreme
half-line with apex x ∈ [a,∞) onto an extreme half-line with apex f(x) ∈ [b,∞).

Proof. Suppose that R is an extreme ray of C. Then f(x+R) ⊆ f(x) +K and satisfies
properties (P1)–(P3), as f is an order isomorphism. So by Proposition 3.1 we find that
f(x+R) = f(x) + S, where S is an extreme ray of K.

Our next step is to show that order isomorphisms f : [a,∞) → [b,∞) possess an
additive property on extreme half-lines, which is a combination of Proposition 3 and
Lemma 1 in [NS77]. We provide an alternative proof for the reader’s convenience.

Proposition 3.3. Let R and S be distinct extreme rays of C and f : [a,∞) → [b,∞)
be an order isomorphism. For all x ∈ [a,∞), r ∈ R and s ∈ S we have

f(x+ s+ r)− f(x+ s) = f(x+ r)− f(x). (3.1)

Proof. The equality in the statement holds trivially if either r or s equals zero. Assume
r 6= 0 and s 6= 0. Then Rj = x + js + R for j ∈ {0, 1, 2} are three distinct parallel
extreme half-lines. Due to Corollary 3.2, their images f(Rj) are extreme half-lines in Y
and they are distinct as f is injective. For each λ ≥ 0, the set x+S +λr is an extreme
half-line that intersects Rj for each j ∈ {0, 1, 2}, so, by Corollary 3.2, f(x+ S + λr) is
an extreme half-line and

f(x+ S + λr) intersects f(Rj) for each j ∈ {0, 1, 2} and λ ≥ 0. (3.2)
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We obtain that f(x+S+λr) is not parallel to any of the f(Rj), as R and S are distinct
and f is injective.

We aim to show that f(R0), f(R1), and f(R2) are parallel. We do so in two steps.
As a first step we show that if two of them are parallel, then all three of them are
parallel. Indeed, assume that f(Rj) and f(Rk) are parallel, with j, k ∈ {0, 1, 2}, j 6= k.
Since f(Rj) and f(Rk) are distinct parallel half-lines, it follows from (3.2) that the
half-line f(x+ S + λr) is in their affine span for every λ ≥ 0. Then the half-line f(Ri)
with i ∈ {0, 1, 2} \ {j, k} is in that affine span, too, as it intersects f(x + S + λr) for
two distinct values of λ. Thus, f(x+ S), f(Ri), and f(Rj) are three extreme half-lines
in the affine plane spanned by f(Rj) and f(Rk). By Lemma 1.13, it follows that at
least two of the half-lines f(x + S), f(Ri), and f(Rj) must be parallel, which yields
that f(Ri) and f(Rj) must be parallel. Thus, f(Ri), f(Rj), and f(Rk) are parallel.

As a second step we argue by contradiction that at least two of the half-lines f(R0),
f(R1), and f(R2) are parallel. For i ∈ {0, 1, 2}, take wi ∈ Y such that

f(Ri) = {f(x+ is) + λwi : λ ≥ 0}.

Suppose that no two of the three extreme half-lines f(R0), f(R1), and f(R2) are parallel.
After translation they correspond to three distinct extremal rays, so that Lemma 1.13
yields that w0, w1, and w2 are linearly independent. Define

W0 = f(x) + span{w0, w2},
W2 = f(x+ 2s) + span{w0, w2},
`1 = {f(x+ s) + λw1 : λ ∈ R}.

f(x+ S)•

f(x)
•

f(x+ s)
•

f(x+ 2s)

f(R0)
f(R1)

f(R2)

We observe that W0 and W2 are parallel and distinct planes. Moreover, f(R0) ⊆ W0,
f(R2) ⊆ W2 and f(R1) ⊆ `1. The affine span aff(W0,W2) of W0 and W2 is three
dimensional and contains `1. Indeed, for every z ∈ f(R1) there is λ ≥ 0 with z =
f(x + s + λr), and by (3.2), aff(W0,W2) contains the half-line f(x + S + λr). This
shows that f(R1) ⊆ aff(W0,W2), and hence `1 ⊆ aff(W0,W2). Since w1 is linearly
independent of w0 and w2, we conclude that `1 intersects W0 and W2.



56 LINEARITY OF ORDER ISOMORPHISMS

We proceed by showing that the half-line f(R1) intersects W0 or W2. Loosely
speaking, the point f(x + s) on `1 lies between W0 and W2 and, therefore, the points
where `1 intersects W0 and W2 cannot be both at the same side of f(x + s). To make
this idea precise, let v ∈ Y be such that

f(x+ S) = {f(x) + λv : λ ≥ 0}.

Observe that v ∈ K, as f(x+ S) ⊆ [f(x),∞). Then

aff(W0,W2) = {f(x+ s) + λw0 + µw2 + σv : λ, µ, σ ∈ R}.

As f(x + s) + w1 ∈ f(R1) ⊆ aff(W0,W2), there are λ, µ, σ ∈ R such that w1 =
λw0 +µw2 +σv. By linear independence of w0, w1 and w2, we have σ 6= 0. Consider the
case σ < 0. Then f(R1) intersects W0, so there is a t > 0 such that f(x+ s+ tr) ∈ W0.
As f(x + R) = f(R0) ⊆ W0, it follows that the half-line f(x + S + tr) contains two
distinct points ofW0, so that f(x+S+tr) ⊆ W0. Therefore f(x+2s+tr) ∈ W0∩f(R2) ⊆
W0 ∩W2, which is a contradiction. Otherwise, in case σ > 0, then f(R1) intersects W2,
and we similarly arrive at a contradiction. Hence at least two of the half-lines f(R0),
f(R1), and f(R2) are parallel, so by the first step all three of them are parallel.

Now we complete the proof. As f(R0) and f(R1) are parallel, we have that the
vectors f(x + r) − f(x) and f(x + s + r) − f(x + s) have the same direction. By
interchanging the roles of R and S we obtain that the vectors f(x + s) − f(x) and
f(x+ s+ r)− f(x+ r) have the same direction. Thus, f(x), f(x+ r), f(x+ s+ r), and
f(x+ s) are the consecutive corners of a parallellogram, which concludes the proof.

It is interesting to note that the proof of Proposition 3.3 does not work if the
domain of the order isomorphism is bounded. In fact, there exist examples of order
isomorphisms on bounded order intervals for which equation (3.1) does not hold, see for
example [Sem17] where order isomorphisms on order intervals in B(H)sa are studied.

The followin observation is a simple consequence of the previous proposition.

Corollary 3.4. Suppose r and s are extreme vectors in X such that r 6= λs for all
λ ∈ R and f : [a,∞) → [b,∞) is an order isomorphism. If x ∈ [a,∞) is such that
x+ r + s, x+ r, x+ s ∈ [a,∞) then

f(x+ r + s)− f(x+ r) = f(x+ s)− f(x).

Proof. We only discuss the proof for the case r < 0 and s < 0, and leave the other
two remaining cases to the reader, as they are proved in a similar way. By writing
y = x+ r + s, we get

f(x+ r + s)− f(x+ s) = f(y)− f(y − r)
= f(y − s)− f(y − r − s)
= f(x+ r)− f(x),

by Proposition 3.3.
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Using this corollary we show the following lemma.

Lemma 3.5. Let f : [a,∞) → [b,∞) be an order isomorphism. Suppose s1, . . . , sn, r
be extreme vectors in X such that r 6= λsi for all λ ∈ R and i = 1, . . . , n. If x, x+ r +
s1 + . . . sn, x+ s1 + . . . sn, x+ r ∈ [a,∞), then

f

(
x+ r +

n∑
i=1

si

)
− f

(
x+

n∑
i=1

si

)
= f(x+ r)− f(x).

Proof. By relabelling we may assume that s1, . . . , sk ≥ 0 and sk+1, . . . , sn < 0 for some
k ∈ {1, . . . , n}. Then x+r+

∑k
i=1 si ∈ [a,∞) and x+

∑k
i=1 si ∈ [a,∞) for k = 1, . . . , n.

By Corollary 3.4 we have

f

(
(x+

n−1∑
i=1

si) + sn + r

)
−f

(
(x+

n−1∑
i=1

si) + sn

)
= f

(
x+

n−1∑
i=1

si + r

)
−f

(
x+

n−1∑
i=1

si

)
.

Repeating this argument yields the desired conclusion.

Lemma 3.6. Let f : [a,∞) → [b,∞) be an order isomorphism. Suppose x ∈ [a,∞)
and s1, . . . , sn are extreme vectors in X such that si 6= λsj for all λ ∈ R and i 6= j,
x+ s1 + . . .+ sn ∈ [a,∞), and x+ si ∈ [a,∞) for all i = 1, . . . , n, then

f

(
x+

n∑
i=1

si

)
− f(x) =

n∑
i=1

(f(x+ si)− f(x)) .

Proof. By relabelling we may assume that s1, . . . , sk ≥ 0 and sk+1, . . . , sn < 0 for some
k ∈ {1, . . . , n}. Then x+

∑k
i=1 si ∈ [a,∞) for all k = 1, . . . , n. Using a telesoping sum

and Lemma 3.5 we obtain

f

(
x+

n∑
i=1

si

)
− f(x) = f

(
x+

n∑
i=1

si

)
− f

(
x+

n−1∑
i=1

si

)
+ · · ·+ f(x+ s1)− f(x)

=
n∑

m=1

(f(x+ sm)− f(x)).

Let R denote the collection of extreme rays in C. For S ⊆ R define

[a,∞)S = {a+ r1 + . . .+ rn ∈ [a,∞) : there exist Si ∈ S with ri ∈ Si, for i = 1, . . . , n}.
(3.3)

Lemma 3.7. Let f : [a,∞) → [b,∞) be an order isomorphism. Suppose that x, y ∈
[a,∞)R and y − x = s1 + . . . + sn with si an extreme vector in X for i = 1, . . . , n.
If r is an extreme vector in Xwith r 6= λsi for all λ ∈ R and i = 1, . . . , n, and
x+ r, y + r ∈ [a,∞), then

f(x+ r)− f(x) = f(y + r)− f(y).
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Proof. Note that we get

f(y + r)− f(y) = f(x+ (y − x) + r)− f(x+ (y − x))

= f(x+ s1 + . . .+ sn + r)− f(x+ s1 + . . .+ sn)

= f(x+ r)− f(x),

by Lemma 3.5.

In the setting of Lemma 3.7, if r = λsi for some λ and i, and r ∈ span{s : s ∈
S and S ∈ R \ {R}} where R = {λr : λ ≥ 0}, then one could replace si by a linear
combination of extreme vectors not contained in R ∪ −R and thus obtain y − x =
s′1 + · · ·+s′m with r 6= λs′j for all λ and j. Then the conclusion of Lemma 3.7 still holds.
This motivates the following definition due to [NS77] .

Definition 3.8. Let S be a collection of rays in a cone C in a vector space X. A ray
R ∈ S is called engaged (in S) whenever

R ⊆ span(S \ {R}) = span{s : s ∈ S and S ∈ S\{R}}

holds, and R is called disengaged (in S) otherwise.

It can be shown that an extreme ray of a finite dimensional cone is disengaged (in
the set of extreme rays) if and only if the cone equals the Cartesian product of the ray
and another subcone. Cones that do not allow such a decomposition are considered in
[Ale67].

Recall that R denotes the collection of all extreme rays of C. We denote the
collection of all engaged extreme rays in R by RE and the collection of all disengaged
extreme rays in R by RD. We remark that being an engaged ray is relative to the
collection it is viewed in. Nevertheless, we have that the elements of RE are again
engaged in RE. For simplicity we say that an extreme vector r ∈ R ∪−R is engaged if
R ∈ RE.

Lemma 3.9. If r is an extreme vector in X, then the following assertions hold:

(i) f(x+ λr)− f(x) is a scalar multiple of f(x+ r)− f(x) for x ∈ [a,∞) and λ ∈ R
such that x+ r, x+ λr ∈ [a,∞);

(ii) If r is engaged and x, y, x+ r, y + r ∈ [a,∞) and y − x ∈ spanR, then

f(x+ r)− f(x) = f(y + r)− f(y).

Proof. Assertion (i) follows from Corollary 3.2. Remark that if r is engaged then there
exist extreme vectors s1, . . . , sn with y − x = s1 + . . . + sn such that r 6= λsi for all
λ ∈ R and i = 1, . . . , n. So (ii) follows from Lemma 3.7.

The following result is an extension of [NS78, Corollary A1]. Recall thatRE denotes
the collection of engaged extreme rays in R. Following our definition in (3.3) we get

[a,∞)RE = {a+r1+. . .+rn ∈ [a,∞) : ri ∈ C an engaged extreme vector for i = 1, . . . , n}.
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Theorem 3.10. If f : [a,∞) → [b,∞) is an order isomorphism, then f is affine on
[a,∞)RE .

Proof. Let R be an engaged extreme ray of C and fix r ∈ R\{0}. Let λ ∈ R and
x ∈ [a,∞)RE be such that x + λr ≥ a. Then x, x + r, x + λr ∈ [a,∞). So by Lemma
3.9(i) there exists a unique gr,x(λ) ∈ R with

f(x+ λr)− f(x) = gr,x(λ)(f(x+ r)− f(x)).

It follows from Lemma 3.9(ii) that gr,x(λ) does not depend on x. Thus there is a unique
function gr : R → R such that for every λ ∈ R and x ∈ [a,∞)RE with x + λr ≥ a we
have

f(x+ λr)− f(x) = gr(λ)(f(x+ r)− f(x)). (3.4)

Clearly, gr(1) = 1 and gr is order preserving. Moreover, for λ, µ ∈ R there exists
x ∈ [a,∞)RE such that x+ λr ≥ a, x+ µr ≥ a, and x+ λr + µr ≥ a. Then

gr(λ+ µ)(f(x+ r)− f(x)) = f(x+ (λ+ µ)r)− f(x)

= f(x+ λr + µr)− f(x+ λr) + f(x+ λr)− f(x)

= gr(µ)(f(x+ λr + r)− f(x+ λr)) + gr(λ)(f(x+ r)− f(x)).

Since r is engaged, Lemma 3.9(ii) gives

f(x+ λr + r)− f(x+ λr) = f(x+ r)− f(x).

Note that f(x+ r)− f(x) 6= 0, as r 6= 0 and f is injective. So, it follows that

gr(λ+ µ) = gr(λ) + gr(µ).

As gr is monotone increasing, additive, and gr(1) = 1, a result by Darboux (see [?,
Theorem 1 in Section 2.1]) yields that gr(λ) = λ for all λ ∈ R.

To show that f is convex on [a,∞)RE , let x, y ∈ [a,∞)RE and 0 ≤ t ≤ 1. Then
x = a+

∑n
i=1 λiri and y = a+

∑n
i=1 µiri where each ri ∈ C\{0} is an engaged extreme

vector and ri 6= λrj for all λ ∈ R and i 6= j. Moreover, λi, µi ≥ 0 and λi +µi 6= 0 for all
i. Put si = (tλi + (1− t)µi)ri. As a+ si ∈ [a,∞) for all i, we can apply Lemma 3.6 to
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get

f(tx+ (1− t)y)− f(a) = f(a+
n∑
i=1

si)− f(a)

=
n∑
i=1

(
f(a+ si)− f(a)

)
=

n∑
i=1

(
f(a+ (tλi + (1− t)µi)ri)− f(a)

)
=

n∑
i=1

(
tλi + (1− t)µi

)(
f(a+ ri)− f(a)

)
= t

n∑
i=1

λi(f(a+ ri)− f(a)) + (1− t)
n∑
i=1

µi(f(a+ ri)− f(a))

= t
(
f(a+

n∑
i=1

λiri)− f(a)
)

+ (1− t)
(
f(a+

n∑
i=1

ri)− f(a)
)

= tf(x) + (1− t)f(y)− f(a),

where we have used (3.4) and the fact that each ri is engaged in the forth and sixth
equality, and Lemma 3.6 in the seventh one. This completes the proof.

Remark 3.11. It is interesting to note that in the proof of Theorem 3.10 we have
only used the assumption that r is an engaged extreme vector to show that the map
gr : R → R satisfying (3.4) is additive, from which it follows that gr is in fact the
identity map. However, if r is a (possibly disengaged) extreme vector, then (3.4) also
holds for each x that can be written as a+

∑n
i=1 si with si ∈ C extreme and si 6= λr for

all λ ∈ R and i. In Section 5 we will exploit this observation. Moreover, we remark it
is necessary to work with the positive linear span of engaged positive extreme vectors,
[a,∞)RE . Indeed, to apply Lemma 3.6 we need for each i that a+ si is in the domain
of f .

Generalisation using inf-sup hull

Let us now show how we can use Theorem 3.10 to prove that order isomorphisms are
affine in a variety of new settings.

Suppose V ⊆ X is given and supV exists. If f is an order isomorphisms, then
f(supV ) = sup f(V ). Likewise an order isomorphism preserves infima. With these
basic observations in mind we make the following definition.

Definition 3.12. For V ⊆ X the inf-sup hull of V is the set

{x ∈ X : there exist vα,β ∈ V for α ∈ A and β ∈ B such that x = inf
α∈A

(sup
β∈B

vα,β)}.
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Note that if V ⊆ X and x and y are in the inf-sup hull of V , then x = infα∈A(supβ∈B xα,β)
and y = infσ∈S(supτ∈T yσ,τ ), with all xα,β and yσ,τ in V , and hence for all λ, µ ≥ 0 we
have that

λx+ µy = inf
α∈A

(sup
β∈B

λxα,β) + inf
σ∈S

(sup
τ∈T

µyσ,τ ) = inf
α∈A

(sup
β∈B

λxα,β + inf
σ∈S

(sup
τ∈T

µyσ,τ ))

= inf
α∈A

(inf
σ∈S

(sup
β∈B

λxα,β + sup
τ∈T

µyσ,τ )) = inf
α∈A

(inf
σ∈S

(sup
β∈B

(sup
τ∈T

λxα,β + µyσ,τ )))

= inf
(α,σ)∈A×S

( sup
(β,τ)∈B×T

λxα,β + µyσ,τ ), (3.5)

which shows that λx + µy is also in the inf-sup hull. In particular we see that the
inf-sup hull of a convex subset of X is again a convex set.

Lemma 3.13. Let f : [a,∞)→ [b,∞) be an order isomorphism and let D ⊆ [a,∞) be
convex. If f is affine on D, then f is affine on the inf-sup hull of D.

Proof. Suppose V ⊆ [a,∞) and v ∈ [a,∞) are such that v = sup(V ). Then f(v) is an
upper bound of f(V ) in [b,∞). Moreover, if w ∈ [b,∞) is another upper bound of f(V ),
then f−1(w) is an upper bound of V , since f−1 is order preserving. As v = sup(V ) we
deduce that v ≤ f−1(w), so that f(v) ≤ w. This implies that f(v) = sup(f(V )) in
[b,∞). In the same way it can be shown that if W ⊆ [a,∞) and w ∈ [a,∞) are such
that w = inf(W ), then f(w) = inf(f(W )) in [b,∞).

To complete the proof it suffices to show that f is convex-linear on the inf-sup hull
of D. Indeed, the inf-sup hull of D is a convex set by (3.5). Suppose that x and y are
in the inf-sup hull of D and 0 ≤ t ≤ 1. Write x = infα supβ xα,β and y = infσ supτ yσ,τ ,
with xα,β, yσ,τ ∈ D for all α, β, σ and τ .

By repeatedly using the fact that f preserves infima and suprema and Theorem 3.10
we get

f(tx+ (1− t)y) = inf
α∈A

(sup
β∈B

(inf
σ∈S

(sup
τ∈T

f(txα,β + (1− t)yσ,τ ))))

= inf
α∈A

(sup
β∈B

(inf
σ∈S

(sup
τ∈T

tf(xα,β) + (1− t)f(yσ,τ ))))

= tf( inf
α∈A

(sup
β∈B

xα,β)) + (1− t)f(inf
σ∈S

(sup
τ∈T

yσ,τ )) = tf(x) + (1− t)f(y).

Combination of Theorem 3.10 and Lemma 3.13 yields the next conclusion.

Proposition 3.14. Every order isomorphism f : [a,∞) → [b,∞) is affine on the inf-
sup hull of [a,∞)RE .

Let us now generalise the previous proposition to order isomorphisms on more gen-
eral domains. A set U ⊆ X is called an upper set if x ∈ U and y ≥ x imply y ∈ U . We
remark that X, C and C◦ and translations thereof are all upper sets in (X,C).
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Theorem 3.15. Let (X,C) and (Y,K) be Archimedean partially ordered vector spaces,
U ⊆ X and V ⊆ Y upper sets and f : U → V be an order isomorphism. If C is
generating and equals the inf-sup hull of {r1 + · · ·+ rn : ri ∈ RE for i = 1, . . . , n}, then
f is affine.

Proof. Let a ∈ U be given. As C is the inf-sup hull of RE, by mere translation we
get that the interval [a,∞) equals the inf-sup hull of [a,∞)RE . So it follows from
Proposition 3.14 that f is affine on [a,∞). As the cone C is generating, this implies
that there exists a unique affine map g : X → Y such that g restricted to [a,∞)
coincides with f .

In the same way find that for any b ∈ U the map f is affine on [b,∞). Using
that C is directed, we know there exists c ∈ U such that c ≥ a, b. We remark that
the intersection [a,∞) ∩ [b,∞) contains the interval [c,∞). Therefore, f and g also
coincide on [b,∞). Since b ∈ U was chosen arbitrarily and the fact that U equals the
union of all intervals [x,∞) for x ∈ U , we conclude that g coincides with f on U , which
completes the proof.

Theorem 3.15 is a generalisation of [NS77, Theorem A] by Noll and Schäffer. It
would be interesting to have a complete characterisation of the (infinite dimensional)
directed Archimedean partially ordered vector spaces (X,C) for which every order
isomorphism f : C → C is linear. To our knowledge, Theorem 3.15 is the most general
result at present. It can, however, not be applied in a variety of settings such as the
space C([0, 1]) ⊕ R with cone {(f, α) : ‖f‖∞ ≤ α}. In this space the cone has exactly
two disengaged extreme rays: {λ(1, 1) : λ ≥ 0} and {λ(−1, 1) : λ ≥ 0}, where 1(x) = 1
for all x ∈ [0, 1], but it has no engaged extreme rays. We believe, however, that each
order isomorphism on the cone is linear in this space.

We end this section with a simple observation concerning direct sums. Let (X1, C1)
and (X2, C2) be directed Archimedean partially ordered vector spaces. Then the direct
sum X1⊕X2 is a directed Archimedean partially ordered vector space with cone C1×C2.
Moreover (r, s) ∈ C1×C2 is an (engaged) extreme vector if and only if r is an (engaged)
extreme vector and s = 0, or, s is an (engaged) extreme vector and r = 0. It is
straightforward to infer that if (X1, C1) and (X2, C2) satisfy the conditions on (X,C)
in Theorem 3.15, then so does (X1 ⊕X2, C1 × C2).

Self-adjoint operators on a Hilbert space

Let H be a Hilbert space and B(H)sa be the space of bounded self-adjoint operators
on H, ordered by the cone B(H)+sa of positive semi-definite operators. In this section
we show that B(H)sa satisfies the conditions of Theorem 3.15.

It is easy to show that the extreme rays of B(H)+sa are the rays spanned by rank-
one projections. We will denote the collection of all extreme rays of B(H)+sa by R.
Furthermore, for a closed subspace V of H we denote the orthogonal projection onto
by V by PV , and for x ∈ H we write Px = Pspan({x}).
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We remark that what we show here is a special case of Lemma 5.7, where we prove
that the cone in an atomic JBW-algebra is the sup-hull of the positive linear span of
its engaged atoms. However, here we supply a more direct approach that offers insight
in the order structure of B(H)sa.

Theorem 3.16. If H is a Hilbert space, with dimH ≥ 2, and U,W ⊆ B(H)sa are
upper sets, then every order isomorphism f : U → W is affine.

Proof. We verify that B(H)sa satisfies the conditions of Theorem 3.15. Evidently,
B(H)sa is directed and Archimedean. We first show that all extreme rays of B(H)+sa
are engaged. So, suppose P ∈ R. Then there exists an x ∈ H such that P = Px. As
dimH ≥ 2 we can find non-zero y, z ∈ H such that y and z are orthogonal and x, y, z
lie in a two-dimensional subspace V . Then PV = Py + Pz, so that

Px = PV − (I − Px)PV = Py + Pz − P{x}⊥PV = Py + Pz − Pw,

where w ∈ {x}⊥∩(V \{0}). We conclude that Px can be written as a linear combination
of rank-one projections different from Px and, hence, the ray spanned by Px is engaged
in R.

Note that the positive linear span of the extreme rays equals the set of positive finite
rank operators, which will be denoted F . To verify the condition in Theorem 3.15 it
suffices to show that the inf-sup hull of F equals B(H)+sa, as the inf-sup hull is closed
under positive sums by (3.5).

We start by showing that the identity I belongs to the inf-sup hull of F . Note that
I ≥ Px for all x ∈ H. Suppose that B ∈ B(H)sa is an upper bound of Px for all x ∈ H.
Then we have for any x ∈ H that

〈Bx, x〉 ≥ 〈Pxx, x〉 = 〈Ix, x〉. (3.6)

Therefore, B ≥ I holds and we conclude that I = sup{Px : x ∈ H}. Note that it follows
from (3.6) that for each Q0 ∈ F with Q0 ≤ I we have that

I = sup{Q ∈ F : Q0 ≤ Q ≤ I},

as for all x ∈ H there exists a Q ∈ F with Q0 ≤ Q ≤ I and Q ≥ Px.
Now suppose that A ∈ B(H)+sa is invertible. Let TA : B(H)sa → B(H)sa be given by

TA(Q) = A
1
2QA

1
2 . Then TA is a linear order isomorphism, so that

A = TA(I) = TA(sup{Q ∈ F : Q0 ≤ Q ≤ I}) = sup{TA(Q) : Q ∈ F, Q0 ≤ Q ≤ I}.

