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Chapter 4

An experimental proposal
to study spontaneous
collapse of the wave
function using two
travelling-wave parametric
amplifiers

According to one of the postulates of the Copenhagen interpretation
of quantum mechanics, a measurement causes a wave function to
collapse into an eigenstate of the measurement apparatus. To study
whether such collapses occur spontaneously in an electronic amplifier,
we propose an experiment consisting of a microwave interferometer
that has a parametric amplifier added to each of its arms. Feeding
the interferometer with single photons, we entangle the output of
the amplifiers. We calculate the interference visibility as given by
standard quantum mechanics as a function of gain, insertion loss
and temperature and find a magnitude of 1/3 in the limit of large
gain without taking into account losses. This number reduces to 0.26
in case the insertion loss of the amplifiers is 2.2 dB at a temperature
of 50 mK. We argue, based on Born’s rule that if the process of
spontaneous collapse exists, we will measure a reduced visibility
compared to the prediction from standard quantum mechanics once
this collapse process sets in.

This chapter, authored by T.H.A. van der Reep, L. Rademaker, X.G.A. Le
Large, R. Guis and T.H. Oosterkamp, has been submitted for publication.
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Chapter 4. An experimental proposal to study spontaneous . . .

4.1 Introduction

In the standard Copenhagen interpretation, a ‘measurement’ amounts to a
collapse of the wave function onto one of the eigenstates of the relevant observable.
There is, however, no consensus on a microscopic mechanism of such collapse, as
it clearly violates the unitary nature of quantum mechanics itself, see e.g. [1] for
a review. What all suggested theories of measurement have in common, is the
observation that large objects are seldom seen in superposition, and that this
near-impossibility of large superpositions causes the collapse of a small object
(such as an electron, atom or photon) when coupled to a large measurement
apparatus.

In other words, measurement can be seen as a process of amplification. Consider
for example a photon hitting a single-photon detector. A chain of events is set
in motion that would lead to an audible click or signal that can be processed by
a classical observer. The tiny amount of information contained in that single
photon is amplified to human proportions. The question now becomes: at what
point of the amplification process did we ‘measure’ the photon?

In this chapter we propose an experiment to quantify the amount of amplification
required for a wavefunction collapse. The traditional way of testing whether a
superposition has collapsed or not is with an interferometer. The ingredients
of our experiment are therefore a single-photon source, used as input to an
interferometer, with tuneable amplifiers inside the interferometer. If collapse
occurs, the visibility of the interference pattern diminishes.

In this chapter we will not argue for one or the other possible mechanisms of the
collapse process. The variety of possible ideas is wide, see e.g. [1] for a review.
Instead, our proposed experiment only relies on Born’s rule. Hence, regardless
of one’s favourite mechanism, our experiment will provide experimental bounds
on the possible size of a quantum object.

In this chapter we present a feasibility study to use such an interferometer to
detect quantum collapse. We focus on an implementation of the interferometer
using GHz-parametric amplifiers. Such amplifiers have the advantage that their
quantum behaviour is well-understood and that they are able to provide large
gain [2, 3]. We will cover the conventional quantum optics theory describing the
visibility of the interference pattern in terms of quantum mechanical operators.
Although this is a straightforward calculation it has not been performed explicitly
to our knowledge. We show that the visibility remains measurable as the gain
of the amplifiers in the interferometer is increased. Then we will discuss how
low the dissipation and temperature of the parametric amplifier must be, such
that they do not reduce the visibility to values so close to zero it becomes
unmeasurable.

Based on Born’s rule, we argue that wave function collapse within a parametric
amplifier will alter the interference visibility calculated using the conventional
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4.2. Model – lossless case

quantum optics. Therefore, we envision that this experiment may provide a
pathway to discern the transition from the quantum to the classical realm,
thereby opening the possibility of detecting the collapse of the wave function in
a system that can in principle be modelled accurately on a microscopic scale.

In section 4.2 we calculate the Hamiltonian of the interferometer in the lossless
case in the time domain. In section 4.3 we introduce a measure for the visibility
of our interferometer and we discuss the theoretical predictions for this visibility
as a function of the gain of the amplifiers. In section 4.4 we discuss the effect of
losses followed by our ideas on observing spontaneous collapse in section 4.5. In
the final section we conclude by elaborating on the realisation of the experiment
and estimating the feasibility of the experiment with parametric amplifiers with
a gain of 40 dB – a gain commonly used to read out quantum bits in quantum
computation experiments. Some of the detailed calculations are deferred to the
supplementary information.

① ②

④ ③

Single-GHz-
photon source

TWPA
  κ

Δθ

TWPA
  κ

⑤ ⑥

⑦⑧

Detector A

Detector B

Figure 4.1: Schematic overview of a balanced microwave amplifier set-up. Using a
90◦-hybrid (beam splitter), single photons are brought in a superposition, which is
then amplified using two identical TWPAs, characterised by an amplification κ. Before
entering the TWPAs, the excitation in the upper arm is phase shifted by ∆θ, which
is assumed to account for all phase differences within the set-up. Using a second 90◦-
hybrid, we can study the output radiation from arms 6 and 7 using detectors A and
B.

4.2 Model – lossless case

We consider the Mach-Zehnder type interferometer depicted in figure 4.1. The
interferometer is fed by a single-photon source (signal) in input 1 and a travelling-
wave parametric amplifier (TWPA) is added to each of its arms. Although other
realisations of the experiment are conceivable, we argue in the supplementary
material why we view this version as optimal (see appendices A and B). The
signal enters a hybrid (the microwave analogue to a beam splitter), thereby
creating a superposition of 0 and 1 photon in each of the arms. The excitation
in the upper arm of the interferometer can be phase shifted, where we assume
that the phase shift accounts for an intended phase shift as well as all unwanted
phase shifts due to fabrication imperfections and the non-linear phase shift from
the TWPA. After the TWPA, in which the actual amplification takes place, the
excitations from the two arms are brought together using another hybrid and
we can study the output radiation with detectors A and B.
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Chapter 4. An experimental proposal to study spontaneous . . .

In this section we ignore losses, the effect of which we will discuss in section
4.4. We disregard reflections in the set-up as well as a mismatch in amplifier
gain. Throughout the chapter we use TWPAs working by a four-wave mixing
(4WM) process in a mode which is phase preserving (i.e. the amplification is
independent of the pump phase) and non-degenerate (i.e. the pump and the
signal are at different frequencies ωp and ωs, respectively). We assume the
pump to be degenerate (one signal photon is created by destroying two pump
photons and by energy conservation this gives rise to an idler at frequency
ωi = 2ωp − ωs). We also assume that the pump is undepleted (we neglect the
decrease of pump photons in the amplification process). Finally, we assume
that the pump, signal and idler are phase-matched (2Kp = Ks +Ki, where Kn

is the wave number including self- and cross-modulation due to the non-linear
wave mixing). Under these assumptions [2]

ĤTWPA = −~χ
(
â†s â
†
i + H.c.