As TA is a bijection from F onto itself, we get that A = sup{Q ∈ F : TA(Q0) ≤ Q ≤ A}.
Finally, suppose A ∈ B(H)+sa. Remark that A + I is invertible. For P ∈ F , with

P ≤ I we let Q0 = T(A+I)−1(P ). Then A + I = sup{Q ∈ F : TA+I(Q0) ≤ Q ≤ A + I},
from which it follows that A+ I − P = sup{Q− P : Q ∈ F, P ≤ Q ≤ A+ I}. Thus,

A = inf{A+I−P : P ∈ F, P ≤ I} = inf{sup{Q−P : Q ∈ F, P ≤ Q ≤ A+I} : P ∈ F, P ≤ I}.

This shows that B(H)+sa is the inf-sup hull of the positive linear span of its extreme
rays, and hence Theorem 3.15 yields the desired result.
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We remark that Theorem 3.16 was first proved, using different arguments, by Molnár
[Mol01] and does not follow from [NS77, Theorem A].

Order isomorphisms in related problems

In this section we proceed the discussion of Section 3.2 and relate to results by Artstein-
Avidan and Slomka and Schäffer in settings somewhat different than in Theorem 3.15.
We obtain three results. First, we present a “diagonalization formula” for order isomor-
phisms between cones, see (3.7) below. Second, we apply the results of Section 3.2 to
positively homogeneous order isomorphisms between cones and obtain that they must
be linear if one of the cones equals the inf-sup hull of the positive span of its extreme
rays. Third, we consider separable complete order unit spaces where in one of them
the inf-sup hull of the positive linear span of the engaged extreme rays is big enough to
intersect the interior of the cone. In that case we derive from Theorem 3.15 that every
order isomorphism between upper sets must be affine.

We begin with the following infinite dimensional analogue of a result by Artstein-
Avidan and Slomka [A-AS11, Theorem 1.7].

Proposition 3.17. Let (X,C) and (Y,K) be Archimedean partially ordered vector
spaces and suppose that f : C → K is an order isomorphism. Let (vα)α∈A be a collection
of linearly independent extreme vectors in C. Then there exist corresponding monotone
increasing bijections gα : R+ → R+, for α ∈ A, such that for all λ1, . . . , λn ≥ 0 and
α1, . . . , αn ∈ A we have

f

(
n∑
i=1

λivαi

)
=

n∑
i=1

gαi(λi)f(vαi). (3.7)

Proof. Note that f(0) = 0. Let r ∈ C be an extreme vector. According to Corollary
3.2, f maps the extreme ray through r bijectively onto the extreme ray through f(r).
Hence there exists a nonnegative scalar gr(λ) such that f(λr) = gr(λ)f(r), for all λ ≥ 0.
Moreover, the function gr : R+ → R+ is a monotone increasing bijection. Equation (3.7)
now follows from Lemma 3.6.

In [A-AS11, Theorem 1.7], also the finite dimensional cases f : X → X and f : C◦ →
C◦ are considered. In the situation of Proposition 3.17, if f is an order isomorphism
from X to Y and f(0) = 0, then one can easily verify that the maps gr are actually
defined on R and that (3.7) holds for all λ ∈ R. The infinite dimensional version
of the case where f : C◦ → K◦ is not so strong. Indeed, if (X,C) and (Y,K) are
infinite dimensional order unit spaces, then one can adapt the proof of Proposition
3.17 to show that for each order isomorphism f : C◦ → K◦ and each collection (vα)α∈A
of linearly independent extreme vectors of C, there are linearly independent extreme
vectors (wα)α∈A of K and monotone increasing bijections gα : R+ → R+, α ∈ A, such
that for all λ1, . . . , λn ≥ 0 and α1, . . . , αn ∈ A we have (3.7) where f(vαi) is replaced
by wai , provided that

∑n
i=1 λivαi ∈ C◦. However, in general infinite dimensional order
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unit spaces most elements of the interior of the cone cannot be written as a positive
linear combination of finitely many positive extreme vectors and, thus, the use of this
result is limited.

Let us next consider positively homogeneous order isomorphisms. If U ⊆ X and
V ⊆ Y are such that λu ∈ U and λv ∈ V for every u ∈ U , v ∈ V , and λ > 0, then a
map f : U → V is called positively homogeneous if f(λu) = λf(u) for every u ∈ U and
λ > 0. If U and V are generating Archimedean cones, then this condition implies that
f(0) = 0, which yields the more common definition that includes λ = 0. The definition
given here also applies to maps on interiors of cones.

In [Sch78, Theorem B], Schäffer provides the next result.

Theorem 3.18 (Schäffer). Let (X,C, u) and (Y,K, v) be order unit spaces. Then every
positively homogeneous order isomorphism f : C◦ → K◦ is linear.

The results of Section 3.2 yield the following alternative statement, in which the
requirement of an order unit is replaced by a condition involving extreme rays.

Theorem 3.19. Let (X,C) and (Y,K) be Archimedean partially ordered vector spaces
such that (X,C) is directed and C equals the inf-sup hull of [0,∞)R. Then every
positively homogeneous order isomorphism f : C → K is linear.

Proof. We first show that f is additive on [0,∞)R. Let s1, . . . , sn be extreme vectors in
C. It suffices to show that f (

∑n
i=1 si) =

∑n
i=1 f(si). In order to apply Lemma 3.6, we

combine terms of si that lie on the same ray. Indeed, for j = 1, . . . ,m, let Ij ⊆ {1, . . . , n}
be disjoint with

⋃m
j=1 Ij = {1, . . . , n} such that for every i, k ∈ {1, . . . , n} we have

si = λsk for some λ ≥ 0 if and only if there exists j ∈ {1, . . . ,m} with i, k ∈ Ij. Denote
rj =

∑
i∈Ij si and for every i ∈ Ij let λi be such that si = λirj. Then

∑
i∈Ij λi = 1 for

j = 1, . . . ,m. With the aid of Lemma 3.6 and the positive homogeneity of f we obtain

f

(
n∑
i=1

si

)
= f

(
m∑
j=1

rj

)
=

m∑
j=1

f (rj) =
m∑
j=1

∑
i∈Ij

λif (rj)

=
m∑
j=1

∑
i∈Ij

f (λirj) =
n∑
i=1

f(si).

As f is positively homogeneous, it follows that f is linear on [0,∞)R. Due to Lemma
3.13 we obtain that f is linear on the inf-sup hull of [0,∞)R, which equals C.

If in Theorem 3.19 f is an order isomorphism from X to Y and f is homogeneous
instead of only positively homogeneous, then it can be shown along similar lines that
f is affine.

It is useful to compare Theorem 3.18 and Theorem 3.19 and identify the differences.
Let (X,C, u) and (Y,K, v) be order unit spaces. Suppose that f : C → K is a positively
homogeneous order isomorphism. Then straightforward verification yields f(C◦) = K◦.
Hence it follows by Theorem 3.18 that f is linear on C◦. As C is the inf hull of the
convex set C◦, it follows from Lemma 3.13 that f is linear on C. Thus, any homogeneous
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order isomorphism between cones of order unit spaces is linear. Theorem 3.19 provides
a condition, alternative to having an order unit, that yields the same conclusion. For
example, the space `p(N) for 1 ≤ p ≤ ∞ with coordinate-wise order satisfies the
conditions of Theorem 3.19 but fails to have an order unit. Hence Schäffer’s Theorem
3.18 does not imply our Theorem 3.19.

Our third interest in this section is an intermediate result by Schäffer, which has
a milder homogeneity condition than Theorem 3.18. In [Sch78, Corollary A1] Schäffer
shows for order unit spaces (X,C, u) and (Y,K, v), where either (X, ‖.‖u) or (Y, ‖.‖v)
is separable and complete, that any order isomorphism f : C◦ → K◦ is linear, provided
there exists a w ∈ C◦ such that f(λw) = λf(w) for all λ ≥ 0. Compared to [Sch78,
Theorem B], the positively homogeneous condition of f is weakened to only being
positively homogeneous on a ray through the interior of the cone, at the cost of one of
the order unit spaces being separable and complete. In conjunction with Theorem 3.15
this yields the following.

Theorem 3.20. Let (X,C, u) and (Y,K, v) be order unit spaces, and U ⊆ X and
V ⊆ Y be upper sets. Suppose that the inf-sup hull of [0,∞)RE has a non-empty
intersection with C◦, and that either (X, ‖.‖u) or (Y, ‖.‖v) is separable and complete.
Then every order isomorphism f : U → V is affine.

Proof. Firstly, we consider the case U = C◦ and V = K◦. Let CE denote the inf-sup
hull of the positive linear span of the engaged extreme rays of C. By assumption there
exists x ∈ CE ∩ C◦. We recall that an order unit space is directed and Archimedean.
Hence, Proposition 3.14 says that f is affine on CE ∩C◦. As f is an order isomorphism
mapping C◦ onto K◦, it is straightforward to infer that f is in fact linear on CE ∩ C◦.
In particular, f(λx) = λf(x) for all λ > 0. Now [Sch78, Corollary A1] yields that f is
linear on C◦.

Next we consider the case U = C and V = K. Just as in the previous paragraph,
there exists an x ∈ C◦ such that f(λx) = λx for all λ ≥ 0. We infer that f(C◦) = K◦.
Indeed, let y ∈ K. As x ∈ C◦ there exists λ ≥ 0 such that λx ≥ f−1(y). This yields that
λf(x) = f(λx) ≥ y. Therefore, f(x) is an order unit in (Y,K) and hence f(x) ∈ K◦.
Now let y ∈ C◦. Then there exists m > 0 such that mx ≤ y. We get mf(x) = f(mx) ≤
f(y). In particular, f(y) is an order unit and we conclude that f(y) ∈ K◦. Hence
f(C◦) ⊆ K◦. We remark that for all λ ≥ 0 we have f−1(λf(x)) = λx = λf−1(f(x)), in
other words f−1 is positively homogeneous along the ray through f(x). Therefore, the
previous steps applied to f−1 instead of f yield the converse inclusion K◦ ⊆ f(C◦). By
the first part of the proof we obtain that f is linear on C◦. Since C is the inf hull of
the convex set C◦, it follows from Lemma 3.13 that f is linear on C.

Suppose a ∈ X and b ∈ Y are such that U = [a,∞) and V = [b,∞). The order
isomorphism f̂ defined by f̂(c) = f(c+a)−b maps C to K. By the previously considered
case f̂ is linear, and hence f is affine.

The general case where U ⊆ X and V ⊆ Y are upper sets follows by arguments
similar to those made in the proof of Theorem 3.15. Indeed, for every a ∈ U , f is an
order isomorphism from [a,∞) to [f(a),∞), so that f is affine on [a,∞) by the previous
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case. Then f |[a,∞) extends to a unique affine map F : X → Y , which is independent of
a ∈ U , as (X,C) is directed.

To conclude the paper we provide an example to which Theorem 3.20 applies, but
not Theorem 3.15. Consider the order unit space (X,C, u) consisting of the real vector
space X = C([0, 1] ∪ [2, 3])⊕ R, the Archimedean cone

C = {(f, λ) : ‖f‖∞ ≤ λ}

and the order unit u = (0, 1) ∈ C. Then (X, ‖.‖u) is complete and separable. The unit
ball

B = {f ∈ C([0, 1] ∪ [2, 3]) : ‖f‖∞ ≤ 1}

has four extreme points: ±1[0,1] and ±1[2,3], where 1[0,1] and 1[2,3] denote the indicator
functions of [0, 1] and [2, 3], respectively. Therefore, C has four extreme rays, namely
the rays through (±1[0,1], 1) and (±1[2,3], 1). As

(1[0,1], 1) + (−1[0,1], 1) = 2u = (1[2,3], 1) + (−1[2,3], 1),

all four extreme rays are engaged, and u which lies in C◦ is contained in the positive
linear span of the engaged extreme rays. We conclude that the order unit space (X,C, u)
satisfies the conditions of Theorem 3.20. However, the inf-sup hull of the sum of the
engaged extreme rays consist only of elements of the form (λ1[0,1] + µ1[2,3], ν), with
λ, µ ≥ 0 and |λ|, |µ| ≤ ν, and hence (X,C) does not satisfy the conditions of Theorem
3.15.
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Chapter 4

Monotone dynamical systems

The theory of monotone dynamical systems concerns the behaviour of dynamical sys-
tems on subsets of real vector spaces that preserve a partial ordering induced by a
cone in the vector space. Pioneering studies by M. Hirsch [Hir82, Hir85, Hir88] and
numerous subsequent works, see [DH91, HS06, LN12, PT92, Smi95] and the references
therein, showed that under suitable additional conditions the generic behaviour of such
dynamical systems cannot be very complex. Common additional conditions include
smoothness conditions on the system and various strong forms of monotonicity.

We will consider discrete time dynamical systems (f,Ω), where Ω is an open con-
nected subset of a finite dimensional real vector space V and f : Ω→ Ω is a homeomor-
phism which is monotone with respect to a generating closed cone C ⊆ V . For such
discrete dynamical systems the complexity of the generic behaviour is not well under-
stood. Recently, however, M. Hirsch [Hir17] showed that if the cone C is polyhedral,
as in Example 1.1, then the system cannot display chaotic behaviour in the following
sense. He showed that if such a monotone dynamical system (f,Ω) has a dense set of
periodic points in Ω, then f is periodic, that is to say, there exists an integer p ≥ 1 such
that fp(x) = x for all x ∈ Ω. Furthermore, he conjectured that this result holds for
generating closed cones in finite dimensional vector spaces. We confirm this conjecture.
These results can be found in [LvGvI18]. As in [Hir17] we will also use the following
theorem, which is a direct consequence of Montgomery [Mon37].

Theorem 4.1 (Montgomery). If f : Ω→ Ω is a homeomorphism of an open connected
subset Ω of a finite dimensional real vector space V and each x ∈ Ω is a periodic point
of f , then f is periodic.

Connection with order isomorphisms

Throughout let (V,C) be a finite dimensional partially ordered vector space with a
generating cone C. The dual cone of C is given by C∗ = {ϕ ∈ V ∗ : ϕ(x) ≥ 0 for all x ∈
C}. Let us fix u ∈ C◦. Recall that the state space of C is defined by

SC = {ϕ ∈ C∗ : ϕ(u) = 1},
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which is a compact convex set that spans V ∗. We write ∂SC to denote the boundary
of SC with respect to its affine span.

The partial order induced by C will simply be denoted by ≤. We shall write x < y
if x ≤ y and x 6= y, and write x � y if y − x ∈ C◦. Note that if x � z, then the
order interval [x, z] is a compact, convex set and its interior is non-empty and is given
by [x, z]◦ = {y ∈ V : x� y � z}.

We also use the following basic dynamical systems terminology. We denote a discrete
time dynamical system by a pair (f,Ω), so f : Ω→ Ω. We say that x ∈ Ω is a periodic
point in (f,Ω) if there exists an integer p ≥ 1 such that fp(x) = x. The least such p ≥ 1
is called the period of x. A periodic point with period 1 is called a fixed point. The set
of all periodic points of (f,Ω) is denoted Per(f), and the set of all fixed points of f is
denoted Fix(f). A periodic point x ∈ Ω of f with period p is said to be stable if there
exists a neighbourhood U ⊆ Ω of x such that fp(U) ⊆ U .

Under the same conditions as in the conjecture by Hirsh, our monotone dynamical
system locally has the behaviour of an order isomorphism.

Lemma 4.2. If (f,Ω) is a monotone dynamical system, where f : Ω→ Ω is a homeo-
morphism, Ω ⊆ V is open and connected, and Per(f) is dense in Ω, then for any x, y ∈ Ω
with x� y the restriction f |[x,y] : [x, y]→ [f(x), f(y)] is an order isomorphism.

Proof. We first consider the case where x, y ∈ Ω with x � y are both periodic points.
Let p and q be the periods of x and y, respectively, and r the least common multiple
of p and q. Since f is monotone we have f([x, y]) ⊆ [f(x), f(y)]. We argue that the
restriction of f to [x, y] maps onto [f(x), f(y)].

Suppose w ∈ [f(x), f(y)]◦. Let (wn) be a sequence in [f(x), f(y)]◦ ∩ P (f) that
converges to w. For n ∈ N we let sn be the period of wn, rn the least common multiple
of r and sn and define vn := f rn−1(wn). We get for for all n ∈ N that

vn = f rn−1(wn) ∈ [f rn−1(f(x)), f rn−1(f(y))] = [x, y].

As [x, y] is compact there exists a convergent subsequence (vnk) of (vn), with limit say
v ∈ [x, y]. By continuity of f we have

f(v) = lim
k→∞

f(vnk) = lim
k→∞

f rnk (wnk) = lim
k→∞

wnk = w.

We conclude w ∈ f([x, y]) and, hence, [f(x), f(y)]◦ ⊆ f([x, y]). Since the latter set
is compact by continuity of f and the interval [f(x), f(y)] is closed, we conclude
[f(x), f(y)] = f([x, y]). It remains to argue that for w, z ∈ [f(x), f(y)] with w ≤ z
we have f−1(w) ≤ f−1(z).

Consider the case w, z ∈ [f(x), f(y)]◦ with w � z. Then the interval [f(x), w] has
non-empty interior. Let (wn) be a sequence in [f(x), w] ∩ Per(f), with periods say pn,
that converges to w. Analogously, let (zn) be a sequence in [z, f(y)] ∩ Per(f), with
periods say qn, that converges to z. Letting rn be the least common multiple of pn and
qn, for each n ∈ N, yields

f−1(wn) = f rn−1(wn) ≤ f rn−1(zn) = f−1(zn).
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We conclude from the continuity of f−1 that f−1(w) ≤ f−1(z).

Remark that for w, z ∈ [f(x), f(y)]◦ with w ≤ z and sufficiently small ε > 0 we
have f(x) � w − εu � z + εu � y. It follows by the previous paragraph that
f−1(w− εu) ≤ f−1(z+ εu). Letting ε decrease to zero, the continuity of f−1 guarantees
f−1(w) ≤ f−1(z).

Finally, consider the general case w, z ∈ [f(x), f(y)] with w ≤ z. Let x′, y′ ∈ Per(f)
with x′ � x and y � y′. Now we have w, z ∈ [f(x′), f(y′)]◦ as f is a homeomor-
phism and we conclude f−1(w) ≤ f−1(z), by repeating all previous argument from the
restriction of f to [x′, y′].

We have proven the assertion in the case that x and y are periodic points. Suppose
now that x, y ∈ Ω with x � y are given. Let x′, y′ ∈ Ω ∩ Per(f) be such that [x, y] ⊆
[x′, y′]. Then f |[x′,y′] : [x′, y′] → [f(x′), f(y′)] is an order isomorphism. In particular, f
maps [x, y] onto [f(x), f(y)] and the assertion follows.

In light of Lemma 4.2, understanding the structure of order isomorphisms between
intervals is important. Remark that Theorem 3.15 is not applicable here as the intervals
are bounded from above. In [Sem17] order isomorphisms between intervals in B(H)sa
are studied and fully described. Already in the case dimH = 2, nonlinear order iso-
morphisms exist. Nevertheless, a description of order isomorphisms between intervals
would yield much information on the dynamics of (f,Ω).

Dense periodic points

We continue with our analysis of monotone dynamical systems with dense periodic
points.

Lemma 4.3. If (f,Ω) is a monotone dynamical system, where f : Ω→ Ω is a homeo-
morphism and Per(f) is dense in Ω, then

(i) for each x ∈ Ω there exist y, z ∈ Per(f) such that y � x� z.

(ii) each periodic point of f is stable.

Proof. The first assertion follows directly from the fact that (x+C◦)∩Ω and (x−C◦)∩Ω
are non-empty open sets, and Per(f) is dense in Ω.

To prove the second assertion let x be a periodic point of f with period p. Let
y, z ∈ Per(f) such that y � x � z. Suppose that y has period q, and z has period r.
Let s be the least common multiple of q and r. Then

U =
s−1⋂
k=0

[fkp(y), fkp(z)]◦C

is a neighbourhood of x such that fp[U ] ⊆ U .
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The next proposition is a consequence of [Hir17, Proposition 6]. As the proof in
[Hir17] uses advanced results from algebraic topology, we include a more elementary
proof for the reader’s convenience.

Proposition 4.4. Let (f,Ω) be a monotone dynamical system, where f : Ω → Ω is a
homeomorphism and suppose that Per(f) is dense in Ω. If x ∈ Ω, then Per(f) is dense
in (x+ ∂C) ∩ Ω and (x− ∂C) ∩ Ω.

Proof. We will only give the proof for (x + ∂C) ∩ Ω and leave the other case, which
can be proved in an analogous way, to the reader. First note that by considering
the monotone dynamical system (g,Ω − x), where g(v) = f(v + x) − x, we may as
well assume that x = 0. Now let v ∈ ∂C ∩ Ω and S ⊆ Ω be a neighbourhood of
v. Then, given u ∈ C◦, there exists an ε > 0 such that [v − εu, v + εu]◦C ⊆ S. Now
(v + C◦) ∩ [v − εu, v + εu]◦C is an non-emtpy open subset of Ω, and hence contains a
periodic point of f , say z. Likewise, (v − C◦) ∩ [v − εu, v + εu]◦C contains a periodic
point of f , say y. So, v − εu� y � v � z � v + εu, and [y, z]C ⊆ [v − εu, v + εu]◦C .

Let r be the least common multiple of the periods of y and z, and write g = f r.
So, y, z ∈ Fix(g). Now let M be the collection of M ⊆ Fix(g) such that M is totally
≤-ordered with minM = y and maxM = z, and order M by inclusion. Then each
chain (Mα) in (M,⊆) has an upper bound, namely ∪αMα. Indeed, if a, b ∈ ∪αMα,
then there exists an α such that a, b ∈ Mα, and hence either a ≤ b or b ≤ a, as Mα is
totally ≤-ordered. Thus, by Zorn’s Lemma (M,⊆) has a maximal element, say M .

We claim that M is a connected subset of Ω. To show this we argue by contradiction.
So, suppose that there exist U,W ⊆ M non-empty and relatively open such that
U ∩ W = ∅ and M = U ∪ W . We may as well assume that y ∈ U . Note that
both U and W are totally ≤-ordered. Thus, {xw}, w ∈ (W,�), forms a net, where
w1 � w2 if w2 ≤ w1 and xw = w for all w ∈ W . Now for each ϕ ∈ SC we have that
{ϕ(xw)} is a decreasing net that is bounded below by ϕ(y), and hence it converges. As
SC spans V ∗, we conclude that {xw} converges to say w∗ ∈ [y, z]C . As C is closed, we
get that w∗ ≤ w for all w ∈ W .

Now let U0 = {u ∈ U : u ≤ w∗}. Then y ∈ U0 and U0 is totally ≤-ordered. Thus,
{xu}, u ∈ (U0,�) forms a net, where u1 � u2 if u1 ≤ u2 and xu = u for all u ∈ U0. As
before, {xu}, u ∈ U0, converges to say u∗ ∈ [y, z]C , and u ≤ u∗ for all u ∈ U0.

Note that as Fix(g) is closed, w∗ and u∗ are fixed points of g. To derive a con-
tradiction that proves the claim we distinguish two cases: u∗ 6= w∗ and u∗ = w∗. If
u∗ 6= w∗, then u∗ < w∗ and u∗ and w∗ are stable fixed points of g by Lemma 4.3(ii). It
now follows from [DH91, Proposition 1] that there exists η ∈ Fix(g) with u∗ < η < w∗.
Note that U ∪W = M implies that η 6∈M and M ∪ {η} ∈ M, as each w ∈ W satisfies
η < w∗ ≤ w, each u ∈ U0 satisfies u ≤ u∗ < η, and for each u ∈ U \ U0 there exists a
w ∈ W with η < w∗ ≤ w ≤ u. This, however, contradicts the maximality of M . On
the other hand, if u∗ = w∗, then writing ξ = u∗ = w∗ we see that ξ 6∈ M . Indeed, if
ξ ∈ M , then either ξ ∈ U or ξ ∈ W , which is impossible as ξ ∈ U ∩W , U and W are
relatively open, and U ∩W = ∅. As in the previous case, one can check that M ∪ {ξ}
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belongs to M, which again contradicts the maximality of M . This shows that M is
connected.

To complete the proof we consider the continuous function h : V → R given by

h(x) = inf
ϕ∈SC

ϕ(x) for x ∈ V.

Recall that 0 ≤ v � z and y � v. So, for each ϕ ∈ SC we have that 0 ≤ ϕ(v) < ϕ(z),
which implies that h(z) > 0, since SC is compact. Moreover, there exists ϕ∗ ∈ SC such
that ϕ∗(v) = 0, so that ϕ∗(y) < ϕ∗(v) = 0. This implies that h(y) < 0. Now, as h is
continuous and M is connected, h[M ] is a connected subset of R, and hence there exists
ζ ∈ M such that h(ζ) = 0. It follows that ϕ(ζ) ≥ 0 for all ϕ ∈ SC , and there exists
ϕ′ ∈ SC such that ϕ′(ζ) = 0, since SC is compact. Thus, ζ ∈ ∂C ∩ [y, z]C ⊆ ∂C ∩ S
and f r(ζ) = g(ζ) = ζ, which completes the proof.