)
. (4.1)

Here ~ is the reduced Planck constant h/2π and χ is the non-linear coupling
derived from the third-order susceptibility of the transmission line, which takes
into account the pump intensity. â†n is the creation operator of mode n. Using
the Heisenberg equations of motion, one can solve for the evolution of the
annihilation operators analytically. This yields [2]

âs(i) (t) = âs(i)(0) coshκ+ iâ†i(s)(0) sinhκ, (4.2)

where κ ≡ χ∆tTWPA is the amplification if the state spends a time ∆tTWPA

in the TWPA. Thus, we can determine the average number of photons in the
signal (idler) mode as function of the amplification of the amplifier as

〈n̂s(i)〉out
= 〈n̂s(i)〉in cosh2 κ+

(
〈n̂i(s)〉in + 1

)
sinh2 κ (4.3)

provided that the signal and/or idler are initially in a number state. 〈n̂〉out(in) is

the average number of photons leaving (entering) the TWPA. From this relation
we define the amplifier gain as Gs = 〈n̂s〉out / 〈n̂s〉in.
Even though under these assumptions the calculation can be done analytically
(see Appendix C) we present the numerical implementation here, because to
such an implementation losses can be added straightforwardly at a later stage.

To numerically obtain the output state we use QuTiP [4]. We first split the
Hilbert space of the interferometer into the upper arm and the lower arm. Each
of the arm subspaces is additionally divided into a signal and idler subspace.
Hence, our numerical Hilbert space has dimension N4, where N − 1 is the
maximum amount of signal and idler photons taken into account in each of the
arms. In this framework the input state is

|ψ〉 = |1〉up,s |0〉up,i |0〉low,s |0〉low,i , (4.4)

where the labels ‘up’ and ‘low’ refer to the upper and lower arm of the inter-
ferometer respectively. We evolve this state by the time evolution operator,
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4.3. Interference visibility

generated by the Hamiltonian Ĥ of the system. The first hybrid is described by
the Hamiltonian

Ĥh1 = − ~π
4∆th1

∑
n=s,i

â†up,nâlow,n + H.c.

 . (4.5)

where ∆th1 is the time spent in the hybrid. Note that state evolution with the
above Hamiltonian for a time ∆th1 corresponds to the transformation operator
for an ordinary 90◦-hybrid,

Ûh1 = eiĤh1∆th1/~ = ei
π
4 (

∑
n=s,i â

†
up,nâlow,n+H.c.). (4.6)

By the same reasoning, the Hamiltonian of the phase shifter can be written as

Ĥps =
~∆θ

∆tps

∑
n=s,i

â†up,nâup,n + H.c.

 , (4.7)

where ∆θ is the applied phase shift. In our numerical calculations we use

ĤTWPA
(up/low) = −

~κ(up/low)

∆tTWPA

(
â†(up/low),sâ

†
(up/low),i + H.c.

)
(4.8)

for the TWPAs. After the TWPAs, the excitations from the two arms are
brought together using a second hybrid to create interference, which is measured
with detectors A and B. The second hybrid is described by a Hamiltonian Ĥh2

similar to equation (4.5).

To summarise, the proposed theoretical model of the experiment in the absence
of losses is as follows. We start with an initial single signal photon in the upper
arm, described by equation (4.4). We evolve this state for a time ∆th1 with
Hamiltonian Ĥh1, followed by Ĥps for a time ∆tps, then for a time ∆tTWPA

with ĤTWPA of equation (4.8) and finally for a time ∆th2 with Hamiltonian
Ĥh2. Finally, we will measure the photon densities in detector A and B, which
leads to a given visibility of the interference pattern. For the loss-less case the
values of the various ∆ts can be chosen arbitrarily.

4.3 Interference visibility

From the state resulting from our calculations we get the probability distribution
of number states in the detectors A and B, P (〈n〉A,s = i, 〈n〉A,i = j, 〈n〉B,s =
k, 〈n〉B,i= l), from which we can calculate the photon number statistics and
correlations by performing a partial trace (see appendix D). From the photon
number statistics we can compute the visibility of the interference pattern.
Although microwave photon counters have been developed in an experimental
setting [5–7], we can also envision the measurement of the output radiation

61



Chapter 4. An experimental proposal to study spontaneous . . .

using spectrum analysers. Such instruments measure the output power of the
interferometer as a function of time and one can determine the number of
photons arriving in the detectors as

n =
1

~ω

∫ t2

t1

P (t) dt′. (4.9)

Measuring the average photon number at detectors A and B, we can define the
interference visibility as (appendix E)

Vs(i) ≡
〈nB,s(A,i)〉 − 〈nA,s(B,i)〉
〈nB,s(A,i)〉+ 〈nA,s(B,i)〉

∣∣∣∣
∆θ=0

. (4.10)

In case the amplifiers have an identical gain, the visibility can also be calculated
using a smaller Hilbert space by the following observation: a single TWPA fed
with a |1〉s |0〉i-input state yields the average number of signal (idler) photons
in detector B (A) as calculated with equation (4.3). Contrarily, feeding this
TWPA with a |0〉s |0〉i-state gives the average number of signal (idler) photons
in detector A (B) (see appendix F). This provides a reduced Hilbert space that
scales as 2N2 for calculating the average visibility. Moreover, this observation
implies that the visibility can be computed directly by substitution of equation
(4.3) into equation (4.10).
The result is shown in figure 4.2 (in red) and has been verified using our
analytical results from Appendix C up to κ = 0.8 and our numerical results
up to κ = 1.7. It shows that the signal interference visibility drops from 1
to 1/3 with increasing gain due to multiphoton interference, in accordance
with [8]. The idler visibility, which can be measured as an additional check
on the theoretical predictions made in this chapter and for verification of the
interferometer losses (section 4.4), is found to be constant at 1/3 for κ > 0. For
κ = 0 the idler visibility is undefined.

4.4 The effect of losses

To take into account the effect of losses (dissipation/insertion loss) we use the
Lindblad formalism, which provides the expression for the time evolution of the
density matrix, ρ̂ [9],

dρ̂

dt
= − i

~
[Ĥ, ρ̂] +

N2−1∑
n=1

(
Ĵnρ̂Ĵ

†
n −

1

2

{
ρ̂, Ĵ†nĴn

})
(4.11)

where { , } denotes the anticommutator and Ĵn are the jump operators. These
operators describe transitions that the system may undergo due to interactions
with the surrounding thermal bath. Losses can be described by the jump
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Figure 4.2: Expected visibility of the interference pattern of the interferometer as a
function of amplification κ for signal and idler using the reduced Hilbert space (see
text). The gain in dB on the upper axis is only indicative and does not take into ac-
count the losses in the amplifiers (G = 10 log10 〈ns〉out / 〈ns〉in = coshκ + 2 sinhκ).
Without loss (red) the visibility tends to 1/3 for large gain. The visibility in case losses
are added to the system is plotted in grey for various amounts of loss in the TWPAs at
(a) T = 50 mK (nth = 8.3× 10−3 ) varying Γ∆tTWPA (Γ = 100 MHz, loss ≈ 4Γ∆t [dB])
and (b) Γ∆tTWPA = 0.50 (Γ = 100 MHz) varying T . For each of the hybrids and the
phase shifter the loss is set to Γ∆t = 0.1 and we have set ωs,i = 2π × 5 GHz. The re-
duced Hilbert space calculations are presented in continous lines, whereas an analytical
fit and extrapolation according to equation (4.15) is dashed. We find that even TWPA
losses as high as 6 dB do not reduce the visibility to 0.
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operators Ĵout and Ĵin. Ĵout describes a photon leaving the system and entering
the bath,

Ĵout,n =
√

Γ (1 + nth)ân, (4.12)

where Γ is the loss rate and nth = 1/(exp(~ω/kBT )−1) is the thermal occupation
number of photons in the bath. Ĵin describes a photon entering the system
from the bath,

Ĵin,n =
√

Γnthâ
†
n. (4.13)

Here we again see the advantage of using a description in the time domain and
putting ∆t in the component Hamiltonians, equations (4.5), (4.7) and (4.8) in
section 4.2. The total (specified) loss is mainly determined by the product Γ∆t
relating to the (insertion) loss as

IL = −10 log10

(
(1− nth/ 〈nin〉) e−Γ∆t + nth/ 〈nin〉

)
≈ 4Γ∆t.

(4.14)

The approximation holds for nth small. This allows us to define a constant loss
rate for the whole set-up, while adjusting ∆t for each component to match the
actual loss. Since the photon state in the interferometer is now described by a
density matrix, the amount of memory for these calculations scales as N8.

To study the effect, we set ωs,i = 2π × 5 GHz for now. The loss rate Γ is
set to 100 MHz for the full set-up. For the hybrids and the phase shifter, we
choose ∆t(h1,ps,h2) = 1 ns (IL ≈ 0.4 dB) and study the effect of losses in the
TWPAs by varying ∆tTWPA and T . We evolve the state under the Hamiltonians
Ĥh1 → Ĥps → ĤTWPA

(up/low) → Ĥh2 as described in section 4.2.
Unfortunately, running the numeric calculation, we were not able to increase
the amplification to κ > 0.6 due to QuTip working with a version of SciPy
supporting only int32 for element indexing. However, again it appears that we
can use the method of the reduced Hilbert space sketched in the last section.
Thus, the problem only scales as 2N4, and we have performed the numeric
calculation up to κ = 1.0.
Applying the reduced Hilbert space approach, we found that the parametric
amplifier’s output in presence of losses can be fitted according to

〈n̂s(i)〉out
= 〈n̂s(i)〉out |κ=0

cosh2 κ+
(
〈n̂i(s)〉out |κ=0

+ 1
)

e−f sinh2 κ (4.15)

where the fitting parameter f depends on Γ, the various ∆ts (if T > 0), nth

and the input state (see Appendix G). 〈n̂s(i)〉out |κ=0

is the number of photons

leaving the amplifier in case no amplification is present,

〈n̂s(i)〉out
|κ=0 =

(
〈n̂s(i)〉in − nth

)
e−Γ∆ttot + nth. (4.16)

This allows us to extrapolate the results to higher gain.
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4.5. Observing spontaneous collapse

TWPA
  κ

 ηκ (1-η)κ

Collapse

Figure 4.4: Model of a TWPA in which a quantum state collapse takes place. The
quantum TWPA, characterised by coupling constant κ is split in two parts. One is
characterised by the coupling constant ηκ and the other by (1− η)κ, where η ∈ [0, 1]
determines the position of the collapse. We assume that the state collapse takes place
instantaneously between the two parts of the amplifier.

The results of the calculations with loss are also depicted in figure 4.2 assuming
the full set-up is at a constant temperature. Some plots of the visibility as
function of loss for given κ are depicted in figure 4.11 in appendix F. In figure 4.2
we observe that losses decrease the interference visibility with respect to the
case where losses were neglected. However, even for TWPA losses as high as
6 dB the interference visibility survives. As in the no-loss case the signal and
idler visibility converge asymptotically to the same value.

4.5 Observing spontaneous collapse

Although there is currently no universally agreed-upon model that describes
state collapse, we propose to mathematically investigate the effect of collapse
on the proposed experiment using Born’s rule in the following way.
To model the collapse we split each of the amplifiers in the upper and lower arm
of the interferometer in two parts and we assume that the collapse takes place
instantaneously in between these two parts, see figure 4.4. Thus, the first part
of each amplifier can be characterised by a coupling constant ηκ and the second
by a coupling constant (1− η)κ, where η ∈ [0, 1] sets the collapse position. If
η = 0 the collapse takes place between the first hybrid and the amplifiers, while
for η = 1 the collapse takes place between the amplifiers and the second hybrid.
For 0 < η < 1 the collapse takes place within the amplifiers. For simplicity, we
ignore the fact that a photon is a spatially extended object.
Furthermore, by Born’s rule we have to assume a collapse phenomenology. Re-
gardless of the precise mechanism, such a collapse will destroy the entanglement
between the two interferometer arms and yield a classical state. As for the type
of classical state, we will consider two options: the state collapses onto (1) a
number state, or (2) onto a coherent state. For both these options we will study
the effect on the interference visibility below.