The proof of the main result relies on a couple of geometric lemmas concerning
convexity of finite dimensional generating closed cones. For basic convexity notions we
follow the terminology of [Roc97]. Given x ∈ ∂C we write

ν(x) = {ϕ ∈ ∂SC : ϕ(x) = 0}.

Note that ν(x) = ν(λx) for all λ > 0, and ν(x) is non-empty for each x ∈ ∂C, as each
x ∈ ∂C has a supporting functional. We will consider ∂SC and ∂C as topological spaces
with the induced norm topology from V ∗ and V , respectively.

Lemma 4.5. If U ⊆ ∂SC is open, then {x ∈ ∂C : ν(x) ⊆ U} is open.

Proof. Suppose by way of contradiction that there exists z ∈ ∂C with ν(z) ⊆ U and
a sequence {zn} in ∂C converging to z with ν(zn) 6⊆ U for all n ≥ 1. Then for each
n ≥ 1 there exists a ϕn ∈ ν(zn) with ϕn 6∈ U . As ∂SC is compact, we may assume after
taking a subsequence that {ϕn} converges to ϕ ∈ ∂SC . Now note that

0 ≤ ϕ(z) ≤ |ϕ(z)− ϕ(zn)|+ |ϕ(zn)− ϕn(zn)| ≤ ‖ϕ‖‖z − zn‖+ ‖ϕ− ϕn‖‖zn‖

for all n ≥ 1. Since the right-hand side converges to 0 as n → ∞, we conclude that
ϕ(z) = 0, and hence ϕ ∈ ν(z) ⊆ U . This is impossible, since {ϕn} converges to ϕ ∈ U ,
ϕn 6∈ U for all n ≥ 1, and U is open.

Remark 4.6. Note that given U ⊆ ∂SC open, the set {x ∈ ∂C : ν(x) ⊆ U} may
be empty. If, however, ϕ ∈ ∂SC is an exposed point of SC , then by definition there
exists y ∈ ∂C such that ϕ(y) = 0 and ψ(y) > 0 for all ψ 6= ϕ in ∂SC . In that case
ν(λy) = {ϕ} for all λ > 0. Thus, for any neighbourhood U of an exposed point ϕ in
∂SC we know that {x ∈ ∂C : ν(x) ⊆ U}∩W is non-empty and open, for all non-empty
neighbourhoods W of 0 in V .
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By Straszewicz’s Theorem [Roc97, Theorem 18.6] the exposed points of SC are dense
in the extreme points of SC . As SC is the convex hull of its extreme points, SC is also
the convex hull of its exposed points. Let ψ1, . . . , ψd be linearly independent exposed
points of SC , where d = dimV ∗ = dimV , and let

K =

{
d∑
i=1

λiψi : λ1, . . . , λd ≥ 0

}
, (4.1)

which is a generating closed cone in V ∗. The dual cone of K is K∗ = {x ∈ V : ψi(x) ≥
0 for all i = 1, . . . , d}, which is also closed and generating. Furthermore let

ψ =
1

d

d∑
i=1

ψi. (4.2)

Then ψ is a strictly positive functional for K∗, that is to say, ψ(x) > 0 for all x ∈
K∗ \ {0}.
Lemma 4.7. For i = 1, . . . , d there exist neighbourhoods Ui of ψi in ∂SC such that if
ϕi ∈ Ui for i = 1, . . . d, then

(i) ϕ1, . . . , ϕd are linearly independent.

(ii) ψ is a strictly positive functional for the generating closed cone

K ′ = {x ∈ V : ϕi(x) ≥ 0 for all i = 1, . . . , d}.

Proof. The first assertion follows directly from the fact that the set of invertible linear
maps L : Rd → V ∗ is open by considering the invertible linear map A : x 7→

∑d
i=1 xiψi

for x ∈ Rd.
The second assertion follows from the fact that the map L 7→ L−1 is continuous

on the set of invertible linear maps from Rd onto V ∗. Indeed, consider A as above.
Now if ϕ1, . . . , ϕd are linearly independent, then the linear map B : x 7→

∑d
i=1 xiϕi is

invertible. Thus,

‖B−1ψ − (1/d, . . . , 1/d)‖ = ‖B−1ψ − A−1ψ‖ ≤ ‖B−1 − A−1‖‖ψ‖,

implies that (B−1ψ)i > 0 for all i = 1, . . . d, if B−1 is sufficiently close to A−1. As
ψ = B(B−1ψ) =

∑d
i=1(B

−1ψ)iϕi, we conclude that ψ(x) =
∑d

i=1(B
−1ψ)iϕi(x) > 0 for

all x ∈ K ′ \ {0}, since ϕj(x) > 0 for some j and (B−1ψ)i > 0 for all i.

Proof of periodicity: Hirsch’s conjecture

Theorem 4.8. If (f,Ω) is a monotone dynamical system, where f : Ω→ Ω is a home-
omorphism on an open connected subset Ω of a finite dimensional real vector space V
and Per(f) is dense in Ω, then f is periodic.
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Proof. By Montgomery’s Theorem 4.1 it suffices to show that each x ∈ Ω is periodic.
So let x ∈ Ω. By considering the dynamical system (g,Ω−x), where g(v) = f(v+x)−x
for v ∈ Ω− x, we may as well assume that x = 0. From Proposition 4.4 we know that
the periodic points of f are dense in ∂C ∩ Ω and −∂C ∩ Ω.

Now as above choose ψ1, . . . , ψd linearly independent exposed points of SC , and
let ψ = 1

d

∑d
i=1 ψi. By Lemma 4.7 there exist open neighbourhoods Ui of ψi in ∂SC

for i = 1, . . . , d such that if we take ϕi ∈ Ui for i = 1, . . . , d, then ϕ1, . . . , ϕd are
linearly independent, and ψ is a strictly positive functional for the generating closed
cone K ′ = {x ∈ V : ϕi(x) ≥ 0 for all i = 1, . . . , d}.

Lemma 4.5 implies that for each i we have that Wi = {x ∈ ∂C : ν(x) ⊆ Ui} is
open in ∂C. It follows that Wi ∩ Ω and −Wi ∩ Ω are non-empty and open in ∂C ∩ Ω
and −∂C ∩ Ω, respectively, as ψi is an exposed point of ∂SC , see Remark 4.6. As the
periodic points of f are dense in −∂C ∩ Ω, there exists a periodic point xi ∈ −Wi ∩ Ω
of f with period, say pi, for i = 1, . . . , d. Let ρi ∈ Ui be such that ρi ∈ ν(xi). So,
ρ1, . . . , ρd are linearly independent and ρi(xi) = 0 for i = 1, . . . , d.

Now consider the set S1 = {y ∈ Ω: xi ≤ y for all i = 1, . . . , d}. Then 0 ∈ S1 and
for each y ∈ S1 we have that ρi(y) ≥ ρi(xi) = 0 for all i = 1, . . . , d. So y belongs to the
generating closed cone K ′1 = {v ∈ V : ρi(v) ≥ 0 for all i = 1, . . . , d}. Moreover, ψ is a
strictly positive functional for K ′1.

Likewise, there exist periodic points z1, . . . , zd with zi ∈ Wi∩Ω for i = 1, . . . , d. Let
qi be the period of zi, and take σi ∈ ν(zi) ⊆ Ui for all i. Then σ1, . . . , σd are linearly
independent and σi(zi) = 0 for all i. Now consider S2 = {y ∈ Ω: y ≤ zi for all i =
1, . . . , d}. So, 0 ∈ S2 and for each y ∈ S2 we have that σi(y) ≤ σi(zi) = 0 for all i,
and hence y belongs to −K ′2, where K ′2 = {v ∈ V : σi(v) ≥ 0 for all i = 1, . . . , d} is a
generating closed cone. Again ψ is a strictly positive linear functional for K ′2.

Thus, S1 ∩ S2 ⊆ K ′1 ∩ (−K ′2) and 0 ∈ S1 ∩ S2. In fact, we have that S1 ∩ S2 = {0}.
Indeed, if y ∈ S1 ∩S2, then ψ(y) ≥ 0, as y ∈ K ′1. But also ψ(y) ≤ 0, as y ∈ −K ′2. Thus
ψ(y) = 0, which implies that y = 0, since ψ is a strictly positive linear functional for
K ′1.

To complete the proof, let r be the least common multiple of p1, . . . , pd, q1, . . . , qd,
and then f r(0) ∈ S1 ∩ S2, as f is monotone. Thus, f r(0) = 0 and we are done.
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Chapter 5

Order isomorphisms in JB-algebras

An important class of partially ordered vector spaces are the self-adjoint parts of C*-
algebras, or more generally, JB-algebras. The self-adjoint part of a C*-algebra equipped
with the Jordan product

x ◦ y := 1
2
(xy + yx)

tuns it into a JB-algebra. It is interesting that order isomorphisms in JB-algebras,
which a priori only preserve the partial order, often also preserve the underlying Jordan
algebraic structure of the space. It follows from a theorem of Kadison’s in [Kad52] that
a linear order isomorphism between C*-algebras mapping the unit to the unit is in fact
is a C*-isomorphism, or a Jordan isomorphism between the self-adjoint parts of the
C*-algebras. Molnár studied order isomorphisms on the cone of positive semi-definite
operators on a complex Hilbert space in [Mol01] and proved that they must be linear.
The linearity of the order isomorphism, in turn, then yields a Jordan homomorphism on
the self-adjoint operators. An interesting problem to solve is to classify the JB-algebras
for which all order isomorphism on the cones are automatically linear. The analogue
for JB-algebras of the theorem of Kadison’s proved by Isidro and Rodŕıgues-Palacios in
[IR-P95] would then also yield a Jordan isomorphism if the unit is mapped to the unit.

The theory developed in Chapter 3, concerning the linearity of order isomorphisms in
general partially ordered vector space, has an application in the setting of JB-algebras.
Results presented here are based on [vIR]. Before considering cones in JB-algebras, we
restrict our study to order isomorphisms between cones in JBW-algebras, the Jordan
analogue of a von Neumann algebra. In the cone of a JBW-algebra the extreme rays
correspond precisely with the rays through minimal projections, or atoms. A JBW-
algebra is considered atomic if every positive element dominates an atom. From the
spectral theorem [AS03, Theorem 2.20] for JBW-algebras it follows readily that the
any element in the cone of an atomic JBW-algebra is the supremum of positive linear
combinations of orthogonal atoms. Furthermore, in such an atomic JBW-algebra we
have a convenient algebraic description of engaged atoms; an atom is disengaged if and
only if the atom is central. In Proposition 5.9 we show that an atomic JBW-algebra
has an algebraic decomposition in a part containing the engaged atoms and a part
containing the disengaged atoms, and we proceed to show that an order isomorphism
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between cones in atomic JBW-algebras is always linear on the engaged part of the
algebra according to this decomposition in Theorem 5.10. The disengaged part of
an atomic JBW-algebra has a simple structure; it is an algebraic direct sum of one
dimensional factors. Combining these observation we describe all order isomorphisms
between cones of atomic JBW-algebras, in Theorem 5.12.

Proceeding with cones in general JB-algebras, an essential observation is that a
JB-algebra can be embedded into the atomic part of its bidual, and that this bidual is
a JBW-algebra. This embedding has convenient properties with respect to the order
structure; it is an order embedding and, due to a deep result [H-OS84, Theorem 4.4.10],
the whole atomic part of the bidual can be reached by subsequently adjoining the limits
of monotone increasing and decreasing nets of elements in the original JB-algebra in
finitely many steps. Due to these properties, if an order isomorphism between cones
of JB-algebras extends to a homeomorphism between the cone of the atomic parts of
the biduals with respect to a suitable topology, then this extension is necessarily an
order isomorphism. Existence of disengaged atoms in the bidual is related to the the
existence of norm closed ideals of codimension one in the JB-algebra. This leads to the
result, Theorem 5.19, that an order isomorphism between cones of JB-algebras, that
do not contain any ideals of codimension one, is linear if and only if it extends to a
homeomorphism between the atomic parts of the biduals. We conclude with an example
that illustrates the necessity of the absense of norm closed ideals of codimension one.

Overview of the theory on JB-algebras

As the theory on JB-algebras, developed by Alfsen and Schultz [AS01, AS03] and
Hanche-Olsen and Størmer [H-OS84], is rather extensive, we give an overview of the
results and terminology that will be used in the sequel for the sake of convenience.
Consequently, nothing presented in this section is new.

A Jordan algebra (A, ◦) is a commutative, not necessarily associative algebra such
that

x ◦ (y ◦ x2) = (x ◦ y) ◦ x2 for all x, y ∈ A.
A JB-algebra A is a real Jordan algebra with a norm ‖.‖ such that (A, ‖.‖) is complete
and,

‖x ◦ y‖ ≤ ‖x‖ ‖y‖ ,∥∥x2∥∥ = ‖x‖2 ,∥∥x2∥∥ ≤ ∥∥x2 + y2
∥∥

for all x, y ∈ A. As mentioned in the introduction, an important example of a JB-
algebra is the set of self-adjoint elements of a C∗-algebra, equipped with the Jordan
product x ◦ y := (xy + yx)/2.

The elements x, y ∈ A are said to operator commute if x ◦ (y ◦ z) = y ◦ (x ◦ z) for all
z ∈ A. An element x ∈ A is said to be central if it operator commutes with all elements
of A.
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For JB-algebras A with algebraic unit e, the spectrum of x ∈ A, σ(x), is defined to be
the set of λ ∈ R such that x−λe is not invertible in JB(x, e), the JB-algebra generated
by x and e in A, see [H-OS84, Section 3.2.3]. The algebra JB(x, e) is associative.
Furthermore, there is a continuous functional calculus: JB(x, e) ∼= C(σ(x)), see [AS03,
Corollary 1.19]. The cone of elements in A with non-negative spectrum is denoted by
A+, and equals the set of squares by the functional calculus, and its interior A◦+ consists
of all elements with strictly positive spectrum. This cone turns A into an order unit
space with order unit e, that is,

‖x‖ = inf{λ > 0 : −λe ≤ x ≤ λe}.

Assumption. Every JB-algebra under consideration is unital with unit e.

The Jordan triple product {·, ·, ·} is defined as

{x, y, z} := (x ◦ y) ◦ z + (z ◦ y) ◦ x− (x ◦ z) ◦ y,

for x, y, z ∈ A. The linear map Ux : A → A defined by Uxy := {x, y, x} will play an
important role and is called the quadratic representation of x. In case x is invertible,
it follows that Ux is an automorphism of the cone A+ and its inverse is Ux−1 by [AS03,
Lemma 1.23] and [AS03, Theorem 1.25]. A state ϕ of A is a positive linear functional
on A such that ϕ(e) = 1. The set of states on A is called the state space of A and is
w*-compact by the Banach-Alaoglu theorem and therefore must have sufficiently many
extreme points by the Krein-Milman theorem. These extreme points are referred to as
pure states on A (cf. [AS03, A 17]).

A JBW-algebra M is the Jordan analogue of a von Neumann algebra: it is a JB-
algebra with unit e which is monotone complete and has a separating set of normal
states, or equivalently, a JB-algebra that is a dual space. Here a partially ordered
vector space is monotone complete if any monotone increasing net that is bounded
from above has a supremum. A state ϕ of M is said to be normal if for any bounded
increasing net (xi)i∈I with supremum x we have ϕ(xi) → ϕ(x). The linear space of
normal states on M is called the normal state space of M . The topology on M defined
by the duality of M and the normal state space of M is called the σ-weak topology.
That is, we say a net (xi)i∈I converges σ-weakly to x if ϕ(xi) → ϕ(x) for all normal
states ϕ on M . The Jordan multiplication on a JBW-algebra is separately σ-weakly
continuous in each variable and jointly σ-weakly continuous on bounded sets by [AS03,
Proposition 2.4] and [AS03, Proposition 2.5]. Furthermore, for any x the corresponding
quadratic representation Ux is σ-weakly continuous by [AS03, Proposition 2.4]. If A
is a JB-algebra, then one can extend the product to its bidual A∗∗ turning A∗∗ into a
JBW-algebra, see [AS03, Corollary 2.50]. In JBW-algebras the spectral theorem [AS03,
Theorem 2.20] holds, which implies in particular that the linear span of projections is
norm dense, see [H-OS84, Proposition 4.2.3].

If p is a projection, then the orthogonal complement e−p will be denoted by p⊥ and
a projection q is orthogonal to p precisely when q ≤ p⊥, see [AS03, Proposition 2.18].
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The collection of projections forms a complete orthomodular lattice by [AS03, Propo-
sition 2.25], which means in particular that every set of projections has a supremum.
We remark that this supremum is the least upper bound in the lattice of projections,
and in general this is not a supremum in M .

Any central projection c decomposes the JBW-algebra M as a direct sum of JBW-
subalgebras M = UcM ⊕ Uc⊥M , see [AS03, Proposition 2.41]. A minimal non-zero
projection is called an atom and a JBW-algebra in which every non-zero projection
dominates an atom is called atomic. Furthermore, by [AS03, Lemma 5.58] we have
that the normal state space of an atomic JBW-algebra is the closed convex hull of the
set of pure states of M , where a normal state ϕ is considered pure whenever there exists
an atom p ∈M such that ϕ(p) = 1.

A standard application of Zorn’s lemma shows that in an atomic JBW-algebra M
every non-zero projection q dominates a maximal set of pairwise disjoint atoms P . If
we denote the finite subsets of such a maximal set by F , it follows that F is directed
by set inclusion and we obtain an increasing net (pF )F∈F where pF :=

∑
p∈F p for all

F ∈ F . This net has a least upper bound in M since the normal states determine the
order on M by [AS03, Corollary 2.17] and in fact

sup{pF : F ∈ F} = q.

By [AS03, Propositin 2.25] and [AS03, Proposition 2.5] this net converges σ-weakly to a
projection, say r. Suppose that there is an atom s ≤ q−r. Then s and r are orthogonal
and so s is orthogonal to all atoms p where {p} ∈ F , contradicting the maximality of
P . Hence r = q. This is a standard argument in the theory of JBW-algebras even
without the presence of atoms. Nevertheless, the following lemma is useful in our study
of atomic JBW-algebras, and is therefore recorded for future reference.

Lemma 5.1. Let M be an atomic JBW-algebra and let q ∈M be a non-zero projection.
Then there exists a maximal set P of pairwise disjoint atoms dominated by q, and the
increasing net (pF )F∈F indexed by the finite subsets F of P such that pF :=

∑
p∈F p for

all F ∈ F converges σ-weakly to its least upper bound q.

The linear isomorphisms between JB-algebras can be completely described. An
important result for describing the linear order isomorphisms we will use is [IR-P95,
Theorem 1.4], which we state here for the convenience of the reader. A symmetry is an
element s satisfying s2 = e. Note that s is a symmetry if and only if p := (s + e)/2 is
a projection, and s = p− p⊥.

Theorem 5.2 (Isidro, Rodŕıguez-Palacios). Let A and B be JB-algebras. The bijective
linear isometries from A onto B are the mappings of the form x 7→ sJx, where s is a
central symmetry in B and J : A→ B a Jordan isomorphism.

This theorem uses the fact that a bijective unital linear isometry between JB-
algebras is a Jordan isomorphism, see [MWY78, Theorem 4]. We cite Corollary 2.2
and Proposition 2.3 from [LRW], that use this property of linear isometries, to obtain
a description of the linear order isomorphisms between JB-algebras.
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Corollary 5.3. Let A and B be order unit spaces, and T : A → B be a unital linear
bijection. Then T is an isometry if and only if T is an order isomorphism. Moreover,
if A and B are JB-algebras, then these statements are equivalent to T being a Jordan
isomorphism.

Proof. Suppose T is an isometry, and let x ∈ A+, ‖x‖ ≤ 1. Then ‖e− x‖ ≤ 1, and
so ‖e− Tx‖ ≤ 1, showing that Tx is positive. So T is a positive map, and by the
same argument T−1 is a positive map. (This argument is taken from the first part of
[MWY78, Theorem 4].)

Conversely, if T is an order isomorphism, then −λe ≤ x ≤ λe if and only if −λe ≤
Tx ≤ λe, and so T is an isometry.

Now suppose that A and B are JB-algebras. If T is an isometry, then T is a Jordan
isomorphism by [MWY78, Theorem 4]. Conversely, if T is a Jordan isomorphism, then
T preserves the spectrum, and then also the norm since ‖x‖ = max |σ(x)|.

Proposition 5.4. Let A and B be JB-algebras. A map T : A → B is a linear order
isomorphism if and only if T is of the form T = UyJ , where y ∈ B◦+ and J : A→ B is
a Jordan isomorphism. Moreover, this decomposition is unique and y = (Te)1/2.

Proof. If T is of the above form, then T is an order isomorphism as a composition
of two order isomorphisms. Conversely, if T is an order isomorphism, then T =
U(Te)1/2U(Te)−1/2T , and by the above corollary U(Te)−1/2T is a Jordan isomorphism.

For the uniqueness, if T = UyJ , then Te = UyJe = Uye = y2 which forces y =
(Te)1/2. This implies that J = U(Te)−1/2T , so J is also unique.

Atomic JBW-algebras

In this section we give a complete description of order isomorphisms between cones
in atomic JBW-algebras. Furthermore, we characterise under which conditions on the
atomic JBW-algebra all order isomorphisms are linear.

The class of atomic JBW-algebras provides a natural setting for Theorem 3.15.
Indeed, we proceed by describing the relation between the order theoretical notions
stated in Theorem 3.15 with the atomic structure of the JBW-algebra. More precisely,
in an atomic JBW-algebra the extreme vectors of the cone correspond to multiples
of atoms, the disengaged atoms are precisely the central atoms, and the cone is the
sup-hull of the positive linear span of the atoms.

Lemma 5.5. The atoms of a JBW-algebra M correspond precisely to the normalised
extreme vectors of the cone M+.

Proof. Let M be a JBW-algebra. If x ∈ M+ is a normalized extremal vector, then x
lies in the boundary of M+, so 0 ∈ σ(x). Suppose that there are two distinct non-
zero s, t ∈ σ(x). Then an application of Urysohn’s lemma yields a non-zero positive
function f ∈ C(σ(x)) such that x ± f ∈ M+ by the continuous functional calculus.
This contradicts the extremality of x ∈ M+, so σ(x) = {0, 1} since ‖x‖ = 1. Hence



82 ORDER ISOMORPHISMS IN JB-ALGEBRAS

x is a projection. Again, by the extremality of x, this projection must be minimal, or
equivalently, it is an atom.

Conversely, if M is a JBW-algebra and p ∈ M is an atom. Then by [AS01,
Lemma 3.29] we have Rp = UpM and [AS01, Proposition 2.32] in turn implies face(p) =
R+p from which we conclude that p is an extremal vector.

Note that the first part of the proof of Lemma 5.5 is also valid in general JB-
algebras, and hence any normalized extreme vector in the cone of a JB-algebra is a
minimal projection. It follows from Corollary 3.2 that an order isomorphism between
cones in JBW-algebras must map the rays corresponding to atoms bijectively onto each
other.

Engaged and disengaged part

An atomic JBW-algebra M can be decomposed as a direct sum M = MD⊕ME, where
MD and ME are atomic JBW-algebras that contain all disengaged and engaged atoms of
M , respectively. In this case, the cone M+ is the direct product M+ = (ME)+×(MD)+,
and (ME)+ equals the sup hull of the positive linear span of the engaged atoms of M ,
which is of interest to us in light of Theorem 3.15. To carry out the construction of this
decomposition we characterise the disengaged atoms in an atomic JBW-algebra.

Lemma 5.6. Let M be an atomic JBW-algebra and p ∈M be an atom. The following
are equivalent:

(i) p is disengaged;

(ii) p is orthogonal to all other atoms;

(iii) p is central.

Proof. Let p be a disengaged atom and let q be an atom distinct from p. By [AS03,
Lemma 3.53] the sum p + q can be written as an orthogonal sum of atoms p + q =∑n

i=1 λiqi. Suppose p = qj for some j ∈ {1, . . . , n}. If λj = 1 holds, then q =
∑

i 6=j λiqi.
Since p equals qj, it is orthogonal to all other qi Hence p ◦ q = 0 and thus p and q
are orthogonal. If instead λj 6= 1 holds, then p can be written as the non-trivial linear
combination

p =
1

1− λj

(
−q +

∑
i 6=j

λiqi

)
of atoms different from p which contradicts the assumption that p is disengaged. The
last case to consider is that p does not equal any qi, in which case p = −q +

∑
i λiqi

is a non-trivial linear combination contradicting that p is disengaged yet again. We
conclude that (i) implies (ii).

Suppose p is orthogonal to all other atoms. In particular, p operator commutes with
all other atoms. Let q ∈M be a projection. Let (qF )F∈F be a net directed by the finite
subsets of a maximal set of pairwise orthogonal atoms dominated by q as in Lemma 5.1.
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As multiplication is separately σ-weakly continuous and p operator commutes with the
finite sums qF , the relation p ◦ (q ◦ x) = q ◦ (p ◦ x) holds for all x ∈ M . Hence, p is a
central projection by [H-OS84, Lemma 4.2.5] showing that (ii) implies (iii).

Lastly, suppose that p is central. Then UpM = Rp by [AS03, Lemma 3.29] and we
get M = Rp⊕Up⊥M . It follows that p is disengaged, showing that (iii) implies (i).

Lemma 5.7. The cone M+ of an atomic JBW-algebra M is the sup-hull of the positive
linear span of its atoms.

Proof. Let x ∈ M+. By the spectral theorem [AS01, Theorem 2.20] there exists an
increasing net (xi)i∈I in M+ consisting of positive linear combinations of orthogonal
projections

xi :=

ni∑
k=1

λi,kpi,k

for all i ∈ I that converges in norm to its supremum x. For each i ∈ I and 1 ≤ k ≤ ni
there also exist increasing nets (pFi,k)Fi,k∈Fi,k of finite sums of orthogonal atoms that
converges σ-weakly to its supremum pi,k as in Lemma 5.1. But now the set{

ni∑
k=1

λi,kpFi,k : i ∈ I, Fi,k ∈ Fi,k

}

is in the positive linear span of the atoms in M and has supremum x. Indeed, this set
has upper bound x and if y ∈ M+ is an upper bound for each of these positive linear
combinations of atoms, then xi ≤ y for all i ∈ I, as M+ is σ-weakly closed. Hence x ≤ y
and x is therefore in the sup hull of the positive linear span of the atoms in M .

Our next goal is to construct a central projection that dominates all disengaged
atoms and its orthogonal complement dominates all engaged atoms. To that end, we
define

DM := {p ∈M : p is a disengaged atom}

and let pD be the supremum of DM in the lattice of projections of M . The projection
pD has the desired properties as shown in the following proposition.

Proposition 5.8. Let M be an atomic JBW-algebra. Then pD is a central projection
and any atom of M is either dominated by pD or is orthogonal to pD.

Proof. Let p be an engaged atom. Then p is orthogonal to all disengaged atoms by
Lemma 5.6 and therefore q ≤ p⊥ for all q ∈ DM . Thus pD ≤ p⊥, or equivalently p
is orthogonal to pD. On the other hand, if p is an atom orthogonal to pD, then it
cannot be disengaged. It follows that every atom of M is either dominated by pD or is
orthogonal to pD.

Let p ∈M be a projection and (pF )F∈F be an increasing net that converges σ-weakly
to p consisting of finite sums induced by a maximal set of pairwise orthogonal atoms
dominated by p as in Lemma 5.1. Since any atom in M is either dominated by pD or
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orthogonal to pD, it follows from [AS03, Proposition 2.18, Proposition 2.26] that pD
operator commutes with all atoms in M . Hence pD operator commutes with pF for all
F ∈ F and as multiplication is separately σ-weakly continuous, pD operator commutes
with p. We conclude that pD operator commutes with all elements in M by [H-OS84,
Lemma 4.2.5], hence pD is a central projection.

The central projection pD and its orthogonal complement pE := p⊥D now decomposes
the atomic JBW-algebra M as a direct sum of JBW-algebras M = UpDM ⊕UpEM . We
refer to MD := UpDM as the disengaged part of M and ME := UpEM as the engaged
part of M . We proceed to show that the disengaged part of M is a sum of copies of R,
and the cone in the engaged part of this decomposition is the sup hull of the positive
span of the engaged atoms.

Proposition 5.9. Let M be an atomic JBW-algebra. Then there exist JBW-algebras
MD and ME such that M = MD ⊕ME which satisfy the following properties:

(i) MD =
⊕

p∈DM Rp;

(ii) (ME)+ equals the sup-hull of the positive linear span of the engaged atoms.

Proof. Decompose M into its disengaged and engaged part M = MD ⊕ ME. By
Lemma 5.6 all disengaged atoms are central projections in MD, so we can write

MD =
⊕
p∈DM

UpM =
⊕
p∈DM

Rp,

as UpM is one-dimensional by [AS03, Lemma 3.29]. Since ME is an atomic JBW-algebra
with unit pE by [AS03, Proposition 2.9], the second statement follows from Lemma 5.7
as the atoms in ME are precisely the engaged atoms of M by Proposition 5.8.

Describing the order isomorphisms

Using Proposition 5.9 we can now characterize the atomic JBW-algebras M and N for
which every order isomorphism f : M+ → N+ is linear.

Theorem 5.10. Let M and N be atomic JBW-algebras with order isomorphic cones.
Then any order isomorphism f : M+ → N+ is linear on (ME)+, and f [(ME)+] = (NE)+,
where ME and NE are the engaged parts of M and N , respecitvely. In particular, any
order isomorphism f : M+ → N+ is linear if and only if M does not contain any central
atoms.

Proof. Proposition 5.9(ii) in conjunction with Theorem 3.15 yields that f is linear on
(ME)+. Consequently, the rays corresponding to the engaged atoms of M must be
mapped bijectively to the rays corresponding to the engaged atoms of N . In particular,
the order isomorphism f maps (ME)+ into (NE)+ since these cones are the sup hull of
the positive linear span of the engaged atoms by Proposition 5.9. Applying a similar
argument to f−1 yields f [(ME)+] = (NE)+.
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For the second part of the statement, suppose that M does not contain any central
atoms. Then M = ME by Proposition 5.9 and so M+ = (ME)+. In particular, all order
isomorphisms f : M+ → N+ must be linear. Conversely, suppose that M does contain
central atoms and that all order isomorphisms f : M+ → N+ are linear. Let f : M+ →
N+ be such a linear order isomorphism. Using the notation of Proposition 5.9(i), define
the map g : (MD)+ → (MD)+ by

g((xpp)p∈DM ) := (x2pp)p∈DM .

Note that g is a non-linear order isomorphism and, therefore, by Proposition 5.9 the map
g ⊕ Id defined on (MD)+ × (ME)+ = M+ is a non-linear order isomorphism. It follows
that f ◦ (g⊕ Id) : M+ → N+ is not linear either, which contradicts the assumption.

A statement similar to Theorem 5.10 is also valid when order isomorphisms between
upper sets are considered instead of cones, where the conclusion is that the order
isomorphism is affine instead of linear as f(0) = 0 is no longer automatic.

Theorem 5.11. Let M and N be atomic JBW-algebras such that M+ = (ME)+, then
every order isomorphism f : Ω→ Θ between upper sets Ω ⊆M and Θ ⊆ N is affine.

Proof. Suppose that M+ = (ME)+ and let f : Ω→ Θ be an order isomorphism. For any
x ∈ Ω we have that f restricts to an order isomorphism from x+M+ onto f(x) +N+.
Define the map f̂ : M+ → N+ by

f̂(y) := f(x+ y)− f(x).

It follows that f̂ is an order isomorphism as it is the composition of two translations and
the restriction of f . By Theorem 5.10, f̂ must be linear and therefore the restriction of
f to x+M+ must be affine. Hence there exists an affine map g : M → N that coincides
with f on x + M+. We proceed to show that f coincides with g on all of Ω. To that
end, let y ∈ Ω. Analogously, there is an affine map h : M → N that coincides with f
on y + M+. Since M is an order unit space, there exists a z ∈ M such that x, y ≤ z
and we have z ∈ Ω as Ω is an upper set. It follows that z+M+ ⊆ (x+M+)∩ (y+M+),
so g and h coincide on z +M+. Note that we can write y as the affine combination

y = z − (z − y) = −(z + (z − y)) + 2z

of the elements z + (z − y), z ∈ z +M+. We find that

f(y) = h(y) = h(−(z + (z − y)) + 2z) = −h(z + (z − y)) + 2h(z) = −g(z + (z − y)) + 2g(z)

= g(−(z + (z − y)) + 2z) = g(y),

and we conclude that f coincides with g on Ω.

We can now completely describe the order isomorphisms between cones of atomic
JBW-algebras.
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Theorem 5.12. Let M and N be atomic JBW-algebras and let f : M+ → N+ be an
order isomorphism. We denote DM and DN for the collections of disengaged atoms
and ME and NE for the engaged parts of M and N , respectively. Then there exist
y ∈ N◦+, order isomorphisms fp : R+ → R+ for all p ∈ DM , a bijection σ : DM → DN ,
and a Jordan isomorphism J : ME → NE, such that for all x = xD + xE ∈ M+ with
xD = (xpp)p∈DM we have

f(x) = (fp(xp)σ(p))p∈DM + UyJxE.

Proof. Let f : M+ → N+ be an order isomorphism. By Proposition 5.9 we can decom-
pose M+ and N+ as M+ = (MD)+×(ME)+ and N+ = (ND)+×(NE)+. By Theorem 5.10
we have f [(ME)+] = (NE)+, and therefore also f [(MD)+] = (ND)+. Furthermore, the
rays corresponding to the disengaged atoms of M are mapped bijectively to the rays
corresponding to the disengaged atoms of N . In particular, there exists a bijection
σ : DM → DN and for each p ∈ DM there is an order isomorphism fp : R+ → R+ such
that f(λp) = fp(λ)σ(p).

For x ∈M+ we have x = xD + xE = sup{xD, xE} and we find that

f(xD + xE) = f(sup{xD, xE}) = sup{f(xD), f(xE)} = f(xD) + f(xE),

where the last equality is due to f(xD) ∈ (ND)+ and f(xE) ∈ (NE)+. This shows that f
decomposes as the sum of order isomorphisms fD : (MD)+ → (ND)+ and fE : (ME)+ →
(NE)+, by defining fD(xD) = f((xD, 0)) and fE(xE) = f((0, xE)). Every xD ∈ (MD)+
is of the form xD = (xpp)p∈DM and satisfies xD = sup{xpp : p ∈ DM}, hence

fD(xD) = f((xpp)p∈DM ) = f(sup{xpp : p ∈ DM}) = sup{f(xpp) : p ∈ DM}
= sup{fp(xp)σ(p) : p ∈ DM}
= (fp(xp)σ(p))p∈DM .

Moreover, since fE is a linear order isomorphism, it follows that f(xE) = UyJxE for an
element y ∈ N◦+ and a Jordan isomorphism J : ME → NE by Proposition 5.4.

An interesting and immediate consequence of Theorem 5.12 is the following corollary.

Corollary 5.13. Let M and N be atomic JBW-algebras. Then the cones M+ and N+

are order isomorphic if and only if M and N are Jordan isomorphic.

Proof. Suppose that M+ and N+ are order isomorphic, and let f : M+ → N+ be an
order isomorphism. By Theorem 5.12 there is a bijection σ : DM → DN and a Jordan
isomorphism J : ME → NE. Then G : M → N defined for x = (xD, xE) ∈ M with
xD = (xpp)p∈DM by

G((xD, xE)) := ((xpσ(p))p∈DM , JxE),

is a Jordan isomorphism. The converse implication is immediate.
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JB-algebras

The results in the previous section completely describe the order isomorphisms between
cones of atomic JBW-algebras, and our goal is to investigate how these results can be
used to study order isomorphisms between cones in general JB-algebras. A key obser-
vation is that any JB-algebra can be embedded isometrically, as a JB-subalgebra, into
an atomic JBW-algebra, namely the atomic part of the bidual. We start by determin-
ing under which conditions an order isomorphism between cones of JB-algebras can
be extended to an order isomorphism between the cones of the corresponding atomic
JBW-algebras obtained via this embedding. It turns out that it is sufficient to extend to
a σ-weak homeomorphism for the preduals of the atomic JBW-algebras, guaranteeing
that the extension is an order isomorphism. Furthermore, by relating the ideal structure
of a JB-algebra to central atoms of its bidual, we obtain an analogue of Theorem 5.10
for cones of JB-algebras.

The atomic representation of a JB-algebra

The canonical embedding of a JB-algebra A into its bidual ˆ : A ↪→ A∗∗ is not only
an isometry, but also extends the product of A to A∗∗ by [AS03, Corollary 2.50].
Furthermore, let z be the central projection in A∗∗ as in [AS03, Lemma 3.42] such that

A∗∗ = UzA
∗∗ ⊕ Uz⊥A∗∗

where UzA
∗∗ is atomic and Uz⊥A

∗∗ is purely non-atomic. In the sequel we will denote
the atomic part UzA

∗∗ of A∗∗ by A∗∗a . The quadratic representation Uz : A∗∗ → A∗∗a
corresponding to the central projection z defines a surjective Jordan homomorphism
by [AS03, Proposition 2.41]. Hence we obtain a Jordan homomorphism Uz ◦ ˆ: A →
A∗∗a . It is a standard result for C*-algebras that the composition of the canonical
embedding ˆ and the multiplication by z is an isometric algebra embedding, see for
example the preliminaries in [Ake71], and the proof for JB-algebras is the same; see
[FR86, Proposition 1] for a proof for JB*-triples, which are a generalization of JB-
algebras. Hence we can view A as a JB-subalgebra of A∗∗a , and we shall do so freely
throughout.

As A∗∗a is a JBW-algebra, it is a dual space, and it follows from [RW, Corollary 2.11]
that it is the dual of

A′ := Span{ϕ : ϕ is a pure state on A} (norm closure in A∗).

In particular, this yields A′ = U∗zA
∗. Indeed, if ϕ is a pure state on A, then it is a

normal pure state on A∗∗, so there is an atom p ∈ A∗∗ such that ϕ(p) = 1. It follows
that 0 ≤ ϕ(z⊥) ≤ ϕ(p⊥) = 0, so ϕ(z⊥) = 0. Thus for any x ∈ A∗∗ = UzA

∗∗ ⊕ Uz⊥A∗∗
we have −‖x‖z⊥ ≤ Uz⊥x ≤ ‖x‖z⊥ since z⊥ is an order unit in Uz⊥A

∗∗, and so

ϕ(x) = ϕ(Uzx) + ϕ(Uz⊥x) = U∗zϕ(x).
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Hence A′ ⊆ U∗zA
∗ as U∗zA

∗ is norm closed. Conversely, if ϕ is a state on A, then U∗zϕ is
σ-weakly continuous on A∗∗. Suppose that U∗zϕ 6= 0, then ϕ(z)−1U∗zϕ is a normal state
on A∗∗. Since this state annihilates Uz⊥A

∗∗, it defines a normal state on the atomic
part of A∗∗ and by [AS03, Lemma 5.61] it follows that U∗zϕ ∈ A′. As the state space of
A generates A∗, this proves the inclusion U∗zA

∗ ⊆ A′.
Since the cone in A∗∗a is monotone complete, our next objective is to study how

the cone of A lies inside the cone of A∗∗a with respect to bounded monotone increasing
and decreasing nets, respectively. To this end, we introduce the following notation.
For a subset B ⊆ (A∗∗a )+ we denote by Bm the set where the suprema of all bounded
monotone increasing nets in B are adjoined. Similarly, we denote by Bm the subset of
(A∗∗a )+ where all the infima of bounded monotone decreasing nets in B are adjoined.
If we obtain (A∗∗a )+ from B by adjoining suprema and infima inductively in any order,
but in finitely many steps, we say that B is finitely monotone dense in (A∗∗a )+. A
consequence of a result by Pedersen [Ped72, Theorem 2] is that the cone of the self
adjoint part Asa of a C*-algebra is finitely monotone dense in (A∗∗sa)+. In [H-OS84,
Theorem 4.4.10] the analogue of Pedersen’s theorem is given for JB-algebras, where it
is shown that the cone of a JB-algebra A is finitely monotone dense in the cone of its
bidual. The next proposition verifies that the cone of a JB-algebra is finitely monotone
dense in the cone of the atomic part of its bidual.

Proposition 5.14. Let A be a JB-algebra. Then A+ is finitely monotone dense in
(A∗∗a )+.

Proof. Let A be a JB-algebra, canonically embedded into its bidual, and let A+ ⊆
Ω ⊆ A∗∗+ . Furthermore, let Uz be the Jordan homomorphism mapping A into A∗∗a . If
(xi)i∈I ⊆ Ω is a bounded monotone increasing net with supremum x in A∗∗+ , then the
net (Uzxi)i∈I is a bounded increasing net in (A∗∗a )+ with supremum y in (A∗∗a )+, as A∗∗a
is a JBW-algebra and Uz is order preserving. Since Uz is the projection onto A∗∗a , it
follows that Uzy = y. For any normal state ϕ on A∗∗ we have

ϕ(y − Uzx) = ϕ(y − Uzxi) + ϕ(Uzxi − Uzx) = ϕ(Uzy − U2
z xi) + ϕ(Uzxi − Uzx)

= U∗zϕ(y − Uzxi) + U∗zϕ(xi − x)→ 0

since Uzxi → y for σ(A∗∗a , A
′), xi → x for σ(A∗∗, A∗) and U∗zϕ ∈ A′. Hence y = Uzx as

the normal states separate the points of A∗∗. We have shown that

UzA+ ⊆ Uz(Ω
m) ⊆ (UzΩ)m ⊆ (A∗∗a )+

and the fact that the analogous inclusions hold for Ωm follows verbatim. Therefore, we
conclude that the assertion holds as A+ is finitely monotone dense in A∗∗+ by [H-OS84,
Theorem 4.4.10].

The Kaplansky density theorem for JB-algebras [AS03, Proposition 2.69] in conjunc-
tion with [AS03, Proposition 2.68] states that the unit ball of a JB-algebra A, which
is canonically embedded into its bidual, is σ-weakly dense in the unit ball of A∗∗. The
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unit ball of A corresponds to the order interval [−e, e] as it is an order unit space, so by
applying the affine map x 7→ 1

2
(x+ e), we find that consequently the unit interval [0, e]

of A is σ-weakly dense in the unit interval [0, e] of A∗∗. The analogue for the atomic
representation also holds.

Lemma 5.15. The unit interval [0, e] of a JB-algebra A is σ(A∗∗a , A
′)-dense in the unit

interval [0, e] of A∗∗a .

Proof. Let x be in the unit interval of A∗∗a . Then x lies in the unit interval of A∗∗ and
Uzx = x. By the Kaplansky density theorem for JB-algebras [AS03, Proposition 2.69]
in conjunction with [AS03, Proposition 2.68] there is a net (xi)i∈I in the unit interval of
A that converges σ-weakly to x. But then the net (Uzxi)i∈I lies in the unit interval of A
and converges σ-weakly, and therefore also for the σ(A∗∗a , A

′)-topology, to Uzx = x.

Extending the order isomorphism

Consider again the situation where A and B are JB-algebras and f : A+ → B+ is an
order isomorphism. Our aim now is to extend f to an order isomorphism from (A∗∗a )+
onto (B∗∗a )+. Since A+ and B+ are finitely monotone dense in (A∗∗a )+ and (B∗∗a )+,
respectively, by Proposition 5.14, it turns out that it is sufficient to extend f to a
homeomorphism with respect to the σ(A∗∗a , A

′)-topology and the σ(B∗∗a , B
′)-topology.

Proposition 5.16. Let A and B be JB-algebras and suppose f : A+ → B+ is an order
isomorphism that extends to a homeomorphism f̂ : (A∗∗a )+ → (B∗∗a )+ with respect to
the σ(A∗∗a , A

′)-topology and the σ(B∗∗a , B
′)-topology. Then the extension f̂ is an order

isomorphism.

Proof. Let f : A+ → B+ be an order isomorphism and let f̂ : (A∗∗a )+ → (B∗∗a )+ be a
homeomorphism with respect to the σ(A∗∗a , A

′)-topology and the σ(B∗∗a , B
′)-topology

that extends f . Suppose that A+ ⊆ Ω ⊆ (A∗∗a )+ and B+ ⊆ Θ ⊆ (B∗∗a )+ are subsets for
which f̂ restricts to an order isomorphism from Ω onto Θ. We argue that f̂ also restricts
to an order isomorphism from Ωm onto Θm, and from Ωm onto Θm. The assertion then
follows as A+ and B+ are finitely monotone dense in (A∗∗a )+ and (B∗∗a )+ respectively,
by Proposition 5.14.

We derive some useful properties of f̂ . For all x ∈ Ωm we have

f̂(x) = sup
{
f̂(y) : y ∈ Ω, y ≤ x

}
. (5.1)

To see this, let x ∈ Ωm. We first argue that f̂(x) is an upper bound of f̂(y) for all y ∈ Ω
with y ≤ x. To that end, suppose y ∈ Ω with y ≤ x. Remark that x − y ∈ (A∗∗a )+.
After rescaling we can apply Lemma 5.15 to obtain a net (yi)i∈I in A+ that converges
to x − y. By the continuity of f̂ , it follows that f̂(yi + y) converges to f̂(x). By our
assumption that f̂ is order preserving on Ω we have f̂(y) ≤ f̂(yi + y) for all i ∈ I and
therefore f̂(y) ≤ f̂(x) follows as (B∗∗a )+ is closed. Suppose now that z ∈ (B∗∗a )+ is such
that f̂(y) ≤ z for all y ∈ Ω with y ≤ x. As x ∈ Ωm, there is a monotone increasing net
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(xi)i∈I in Ω with supremum x. Then (xi)i∈I converges to x by monotone completeness
and so f̂(xi) converges to f̂(x). Hence f̂(x) ≤ z, again as (B∗∗a )+ is closed, showing
(5.1) holds.

Secondly, for all x ∈ Ωm we have

y ∈ Ω and f̂(y) ≤ f̂(x) imply y ≤ x. (5.2)

Indeed, let y ∈ Ω with f̂(y) ≤ f̂(x) and (zi)i∈I a net in B+ that converges to f̂(x)−f̂(y).
As f̂−1 is continuous we infer f̂−1(zi + f̂(y)) converges to x. For all i ∈ I we have
y = f̂−1(f̂(y)) ≤ f̂−1(zi + f̂(y)) since f̂−1 is order preserving on Θ. Then y ≤ x follows
from the fact that (A∗∗a )+ is closed. This shows (5.2). Now for all x, y ∈ Ωm we have

x ≤ y ⇐⇒ {z ∈ Ω: z ≤ x} ⊆ {z ∈ Ω: z ≤ y}

⇐⇒
{
f̂(z) : z ∈ Ω, z ≤ x

}
⊆
{
f̂(z) : z ∈ Ω, z ≤ y

}
=⇒ sup

{
f̂(z) : z ∈ Ω, z ≤ x

}
≤ sup

{
f̂(z) : z ∈ Ω, z ≤ y

}
=⇒ f̂(x) ≤ f̂(y),

where the last implication is due to (5.1). Conversely, by (5.2) we have for all x, y ∈ Ωm

that

f̂(x) ≤ f̂(y) =⇒ {z ∈ Ω: z ≤ x} ⊆ {z ∈ Ω: z ≤ y}
=⇒ x ≤ y.

This shows that f̂ is an order embedding of Ωm into (B∗∗a )+, and it remains to be
shown that f̂ maps Ωm onto Θm. For x ∈ Ωm and a monotone increasing net (xi)i∈I in
Ω with supremum x we have that f̂(x) is the supremum of the monotone increasing net
(f̂(xi))i∈I which is contained in Θ, showing that f̂ maps Ωm into Θm. Similarly, f̂−1

maps Θm into Ωm and we conclude that f̂ restricts to an order isomorphism from Ωm

to Θm. Analogously, f̂ restricts to an order isomorphism from Ωm to Θm by reversing
all inequalities and replacing the suprema by infima.

To the best of our knowledge it is presently unknown whether every order isomor-
phism between cones of JB-algebras always extends to a homeomorphism between the
cones of the atomic part of their bidual. If this open question is answered in the posi-
tive, then the results in the next section characterise the JB-algebras for which all order
isomorphisms between their cones are linear.

Automatic linearity of order isomorphisms

Provided that an order isomorphism between cones of JB-algebras extends to an order
isomorphism between the cones of the corresponding atomic parts of their biduals, its
linearity depends on the absence of central atoms in these biduals by Theorem 5.10.
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Therefore, it is crucial to understand for which JB-algebras this absence is guaranteed.
Since the disengaged part of an atomic JBW-algebra is an associative direct summand
by Proposition 5.9, one leads to believe that the existence of central atoms in the
bidual corresponds to having a non-zero associative direct summands in the original
JB-algebra. This, however, is not the case, as is illustrated by the following example.
The idea of this example is partly due to M. Wortel.

Example 5.17. Consider the JB-algebra C ([0, 1]; Sym2(R)) consisting of symmetric
2× 2 matrices with continuous functions on [0, 1] as entries. Note that the dual of this
JB-algebra is M([0, 1]; Sym2(R)) consisting of symmetric 2 × 2 matrices with regular
Borel measures on [0, 1] as entries with the dual pairing〈[

x1 x3
x3 x2

]
,

[
µ1 µ3

µ3 µ2

]〉
=

∫ 1

0

x1(t) dµ1(t) +

∫ 1

0

x2(t) dµ2(t) + 2

∫ 1

0

x3(t) dµ3(t)

Define the JB-subalgebra A by

A :=

{[
x1 x3
x3 x2

]
∈ C ([0, 1]; Sym2(R)) : x3(t) = 0 for all 0 ≤ t ≤ 1

2

}
. (5.3)

Note that A does not have any non-trivial direct summands as [0, 1] is connected and
Sym2(R) is a factor. In particular, A does not contain an associative direct summand.
However, the atomic part of the bidual equals

A∗∗a =

{[
x1 x3
x3 x2

]
∈ `∞ ([0, 1]; Sym2(R)) : x3(t) = 0 for all 0 ≤ t ≤ 1

2

}
and the elements of the form [

δt 0
0 0

]
or

[
0 0
0 δt

]
where δt denotes the point mass function at t for 0 ≤ t ≤ 1

2
are central atoms in A∗∗a .

This example shows that an alternative condition on the JB-algebra is needed.

Lemma 5.18. Let A be a JB-algebra. Then A∗∗ contains a central atom if and only if
A contains a norm closed ideal of codimension one.

Proof. Suppose p ∈ A∗∗ is a central atom. Then Up : A∗∗ → Rp is a σ-weakly continuous
Jordan homomorphism by [AS03, Proposition 2.4] and [AS03, Proposition 2.41]. Hence
the corresponding multiplicative functional ϕp defined by Upx = ϕp(x)p for all x ∈ A∗∗
is an element of A∗. We conclude that kerϕ is a norm closed ideal in A of codimension
one.