4.5.1 Collapse onto a number state

In case the collapse projects the instantaneous state onto a number state, the
state after projection is given by |ψcoll〉(N,M)= |N+1〉up,s|N〉up,i|M〉low,s|M〉low,i
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or |ψcoll〉(N,M)= |N〉up,s|N〉up,i|M+1〉low,s|M〉low,i, depending on whether the
initial photon went through the upper or lower arm of the interferometer. Hence,
this collapse phenomenology can be thought of as resulting from the collapse
taking place as a consequence of a which-path detection or the consequence
of a spontaneous collapse onto a number state due to some unknown mecha-
nism. The second part of the amplifiers, characterised by the coupling constant
(1− η)κ, evolves |ψcoll〉 to |ψ′coll〉 =

∑
N,M cNM |ψcoll〉 (N,M), where cNM are

the weights determined by (1− η)κ and
∑
N,M |cNM |2 = 1. |ψ′coll〉 is the state

just before the second hybrid.

To determine the effect on the interference visibility of such a collapse, we
calculate 〈n〉X,n = â†X,nâX,n, the number of photons arriving in detector
X ∈ {A,B} in mode n ∈ {s,i}. This equation can be rewritten in terms
of creation and annihilation operators of the upper and lower arm of the
interferometer by the standard hybrid transformation relations â[A]{B},n 7→
({1}[i]âup,n + {i}[1]âlow,n)/

√
2 to find

V coll
n =

i 〈â†up,nâlow,n − âup,nâ
†
low,n〉

〈â†up,nâup,n + â†low,nâlow,n〉
, (4.17)

which equals 0 for any |ψ′coll〉. Hence, we find that a collapse onto a number
state within the interferometer causes a total loss of interference visibility.

4.5.2 Collapse onto a coherent state

If the collapse projects the quantum state onto a coherent state, the state after
collapse is |ψcoll〉 = |αup,s〉 |αup,i〉 |αlow,s〉 |αlow,i〉 with overlap ccoll = 〈ψcoll|ψq〉.
Here |ψq〉 is the instantaneous quantum state at the moment of collapse. This
collapse phenomenology can be thought of as the electrons in the transmission
lines connecting the different parts of the interferometer collapsing into position
states.
In this case, the second part of the parametric amplifiers characterised by
(1− η)κ evolves the amplitudes α in |ψcoll〉 into average amplitudes

ᾱup(low),s(i) = αup(low),s(i) cosh (1− η)κ+ iα∗up(low),i(s) sinh (1− η)κ

(4.18)

by equation (4.2). Then the number of photons arriving in each detector is, for
each individual collapse,

ncoll
A(B),n =

1

2

(
|ᾱup,n|2 + |ᾱlow,n|2∓ 2|ᾱup,n||ᾱlow,n| sin (φlow,n − φup,n))

(4.19)

where φi is the phase of the state ᾱi. Thus, we can obtain the average number
of photons arriving in each detector as an integration over all possible collapsed
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Figure 4.5: Comparison of the interference visibility resulting from a full quantum
calculation without collapse and under the assumption of state collapse to coherent
states within the interferometer assuming no losses. If the state collapses between the
amplifiers and the second hybrid (η = 1), the visibility is 1/3 for the signal and rises to
1/3 with increasing amplification for the idler. In case the collapse takes place halfway
through the amplifiers (η = 0.5), the visibility tends to 0.15 for both signal and idler for
high gain and if the collapse is between the first hybrid and the amplifiers (η = 0), the
visibility goes to 0.2 for signal and idler.

states weighed by their probability. That is

〈ncoll
X,n〉 =

1

π4

∫
ncoll
X,n|ccoll|2 d2αup,sd

2αup,id
2αlow,sd

2αlow,i (4.20)

in which d2αn denotes the integration over the complex amplitude of the
coherent state n. Then, we determine the interference visibility according to
equation (4.10).

In case we assume that the interferometer is lossless, we can perform such a
calculation analytically (see appendix H). The resulting interference visibility is
plotted in figure 4.5 in which we can observe that the interference visibility at
high gain depends on the location of collapse. For η = 1 the signal and idler
visibility equals 1/3. For η = 0.5 both visibilities tend to 0.15 at high gain and
in case η = 0 the visibility tends to 0.2 for both signal and idler.

4.6 Experimental realisation and feasibility

As a single-photon source, we propose to use a qubit capacitively coupled to a
microwave resonator [10]. For the amplifiers we can use TWPAs in which the
non-linearity is provided by Josephson junctions. Currently, TWPAs providing
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20 dB (κ = 2.5) of gain and 2 dB of (insertion) loss that operate at T = 30 mK
have been developed [3].

The amplification process within the TWPAs is driven by a coherent pump
signal. Instead of increasing the gain of the TWPAs by increasing the pump
power, we propose to vary the amplification by varying the pump frequency. In
the latter method the amplification varies due to phase-matching conditions
within the amplifier. The advantage is that in this manner the transmission
and reflection coefficients of the TWPA, which depend on the pump power [11],
can be kept constant while varying the gain in the interferometer. Although
we assumed perfect phase matching in the amplifiers for the results shown in
this chapter, we do not expect a large difference if one changes from a varying
pump-power approach to a varying phase-matching approach.

Our calculations are based on a Taylor expansion up to the third-order suscep-
tibility of a parametric amplifier. Typically, microwave TWPAs work close to
the critical current of the device, such that this assumption might break down
and we need to take into account higher orders as well. For TWPAs based on
Josephson junctions, we can estimate as follows at which current a higher order
Taylor expansion would become necessary.
In the Hamiltonian of a TWPA with Josephson junctions the non-linearity
providing wave mixing arises from the Josephson energy

EJ = Icϕ0

(
1− cos

(
Φ

ϕ0

))
= Icϕ0

∞∑
n=1

(−1)
n−1

(2n)!

(
Φ

ϕ0

)2n

. (4.21)

Here, Ic is the junction’s critical current and ϕ0 is the reduced flux quan-
tum Φ0/2π. Hence, the second-order (n = 3) non-linear effects have a factor
4!(Φp/ϕ0)2/6! smaller contribution than the first-order non-linear effects. This
contribution causes the generation of secondary idlers and additional modula-
tion effects. If we require that this contribution is less than 5% of the energy
contribution of the first-order non-linear terms, we can estimate that the theory
breaks down at Φp/ϕ0 ≈ 1.2 (Ip/Ic ≈ 0.78). It is only in the third-order

non-linearity that terms proportional to (â†s â
†
i )n with n > 1 start to appear,

apart from yet additional secondary idlers and further modulation effects. These
terms have a maximal contribution of approximately 4!(Φp/ϕ0)4/8! ≈ 4× 10−3

smaller than the first-order non-linear term at the critical flux (Φp/ϕ0 = π/2)
and are therefore negligible for practical purposes.