Conversely, if I is a norm closed ideal in A of codimension one, then A/I ∼= R and the
corresponding quotient map π : A → R extends uniquely to a normal homomorphism
π̃ : A∗∗ → R by [AS03, Theorem 2.65]. Since ker π̃ is a σ-weakly closed ideal of A∗∗, it
follows from [AS03, Proposition 2.39] that there is a central projection p ∈ A∗∗ such
that ker π̃ = UpA

∗∗. But as this implies Up⊥A
∗∗ ∼= R, the central projection p⊥ must be

an atom by [AS03, Lemma 3.29].
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Theorem 5.19. Let A and B be JB-algebras such that A does not contain any norm
closed ideals of codimension one. Let f : A+ → B+ be an order isomorphism. Then f
is linear if and only if it extends to a homeomorphism f̂ : (A∗∗a )+ → (B∗∗a )+ with respect
to the σ(A∗∗a , A

′)-topology and the σ(B∗∗a , B
′)-topology.

Proof. If f is linear then there is an element y ∈ B◦+ and a Jordan isomorphism
J : A → B such that f = UyJ by Proposition 5.4. Since the adjoint of UyJ is an
order isomorphism between the duals of B and A, it must map B′ bijectively onto A′.
If we denote this restriction by (UyJ)′, then its adjoint (UyJ)′∗ in turn, is a bounded
linear bijection from A∗∗a onto B∗∗a , which must be a homeomorphism with respect to
the σ(A∗∗a , A

′)-topology and the σ(B∗∗a , B
′)-topology. As the points of a JB-algebra are

separated by the pure states, we conclude that (UyJ)′∗ is an extension of f .

Conversely, suppose that f extends to a homeomrphism f̂ : (A∗∗a )+ → (B∗∗a )+ with
respect to the σ(A∗∗a , A

′)-topology and the σ(B∗∗a , B
′)-topology. Then f̂ is an order

isomorphism by Proposition 5.4 and as A∗∗a does not contain any central atoms by
Lemma 5.18, it must be linear by Theorem 5.10.

The condition in Theorem 5.19 of the JB-algebra not having any norm closed ideals
of codimension one is necessary. Indeed, if we consider the JB-algebra A defined in
(5.3), then we can define a non-linear order isomorphism on A+ that does extend to a
σ(A∗∗a , A

′)-homeomorphism on the atomic part of its bidual. Indeed, let λ : [0, 1]→ R+

be a non-constant strictly positive continuous map such that λ(t) = 1 on (1
2
, 1]. Define

the map f : A+ → A+ by f(x)(t) := x(t)λ(t). Since taking a coordinate-wise strictly
positive power is an order isomorphism on R2

+, the map f defines an order isomorphism.
However, f is not homogeneous and therefore not linear, and f extends to a σ(A∗∗a , A

′)-
homeomorphism f̂ : (A∗∗a )+ → (A∗∗a )+ by the same formula that defines f .
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Chapter 6

Order theoretic characterisation of spin
factors

The famous Koecher-Vinberg theorem ([Koe57] and [Vin60]) characterises the Eu-
clidean Jordan algebras among the finite dimensional order unit spaces as the ones that
have a symmetric cone. As JB-algebras are merely Banach spaces instead of Hilbert
spaces, no such characterisation exists in infinite dimensions. It is, however, interest-
ing to ask if one could characterise the JB-algebras among the complete order unit
spaces in order theoretic terms. One such characterization was obtained by Kai [Kai08]
who characterized the symmetric cones among the homogeneous cones. More recently,
Walsh [Wal13] gave an alternative characterization of Euclidean Jordan algebras. He
showed that the Euclidean Jordan algebras correspond to the finite dimensional order
unit spaces (V,C, u) for which there exists a gauge-reversing bijection g : C◦ → C◦,
or in other words an antihomogeneous order antimorphism. In this chapter, which
is based on [LRvI17], we make the first steps towards extending this order theoretic
charcterisation to classes of infinite dimensional JB-algebras.

A special class of JB-algebras are spin factors. A spin factor M is a real vector
space with dimM ≥ 3 such that M = H⊕Re (vector space direct sum) with (H, (· | ·))
a Hilbert space and Re the linear span of e, where M is given the Jordan product

(a+ αe) ◦ (b+ βe) = βa+ αb+ ((a | b) + αβ)e (6.1)

and norm ‖a+λe‖ := ‖a‖2+ |λ|, with ‖·‖2 the norm of H. We characterize spin factors
among order unit spaces that are complete with respect to the order unit norm and
which have a strictly convex cone. Recall that a cone C is strictly convex if for each
linearly independent x, y ∈ ∂C, the segment {(1 − λ)x + λy : 0 < λ < 1} is contained
in C◦.

Theorem 6.1. If (V,C, u) is a complete order unit space with a strictly convex cone and
dimV ≥ 3, then there exists a bijective antihomogeneous order antimorphism g : C◦ →
C◦ if and only if (V,C, u) is a spin factor.

As our general approach is similar to Walsh’s [Wal13], we briefly discuss the main
similarities and differences. To prove that the cone is homogeneous Walsh uses in
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[Wal13, Lemma 3.5] the fact that a bijective antihomogeneous order antimorphism
is a locally Lipschitz map, and hence almost everywhere Fréchet differentiable by
Rademacher’s Theorem. There is, however, no infinite dimensional version of Rademacher’s
Theorem. To overcome this difficulty, we show that a bijective antihomogeneous order
antimorphism is Gateaux differentiable at each point in a strictly convex cone, and
work with the Gateaux derivative, see Proposition 6.5. Like Walsh we will also use
ideas from metric geometry such as Hilbert’s and Thompson’s metrics. In particular,
Walsh applies his characterization of the Hilbert’s metric horofunctions [Wal08], which,
at present, is not known for infinite dimensional spaces. Instead we shall show that if
there exists a bijective antihomogeneous order antimorphism on a strictly convex cone,
then the cone is smooth, see Theorem 6.14. This will allow us to avoid the use of
horofunctions completely, but implicitly some of Walsh’s horofunction method is still
present in the proof of Proposition 6.18.

Order antimorphisms and symmetries

For x, y ∈ V linearly independent we write V (x, y) := span(x, y), C(x, y) := V (x, y)∩C,
and C◦(x, y) := V (x, y) ∩ C◦. Note that as C is Archimedean, C(x, y) is a closed 2-
dimensional cone in V (x, y), if x ∈ C◦.

Useful tools in the analysis of antihomogeneous order antimorphism are Hilbert’s
and Thompson’s metrics on C◦. We briefly recall their definitions. A more detailed
description and elementary properties of these metrics is given in Section 1.5.

For x ∈ C and y ∈ C◦ let

M(x/y) := inf{β > 0: x ≤C βy}.

Now Hilbert’s metric on C◦ is defined by

dH(x, y) := logM(x/y) + logM(y/x),

and Thompson’s metric on C◦ is given by

dT (x, y) := max {logM(x/y), logM(y/x)}

for x, y ∈ C◦. Hilbert’s metric is not a metric on C◦, however, instead a metric on pairs
of rays of C◦. Thompson’s metric is a metric on C◦ whose topology coincides with the
order unit norm topology on C◦.

The following basic lemma is well known, see e.g., [NS77], and implies that each
antihomogeneous order antimorphism is an isometry under dH and dT . For the reader’s
convenience we include the simple proof.

Lemma 6.2. Let (V,C, u) be an order unit space. Then g : C◦ → C◦ is an antihomo-
geneous order antimorphism if and only if M(x/y) = M(g(y)/g(x)) for all x, y ∈ C◦.
In particular, a bijective antihomogeneous order antimorphism g : C◦ → C◦ is an isom-
etry under dH and dT , and the inverse g−1 : C◦ → C◦ is an antihomogeneous order
antimorphism.
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Proof. Clearly, if g : C◦ → C◦ is an antihomogeneous order antimorphism and x ≤C βy,
then g(βy) ≤C g(x), so that g(y) ≤C βg(x). This implies thatM(g(y)/g(x)) ≤M(x/y).
On the other hand, g(y) ≤C βg(x) implies g(βy) ≤C g(x), so that x ≤C βy from which
we conclude that M(x/y) ≤ M(g(y)/g(x)). This shows that M(x/y) = M(g(y)/g(x))
for all x, y ∈ C◦.

Now suppose that M(x/y) = M(g(y)/g(x)) for all x, y ∈ C◦. If x ≤C y, then
M(g(y)/g(x)) = M(x/y) ≤ 1, so that g(y) ≤C g(x). Likewise g(y) ≤C g(x) implies
M(x/y) = M(g(y)/g(x)) ≤ 1, so that x ≤C y, which shows that g is an order anti-
morphism. To see that g is antihomogeneous note that if x ∈ C◦ and λ > 0, then
y := λx satisfies M(g(y)/g(x)) = M(x/y) = 1/λ and M(g(x)/g(y)) = M(y/x) = λ.
This implies that λg(y) ≤C g(x) ≤C λg(y) from which we conclude that g(λx) = g(y) =
1
λ
g(x).

Every JB-algebra A has a bijective antihomogeneous order antimorphism namely,
the map ι : A◦+ → A◦+ given by ι(a) = a−1. As shown in [LRW, Section 2.4], we have that
M(ι(a)/ι(b)) = M(b/a) for all a, b ∈ A◦+, and hence ι is a bijective antihomogeneous
order antimorphism by Lemma 6.2.

If (V,C, u) is an order unit space with a strictly convex cone, then there exists a
strictly positive state on V as the following lemma shows.

Lemma 6.3. If (V,C, u) is an order unit space with a strictly convex cone, then there
exists a strictly positive state ρ ∈ S(V ).

Proof. Let r ∈ ∂C \ {0}. Then C(r, u) is a 2-dimensional closed cone in V . By [LN12,
A.5.1] there exists an s ∈ ∂C \ {0} such that C(r, u) = {αr + βs : α, β ≥ 0}. Let
φ and ψ be linear functionals on V (r, u) such that φ(r) = 0 = ψ(s), φ(s), ψ(r) > 0,
and φ(u) = 1 = ψ(u). By the Hahn-Banach theorem we can extend φ and ψ to linear
functionals on V such that ‖φ‖ = φ(u) = 1 and ‖ψ‖ = ψ(u) = 1. It follows from [AS01,
1.16 Lemma] that φ, ψ ∈ S(V ).

Now let ρ := 1
2
(φ+ ψ) ∈ S(V ). Note that φ(x) = 0 for x ∈ C if and only if x = λr

for some λ ≥ 0, as C is strictly convex. Likewise, ψ(x) = 0 for x ∈ C if and only if
x = λs for some λ ≥ 0. This implies that ρ(x) > 0 for all x ∈ C \ {0}.

Next we shall show that antihomogeneous order antimorphisms on strictly convex
cones map 2-dimensional subcones to 2-dimensional subcones. To prove this we use
unique geodesics for Hilbert’s metric.

If (V,C, u) is an order unit space with a strictly positive functional ρ ∈ S(V ), then
dH is a metric on

Σρ := {x ∈ C◦ : ρ(x) = 1}.

Straight line segments are geodesic in the Hilbert’s metric space (Σρ, dH). Moreover, if
the cone is strictly convex, then it is well known, see for example [Bus55, Section 18],
that each geodesic in the Hilbert’s metric space (Σρ, dH) is a straight line segment.

Lemma 6.4. Let (V,C, u) be an order unit space with a strictly convex cone, and
g : C◦ → C◦ be a bijective antihomogeneous order antimorphism. If x, y ∈ C◦ are



96 ORDER THEORETIC CHARACTERISATION OF SPIN FACTORS

linearly independent, then g(x) and g(y) are linearly independent and g maps C◦(x, y)
onto C◦(g(x), g(y)).

Proof. Let ρ ∈ S(V ) be a strictly positive state, which we know exists by Lemma 6.3.
Now define f : Σρ → Σρ by

f(x) :=
g(x)

ρ(g(x))
for all x ∈ Σρ.

Then f is an isometry on (Σρ, dH) by Lemma 6.2. If x, y ∈ C◦ are linearly independent,
then the straight line ` through x/ρ(x) and y/ρ(y) intersected with Σρ is a geodesic
line in (Σρ, dH). Thus, f(` ∩ Σρ) is also a geodesic line, and hence a straight line
segment, as C is strictly convex. In fact, its image is the intersection of the straight
line through g(x)/ρ(g(x)) and g(y)/ρ(g(y)) and Σρ. It follows that g(x)/ρ(g(x)) and
g(y)/ρ(g(y)) are linearly independent and that g maps C◦(x, y) onto C◦(g(x), g(y)), as
g is antihomogeneous.

We note that the proof of Lemma 6.4 goes through if one only assumes that (Σρ, dH)
is uniquely geodesic.

Using this lemma we can now prove the following proposition.

Proposition 6.5. Let (V,C, u) be an order unit space with a strictly convex cone. If
g : C◦ → C◦ is a bijective antihomogeneous order antimorphism, then the following
assertions hold.

(1) For each linearly independent x, y ∈ C◦ the restriction gxy of g to C◦(x, y) is a
Fréchet differentiable map, and its Fréchet derivative Dgxy(z) at z ∈ C◦(x, y) is an
invertible linear map from V (x, y) onto V (g(x), g(y)).

(2) For each x ∈ C◦ and z ∈ V we have that

∆z
xg(x) := lim

t→0

g(x+ tz)− g(x)

t

exists, and −∆z
xg(x) ∈ C for all z ∈ C.

(3) For each x ∈ C◦ we have ∆λx
x g(x) = −λg(x) for all λ ∈ R.

Proof. Let x, y ∈ C◦ be linearly independent and g : C◦ → C◦ be an antihomoge-
neous order antimorphism. By Lemma 6.4 the restriction gxy of g maps C◦(x, y) onto
C◦(g(x), g(y)). The 2-dimensional closed cones C(x, y) and C(g(x), g(y)) are order
isomorphic to

R2
+ := {(x1, x2) ∈ R2 : x1, x2 ≥ 0},

in other words, there exist linear maps A : V (x, y) → R2 and B : V (g(x), g(y)) → R2

such that A(C(x, y)) = R2
+ and B(C(g(x), g(y))) = R2

+. Thus, the map h : (R2
+)◦ →
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(R2
+)◦ given by h(z) = B(gxy(A

−1(z))) is a bijective antihomogeneous order antimor-
phism on (R2

+)◦, and hence h is a dT -isometry on (R2
+)◦. We know from [LRW, Theorem

3.2] that h is of the form:

h((z1, z2)) = (a1/zσ(1), a2/zσ(2)) for (z1, z2) ∈ (R2
+)◦,

where σ is a permutation on {1, 2} and a1, a2 > 0 are fixed. Clearly the map h is Fréchet
differentiable on (R2

+)◦, and hence gxy is Fréchet differentiable on C◦(x, y). Moreover,
the Fréchet derivative Dh(z) is an invertible linear map on R2 at each z ∈ (R2

+)◦, so that
Dgxy(z) an invertible linear map from V (x, y) onto V (g(x), g(y)) for all z ∈ C◦(x, y).

To prove the second statement note that if z is linearly independent of x, then there
exists a y ∈ C◦ such that z ∈ V (x, y). From (1) we get that ∆z

xg(x) = Dgxy(x)(z), as
gxy is Fréchet differentiable on C◦(x, y). Also, if z = λx for some λ 6= 0, then

∆λx
x g(x) = lim

t→0

g(x+ tλx)− g(x)

t
= lim

t→0

−λt
t(1 + λt)

g(x) = −λg(x),

and ∆0
xg(x) = 0. Furthermore, if z ∈ C, then

∆z
xg(x) = lim

t→0

g(x+ tz)− g(x)

t
∈ −C,

as g is an order antimorphism. This completes the proofs of (2) and (3).

Given a bijective antihomogeneous order antimorphism g : C◦ → C◦ on a strictly
convex cone C in an order unit space, and x ∈ C◦ we define Gx = Gg,x : V → V by

Gx(z) := −∆z
xg(x) for all z ∈ V.

Lemma 6.6. If x ∈ C◦ and Gx(x) = x, then g(x) = x.

Proof. Simply note that x = Gx(x) = −∆x
xg(x) = g(x) by Proposition 6.5(3).

The map Gx has the following property.

Proposition 6.7. The map Gx : V → V is a bijective homogeneous order isomorphism
with inverse Gg−1,g(x) : V → V .

Proof. Let z ∈ V (x, y), x, y ∈ C◦ linearly independent, and λ 6= 0. Then

Gx(λz) = − lim
t→0

g(x+ tλz)− g(x)

t
= −λ lim

t→0

g(x+ tλz)− g(x)

λt
= λGx(z).

Also if w ≤C z, then

Gx(w) = − lim
t→0

g(x+ tw)− g(x)

t
≤C − lim

t→0

g(x+ tz)− g(x)

t
= Gx(z),

as x+ tw ≤C x+ tz for all t > 0 and g is an order antimorphism.
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To show thatGx is a surjective map on V let h := gxy◦g−1g(x)g(y). So, h : C◦(g(x), g(y))→
C◦(g(x), g(y)) and h(z) = z for all z ∈ C◦(g(x), g(y)). For each w ∈ V (g(x), g(y)) we
have by the chain rule that

w = Dh(gxy(x))(w) = Dgxy(x)Dg−1g(x)g(y)(gxy(x))w = Gx(Gg−1,g(x)(w)).

Interchanging the roles of g and g−1 we also have that Gg−1,g(x)(Gx(v)) = v for all
v ∈ V (x, y), and hence Gg−1,g(x) is the inverse of Gx on V .

Combining Proposition 6.7 and [NS77, Theorem B] we conclude thatGx ∈ Aut(C) :=
{T ∈ GL(V ) : T (C) = C} and Gx is continuous with respect to ‖ · ‖u on V , as
‖Gx‖u = ‖Gx(u)‖u.

Now for x ∈ C◦ define the symmetry at x by

Sx := G−1x ◦ g. (6.2)

So, Sx : C◦ → C◦ is a bijective antihomogeneous order antimorphism, with inverse
S−1x = g−1 ◦Gx. We derive some further properties of the symmetries. Let us begin by
making the following useful observation.

Lemma 6.8. Let x ∈ C◦ and y ∈ V be linearly independent of x. Then for each
w ∈ V (x, y) we have that D(Sx)xy(x)(w) = −w.

Proof. Note that

D(Sx)xy(x)(w) = lim
t→0

Sx(x+ tw)− Sx(x)

t

= lim
t→0

G−1x (g(x+ tw))−G−1x (g(x))

t

= G−1x

(
lim
t→0

g(x+ tw)− g(x)

t

)
= G−1x (−Gx(w))

= −w,

as G−1x = Gg−1,g(x) is a bounded linear map on (V, ‖ · ‖u) by Proposition 6.7.

Theorem 6.9. For each x ∈ C◦ we have that

(1) Sx(x) = x.

(2) Sx ◦ Sx = Id on C◦.

Proof. To prove (1) note that for x ∈ C◦ we have by Propositions 6.5(3) and 6.7 that

Sx(x) = G−1x (g(x)) = Gg−1,g(x)(g(x)) = g−1(g(x)) = x.
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To show (2) let x, y ∈ C◦ be linearly independent. For simplicity we write T :=
(Sx)Sx(x)Sx(y) and S := (Sx)xy, so (S2

x)xy = T ◦ S and S, T are Fréchet differentiable on
C◦(x, y) and C◦(Sx(x), Sx(y)) respectively. Then using the chain rule and Lemma 6.8
we find that

∆y
xS

2
x(x) = lim

t→0

T (S(x+ ty))− T (S(x))

t
= DT (S(x))(DS(x))(y) = −DS(x)(y) = y.

Note that S2
x is a homogeneous order isomorphism on C◦, and hence by [NS77,

Theorem B] we know that it is linear. So, it follows from the previous equality that
S2
x = Id on C◦.

To proceed it is useful to recall a few facts about unique geodesics for Thompson’s
metric from Section 1.5. A type I geodesic γ through x is the image of the geodesic
path,

γ(t) := etr + e−ts for t ∈ R,

with r, s ∈ ∂C and r+ s = x. A geodesic γ[R] is of type I exactly whenever M(u/v) =
M(v/u) for all u, v ∈ γ. We remark that, in a strictly convex cone C, all type I geodesic
lines are unique by [LR15, Theorem 4.3].

Lemma 6.10. Let (V,C, u) be an order unit space with a strictly convex cone. If
γ : R → (C◦, dT ) is a geodesic path with γ(0) = x, and γ[R] is a type I geodesic line,
then Sx(γ(t)) = γ(−t) for all t ∈ R.

Proof. If γ : R→ (C◦, dT ) is a geodesic path with γ(0) = x, and γ[R] is a type I geodesic
line, then there exist r, s ∈ ∂C with r + s = x and γ(t) = etr + e−ts for all t ∈ R by
[LR15, Lemma 3.7]. As C is strictly convex, we know from [LR15, Theorem 4.3] that
γ : R → (C◦, dT ) is a unique geodesic path. This implies that γ̂(t) := Sx(γ(t)), t ∈ R,
is also a unique geodesic path in (C◦, dT ), as Sx is an isometry under dT . Moreover, as
M(Sx(y)/Sx(z)) = M(z/y) for all y, z ∈ C◦, we know that

M(Sx(γ(t1))/Sx(γ(t2))) = M(γ(t2)/γ(t1)) = M(γ(t1)/γ(t2)) = M(Sx(γ(t2))/Sx(γ(t1))),

so that γ̂[R] is a type I geodesic line though x.
It now follows again from [LR15, Lemma 3.7] that there exists u, v ∈ ∂C such that

u + v = x and γ̂(t) = etu + e−tv for all t ∈ R. Recall from Proposition 6.5 that the
restriction (Sx)rx of Sx to C◦(r, x) is Fréchet differentiable, and hence

γ̂′(0) = D(Sx)rx(γ(0))(γ′(0)) = D(Sx)rx(x)(r − s) = −r + s

by Lemma 6.8. But also γ̂′(0) = u− v. Combining this with the equalities r+ s = x =
u+ v, we find that u = s and v = r. Thus, Sx(γ(t)) = γ̂(t) = ets+ e−tr = γ(−t) for all
t ∈ R.

Proposition 6.11. Let (V,C, u) be an order unit space with a strictly convex cone.
For each x ∈ C◦ we have that Sx has x as a unique fixed point.
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Proof. Suppose by way of contradiction that y ∈ C◦ is a fixed point of Sx and y 6=
x. Then y is linearly independent of x, as Sx is antihomogeneous and Sx(x) = x.
Define µ := M(x/y)1/2M(y/x)−1/2 and z := µy ∈ C◦. Then M(x/z) = M(z/x) and
hence there exists a type I geodesic path γ : R → (C◦, dT ) through x and z, with
γ(0) = x. From Lemma 6.10 it follows that Sx

[
γ[R]

]
= γ[R], As z is the unique point

of intersection of γ[R] with the invariant ray Ry := {λy : λ > 0}, we conclude that
Sx(z) = z. This, however, contradicts Lemma 6.10, as z 6= x.

Remark 6.12. The metric space (C◦, dT ) is a natural example of a Banach-Finsler
manifold, see [Nus00]. So, the results in this section show that if there exists a bijective
antihomogeneous order antimorphism on C◦ in a complete order unit space with strictly
convex cone, then (C◦, dT ) is a globally symmetric Banach-Finsler manifold, in the sense
that for each x ∈ C◦ there exists an isometry σx : C◦ → C◦ such that σ2

x = Id and x
is an isolated fixed point of σx. Indeed, we can take σx = Sx. It is interesting to
understand which complete order unit spaces (C◦, dT ) are globally symmetric Banach-
Finsler manifolds. It might well be true that these are precisely the JB-algebras.

Smoothness of the cone

Throughout this section we will assume that dimV ≥ 3.
We will show that if (V,C, u) is a complete order unit space with a strictly convex

cone and there exists an antihomogeneous order antimorphism g : C◦ → C◦, then C
is a smooth cone, that is to say, for each w ∈ ∂C with w 6= 0 there exists a unique
φ ∈ S(V ) such that φ(w) = 0. Before we prove this we make the following elementary
observation.

Lemma 6.13. If (V,C, u) is an order unit space and w ∈ ∂C with w 6= 0, then for
each x ∈ C◦ and y := (1− s)w + sx, with 0 < s ≤ 1, we have that

M(x/y) =
φ(x)

φ(y)
=

1

s

for each φ ∈ S(V ) with φ(w) = 0.

Proof. By [LN12, Section 2.1] we know that

M(x/y) =
‖w − x‖u
‖w − y‖u

=
1

s
.

But also 1/s = φ(x)/φ(y) for all states φ ∈ S(V ) with φ(w) = 0.

Theorem 6.14. If (V,C, u) is an order unit space with a strictly convex cone and there
exists a bijective antihomogeneous order antimorphism g : C◦ → C◦, then C is a smooth
cone.
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Proof. Let ρ ∈ S(V ) be a strictly positive state, which exists by Lemma 6.3. Suppose
by way of contradiction that there exist w ∈ ∂C with ρ(w) = 1 and states φ 6= ψ such
that φ(w) = 0 = ψ(w). As φ 6= ψ, there exists x ∈ V such that φ(x) 6= ψ(x). Note
that if αx+ βw+ γu = 0 for some α, β, γ ∈ R, then αφ(x) + γ = αψ(x) + γ = 0, which
yields α = 0 and γ = 0. This shows that x, w and u are linearly independent.

Let W := span(x,w, u) and K := W ∩ C. As dimV ≥ 3 and u ∈ C◦, K is a
3-dimensional, strictly convex, closed cone in W containing u in its interior. Let S(W )
be the state space of the order unit space (W,K, u). Note that the restrictions of φ,
ψ, ρ to W , denoted φ̄, ψ̄, and ρ̄ respectively, are in S(W ). Moreover ρ̄(w) > 0 for all
w ∈ K \ {0}, and hence

Ω := {w ∈ K : ρ̄(w) = 1}
is a 2-dimensional, strictly convex, compact set, with w in its (relative) boundary. We
also know that S(W ) is a compact, convex subset of W ∗.

Let F := {ζ ∈ S(W ) : ζ(w) = 0}, which is a closed face of S(W ). As F contains
φ̄ and ψ̄ which are not equal, F is a straight line segment, say [τ, ν] with τ 6= ν. Let
x, y ∈ ∂Ω be such that u is between the straight line segments [w, x] and [w, y], as in
Figure 6.1.
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Figure 6.1: Point of non-smoothness

Now let z ∈ Ω ∩ C◦ also be between the segments [w, x] and [w, y] such that
span(z, w, u) = W . For 0 < s < 1, let xs := (1− s)w + sx and ys := (1− s)w + sy. By
Lemma 6.13 there exists τs, τ

′
s ∈ S(W ) such that

M(z/xs) =
τs(z)

τs(xs)
and M(u/xs) =

τ ′s(u)

τ ′s(xs)

for 0 < s < 1.
Then

τ ′s(z) =
τ ′s(z)

τ ′s(xs)

τ ′s(xs)

τ ′s(u)
≤M(z/xs)M(u/xs)

−1 ≤ τs(z)

τs(xs)

τs(xs)

τs(u)
≤ τs(z)

for all 0 < s < 1. As τs(z)→ τ(z) and τ ′s(z)→ τ(z) as s→ 0, we conclude that

lim
s→0

M(z/xs)M(u/xs)
−1 = τ(z).
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In the same way it can be shown that

lim
s→0

M(z/ys)M(u/ys)
−1 = ν(z).

We will now show that τ(z) = ν(z), which implies that τ = ν, as τ(w) = ν(w) = 0,
τ(u) = ν(u) = 1 and span(z, w, u) = W . This gives the desired contradiction. To prove
the equality we use the symmetry Su : C◦ → C◦ at u. Let f : Σρ → Σρ be given by

f(v) =
Su(u)

ρ(Su(v))
for all v ∈ Σρ = {w ∈ C◦ : ρ(w) = 1}.

Thus, f is an isometry on (Σρ, dH). As C is strictly convex, the segments (x,w) and
(y, w) are unique geodesic lines in (Σρ, dH). So, f((x,w)) and f((y, w)) are unique
geodesic lines, and hence there exist x′, y′, ζ1, ζ2 ∈ ∂Σρ so that f((x,w)) = (x′, ζ1) with
lims→0 f(xs) = ζ1, and f((y, w)) = (y′, ζ2) with lims→0 f(ys) = ζ2.

We claim that ζ1 = ζ2. Suppose by way of contradiction that ζ1 6= ζ2. Then using
[KN02, Theorem 5.2] we know that there exists a constant C0 <∞ such that

lim sup
s→0

dH(f(xs), u) + dH(f(ys), u)− dH(f(xs), f(ys)) ≤ C0, (6.3)

as Σρ is strictly convex.

However, we know (see [LN12, Section 2.1]) that

dH(xs, ys) = log
‖ys − w′s‖
‖xs − w′s‖

‖xs − v′s‖
‖ys − v′s‖

for all 0 < s < 1, where w′s, v
′
s ∈ ∂Ω. Let ws, vs be on the lines `1 and `2 as in Figure

6.2, where `1 and `2 are fixed. For s > 0 sufficiently small

‖ys − w′s‖
‖xs − w′s‖

‖xs − v′s‖
‖ys − v′s‖

≤ ‖ys − ws‖
‖xs − ws‖

‖xs − vs‖
‖ys − vs‖

.

By projective invariance of the cross-ratio we know there exists C1 <∞ such that

‖ys − ws‖
‖xs − ws‖

‖xs − vs‖
‖ys − vs‖

= C1 for all s > 0 sufficiently small.

Thus, lim sups→0 dH(xs, ys) ≤ logC1.

As f is an isometry under dH with f(u) = u, we deduce that

dH(f(xs), u)+dH(f(ys), u)−dH(f(xs), f(ys)) = dH(xs, u)+dH(ys, u)−dH(xs, ys)→∞,

as s→ 0. This contradicts (6.3), and hence ζ1 = ζ2.
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Figure 6.2: cross-ratios

Now note that

τ(z) = lim
s→0

M(z/xs)M(u/xs)
−1

= lim
s→0

M(Su(xs)/Su(z))M(Su(xs)/u)−1

= lim
s→0

M(f(xs)/Su(z))M(f(xs)/u)−1

= M(ζ1/Su(z))M(ζ1/u)−1.

Likewise ν(z) = M(ζ2/Su(z))M(ζ2/u)−1, which shows that τ(z) = ν(z), as ζ1 = ζ2.
This completes the proof.

Lemma 6.15. Let (V,C, u) be an order unit space with a smooth cone, w ∈ ∂C \ {0},
and φ ∈ S(V ) be such that φ(w) = 0. Suppose that z ∈ C with φ(z) > 0, and for
0 < s ≤ 1 let ys := (1 − s)w + su and zs := (1 − s)z + su in C◦. If φs ∈ S(V ) is
such that M(zs/ys) = φs(zs)/φs(ys) for 0 < s ≤ 1, then φs(w)→ 0, as s→ 0, and (φs)
w*-converges to φ.

Proof. Note that M(zs/ys) = φs(zs)/φs(ys) ≥ φ(zs)/φ(ys) = 1−s
s
φ(z) + 1 → ∞, as

s → 0. As |φs(zs)| ≤ ‖zs‖u ≤ (1 − s)‖z‖u + s‖u‖u ≤ ‖z‖u + 1, we deduce that
φs(ys)→ 0 as s→ 0. So,

|φs(w)| ≤ |φs(w)− φs(ys)|+ |φs(ys)| ≤ ‖w − ys‖u + |φs(ys)| → 0 as s→ 0.

Now consider any subnet (φs′) of (φs) in S(V ). It has a w*-convergent subnet with limit
say ψ, as S(V ) is w*-compact. By the first part of the lemma we know that ψ(w) = 0,
and hence ψ = φ, since C is smooth. This shows that (φs) w*-converges to φ.

Proposition 6.16. Let (V,C, u) be an order unit space with a smooth cone, w ∈ ∂C \
{0}, and φ ∈ S(V ) be such that φ(w) = 0. Suppose that z ∈ C with φ(z) > 0 and for
0 < s ≤ 1 let ys := (1− s)w + su and zs := (1− s)z + su in C◦. Then

lim
s→0

M(zs/ys)M(u/ys)
−1 = φ(z).
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Proof. For 0 < s ≤ 1 let φs ∈ S(V ) be such that M(zs/ys) = φs(zs)/φs(ys). So, (φs)
w*-converges to φ by Lemma 6.15. Note that

M(zs/ys)M(u/ys)
−1 ≤ φs(zs)

φs(ys)

(
φ(u)

φ(ys)

)−1
=

φs(zs)

φ̂(u)

φ(ys)

φs(ys)

= φs(zs)
φ((1− s)w + su)

φs((1− s)w + su)

≤ φs(zs)

as φ(w) = 0 and φs(w) ≥ 0 for all 0 < s ≤ 1. The right-hand side of the inequality
converges to φ(z) as s→ 0, since (φs) w*-converges to φ.

On the other hand, if we let ψs ∈ S(V ) be such that M(u/ys) = ψs(u)/ψs(ys), then
(ψs) w*-converges to φ by taking z = u in Lemma 6.15. Moreover,

M(zs/ys)M(u/ys)
−1 ≥ φ(zs)

φ(ys)

(
ψs(u)

ψs(ys)

)−1
=

φ(zs)

ψs(u)

ψs(ys)

φ(ys)

≥ φ(zs),

as ψs(w) ≥ 0. The right-hand side converges to φ(z) as s → 0, which completes the
proof.

Construction of Jordan structure

Define
P := {p ∈ ∂C : M(p/u) = ‖p‖u = 1}.

Lemma 6.17. If (V,C, u) is an order unit space, then for each p ∈ P there exists a
unique p′ ∈ P with p+ p′ = u.

Proof. Note that p ≤C M(p/u)u = u, so that w := u− p ∈ (∂C \ {0}) ∩ V (p, u). So,

M(w/u) := inf{β > 0: u− p ≤C βu} = inf{β > 0: 0 ≤C (β − 1)u+ p} = 1,

as otherwise p− δu ∈ C for some δ > 0. This would imply that p = δu+ (p− δu) ∈ C◦,
as δu ∈ C◦, which is impossible. Thus, if we let p′ := w, then clearly p′ is unique,
p′ ∈ P and p+ p′ = u.

Note that V = span(P). Indeed, if v ∈ V is linearly independent of u, then V (u, v)
is a 2-dimensional subspace with a 2-dimensional closed cone C(u, v). By [LN12, A.5.1]
there exists r, s ∈ ∂C such that C(u, v) = {λr+µs : λ, µ ≥ 0} and span(r, s) = V (u, v).
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So, if we let p := M(r/u)−1r and q := M(s/u)−1s, then p, q ∈ P and v ∈ span(p, q).
On the other hand, if v = λu with λ ∈ R, then v = λ(p+ p′) for some p ∈ P by Lemma
6.17.

Now let (V,C, u) be an order unit space with a strictly convex cone and dimV ≥ 3.
Suppose there exists a bijective antihomogeneous order antimorphism g : C◦ → C◦.
Then C is a smooth cone by Theorem 6.14. Denote by φp ∈ S(V ) the unique supporting
functional at p ∈ P , so φp(p) = 0 and φp(p

′) = φp(u) = 1. For p ∈ P define the linear
form B(p, ·) on V by

B(p, v) := φp′(v) for all v ∈ V.

Proposition 6.18. If p, q ∈ P, then B(p, q) = B(q, p).

Proof. Let p, q ∈ P and for 0 < s ≤ 1 define

ps := (1− s)p+ su, p′s := (1− s)p′ + su,

qs := (1− s)q + su, q′s := (1− s)q′ + su.

We wish to show that Su(ps) = 1
s
p′s and Su(qs) = 1

s
q′s. By interchanging the roles of ps

and qs it suffices to prove the first equality.
Note that if β > 0 is such that u ≤C βps, then (1 − βs)u ≤C β(1 − s)p, so that

βs ≥ 1, as p ∈ ∂C and u ∈ C◦. Thus, M(u/ps) = 1/s. The same argument shows that
M(u/p′s) = 1/s. Furthermore, it is easy to check that M(ps/u) = 1 = M(p′s/u), and
hence dT (u, ps) = − log s = dT (u, p′s) for all 0 < s ≤ 1.

Let δs := M(u/ps)
1/2M(ps/u)−1/2 = 1/

√
s and put xs := δsps and ys := δsp

′
s. Then

M(xs/u) = M(u/xs) = 1/
√
s = M(ys/u) = M(u/ys). Thus, xs and ys are on the

unique type I geodesic line γ through u in C◦(p, p′). Let γ : R → (C◦, dT ) be the
geodesic path with γ = γ[R] and γ(0) = u. As Su is a dT -isometry and Su(u) = u, we
find that dT (u, xs) = dT (u, Su(xs)) = − log

√
s = dT (u, ys). Using Lemma 6.10 and the

fact that xs 6= ys, we conclude that Su(xs) = ys. Thus, Su(δsps) = δsp
′
s, which shows

that Su(ps) = 1
s
p′s.

Now let p, q ∈ P and suppose that q 6= p′. Then by Proposition 6.16 we have that

B(p, q) = φp′(q)

= lim
s→0

M(qs/p
′
s)M(u/p′s)

−1

= lim
s→o

M(qs/Su(ps))M(u/Su(ps))
−1

= lim
s→0

M(ps/Su(qs))M(ps/u)−1

= lim
s→0

M(ps/Su(qs)),

where we used the identity Su(ps) = 1
s
p′s and the fact that S2

u = Id (Theorem 6.9) in
the third equality.

Likewise,
B(q, p) = lim

s→0
M(qs/Su(ps)).
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Now using the fact that M(ps/Su(qs)) = M(qs/Su(ps)) for all 0 < s ≤ 1, we deduce
that B(p, q) = B(q, p) if q 6= p′. On the other hand, if q = p′, then B(p, q) = 0 and
B(q, p) = 0.

We now extend B linearly to V by letting

B

(
n∑
i=1

αipi, v

)
:=

n∑
i=1

αiB(pi, v) for all v ∈ V.

To see that B is a well-defined bilinear form suppose that w =
∑

i αipi =
∑

j βjqj for
some αi, βj ∈ R and pi, qj ∈ P . Write v =

∑
k γkrk with rk ∈ P . Then by Proposition

6.18 we get that ∑
i

αiB(pi, v) =
∑
i,k

αiγkB(pi, rk)

=
∑
i,k

γkαiB(rk, pi)

=
∑
k

γkB(rk, w).

Likewise
∑

j βjB(qj, v) =
∑

k γkB(rk, w), which shows that B is a well defined sym-
metric bilinear form on V × V .

Let H := span{p− p′ : p ∈ P} and Ru := span(u).

Lemma 6.19. We have that V = H⊕Ru (vector space direct sum), and H is a closed
subspace of (V, ‖ · ‖u).

Proof. Note that for each v ∈ V there exists p ∈ P and α, β ∈ R such that v = αp+βp′.
So,

v =
1

2
(α− β)(p− p′) +

1

2
(α + β)u, (6.4)

by Lemma 6.17. This shows that V = H + Ru. Now let ψu : V → R be given by
ψu(v) := B(v, u) for all v ∈ V . Note that if v = p− p′, then

ψu(v) = B(p, u)−B(p′, u) = φp′(u)− φp(u) = 1− 1 = 0,

and hence H ⊆ ker(ψu). Moreover, B(u, u) = B(p, u) + B(p′, u) = 2. Also for v =
αs+ βu with s = p− p′ ∈ H we have that ψu(v) = 2β = 0 if and only if β = 0. Thus,
H = ker(ψu), which shows that V = H ⊕ Ru.

To see that H is closed it suffices to show that ψu is bounded with respect to ‖ · ‖u.
Let v = αp+ βp′ ∈ V . Then

‖v‖u = inf{λ > 0: − λu ≤C αp+ βp′ ≤C λu} = max{|α|, |β|}. (6.5)

It follows that

|ψu(v)| ≤ |α|ψu(p) + |β|ψu(p′) = |α|+ |β| ≤ 2‖v‖u,

and hence ψu is bounded.
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Define a bilinear form (x | y) on H by

(x | y) :=
1

2
B(x, y) for all x, y ∈ H.

Proof of Theorem 6.1. We will first show that (H, (· | ·)) is a Hilbert space. Note that
if x ∈ H, then there exists p ∈ P and α ∈ R such that x = α(p− p′) by (6.4). Clearly

‖x‖22 = (x | x) =
1

2

(
α2B(p, p− p′)− α2B(p′, p− p′)

)
=
α2

2
(1 + 1) = α2 = ‖x‖2u, (6.6)

by (6.5). It follows that (x | x) ≥ 0 for all x ∈ H, (x | x) = 0 if and only if x = 0, and
(H, (· | ·)) is a Hilbert space, as H is closed in (V, ‖ · ‖u).

We already know from Lemma 6.19 that V = H ⊕Ru, where (H, (· | ·)) is a Hilbert
space. Note that if x = α(p − p′) ∈ H, then ‖x + βu‖u = max{|α + β|, |α − β|} =
|α|+ |β| = ‖x‖u + |β| by (6.5). So, we deduce from equality (6.6) that

‖x+ βu‖u = ‖x‖2 + |β| for x ∈ H and β ∈ R.

It remains to show that {a2 : a ∈ V } = C, where the Jordan product is given by
(6.1). Note that if a = x+ σu where x = δ(p− p′) ∈ H and σ, δ ∈ R, then

a2 = 2σx+ ((x | x) + σ2)u

= 2σδ(p− p′) +

(
δ2

2
B(p− p′, p− p′) + σ2

)
u

= 2σδ(p− p′) + (δ2 + σ2)(p+ p′)

= (σ + δ)2p+ (σ − δ)2p′ ∈ C.

Conversely, if v ∈ C, then v = λp+ µp′ for some λ, µ ≥ 0 and p, p′ ∈ P . Let

w :=
√
λp+

√
µp′ =

1

2

(
(
√
λ−√µ)(p− p′) + (

√
λ+
√
µ)(p+ p′)

)
.

So,

w2 =
1

4

(
2(
√
λ−√µ)(

√
λ+
√
µ)(p− p′) + ((

√
λ−√µ)2 + (

√
λ+
√
µ)2)(p+ p′)

)
= λp+µp′ = v,

which shows that v ∈ {a2 : a ∈ V }.
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Chapter 7

Symmetric cones and order
antimorphisms

In a finite dimensional vector space the interior of a closed cone is considered symmetric
if it is homogeneous and self-dual. A variety of characterisations are given for this special
class of cones, see Section 1.6 for more details. The famous Koecher-Vinberg theorem
([Koe57] and [Vin60]) shows that a symmetric cone arises precisely as the interior
of the cone of squares for a formally real Jordan algebra. An infinite dimensional
analogue of this result for JB-algebras does not exist, since the notion of a symmetric
cone is not well-defined in a Banach space, which in general cannot be realised as a
Hilbert space. An alternative characterisation of symmetric cones in finite dimensions
is given, due to Walsh [Wal13], in terms of the existence of an antihomogeneous order
antimorphism on the interior of the cone. In Chapter 6, we considered strictly convex
cones in arbitrary dimensions where an antihomogeneous order antimorphism exists on
the interior, and we obtained precisely the spin factors. With the techniques developed
there, we further investigate the relation between the existence of an antihomogeneous
order antimorphism on the interior of the cone and the symmetric property of that
cone.

Let (H, (· | ·)) be a Hilbert space and C ⊆ H be a cone. Then C◦ is considered a
symmetric cone if C◦ is homogeneous, meaning for x, y ∈ C◦ there exists a linear order
isomorphism S : C◦ → C◦ such that S(x) = y, and self-dual with respect to the inner
product (· | ·), meaning

C◦ = {x ∈ H : (x | y) > 0 for all y ∈ C\{0}}.

In the sequel, when we have an order unit space (V,C, u) we say that C◦ is symmetric
whenever it is homogeneous and there exists an inner product on V that turns it into
a Hilbert space and with respect to which C◦ is self-dual. Our aim is to characterise
symmetric cones in complete order unit spaces in an order theoretic way without a
priori imposing Hilbert space structure. We remark that the interior of the cone of
a spin factor is symmetric. Therefore, characterising properties for symmetric cones
should be weaker than those imposed in Theorem 6.1 for spin factors. It turns out that
one should replace the condition on C of being strictly convex with being the sum of
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its extreme rays. In other words, instead of every element of the cone being the sum
of two positive extreme vectors, we merely require that they are a finite positive linear
combination of postive extreme vectors.

Our general strategy to obtain this characterisation is to reduce problems to finite
dimensional subcones. A key observation is that, the results of [NS77] concerning
order isomorphisms and the way they interact with line segments that are parallel to
extreme rays, which we outlined in Section 3.1, for the most part also apply to order
antimorphisms. This will yield that any subcone of C◦ that is spanned by finitely many
extreme rays will be mapped by the antimorphism g : C◦ → C◦ onto a subcone that is
again spanned by finitely many extreme rays. Before we make the ideas more rigorous,
we summarise the results obtained in [Wal13], that are relevant for our purpose.

Theorem 7.1 (Walsh). Suppose K is a finite dimensional closed cone with non-empty
interior and g : K◦ → K◦ is an antihomogeneous order antimorphism. Then K is a
symmetric cone that is self-dual for an inner product (· | ·) which satisfies

(y | x) = M(x/g(y)), (7.1)

for all y ∈ K◦ and x ∈ K extreme.

We recall that by definition for x ∈ K and y ∈ K◦ we have

M(x/y) = inf{β > 0: x ≤ βy}.

In Proposition 3.1 and Proposition 3.3 and their subsequent corollaries, we have
shown that for an order isomorphism f : C → K and extreme vector r ∈ C, the element
f(x + r) − f(x) is an extreme vector of K. Furthermore, if the difference of x, y ∈ C
is a linear combination of extreme vectors, then f(x+ r)− f(x) is a scalar multiple of
f(y + r)− f(y). In our setting, where C is assumed to be the sum of its extreme rays,
we obtain that f(x+ r)− f(x) and f(y+ r)− f(y) lies on the same extreme ray for all
x, y ∈ C and r ∈ C extreme. We draw a similar conclusion for order antimorphisms.
Recall that for a cone C the set E(C) denotes the collection of its extreme rays.

Proposition 7.2. Let (X,C) and (Y,K) be Archimedean partially ordered vector spaces,
where C is the sum of its extreme rays and U ⊆ X and V ⊆ Y are upper sets. For
any order anti- or isomorphism f : U → V , there exists a bijection ϕ : E(C) → E(K)
such that any line segment in U parallel to some R ∈ E(C) is mapped by f onto a line
segment in V parallel to ϕ(R) ∈ E(K). In symbols, for every x ∈ U and R ∈ E(C)

f((x±R) ∩ U) = (f(x)± ϕ(R)) ∩ V. (7.2)

Proof. Consider the case where f is an order isomorphism. Equation (7.2) follows from
Theorem 3.10 for R ∈ E(C) that are engaged and from Proposition 3.17 for R ∈ E(C)
that are disengaged.

Suppose that f is an order antimorphism. It follows from Proposition 3.1, that a
subset L of U is of the form (x ± R) ∩ U for some extreme ray R ∈ E(C) if and only
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if L is maximal among those subset of U that are directed and whose subintervals are
totally ordered. These properties are not only preserved by order isomorphisms, but
also by order antimorphisms. The only difference being that an order antimorphism
reverses the order within an extreme half-line. In symbols, for x ∈ U , r ∈ X an extreme
vector and λ ∈ R with x+ r, x+ λr ∈ U we have that

f(x+ λr)− f(x) = c(f(x+ r)− f(x)), (7.3)

for some c ∈ R. Let R and S be different extreme rays of C. Suppose x ∈ U ,
r ∈ −R and s ∈ −S are given such that x, x + r, x + s, x + r + s ∈ U . We construct
Rj := (x + js − R) ∩ U , for j ∈ {0, 1, 2}. Their images f(Rj) are disctinct half-lines
with apexes f(x + js), for j ∈ {0, 1, 2} respectively, and they are unbounded in the
direction of a positive extreme vector. The half-lines f(R0), f(R1) and f(R2) satisfy the
same conditions as their namesakes in the proof of Proposition 3.3. So we deduce that
f(x), f(x+s), f(x+ r), f(x+ r+s) are the consecutive corners of a parallellogram, and
hence

f(x+ r + s)− f(x+ s) = f(x+ r)− f(x). (7.4)

We considered negative extreme vectors r ∈ −R and s ∈ −S to guarantee that the
lines Rj were flipped by the antimorphism f to a positive direction. Suppose now that
r ∈ R, then we can apply the above arguments to x + r ∈ U , −r ∈ −R and s ∈ −S
and obtain (7.4). Similarly the sign of s is irrelevant for the conclusion.

By repeated application of (7.4), we obtain that for x ∈ U and s1, . . . , sn, r ∈ X
extreme vectors such that r 6= λsi for all λ ∈ R and i = 1, . . . , n with x, x + r, x +∑n

i=1 si, x+ r +
∑n

i=1 si ∈ U that

f(x+ r +
n∑
i=1

si)− f(x+
n∑
i=1

si) = f(x+ r)− f(x). (7.5)

Let x ∈ U , R ∈ E(C) and r ∈ (R ∪ −R)\{0} be such that x + r ∈ U . Now
s := f(x + r) − f(x) is an extreme vector of K. Let y ∈ U with y + r ∈ U . By
our assumption we can write y − x =

∑n
i=1 ri, where ri ∈ X is an extreme vector, for

i = 1, . . . , n. Remark that one of these ri might be a multiple of r. By relabelling we
assume that r1, . . . , rk < 0 and rk+1, . . . , rn > 0 and, moreover, that if r = λri for some
λ ∈ R then in the new labelling ri becomes r1 if λ < 0 and rk+1 if λ > 0. We assume
the latter to be the case, since the other cases follow in fewer steps. Combining (7.3)
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and (7.5) yields

f(y + r)− f(y) = f(x+ r +
n∑
i=1

ri)− f(x+
n∑
i=1

ri)

= f(x+ r +
n∑

i=k+1

ri)− f(x+
n∑

i=k+1

ri)

= c

(
f(x+ r +

n∑
i=k+2

ri)− f(x+
n∑

i=k+2

ri)

)
= c (f(x+ r)− f(x)) ,

for some non-zero c ∈ R. This shows that f(y + r) ∈ f(y) + S, where S denotes the
extreme ray in K spanned by s. Defining ϕ(R) := S yields a map ϕ : E(C) → E(K)
that satisfies (7.2). That ϕ is bijective follows from the fact that f is bijective.

The standing hypotheses in the sequel are as follows.
Let (V,C, u) be a complete order unit space. The cone C equals the sum of its extreme
rays, that is, any element of C can be written as a positive linear combination of extreme
vectors of C. Furthermore, let g : C◦ → C◦ be an antihomogeneous order antimorphism.
Lastly, we denote by E(C) the collection of extreme rays of C and ϕ : E(C)→ E(C) for
the bijection corresponding to g, that satisfies (7.2), as obtain in Proposition 7.2.