The other assumption that might break down is the assumption of an undepleted
pump. If the signal power becomes too close to the pump power, the pump
becomes depleted. Typically this happens at Ps ≈ Pp/100 [11]. At Ip/Ic = 0.9,
Pp ≈ 1 nW in a 50 Ω-transmission line with Ic = 5µA. In case our qubit photon
source has a T1-time of approximately 100 ns [10], implying the photon has
a duration in that order, the number of 5 GHz-pump photons available for
amplification is in the order of 107. Hence, we expect that pump depletion only
starts to play a significant role in case the amplification becomes about 50 dB.
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4.6. Experimental realisation and feasibility

In our calculations the only loss-effect that was not taken into account was the
loss of pump photons due to the insertion loss of the TWPA. If the insertion loss
amounts to 3 dB, half of the pump photons entering the device will be dissipated.
To our knowledge, this effect has not been considered in literature. However,
effectively this must lead to a non-linear coupling constant χ (equation (4.1)),
which decreases in magnitude in time. In a more involved calculation this
effect needs to be taken into account for a better prediction of the experimental
outcome of the visibility.
Apart from making χ time-dependent, the loss of pump photons will be the main
reason for an increase of temperature of the amplifiers. A dilution refrigerator
is typically able to reach temperatures of 10 mK with a cooling power of 1µW.
The heat conductivity of the transmission line to the cold plate of the refrigerator
will limit the temperature of the TWPA. Still, we estimate that a dissipation
in the order of 0.5 nW will not heat up the amplifiers above 50 mK. However,
as shown in figure 4.2, even if the amplifiers heat up to temperatures as large
as 200 mK we still expect a visibility that should be easily measurable, if no
collapse would occur.
Finally, a more accurate calculation of the expected interference visibility
would need to take into account reflections within the set-up as well as the
possible difference in gain between both amplifiers and other present decoherence
mechanisms, which we have not considered here.

The results we obtained for the interference visibility with a collapse within
the interferometer are only speculative as the mechanism of state collapse is
currently not understood. In case the state collapses onto a number state, the
resulting interference visibility is 0 for any gain. We anticipate that this number
might increase in case losses are taken into account in the calculation, however,
still we expect that the difference in interference visibility between the cases of
no collapse and collapse within the interferometer should be easily detectable.
Contrarily, if the state collapses onto a coherent state, the visibility depends on
the location of the collapse. This result should be interpreted as follows. Let us
assume that the state collapses at a gain of 20 dB (κ = 2.5). Then, neglecting
losses, the predicted signal interference visibility is approximately 1/3 in case
the state does not collapse, whereas it equals 1/3 in the case the state collapses
between the amplifiers and the second hybrid (η = 1). However, if we increase
the gain further, the expected location of collapse (the location at which the
state is amplified by 20 dB) moves towards the first hybrid (η < 1), which will
become apparent in the measurement result as an initial gradual drop in the
interference visibility followed by an increase, see figure 4.5. Simultaneously,
the idler visibility is expected to show the same behaviour.
It should be noted that the result for a calculation, in which one assumes a state
collapse onto a coherent state between the interferometer and the detectors,
is the same as when the state would collapse between the amplifiers and the
second hybrid of the interferometer. However, even if this would be the case,
one can observe a collapse within the interferometer if the collapse takes place
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within the amplifiers. A second remark to this collapse phenomenology is that
it does not conserve energy. If one considers some state |ψ〉 with an average
photon number n, one finds that a collapse onto a coherent state adds one
noise photon to the state. Such an increase in energy is a property of many
spontaneous collapse models [12–16]. It is due to this added photon and its
amplification in the classical part of the TWPAs that the differences in the
predicted interference visibility with and without state collapse arise.
In case one assumes a collapse onto a coherent state one could calculate the
expected interference visibility in case losses are included numerically by calcu-
lating the overlap between the state evolved until collapse and many (order 106)
randomly chosen coherent states. However, due to the issue with Scipy noted
in section 4.4, we could not perform this calculation for a reasonable number of
photons. Still we expect that, although the difference in visibility between the
situations with and without collapse in the interferometer might be decreased,
this difference is measurable.

Under these considerations, an experiment with two 40 dB amplifiers (κ = 4.7)
at 50 mK, which might be developed if losses are reduced, is feasible.

4.7 Conclusions

We conclude that it should be possible to determine whether or not a 40 dB-
parametric amplifier causes a wave function to collapse. If we insert such an
amplifier into each of the two arms of an interferometer, we can measure the
visibility of the output radiation. Neglecting losses the interference visibility of
both signal and idler tend to 1/3 with increasing gain, in case no collapse takes
place. If the state collapses onto a number state within the interferometer, the
visibility reduces to 0, whereas we found a significant deviation from 1/3 in the
case that the state collapses onto a coherent state. In case the insertion loss
of the amplifiers is 2.2 dB, while the temperature of the devices is 50 mK, we
estimate an interference visibility of 0.26. In case wave function collapse sets in,
we still expect the visibility to decrease measurably.
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Appendices

A Experimental realisation using resonator based
parametric amplifiers

The discussed set-up is not the only conceivable realisation of the experiment.
Instead of using a TWPA, it is also possible to use a resonator-based parametric
amplifier, such as the Josephson parametric amplifier (JPA), if the bandwidth
of the photons is smaller than the bandwidth of the amplifier. TWPAs are
broadband (BW ≈ 5GHz [3]), whereas JPAs are intrinsically limited in their
bandwidth (BW ≈ 10MHz [17]). However, both amplifiers are suitable to
amplify a single photon with a 1 MHz-bandwidth, in case our photon source
would have a T1-time in excess of 1µs.
As we want to minimise losses and reflections in the interferometer arms, using

① ②

④ ③

Single-GHz-
photon source

Detector A

Detector B

JPA

JPA

Figure 4.6: Schematic overview of the implementation of the experiment using JPAs.
In this case it is beneficial to use a Michelson type interferometer to minimise losses.

a TWPA leads to a Mach-Zehnder type interferometer, whereas using a JPA
results in a Michelson type interferometer, see figure 4.6. In case the JPA works
in the non-degenerate regime (ωs 6= ωi), the results of the interference visibility
as presented in this paper are the same.

B Non-degenerate vs. degenerate amplifiers

In the main text we considered the amplifiers to be non-degenerate, i.e. ωs 6= ωi.
In case the amplifiers work in a degenerate regime,

Ĥdeg = −~χ
(
â†s â
†
sei∆φ + H.c.