We argue in steps that under these conditions C◦ is a symmetric cone.

Homogeneous cone

It is convenient to introduce some notation. For a finite subset F ⊆ E(C) we let
C(F ) = span(F ) ∩ C and C◦(F ) = span(F ) ∩ C◦. We remark that as the finite
dimensional subspace span(F ) is closed, that the relative interior of C(F ) equals C◦(F )
if span F ∩ C◦ is non-empty. Henceforth, any finite subset F ⊆ E(C) is assumed to
yields a non-empty C◦(F ).

In the following result our approach is similar to that of [Wal18, Lemma 3.9].

Lemma 7.3. For any finite subset F ⊆ E(C) with span F ∩ C◦ non-empty, we have
g[C◦(F )] = C◦(ϕ[F ]).

Proof. Suppose F ⊆ E(C) is finite. Fix x ∈ C◦(F ). We define W = g(x) + span(ϕ[F ]),
an affine subspace of V . Let y ∈ C◦(F ) and write y − x =

∑n
i=1 ri with ri ∈ Ri ∪ −Ri

and Ri ∈ F , for i = 1, . . . , n. We reorder the indices if necessary so that all ri are
positive for i ≤ m and negative for i > m for some m. Now we define x0 = x and
xk = x +

∑k
i=1 ri, for k = 1, . . . , n. We remark that our reordering guarantees that all

xk ∈ C◦(F ). Also, by construction xn = y. Note that g(x0) ∈ W . By Proposition 7.2,
we now iteratively obtain that all subsequent g(xi), and in particular g(xn) = g(y), are
contained in W . As y was chosen arbitrarily, we conclude g[C◦(F )] ⊆ W . We remark
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that g−1 satisfies (7.2) for the bijection ϕ−1 : E(C) → E(C). Therefore, we obtain the
reverse inclusion W ∩ C◦ ⊆ g[C◦(F )].

It remains to argue that W is a linear subspace of V . Let x ∈ C◦(F ). Then
x ∈ C◦ and hence x is an order unit. For all z ∈ C◦ there exists an n ∈ N such that
nx > g−1(z), so for all m ≥ n we have 0 ≤ g(mx) < z. In particular, ‖g(nx)− 0‖u → 0
as n → ∞. W is a finite dimensional affine subspace of V and, hence, is closed. We
conclude 0 ∈ W and that W is a linear subspace.

In the sequel we will denote the restriction g|C◦(F ) : C◦(F ) → C◦(ϕ[F ]) simply by
gF . Similar as in Chapter 6, our first step is to construct a point symmetry for each
x ∈ C◦.
Proposition 7.4. Let (V,C, u) be an order unit space, such that C equals the sum of
its extreme rays and g : C◦ → C◦ an antihomogeneous order antimorphism. For x ∈ C◦
and y ∈ V the following limit exists

∆y
xg(x) := lim

t→0

g(x+ ty)− g(x)

t
.

Moreover, for any finite F ⊆ E(C) with span F∩C◦ non-emtpy the restriction gF : C◦(F )→
C◦(ϕ[F ]) is Fréchet differentiable.

Proof. Let F ⊆ E(C) with span F ∩ C◦ non-empty. As the restriction gF of g is an
antihomogeneous order antimorphism from C◦(F ) onto C◦(ϕ[F ]), [Wal13, Corollary 1.2]
yields that C◦(F ) and C◦(ϕ[F ]) are linearly isomorphic. Let h : C◦(F )→ C◦(ϕ[F ]) be
a linear order isomorphism and f = h−1 ◦ gF : C◦(F ) → C◦(F ). Then C◦(F ) is a
symmetric cone by Theorem 7.1, since f is an antihomogeneous order antimorphism.
Therefore, spanF is a Euclidean Jordan algebra with C◦(F ) as the interior of its cone
of squares, by the Koecher-Vinberg theorem. In [LRW, Theorem 3.2] the isometries for
Thompson’s metric on the interior of the cone of a JB-algebra are characterised. This
yields in our case that f is the composition of a linear bijection and the inversion map
with respect to the Jordan product. In general, the inversion map on the interior of a
cone in a JB-algebra is smooth, whose derivative at x is given by −Q−1x . We conclude
that f , and hence gF , is Fréchet differentiable. Let DgF (x) : span F → span F denote
the Fréchet derivative of gF at x.

Now let x ∈ C◦ and y ∈ V be given. Let F ⊆ E(C) be finite with x, y ∈ span F .
Then ∆y

xg(x) exists and is given by DgF (x)(y).

Results in Chapter 6, from Proposition 6.5 up to and including Theorem 6.9, now
directly follow in our case with the following modification. For any pair x, y ∈ C◦

we consider the restriction gF of g to a subcone C◦(F ), for some F ⊆ E(C) finite with
x, y ∈ span(F ), instead of the restriction gxy of g to the 2-dimensional subcone C◦(x, y).
We summarise these results here for convenience.
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Let x ∈ C◦. The map Gg,x : V → V defined by Gg,x(y) = −∆y
xg(x) is a linear order

isomorphism whose inverse is given by Gg−1,g(x). The symmetry at x defined by

Sx = G−1g,x ◦ g, (7.6)

is an antihomogeneous order antimorphism, whose Gateaux derivative satisfies DSx =
−Id and satisfies both Sx(x) = x and Sx ◦ Sx = Id on C◦.

Even though unnecessary for showing that C is homogeneous, we argue that the
point symmetries Sx have x as their unique fixed point in our setting, giving rise to
a globally symmetric Banach-Finsler manifold similar as in Remark 6.12. We need to
employ arguments different to those used in the strictly convex cone case. First we
make the following observation on closed balls of Hilbert’s metric.

Lemma 7.5. Let (V,C, u) be a complete order unit space. If y ∈ C◦ and r > 0, then
Br(y) ∪ {0} is a ‖.‖u-closed subcone of C, where Br(x) is the closed ball for Hilbert’s
metric centered at y with radius r.

Proof. Suppose y ∈ C◦ and r > 0 are given. Let B := Br(y) ∪ {0}. In [LN12,
Lemma 2.6.1] it shown that a closed ball for Hilbert’s metric in the interior of a finite
dimensional closed cone is projectively convex. From the arguments, however, it follows
that any closed ball for Hilbert’s metric is convex. Since Hilbert’s metric is constant on
rays it follows that B is a cone. We verify that B is closed for ‖.‖u. Suppose (xn)n∈N is
a sequence in B that converges to x ∈ C. We consider several cases. If x ∈ C◦ holds,
then eventually all xn ∈ B and as (a, b) 7→ M(a/b) is a continuous map from V × C◦
to R by [LLNW18, Lemma 2.2], and x ∈ B follows. In the case x ∈ ∂C\{0}, we obtain
a contradiction as eventually all xn ∈ B and dH(xn, y) tends to infinity. The last case
to consider is x = 0, which follows from 0 ∈ B.

Now we can show that the map Sx, for some x ∈ C◦, has x as a unique fixed piont,
by using that Sx is an isometry of Hilbert’s metric.

Lemma 7.6. For each x ∈ C◦ we have that Sx has x as a unique fixed point.

Proof. Suppose y ∈ C◦ is a fixed point of Sx and y 6= x. Due to Sx being antiho-
mogeneous it follows that y is not a scalar multiple of x. Consider the closed dH-ball
Br(y) centered at y with radius r = dH(x, y). Then B := Br(y) ∪ {0} is a ‖.‖u-norm
closed subcone of C by Lemma 7.5 with y ∈ B◦ and x ∈ ∂B. By the Hahn-Banach
theorem, let ψ : V → R be a ‖.‖u-norm continuous functional that supports B at x.
Then ψ(x) = 0, ψ(y) > 0 and ψ(v) ≥ 0 for all v ∈ B. Consider the dH-geodesic defined
by γ(t) = tx+ (1− t)y, for t ∈ [0, 1], which is fully contained in Br(y). We remark that
Sx[Br(y)] ⊆ Br(y) holds, as y is a fixed point of the dH- isometry Sx. Therefore, the
dH-geodesic t 7→ γ̂(t) := Sx(γ(t)) is also contained in Br(y).

Consider the composition ψ ◦ Sx : C◦ → R and remark that it is Gateaux differen-
tiable. We compute the Gateaux derivative of ψ ◦ Sx at x in the direction of y − x. As
(ψ ◦ Sx)(x) = ψ(Sx(x)) = ψ(x) = 0, we get

lim
t>0

(ψ ◦ Sx)(x+ t(y − x))− (ψ ◦ Sx)(x)

t
= lim

t>0

ψ(γ̂(t))

t
≥ 0.
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However, as ψ is linear we can compute the same derivative as follows

ψ(DSx(x)(y − x)) = ψ(x− y) = −ψ(y) < 0.

Here we used that DSx = −Id. This yields the desired contradiction and we conclude
that indeed x is the unique fixed point of Sx.

We continue our analysis of the point symmetries Sx induced by g and how their
existence guarantees that C◦ is a homogeneous cone. First off, we study the interaction
between such symmetries and unique geodesics with respect to Thompson’s metric. A
point symmetry Sx maps a unique dT -geodesic through x onto itself and reverses its
orientation, as we show below. A similar statement is made in Lemma 6.10 with the
difference being that there the cone is strictly convex, hence uniqueness of the geodesic
is automatic. Here we have to restrict the scope to unique geodesics. For an overview
of geodesics and their properties, see Section 1.5.

Lemma 7.7. Let x ∈ C◦. For a unique dT -geodesic line γ : R→ C◦ with γ(0) = x we
have Sx(γ(t)) = γ(−t), for all t ∈ R.

Proof. Let x ∈ C◦ and γ : R → C◦ a unique geodesic line with γ(0) = x. We remark
that γ̂ : R→ C◦ defined by γ̂(t) = Sx(γ(t)), for t ∈ R, is a unique geodesic as Sx is an
isometry under dT , and satisfies γ̂(0) = x. Suppose that γ is of type II. Then γ(t) = etx
for all t ∈ R. In this case, the antihomogeneity of Sx immediately yields

γ̂(t) = Sx(e
tx) = e−tSx(x) = e−tx = γ(−t).

In particular, this yields that as Sx is an involution that γ and γ̂ are necessarily of the
same type, as each unique geodesic is either of type I or of type II.

Suppose now that γ is a unique geodesic of type I. Then there two pairs r, s ∈ ∂C
and u, v ∈ ∂C with r + s = x and u + v = x such that γ(t) = etr + e−ts, and
γ̂(t) = etu + e−tv, for all t ∈ R. Recall that Sx is Gateaux differentiable and satisfies
DSx = −Id, and hence

γ̂′(0) = DSx(γ(0))(γ′(0)) = DSx(x)(r − s) = −r + s.

Computing the same derivative directly yields γ̂′(0) = u − v. In combination with
r + s = x = u+ v this yields r = v and s = u. Therefore, we conclude

Sx(γ(t)) = γ̂(t) = etu+ e−tv = e−tr + ets = γ(−t).

We verify that our cone has sufficiently many unique geodesics for Thompson’s
metric. Even though this is a direct consequence of [LR15, Theorem 4.3], we provide a
proof for the reader’s convenience.
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Lemma 7.8. Let x ∈ C◦ and r, s ∈ ∂C with x = r+ s. The type I geodesic γ : R→ C◦

through x defined by γ(t) = etr + e−ts, for all t ∈ R, is unique whenever r or s is an
extreme vector of C.

Proof. Let x ∈ C◦ and r, s ∈ ∂C be given with x = r + s. We remark that r 6= s. Let
γ denote the type I geodesic given by γ(t) = etr + e−ts, for all t ∈ R. Without loss of
generality we assume that r is an extreme vector.

By [LR15, Theorem 4.3] the geodesic γ is unique if no y ∈ V \{0} and ε > 0
exist such that r + λy and s + λy are elements of ∂C(r, s, y) for all |λ| < ε, where
C(r, s, y) = C ∩ span(r, s, y). Suppose the converse holds. Let λ ∈ R with |λ| < ε.
Then both r−λy and r+λy are in C and r lies on the straight line segment connecting
them. Therefore, as the extreme ray spanned by r is a face of the cone, we infer that
r+λy is a scalar multiple of r. In particular, y is a multiple of r. Now s−µr ∈ ∂C(r, s)
for some µ > 0, which yields a contradiction.

Combining the existence of unique type I geodesics for Thompson’s metric in the
direction of extreme rays, as given by Lemma 7.8, with the fact that a point symmety
Sx mirrors a unique geodesic through x, as shown in Lemma 7.7, we obtain information
on the automorphism group Aut(C◦).

Lemma 7.9. For any x ∈ C◦ and r ∈ V an extreme vector of C with x+ r ∈ C◦, there
exists an S ∈ Aut(C◦) such that S(x) = x+ r.

Proof. Let λ ∈ R and s ∈ ∂C such that x = r′+ s with r = λr′ and r′ ∈ C. We remark
that x + λr′ = x + r ∈ C◦, so λ > −1. Indeed, if λ ≤ −1 then x + r ≤ x − r′ = s
holds and x + r /∈ C◦ follows. Consider the geodesic line γ : R → C◦ for Thompson’s
metric defined by γ(t) = etr′ + e−ts, for t ∈ R. By Lemma 7.8, γ is unique. Let
α =
√

1 + λ > 0. Now γα(t) := αγ(t) is a unique geodesic through αx such that

γα(lnα) = αelnαr′ + αe− lnαs

= α2r′ + s

= (r′ + s) + λr′ = x+ r.

Let y = γα(1
2

lnα). Then t 7→ γα(t+ 1
2

lnα) is a unique dT -geodesic line and by Lemma
7.7 we get

Sy(αx) = Sy(γα(−1

2
lnα +

1

2
lnα) = γα(lnα) = x+ r.

Now consider the type II geodesic µ(t) = etx, which is necessarily unique. Let z =
µ(1

2
lnα). Then

Sz(x) = Sz(µ(−1

2
lnα +

1

2
lnα) = µ lnα = αx.

Consider the composition S = Sy ◦ Sz. We get S(x) = Sy(αx) = x + r. Moreover,
S is a composition of two antihomogeneous order antimorphisms and is, therefore, a
homogeneous order isomorphism. By [NS77, Theorem B], S is linear and we conclude
S ∈ Aut(C◦).
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We are in position to show that under the standing hypotheses C◦ is a homogeneous
cone.

Theorem 7.10. Let (V,C, u) be an order unit space, such that C equals the sum of its
extreme rays and g : C◦ → C◦ be an antihomogeneous order antimorphism. Then C◦ is
homogeneous.

Proof. Let x, y ∈ C◦ be given. By assumption we can write y − x =
∑n

i=1 σiri with
all ri ∈ C extreme vectors and σi ∈ {−1, 1}. We reorder the indices if necessary such
that the σi form a sequence of exclusively positive signs followed by negative signs. Let
x0 = x and for k ∈ {1, . . . n} we let xk = x +

∑k
i=1 σiri. For each k ∈ {1, . . . , n}, we

denote by Sk the automorphism of C◦, obtained by Lemma 7.9, that maps xk−1 to xk.
The automorphism defined as the composition S := Sn ◦ . . . ◦ S1 satisfies S(x) = xn =
y.

Self-dual cone in a Hilbert space

We show that under the standing hypotheses, our vector space V can be endowed with
an inner product that makes V a Hilbert space, and that C◦ is self-dual for this inner
product.

Construction of an inner product

Our strategy in constructing a bilinear form on V ⊕ V , is to build it up from inner
products induced by the finite dimensional subcones of C◦ that are symmetric. From
Lemma 7.3 we know that for any finite F ⊆ C◦ with span F ∩ C◦ non-empty we have
g[C◦(F )] = C◦(ϕ[F ]). In the situation F = ϕ[F ], the restriction gF is an antihomo-
geneous order antimorphism from the interior of a finite dimensional closed cone to
itself and, due to Theorem 7.1(Walsh), C◦(F ) is a symmetric cone. A priori, it is not
apparent that there exists a finite subset F ⊆ E(C) with ϕ[F ] = F .

We remark, however, that the point symmetry Su : C◦ → C◦ given by (7.6) is an
antihomogeneous order antimorphism that, in addition, is an involution. Henceforth,
we assume without loss of generality that g is an involution. This means that the
corresponding ϕ is also an involution. For a finite subset F ⊆ E(C) with span F ∩ C◦
non-empty we now define

F ∗ := F ∪ ϕ[F ],

and remark that ϕ[F ∗] = F ∗. Now gF ∗ : C◦(F ∗)→ C◦(F ∗) is an antihomogeneous order
antimorphism. By Theorem 7.1 there exists an inner product (· | ·)F ∗ on span(F ∗) ⊕
span(F ∗), for which C◦(F ∗) is self-dual and that satisfies (7.1).

It is convenient to introduce some notation. Recall that the M -function is defined
by

M(x/y) = inf{α ≥ 0: x ≤ αy},
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for x ∈ C and y ∈ C◦. If multiple cones are under consideration, we denote the
same functions by M(·/· ;C) to emphasize the dependence on the cone C. An obvious
fact is that for any finite F ⊆ E(C) with span F ∩ C◦ non-empty we have M(x/
y ;C(F )) = M(x/y ;C), for all x ∈ C(F ) and y ∈ C◦(F ).

Lemma 7.11. Let F and G be finite subsets of E(C). Then we have

(x | y)F ∗ = (x | y)G∗ ,

for all x, y ∈ span(F ∗) ∩ span(G∗).

Proof. It is sufficient to consider the case F ⊆ G, since for any F,G ⊆ E(C) finite, the
union F ∪G is also finite and contains both F and G. Let x ∈ C(F ∗) and y ∈ C◦(F ∗)
be given. By (7.1) we get for all y ∈ C◦(F ∗) and x ∈ R, for some R ∈ F ∗, that

(x | y)F ∗ = M(x/g(y); C◦(F ∗)) = M(x/g(y); C◦(G∗)) = (x | y)G∗ .

As (· | ·)F ∗ and (· | ·)G∗ are bilinear, and both C◦(F ∗) and the union of rays in F ∗

generate span(F ∗), this yields the assertion.

We are now in position to construct an inner product on V ⊕ V for whch C◦ is a
domain of positivity.

Theorem 7.12. Let (V,C, u) be an order unit space, such that C equals the sum of its
extreme rays and g : C◦ → C◦ be an antihomogeneous order antimorphism. Then there
exists an inner product (· | ·) on V such that

C◦ =
{
v ∈ V : (v | x) > 0 for all x ∈ C\{0}

}
. (7.7)

Proof. As before, we assume without loss of generality that g is an involution, by
replacing it with Su if necessary. For any pair (x, y) ∈ V ⊕ V there exists a finite
F ⊆ E(C) with x, y ∈ span(F ). The quantity

B(x, y) = (x | y)F ∗ ,

is well-defined according to Lemma 7.11. The properties of B : V ⊕ V → R of being
bilinear, symmetric and positive-definite follow, as they are verified on a finite set of
vectors. Indeed, any such finite set of vectors is contained in a subcone C◦(F ∗), whose
corresponding inner product (· | ·)F ∗ has these listed properties by Theorem 7.1 and
determines B. Thus (· | ·) := B(·, ·) defines an inner product on V ⊕ V .

We prove (7.7). Let v ∈ C◦. For x ∈ C\{0} there exists a finite F ⊆ E(C) with
v, x ∈ span(F ). Then (v | x) = (v | x)F ∗ > 0, as C◦(F ∗) is self-dual for (· | ·)F ∗ due to
Theorem 7.1. For the reverse inclusion, suppose v ∈ V is contained in the right-hand
side of (7.7). Let F ⊆ E(C) be finite with v ∈ span(F ). Then for all x ∈ C(F ∗)\{0}
we have (v | x)F ∗ = (v | x) > 0. Hence, the self-duality of C◦(F ∗) for (· | ·)F ∗ yields
that v ∈ C◦(F ∗) ⊆ C◦.
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Finite rank and completeness

We argue that the inner product constructed in Proposition 7.12 induces a complete
norm, by showing that the induced inner product norm is equivalent to the order unit
norm. For this purpose, we introduce a concept of rank in our space. For x ∈ V we
define its rank, denoted by ρ(x), as the smallest number of extreme vectors needed to
linearly span x. Remarkbly, there exists a global bound on the rank of elements in V ,
as a consequence of C◦ being a homogeneous cone.

Lemma 7.13. For x ∈ V we have ρ(x) ≤ 2ρ(u).

Proof. Put m := ρ(u). Let r1, . . . , rm ∈ C be extreme vectors such that u =
∑m

i=1 λiri,
for some λi ∈ R, for i = 1, . . . ,m. Let y ∈ C◦. By Theorem 7.10 there exists a linear
order isomorphism S : C → C such that S(u) = y. We get y = S(u) =

∑m
i=1 λiS(ri).

By Corollary 3.2, the vectors S(ri) are extreme, for i = 1, . . . ,m. Hence ρ(y) ≤ m. As
C◦ generates V , we obtain for all x ∈ V that ρ(x) ≤ 2m = 2ρ(u).

We briefly recall the spectral theory for finite dimensional formally real Jordan
algebras, as also outlined in Section 1.6. The spectral theory allows us to express the
norm induced by the inner product in terms of the eigenvalues of an element. Let (A, ◦)
be a finite dimensional formally real Jordan algebra with unit e. A c ∈ A is said to be
an idempotent if c2 = c. An idempotent c ∈ A is considered primitive if c is non-zero
and cannot be written as the sum of two non-zero idempotents. A set {c1, . . . , ck} ⊆ A
of primitive idempotents is called a Jordan frame if ci ◦ cj = 0, for all i 6= j, and∑k

i=1 ci = e. The Spectral Theorem [FK94, Theorem III.1.2] says that for each a ∈ A
there exists a Jordan frame {c1, . . . , ck} and unique real numbers λ1 ≤ . . . ≤ λk such
that a =

∑k
i=1 λici. In fact, σ(a) = {λ1, . . . , λk}. Here the number k ∈ N is indepedent

of a and satisfies k ≤ dimA.

Proposition 7.14. Suppose (V,C, u) be a complete order unit space, such that C equals
the sum of its extreme rays and g : C◦ → C◦ an antihomogeneous order antimorphism.
Then V can be endowed with an inner product (· | ·) such that (7.7) holds and (V, (· | ·))
is a Hilbert space.

Proof. Let (· | ·) be the inner product as obtained in Theorem 7.12. Then (7.7) is
satisfied. Let ‖.‖2 denote the norm induced by (· | ·), i.e., for x ∈ V we have ‖x‖2 =√

(x | x). As (V,C, u) is assumed to be complete, it suffices to argue that ‖.‖2 and ‖.‖u
are equivalent. Let n := 6ρ(u) and m := ‖u‖22. We define

τ(x, y) =
n

m
(x | y), x, y ∈ V.

Remark that τ is a positive definite symmetric bilinear form on V ⊕ V .
Let x ∈ V be given. By Lemma 7.13 there exists a F ⊆ E(C) such that x, u ∈

span(F ) and dim span(F ) ≤ 3ρ(u). Let A := span(F ∗) and remark that dimA ≤
6ρ(u) = n. By construction τ(u, u) = n. Since C◦(F ∗) is a symmetric cone for (· | ·),
by [Koe62, Theorem VI.15], there exists a bilinear product ◦ : A ⊕ A → A such that
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(A, ◦) is a formally real Jordan algebra, such that A◦+ = C◦(F ∗). Moreover, due to
[Koe62, Theorem III.13] the unit of (A, ◦) is u and τ(a, b) = TrL(a ◦ b), for all a, b ∈ A.
Here L(a ◦ b) denotes left multiplication by a ◦ b. By the Spectral Theorem there
exists a Jordan frame {c1, . . . , ck} and unique real numbers λ1 ≤ . . . ≤ λk such that
x =

∑k
i=1 λici. As the ci are pairwise orthogonal idempotents we get x2 =

∑k
i=1 λ

2
i ci.

Now we compute

‖x‖2 =
m

n

√
τ(x, x) =

m

n

√
TrL(x2) =

m

n

√√√√ k∑
i=1

λ2i TrL(ci). (7.8)

The possible eigenvalues of L(c) for an idempotent c ∈ A are 0, 1
2

and 1 by [FK94,
Proposition III.1.3] and, hence, for i = 1, . . . , k we have 1 ≤ TrL(ci) ≤ n. Next we
want to describe ‖x‖u. Remark that as u ∈ C(F ∗) = A+, that computing the order
unit norm of x in (V,C, u) yields the same as in (A,A+, u). So from u =

∑k
i=1 ci we

obtain ‖x‖u = max{|λ1|, . . . , |λk|}. Let j ∈ {1, . . . , k} be such that |λj| = ‖x‖u. We

then get ‖x‖u ≤
√∑k

i=1 λ
2
i ≤ k‖x‖u. Combining this with k ≤ dimA ≤ n and (7.8)

we get
m

n
‖x‖u ≤ ‖x‖2 ≤ m

√
n‖x‖u.

Since n and m are defined independent on the choice of x we conclude that ‖.‖2 and
‖.‖u are equivalent.

JH-algebras

A real Jordan algebra H that is a Hilbert space with an inner product (· | ·) which is
associative, that is,

(a ◦ b | c) = (b | a ◦ c) a, b, c ∈ H,

is called a JH-algebra. It is shown in [Chu17, Theorem 3.1] that, as an infinite dimen-
sional generalisation of the Koecher-Vinberg theorem, a symmetric cone in a Hilbert
space arises precisely as the interior of the cone of squares of unital JH-algebra. We
have shown that a complete order unit space (V,C, u), such that C equals the sum of its
extreme rays and C◦ admits an antihomogeneous order antimorphism, can be endowed
with an inner product turning V into a Hilbert space in which C◦ is a symmetric cone.
Therefore, by the result of Chu, under those assumptions V is a unital JH-algebra
with C as its cone of squares. The converse of this last statement also holds. In or-
der to prove this, it is convenient to consider the following characterisation of unital
JH-algebras, which including its proof is due to Roelands and Wortel through personal
communication.

Lemma 7.15. A unital JH-algebra is a finite direct sum of formally real Jordan alge-
bras and spin factors.
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Proof. Let H be a unital JH-algebra. By [Chu17, Lemma 2.6] the order unit norm
is equivalent with the norm from the inner product. Hence, H is reflexive and has
a predual. In particular, H is a JBW-algebra. Let z ∈ H be the central projection
such that zH is the nonatomic part of H. Suppose z 6= 0. We split z into a sum
of two non-trivial orthogonal projections. One of them we split again into the sum
of two non-trivial orthogonal projections, and so on. This process does not terminate
in finite steps as zH is purely non-atomic. We obtain an infinite sequence (pn)∞n=1

of pairwise orthogonal projections. The JB-subalgebra generated by these projections
is associative, and is isometrically isomorphic to some C0(S), for a locally compact
Hausdorff space S. Then the map

(λn) 7→
∞∑
n=1

λnpn,

is an isometric embedding of c0 into H, contradicting the reflexivity of H. Hence, z = 0
and H is an atomic JBW-algebra. Therefore, by [AS03, Proposition 3.45], H is a direct
summand of type I JBW-factors. Since by the above arguments H cannot contain an
infinite collection of orthogonal projections, this is a finite direct sum and each factor
is of finite type. A finite type I JBW-factor is a spin factor or the self-adjoint matrices
over R,C,H or the 3× 3-matrices over O.

Using these results on JH-algebras we can now fully characterise the symmetric
cones in infinite dimensions.

Theorem 7.16. Let (V,C, u) be a complete order unit space. Then C equals the sum of
its extreme rays and there exists an antihomogeneous order antimorphism g : C◦ → C◦

if and only if C◦ is a symmetric cone.

Proof. Suppose that C equals the sum of its extreme rays and g : C◦ → C◦ is an
antihomogeneous order antimorphism. Then by Theorem 7.12 there exists an inner
product (· | ·) on V , which by Proposition 7.14 turns V into a Hilbert space, for which
C◦ is a self-dual cone by (7.7). Moreover, C◦ is a homogeneous cone due to Theorem
7.10. We conclude that C◦ is in fact a symmetric cone.

Conversely, suppose that (V, (· | ·)) is a Hilbert space such that C◦ is a symmetric
cone with respect to (· | ·). Then by [Chu17, Theorem 3.1], V can be endowed with
a Jordan product turning into a unital JH-algebra such that C◦ is the interior of the
cones of squares. Now by our characterisation of unital JH-algebras in Lemma 7.15
we know that V is a finite direct summand of formally real Jordan algebras and spin
factors. The cone in any formally real Jordan algebra or spin factor equals the sum of
its extreme rays and, hence, as C is a finite direct sum of such cones it also equals the
sum of its extreme rays. Lastly, the inversion map ι : C◦ → C◦ defined by x 7→ x−1 is
an antihomogeneous order antimorphism.



122 SYMMETRIC CONES AND ORDER ANTIMORPHISMS

Automatic antihomogeneity

In this last section we argue that the antihomogeneous condition imposed on g in The-
orem 7.16 is superfluous. Our strategy is to decompose our cone C into an engaged
part and a disengaged part. Using Proposition 7.2 we can show that an antimorphism
g : C◦ → C◦ respects this decomposition. Restricted to the engaged part g will auto-
matically become antihomogeneous, by results from [Wal18], and by Theorem 7.16 this
part is symmetric. The disengaged part of C must be finite dimensional, and as all
its extreme rays are linearly independent it is isometrically isomorphic to a standard
Euclidean cone, which is symmetric.

Henceforth let (V,C, u) be a complete order unit space, such that C equals the sum of
its extreme rays and g : C◦ → C◦ an order antimorphism. As before let ϕ : E(C)→ E(C)
be the bijection, as obtained in Proposition 7.2, corresponding to g. Furthermore, we
introduce the notations RD and RE for the collection of disengaged extreme rays and
engaged extreme rays of C, respectively. Let VD := span RD and VE := span RE.

Lemma 7.17. Under the standing hypotheses (V,C) = (VD, C(RD)) ⊕ (VE, C(RE)),
as a direct sum of partially ordered vector spaces.

Proof. Let x ∈ C. By assumption there exist extreme vectors x1, . . . , xn ∈ C such that
x =

∑n
i=1 λixi. Let I be the subset of {1, . . . , n} consisting of those indices for which

the corresponding xi is a disengaged vector and let J be the complement of this set.
Then by construction xD =

∑
i∈I xi ∈ C(RD) and xE =

∑
j∈J xj ∈ C(RE).

Suppose now that x ∈ VD ∩ VE and x 6= 0. We write

x =
n∑
i=1

xi =
m∑
j=1

yj,

with xi ∈ V disengaged extreme vectors and yj ∈ V engaged extreme vectors. It follows
from

x1 =
m∑
j=1

yj −
n∑
i=2

xi

that x1 is engaged, which yields a contradiction. We conclude VD ∩ VE ⊆ {0}.

Due to Lemma 7.17 we can write u = (uD, uE) with uD ∈ C(RD) and uE ∈ C(RE).
Then uD and uE are order units in C(RD) and C(RE), respectively. Moreover, we get

C◦ = C◦(RD)× C◦(RE).

In what follows we argue that g factors of this direct sum.

Lemma 7.18. Under the standing hypotheses, ϕ[RD] = RD and ϕ[RE] = RE.

Proof. Let R ∈ RE be given. Then there exists a finite F ⊆ RE\{R} with R ∈ span F
and span F ∩ C◦ 6= ∅. By Lemma 7.2 we get

ϕ(R) ∈ g[C◦(F )] = C◦(ϕ[F ]).
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As ϕ is injective, ϕ(R) /∈ ϕ[F ] so ϕ(R) is engaged. We conclude ϕ[RE] ⊆ RE. Since g−1

is also an order antimorphism we get by Lemma 7.2 the reverse inclusion RE ⊆ ϕ[RE].
Due to ϕ being bijective we also obtain ϕ[RD] = RD.

Lemma 7.19. There exist order antimorphisms gD : C◦(RD)→ C◦(RD) and gE : C◦(RE)→
C◦(RE) such that for all (xD, xE) ∈ C◦(RD)× C◦(RE) we have

g((xD, xE)) = (gD(xD), gE(xE)).

Proof. Let x = (xD, xE) and y = (yD, yE) be given in C◦ = C◦(RD)×C◦(RE). Suppose
xD = yD holds. Then x = y +

∑n
i=1 ri for some ri ∈ Ri with Ri ∈ RE, for i = 1, . . . , n.

Relabelling the indices such that x1, . . . , xj < 0 and xj+1, . . . , xn > 0 for some j ∈
{1, . . . , n}, guarantees that y +

∑k
i=1 ri ∈ C◦ for all k = 1, . . . , n. Due to Lemma 7.2

we obtain

g(x)− g(y) = g

(
y +

n∑
i=1

ri

)
− g(y) ∈ span ϕ[RE].

As ϕ[RE] = RE by Lemma 7.18, we remark that g(x)−g(y) ∈ VE. In other words, g(x)
and g(y) coincide in their first argument with respect to the decomposition obtained in
Lemma 7.17. Similarly, if g(x) and g(y) coincide in the first argument, then by applying
the same arguments to g−1 also x and y coincide in the first argument. This shows that
gD(xD) = g(xD, xE) is well-defined independent of xE. Analogously, as Lemma 7.18
yields ϕ[RD] = RD, we obtain that gE(xE) = g(xD, xE) is well-defined independent of
xE. That both gD and gE are order antimorphisms now follows from the fact that g is
an order antiomorphism.

On the engaged part of our cone the order antimorphism automatically becomes
antihomogeneous, as a consequence of the finite dimensional result by Walsh, which
states that an order antimorphism between the interiors of two closed cones is antiho-
mogeneous whenever one of the cones does not contain a disengaged extreme vector.

Lemma 7.20. The order antimorphism gE as in Lemma 7.19 is antihomogeneous.

Proof. Let x ∈ C◦(RE) and λ ∈ R◦+ be given. Let F ⊆ RE be finite such that
x ∈ C◦(F ). Then gE restricts to an order antimorphism g̃E : C◦(F ) → C◦(ϕ[F ]) by
Lemma 7.3. We remark that C◦(F ) does not contain a disengaged extreme ray. Now
[Wal18, Theorem 1.1] yields that g̃E is antihomogeneous and

gE(λx) = g̃E(λx) = λ−1gE(x).

In contrast to the engaged part, the order antimorphism gD need not be antiho-
mogeneous. This, however, is not of importance as the disengaged part of the cone
C◦(RD) is linearly isomorphic to a standard finite dimensional cone and, therefore, is
symmetric.
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Lemma 7.21. Let (V,C, u) be an order unit space. If all extreme rays of C are dis-
engaged and C equals the sum of its extreme rays, then C is linearly isomorphic to a
standard Euclidean cone.

Proof. LetR denote the collection of extreme rays of C. By assumption we can write the
order unit u as a linear combination of finitely many extreme vectors, say u =

∑n
i=1 ri

with ri ∈ Ri ∈ R for all i. Suppose there exists an R ∈ R with R 6= Ri for i = 1, . . . , n.
Let r ∈ R with r ≤ u. Now write u − r =

∑m
j=1 sj with all sj extreme vectors. Then

we compute

r = u− (u− r) =
n∑
i=1

ri −
m∑
j=1

sj.

In particular, this contradicts that r is a disengaged extreme vector by assumption.
We have shown that R does not contain additional rays besides R1, . . . , Rn. Thus R
is finite. Since V is the linear span of the extreme rays, V is finite dimensional. As all
extreme rays are disengaged, any collection of reprensentatives form an algebraic basis
for V . The basis transformation that maps this basis onto the standard coordinate
basis is the desired linear order isomorphism from (V,C) onto (Rn,Rn+).

We obtain a slight improvement for our characterisation of symmetric cones in
infitine dimensions, Theorem 7.16, by dropping the antihomogeneous condition on g.

Theorem 7.22. Let (V,C, u) be a complete order unit space. Then C equals the sum
of its extreme rays and there exists an order antimorphism g : C◦ → C◦ if and only if
C◦ is a symmetric cone.

Proof. Let (V,C, u) be a complete order unit space, C the sum of its extreme rays and
g : C◦ → C◦ be an order antimorphism. By Lemma 7.17 we get C◦ = C◦(RD)×C◦(RE).
Let gD and gE be the order antimorphisms as obtained in Lemma 7.19. Since gE :
C◦(RE) → C◦(ϕ[RE]) is antihomogeneous by Lemma 7.20 the cones C◦(RE) and
C◦(ϕ[RE]) are linearly isomorphic. In particular, all extreme rays in C◦(ϕ[RE]) are
engaged. Thus we get C◦(ϕ[RE]) ⊆ C◦(RE) and hence ϕ[RE] ⊆ RE. As all arguments
also apply to g−1 we get ϕ[RE] = RE. We conclude that gE : C◦(RE)→ C◦(RE) is an
antihomogeneous order antimorphism. By Theorem 7.16, C◦(RE) is a symmetric cone.
Due to Lemma 7.21 the cone C◦(RD) is linearly isomorphic to a standard Euclidean cone
and, in particular, is a symmetric cone. Hence, the product C◦ = C◦(RD)×C◦(RE) is
also symmetric. The converse statement follows from Theorem 7.16.



125

Bibliography

[AA02] Y.A. Abramovich, C.D. Aliprantis: An Invitation to Operator Theory, Amer-
ican Mathematical Society, 2002.

[Ada75] R.A. Adams: Sobolev spaces, Academic Press, New York, 1975.

[Ake71] C. A. Akeman, A Gelfand representation theory for C*-algebras. Pacific J.
Math., 39 (1971), 1–11.

[Ale67] A.D. Alexandrov, A contribution to chronogeometry. Canad. J. Math. 19,
(1967), 1119–1128.
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Summary

In the study of partially ordered vector spaces a central problem is to understand the
structure of order isomorphisms. Of particular interest is to classify the cones in such
partially ordered vector spaces between which every order isomorphism is linear. Re-
search on this question dates back to 1953 motivated by Relativity theory, wherein the
causal cone is modelled as the three dimensional Lorentz cone. In subsequent years, the
automatic linearity of order isomorphisms has been studied frequently for more general
classes of cones. Noteworthy contributions to this area are both a result of Molnár, who
shows that any order isomorphism between cones consisting of positive semi-definite
bounded linear operators on a Hilbert space is linear using operator algebra techniques,
and the result by Noll and Schäffer that states that any order isomorphism is linear
provided that either cone is the sum of its engaged extreme rays. Noll and Schäffer de-
scribe an order theoretic condition that is sufficient to guarantee automatic linearity of
order isomorphisms, unfortunately however, their condition is too restrictive to include
Molnár’s result. We extend their methods to hold in a significantly more general set-
ting of partially ordered vector spaces, and consequently generalise the existing results
concerning automatic linearity of order isomorphisms in an order theoretic framework.

A deep connection between Jordan algebras structure and symmetric geometry of
cones in finite dimensions was discovered independently by Koecher and Vinberg. In or-
der to formulate their result more precisely, we briefly introduce various concepts. The
interior of a closed finite dimensional cone is considered a symmetric cone if it is both
homogeneous, in the sense that its automorphism group acts transitively on it, and is
self-dual with respect to an inner-product. Motivated by Quantum mechanics, a space
of Hermitian matrices can be endowed with algebra structure by means of the Jordan
product: A ◦ B := (AB + BA)/2. An algebra which is commutative and satisfies the
Jordan identity, a property weaker than associativity, is called a Jordan algebra. Fur-
thermore, a Jordan algebra is considered formally real if the sum of squares of elements
can only be zero if all the elements themselves are zero. The famous Koecher-Vinberg
theorem asserts that the interior of the cone consisting of squares of a formally real
Jordan algebra is symmetric, and that all finite dimensional symmetric cones arise in
this way from a formally real Jordan algebra. With the aid of this result, one can
also endow a symmetric cone with a Riemannian metric, making it a prime example
of a Riemannian symmetric space. Results outlining these deep connections between
symmetric cones in Euclidean spaces, formally real Jordan algebras and Riemannian
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symmetric spaces are limited to finite dimensions. A central topic of this thesis is to
develop pioneering steps towards similar theories in infinite dimensions. The notion of
a formally real Jordan algebra has been generalised in the infinite dimensional setting
by Alfsen, Schulz and Størmer, to a Jordan Banach algebra, or JB-algebra for short. In
general, a JB-algebra cannot be realised as an inner-product space, and hence there is
no natural notion of self-duality, nor can one endow the interior of the cone of squares
with a Riemannian metric. Instead, we explore an order theoretic way to characterise
the cone of a JB-algebra. In recent work, Walsh has characterised the finite dimensional
symmetric cones as those that admit an antihomogeneous order antimorphism. We con-
tribute to generalising this approach to the infinite dimensional setting of JB-algebras,
in twofold. First, we characterise the spin factors, a special class of JB-algebras, among
the complete order unit spaces as those that have a strictly convex cone and admit an
order antimorphism on the interior of that cone. Secondly, we obtain an order theoretic
characterisation of symmetric cones in infinite dimensional order unit space. We do so
with the aid of the metric geometric techniques that we developed for the analysis of
spin factors, and by adapting the results of Noll and Schäffer to instead concern order
antimorphisms. More precisely, we show that the cone of a complete order unit space
is the sum of its extreme rays and admits an order antimorphism on its interior if and
only if the order unit space can be endowed with an inner-product, making it a Hilbert
space, with respect to which the interior of the cone is symmetric. Due to recent work
by Chu, this latter condition is equivalent for the cone to be the cone of squares for
some Jordan Hilbert algebra.

The self-adjoint part of a C∗-algebra endowed with the canonical Jordan product is
a JB-algebra. This further supports the idea that a JB-algebra is the natural infinite
dimensional analogue of a formally real Jordan algebra. Hanche-Olsen and Størmer
have lifted much of the theory on C∗-algebras and von Neumann algebras to the setting
of JB-algebras and, their von Neumann analogues, JBW-algebras. A classic result by
Kadison states that any linear order isomorphism between C∗-algebras, which carries
the unit of one algebra onto the unit of the other algebras, is a C∗-isomorphism and, in
particular, a Jordan isomorphism between the self-adjoint parts. Based on this result,
it can be shown that if unital JB-algebras are linearly order isomorphic that then they
are also Jordan isomorphic. This motivates us to understand the structure of order iso-
morphisms between cones in JB-algebras, and moreover, to find conditions under which
they are necessarily linear. Due to the inherent connection between geometric proper-
ties of the cone in a JB-algebra and its algebraic properties, our results concerning the
automatic linearity of order isomorphisms developed in the general setting of partially
ordered vector spaces are applicable here. We start by fully describing the order iso-
morphisms between cones of atomic JBW-algebras and, in particular, characterise for
which of these spaces every order isomorphism between cones is linear. By a canonical
construction involving the bidual we can view any unital JB-algebra as a subalgebra of
an atomic JBW-algebra. With the aid of deep results by Hanche-Olsen and Størmer,
related to this embedding, we are able to use our description of order isomorphism
between cones of atomic JBW-algebras to study order isomorphisms between cones of
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unital JB-algebras. This leads to the description of a rich class of JB-algebras for which
an order isomorphism between cones in such spaces is linear provided it satisfies a mild
continuity property.
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Nederlandse samenvatting

In het onderzoek naar partieel geordende vector ruimtes is het een centraal probleem
om de structuur van orde isomorfismen te begrijpen. Van bijzonder belang is het
classificeren van kegels in zulke partieel geordende vector ruimtes waartussen elk orde
isomorfisme lineair is. Onderzoek naar deze vraag dateert van 1953 gemotiveerd door
Relativiteitstheorie, waarin de lichtkegel gemodelleerd wordt als de driedimensionale
Lorentz kegel. In de daaropvolgende jaren werd de automatische lineariteit van orde
isomorfisme onderzocht voor klassen van kegels in toenemende algemeenheid. Twee
opmerkelijke bijdragen aan dit gebied zijn een resultaat van Molnár, die zegt dat elk
orde isomorfisme tussen kegels bestaande uit positief semi-definiete begrensde lineaire
operatoren op een Hilbert ruimte noodzakelijk lineair is gebruik makend van operator
algebra technieken, en een resultaat van Noll en Schäffer, dat luidt dat elk orde isomor-
fisme lineair is onder de voorwaarde dat de kegel de som is van zijn betrokken extreme
stralen. Noll en Schäffer beschrijven een orde theoretische voorwaarde die voldoende is
om de automatische lineariteit van order isomorfismen te garanderen, echter, helaas is
hun voorwaarde te restrictief om Molnár’s resultaat te bevatten. We breiden hun meth-
oden uit naar een significant algemenere klasse van partieel geordende vector ruimtes,
en zodoende generaliseren we de huidige resultaten over automatische lineariteit van
order isomorfismen vanuit een orde theoretisch kader.

Een diepe connectie tussen Jordan algebra structuur en symmetrische geometrie van
kegels is onafhankelijk van elkaar ontdekt door Koecher en Vinberg. Om dit resultaat
preciezer te beschrijven, introduceren wij kort verschillende concepten. Het inwendige
van een gesloten eindigdimensionale kegel wordt beschouwd als een symmetrische kegel
als deze zowel homogeen is, in de zin dat zijn automorfismen groep transitief op hem
werkt, als zelf-duaal is ten opzichte van een inwendig product. Gemotiveerd vanuit de
Quantum mechanica, kan een ruimte van Hermitische matrices voorzien worden van
algebra structuur door middel van het Jordan product: A ◦ B := (AB + BA)/2. Een
algebra die commutatief is en aan de Jordan identiteit voldoet, een eigenschap zwakker
dan associativiteit, wordt een Jordan algebra genoemd. Verder wordt een Jordan al-
gebra formeel reëel genoemd als de som van kwadraten van elementen alleen nul kan
zijn als de elementen zelf nul zijn. De welbekende Koecher-Vinberg stelling beweert
dat het inwendige van de kegel van kwadraten in een formeel reële Jordan algebra een
symmetrische kegel is, en bovendien dat alle eindigdimensionale symmetrische kegels
op deze manier verkregen kunnen worden. Met behulp van dit resultaat kan men een
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symmetrische kegel voorzien van een Riemannse metriek, waarbij het een belangrijk
voorbeeld wordt van een Riemanns symmetrische ruimte. Bestaande resultaten die
deze diepe connecties tussen symmetrische kegels in Euclidische ruimten, formeel reële
Jordan algebra’s en Riemanns symmetische ruimten beschrijven zijn beperkt tot eindige
dimensies. Een centraal onderwerp van deze dissertatie is om baanbrekende stappen
te zetten naar soortgelijke theoriëen in oneindige dimensies. De notie van een formeel
reële Jordan algebra is gegeneraliseerd naar de oneindig dimensionale setting door Alf-
sen, Schulz en Størmer als zogenaamde Jordan Banach algebra, of afgekort JB-algebra.
In het algemeen kan een JB-algebra niet gerealiseerd worden al inproductruimte, en
vandaar is er geen natuurlijk concept van een zelf-duale kegel, noch kan men het in-
wendige van de kegel van kwadraten voorzien van een Riemannse metriek. In plaats
daarvan, onderzoeken wij een orde theoretische wijze om de kegel van een JB-algebra te
karakteriseren. In recent werk heeft Walsh de eindigdimensionale symmetrische kegels
gekarakteriseerd als zijnde de kegels die een antihomogeen orde antimorfisme toelaten.
Wij dragen bij om deze aanpak te generaliseren naar oneindig dimensionale JB-algebra’s
op twee manieren. Allereerst, karakteriseren wij spin factoren, een speciale klasse van
JB-algebra’s, onder de volledige orde eenheid ruimten als degene die een strikt con-
vexe kegel hebben die een orde antimorfisme toelaten op het inwendige. Ten tweede,
geven wij een orde theoretische karakterisatie van symmetrische kegels in oneindig di-
mensionale orde eenheid ruimten. Dit doen wij met behulp van metrisch geometrische
technieken de we ontwikkeld hebben in onze analyse van spin factoren en door de resul-
taten van Noll en Schäffer aan te passen om toepasbaar te zijn op orde antimorfismen.
Wat we precies laten zien is dat de kegel van een volledige orde eenheid ruimte de som is
van zijn betrokken extreme stralen en een orde antimorfisme toelaat op zijn inwendige
dan en slechts dan als de orde eenheid ruimte voorzien kan worden van een inprod-
uct, wat het een Hilbert ruimte maakt, en ten opzichte waarvan het inwendige van de
kegel symmetrisch is. Dankzij recent werk van Chu is deze tweede uitspraak equivalent
met de bewering dat de kegel optreedt als kegel van kwadraten van een Jordan Hilbert
algebra.

Het zelf-geadjungeerde deel van een C∗-algebra voorzien van het kanonieke Jordan
product is een JB-algebra. Dit versterkt het idee dat een JB-algebra het natuurlijke
oneindig dimensionale analogon is van een formeel reële Jordan algebra. Hanche-Olsen
en Størmer hebben de theorie van C∗-algebra’s en von Neumann algebra’s opgetild naar
het kader van JB-algebra’s en, hun von Neumann analoga, JBW-algebra’s. Een klassiek
resultaat van Kadison luidt dat elk lineair orde isomorfisme tussen C∗-algebra’s die de
eenheid van de ene algebra overhevelt naar de eenheid van de andere algebra noodza-
kelijk een C∗-isomorfisme is en, in het bijzonder, een Jordan isomorfisme is tussen
de zelf-geadjungeerde delen van de C∗-algebra’s. Gebaseerd op deze bevinding, kan
men laten zien dat als unitaire JB-algebra’s lineair orde isomorf zijn dat ze dan ook
Jordan isomorf zijn. Dit motiveert ons om de structuur van orde isomorfismen tussen
kegels in JB-algebra’s te begrijpen, en bovendien, om voorwaarden te vinden waaronder
ze noodzakelijk lineair zijn. Vanwege inherente verbanden tussen geometrische eigen-
schappen van de kegel in een JB-algebra en zijn algebräısche eigenschappen, zijn onze
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resultaten omtrent de automatische lineariteit van orde isomorfismen, ontwikkeld in het
algemene kader van partieel geordende vector ruimten, hier van toepassing. Wij beschri-
jven volledig de orde isomorfisme tussen kegels van atomaire JBW-algebra’s en, in het
bijzonder, karakteriseren voor welke van deze ruimten allen order isomorfismen lineair
zijn. Door middel van een kanonieke constructie, waarbij de biduaal betrokken is, kun-
nen we elke unitaire JB-algebra zien als een deelalgebra van een atomaire JBW-algebra.
Gebruikmakende van diepe resultaten van Hanche-Olsen en Størmer, gerelateerd aan
deze inbedding, zijn wij in staat om onze beschrijving van orde isomorfismen tussen
kegels in atomaire JBW-algebra’s te gebruiken om orde isomorfismen tussen kegels in
unitaire JB-algebra’s te bestuderen. Dit leidt tot de beschrijving van een rijke klasse van
JB-algebra’s waarvoor elk orde isomorfisme tussen kegels in zulke ruimten die voldoet
aan een milde continüıteitseigenschap lineair is.
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