)
(4.22)

and the amplification will be dependent on the relative phase, ∆φ, between the
signal and the pump, see figure 4.7. In this case we can still measure a visibility
– in fact, ∆φ can be used as a phase shifter in the experiment – as can be
observed in figure 4.8. In this figure, the expected interference visibility in case
the quantum state does not collapse within the interferometer is depicted using
continuous lines. In case we assume that the state collapses into a coherent
state in between the amplifiers and the second hybrid, the resulting visibility
can be calculated using the method outlined in section 4.5 and appendix H.
The result is depicted in figure 4.8 using dashed lines. It is observed that for
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large amplification κ the two results approach each other asymptotically.
The main advantage of using non-degenerate instead of degenerate amplifiers
is that the latter have not been developed. In the microwave regime, para-
metric amplifiers have been developed using Josephson junctions and kinetic
inductance as the source of non-linear wave mixing and the resulting ampli-
fication. Both these sources lead naturally to non-degenerate devices as the
non-linearity scales quadratically with pump current. One can use these as
quasi-degenerate amplifiers by, e.g., biasing the device using a DC-current. This
complicates the set-ups as proposed in figures 4.1 and 4.6, which can be a
source of reflections and decoherence. Moreover, such amplifiers will always
have non-degenerate contributions to their amplification, which complicates the
analysis of the experiment. Thirdly, non-degenerate amplifiers enable one to
study two interference visibilities (of both signal and idler) instead of one. For
these reasons, we consider non-degenerate amplifiers to be more suited for our
proposed experiment.

Figure 4.7: Wigner function of the state entering the hybrid after amplification by
a degenerate amplifier (equation (4.22)). Depicted is the case where the signal and
pump are in phase (∆φ = 0). If ∆φ 6= 0 the Wigner function rotates according to the
dash-dotted lines.

C Analytical model

Without losses and using the assumptions for the TWPAs as presented in
section 4.2, we can obtain an analytical model for the output state. We start
by creating a single signal photon in input channel 1.

|ψ〉1 = â†1s |01s, 01i, 04s, 04s〉 = |11s, 01i, 04s, 04s〉 (4.23)
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Figure 4.8: Interference visibility of the experiment implementing degenerate parame-
tric amplifiers as function of amplification κ = χ∆tdeg and the difference in relative
phase of the two amplifiers, δ∆φ = ∆φup − ∆φlow. δ∆φ can effectively be used as
a phase shifter and we assume the interferometer to be lossless. The continous lines
represent the visibility resulting from a quantum calculation. The dashed lines result
from a calculation in which we assume state collapse into coherent states between the
amplifiers and the second hybrid (η = 1, see section 4.5 and appendix H).

Here, â† is the creation operator working on the vacuum. We then incorporate
the 90

◦
-hybrid by making the transformation

â†1s 7→
1√
2

(
iâ†2s + â†3s

)
. (4.24)

Next, a phase shift ∆θ is applied to the upper arm,

â†2s 7→ â†2se
iθâ†2sâ2s (4.25)

at which the state just before the TWPAs is

|ψ〉2 =
1√
2

(
iei∆θâ

†
2sâ2s â†2s + â†3s

)
|02s, 02i, 03s03s〉 (4.26)

=
1√
2

(
iei∆θ |12s, 02i, 03s03s〉+ |02s, 02i, 13s03s〉

)
. (4.27)

For the TWPAs we use the following Hamiltonian in the interaction picture

ĤTWPA
eff = −~χ

(
â†s â
†
i + H.c.

)
. (4.28)

Evolving the state under this Hamiltonian as |ψ〉3 = e−i ĤTWPA
efft/~, the output
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for a single amplifier in a single arm is (cf. [18])

e−i ĤTWPA
efft/~ |Ns, 0i〉 = (coshκ)

−(1+Ns)
∞∑
n=0

(i tanhκ)
n

n!

(
â†s â
†
i

)n
|Ns, 0i〉 ,

(4.29)

or, in case of a degenerate amplifier

e−iĤdegt/~ |Ns, 0i〉 = (cosh 2κ)
−1/2(1+2Ns)

∞∑
n=0

(
iei∆φ/2 tanh 2κ

)n
n!

(
â†s â
†
i

)n
|Ns〉 ,

(4.30)

where Ns is the number of signal photons initially present and κ ≡ χt. Applying
the former relation to |ψ〉2, we obtain the state after the TWPAs.

|ψ〉3 =
cosh−1 κ cosh−1 κ′√

2

[ (
iei∆θ cosh−1 κ

)
â†5s +

(
cosh−1 κ′

)
â†8s

]
·

·
∞∑

n,m=0

in tanhn κ

n!

im tanhm κ′

m!

(
â†5sâ

†
5i

)n (
â†8sâ

†
8i

)m
|05s, 05i, 08s08s〉 .

(4.31)

where κ and κ′ are the amplification in the upper arm and lower arm respec-
tively. Finally, the state traverses the second hybrid which is modelled by the
transformations

â†5 7→
1√
2

(
iâ†6 + â†7

)
â†8 7→

1√
2

(
â†6 + iâ†7

) (4.32)

for both signal and idler. Thus, we arrive at the output state

|ψ〉4 =
1

2
cosh−1 κ cosh−1 κ′

[(
−ei∆θ

coshκ
+

1

coshκ′

)
â†6s +

(
iei∆θ

coshκ
+

i

coshκ′

)
â†7s

]
·

·
∞∑

n,m=0

in tanhn κ

2nn!

im tanhm κ′

2mm!

(
−â†6sâ

†
6i + i

{
â†6sâ

†
7i + â†7sâ

†
6i

}
+ â†7sâ

†
7i

)n
·

·
(
â†6sâ

†
6i + i

{
â†6sâ

†
7i + â†7sâ

†
6i

}
− â†7sâ

†
7i

)m
|06s, 06i, 07s07s〉 .

(4.33)

This equation reproduces the interference visibilities as presented in figure 4.2
in case losses are neglected.
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D Output of numerical calculations

From our numerical calculations we obtain the probability distribution of
number states, P (〈n〉A,s= i, 〈n〉A,i= j, 〈n〉B,s= k, 〈n〉B,i= l) in detectors A and
B (i, j, k, l ∈ [0, N − 1]). Using partial traces, we can compute the statistics
and correlations for each of the four modes and between pairs of modes. E.g.
the number state probability distribution for signal photons in detector B is
depicted in figure 4.9.
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Figure 4.9: Probability distribution of the interferometer’s output in arm 7 (detector B)
for the signal mode as a function of amplification κ.

E Definition of interference visibility

In the main text the interference visibility is defined as

Vs(i) ≡
〈nB,s(A,i)〉 − 〈nA,s(B,i)〉
〈nB,s(A,i)〉+ 〈nA,s(B,i)〉

∣∣∣∣
∆θ=0

. (4.34)

The rationale behind this definition can be found in figure 4.10. At ∆θ = 0 we
expect the maximum number of signal photons in detector B and the minimum
in detector A. For the idler the opposite is the case.

F Comparison of full and reduced Hilbert space

As mentioned, the Hilbert space of the full interferometer scales as N4 (no
loss) and the number of entries in the density matrix scales as N8 (with loss).
However, if the amplifiers are identical, we can obtain the same results for the
interference visibility if we perform the calculation twice – once with a |1〉s |0〉i-
input state and once with a |0〉s |0〉i-input state. The first yields 〈nB,s (A,i)〉 and
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Figure 4.10: Predicted interference pattern of the interferometer in figure 4.1 (losses
neglected): the average number of signal and idler photons in detectors A and B for
amplification 0.4. At phase shift ∆θ = 0 most of the signal photons are expected in
detector A, whereas most of the idler photons end up in detector B.

the second 〈nA,s (B,i)〉. This implies that the same results can be obtained with
a Hilbert space of 2N2 (no loss) or 2N4 (with loss).
In figure 4.11 the result of the two calculations is compared as a function of
Γ∆tTWPA for κ = 0.1 to 0.4. In this figure, the grey solid data correspond to
Qutip’s master equation solver, whereas the black dashed data are obtained
using the reduced Hilbert space approach. As can be seen, the results overlap
very well, such that we can use the reduced Hilbert space for our calculations.

G Interference visibility with losses

In case transmission losses are taken into account, we can fit the average number
of photons leaving the interferometer with the function

〈ns(i)〉out
= 〈ns(i)〉out

|κ=0 cosh2 κ+
(
〈ni(s)〉out

|κ=0 + 1
)

e−f sinh2 κ

(4.35)

in which f is a fitting parameter depending on Γ, the various ∆ts, nth and the
input state.

〈n〉out |κ=0 = (〈n〉in − nth) e−Γ∆ttot + nth (4.36)

is the number of photons leaving the interferometer in case the amplification κ
equals 0. The result of a particular fit (Γ = 100 MHz, ∆tTWPA = 10 ns – other
∆ts are 1 ns, hence Γ∆ttot = 1.3 –, nth = 8.3× 10−3 ) is presented in figure 4.12.
In figure 4.13 the magnitude of the fitting factor f is plotted as a function of
Γ∆ttot and nth.
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Figure 4.11: Visibility as a a function of losses in the TWPAs for various κ. Γ =
100 MHz, T = 50 mK, ωs,i = 2π × 5 GHz. Γ∆t = 0.1 in the other components of
the set-up. The data in grey (solid) are obtained from QuTip’s master equation solver
using a N8 Hilbert space with N = 5. Overlain (black dashed) are the data obtained
from the reduced Hilbert space (2N4, see text). As can be observed, the overlap is very
good.
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Figure 4.12: Average number of signal and idler photons reaching the detector as a
function of κ (Γ = 100 MHz, ∆tTWPA = 10 ns – other ∆ts are 1 ns, hence Γ∆ttot = 1.3
–, nth = 8.3× 10−3 ). In grey the output from the reduced Hilbert space calculation.
The coloured dashed lines are the result from a fit using equation (4.35). Note that the
curves for signal photons in detector A and idler photons in detector B are overlapping.
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Figure 4.13: Magnitude of the fitting factor f as function of Γ∆ttot and nth for the
case Γ = 100 MHz and ∆th1,ps,h2 = 1 ns. (a) should be used for calculating (A,s), (B,s)
and (B,i), whereas (b) should be used for (A,i). The dots represent the numerical data,
whereas the mesh is a linear interpolation.
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H Interference visibility with collapse onto coherent states

To study the interference visibility in case of state collapse within the inter-
ferometer, we assume that the state collapses onto a coherent state, the most
classical state available in quantum mechanics. Coherent states are expanded
in Fock space as

|α〉 = e−|α|
2/2

∞∑
n=0

αn√
n!
|n〉 (4.37)

in which α ∈ C is the amplitude of the coherent state and |n〉 are the number

states. The mean number of photons in a coherent state equals |α|2. From
equation (4.37) we can easily compute the overlap between a coherent state and
a number state as

〈α|n〉 = e−|α|
2/2 (α∗)n√

n!
. (4.38)

Assuming that the interferometer is lossless and that the collapse takes place
within the interferometer, the squared overlap between the collapsed coherent
state |ψ〉coll = |αup,s〉 |αup,i〉 |αlow,s〉 |αlow,i〉 and the instantaneous quantum
state, given by equation (4.31) with κ 7→ ηκ, is

|ccoll|2 = |〈ψcoll|ψ3〉|2 =

=
e−(|αup,s|2+|αup,i|2+|αlow,s|2+|αlow,i|2)

2 cosh6 ηκ

[
|αup,s|2 + |αlow,s|2 +

+
(
i |αup,s| |αlow,s| ei(φlow,s−φup,s) + c.c.

)]
·

·
∑

n,m,l,k

(i)
n+m−l−k

tanhn+m+l+k ηκ

n!m!l!k!
(|αup,s| |αup,i|)n+l ·

· (|αlow,s| |αlow,i|)m+k
ei(n−l)(φup,s+φup,i)+(m−k)(φlow,s+φlow,i)

(4.39)

in case the amplifiers are equal and setting the amplitudes to α = |α| eiφα .
The amplifiers evolve the amplitudes of the collapsed state |ψcoll〉 further into
average amplitudes

ᾱup(low),s(i) = αup(low),s(i) cosh (1− η)κ+ iα∗up(low),i(s) sinh (1− η)κ

(4.40)

and the number of photons arriving in each of the detectors for this particular
collapse equals

ncoll
[A]{B},n =

1

2
|[i]{1}ᾱup,n + [1]{i}ᾱlow,n|2 . (4.41)
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In the last expression we have used the standard hybrid transformation relations

α[A]{B},n =
1√
2

([i]{1}αup,n + [1]{i}αlow,n) (4.42)

as well as that ncoll
A(B),n =

∣∣αA(B),n

∣∣2. Explicitly, using the shorthand notations

cκ′ = cosh (1− η)κ and sκ′ = sinh (1− η)κ,

ncoll
[A]{B},s =

1

2

[(
|αup,s|2 + |αlow,s|2

)
c2
κ′ +

(
|αup,i|2 + |αlow,i|2

)
s2
κ′−

−
(
i |αup,s| |αup,i| ei(φup,s+φup,i)cκ′sκ′ + c.c.

)
+

+ [1]{−1}
(
i |αup,s| |αlow,s| ei(φup,s−φlow,s)c2

κ′ + c.c.
)

+

+ [1]{−1}
(
|αup,s| |αlow,i| ei(φup,s+φlow,i)cκ′sκ′ + c.c.

)
+

+ [−1]{1}
(
|αup,i| |αlow,s| e−i(φup,i+φlow,s)cκ′sκ′ + c.c.

)
+

+ [1]{−1}
(
i |αup,i| |αlow,i| e−i(φup,i−φlow,i)s2

κ′ + c.c.
)
−

−
(
i |αlow,s| |αlow,i| ei(φlow,s+φlow,i)cκ′sκ′ + c.c.

)]
,

(4.43)

ncoll
[A]{B},i =

1

2

[(
|αup,s|2 + |αlow,s|2

)
s2
κ′ +

(
|αup,i|2 + |αlow,i|2

)
c2
κ′−

−
(
i |αup,s| |αup,i| ei(φup,s+φup,i)sκ′cκ′ + c.c.

)
+

+ [1]{−1}
(
i |αup,s| |αlow,s| e−i(φup,s−φlow,s)s2

κ′ + c.c.
)

+

+ [−1]{1}
(
|αup,s| |αlow,i| e−i(φup,s+φlow,i)sκ′cκ′ + c.c.

)
+

+ [1]{−1}
(
|αup,i| |αlow,s| ei(φup,i+φlow,s)sκ′cκ′ + c.c.

)
+

+ [1]{−1}
(
i |αup,i| |αlow,i| ei(φup,i−φlow,i)c2

κ′ + c.c.
)
−

−
(
i |αlow,s| |αlow,i| ei(φlow,s+φlow,i)sκ′cκ′ + c.c.

)]
.

(4.44)

With these ingredients we can obtain the average number of photons arriving
in each of the detectors as

〈ncoll
X,n〉 =

1

π4

∫
ncoll
X,n|ccoll|2 d2αup,sd

2αup,id
2αlow,sd

2αlow,i (4.45)
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as discussed in the main text. Here, d2α = |α|dφαdα and the bounds of the
integrals are [0,∞〉 for integration over the amplitudes and [0, 2π〉 for integration
over the phases.
Due to the complex exponentials in equations (4.39) and (4.43) and the inte-
gration over the full [0, 2π〉 for the phases, it is immediatelly observed that the
integrand of equation (4.45) only contributes to the integral for integrand terms
that are independent of φup(low),s(i). Then, integration over the phases yields a
factor 16π4.
For the calculation of 〈ncoll

B,s 〉 − 〈ncoll
A,s 〉 and 〈ncoll

A,i 〉 − 〈ncoll
B,i 〉 we find that only the

terms scaling as e±i(φup,s−φlow,s) and e±i(φup,i−φlow,i) from equations (4.43) and
(4.44) will contribute to the integral. For the term scaling as ei(φup,s−φlow,s) we
find a contribution to 〈ncoll

B,s 〉 − 〈ncoll
A,s 〉

∆s,1 =
8 cosh2 (1− η)κ

cosh6 ηκ
·

·
∫
e−(|αup,s|2+|αup,i|2+|αlow,s|2+|αlow,i|2)|αup,s|3|αup,i||αlow,s|3|αlow,i|·

·B0 (2 |αup,s| |αup,i| tanh ηκ)B0 (2 |αlow,s| |αlow,i| tanh ηκ) ·
· d |αup,s|d |αup,i|d |αlow,s|d |αlow,i| ,

(4.46)

where we have used the identity
∑∞
n=0 x

2n/(n!)2 = B0(2x), in which Bn(x)
is the modified Bessel function of the first kind. For the contribution from
equation (4.43) scaling as e−i(φup,s−φlow,s) we find the same expression. For the
term in equation (4.43) scaling as ei(φup,i−φlow,i) we find a contribution

∆s,2 =
8 sinh2 (1− η)κ

cosh6 ηκ
·

·
∫
e−(|αup,s|2+|αup,i|2+|αlow,s|2+|αlow,i|2)|αup,s|2|αup,i|2|αlow,s|2|αlow,i|2·

· [B1 (2 |αup,s| |αup,i| tanh ηκ)− |αup,s| |αup,i| tanh ηκ] ·
· [B1 (2 |αlow,s| |αlow,i| tanh ηκ)− |αlow,s| |αlow,i| tanh ηκ] ·

· d |αup,s|d |αup,i|d |αlow,s|d |αlow,i|
(4.47)

to 〈ncoll
B,s 〉−〈ncoll

A,s 〉. Here we have used the identity
∑∞
n=0 x

2n+1/[(n+ 1) (n!)
2
] =

B1(2x)− x. Again, the contribution of the term in equation (4.43) scaling as
e−i(φup,i−φlow,i) yields an equal contrbution, such that

〈ncoll
B,s 〉 − 〈ncoll

A,s 〉 = 2 (∆s,1 + ∆s,2) . (4.48)

For 〈ncoll
A,i 〉 − 〈ncoll

B,i 〉 we find the similar expression

〈ncoll
A,i 〉 − 〈ncoll

B,i 〉 = 2 (∆i,1 + ∆i,2) , (4.49)
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in which ∆i,1(2) follow from equations (4.46) and (4.47) by replacing cosh (1− η)κ
with sinh (1− η)κ and vice versa.

Similarly, we find that for the calculation of 〈ncoll
B,s 〉+ 〈ncoll

A,s 〉 and 〈ncoll
A,i 〉+ 〈ncoll

B,i 〉
only the terms without exponential factor and the terms scaling as e±i(φup,s+φup,i)

and e±i(φlow,s+φlow,i) from equations (4.43) and (4.44) will contribute to the
integral. For the terms without exponential we find a contribution

Σs,1 =
8

cosh6 ηκ
·

·
∫

e−(|αup,s|2+|αup,i|2+|αlow,s|2+|αlow,i|2) |αup,s| |αup,i| |αlow,s| |αlow,i| ·

·
(
|αup,s|2 + |αlow,s|2

) [(
|αup,s|2 + |αlow,s|2

)
cosh2 (1− η)κ+

+
(
|αup,i|2 + |αlow,i|2

)
sinh2 (1− η)κ

]
·

·B0 (2 |αup,s| |αup,i| tanh ηκ)B0 (2 |αlow,s| |αlow,i| tanh ηκ) ·
· d |αup,s|d |αup,i|d |αlow,s|d |αlow,i|

(4.50)

to 〈ncoll
B,s 〉+ 〈ncoll

A,s 〉. Again, the contribution to 〈ncoll
A,i 〉+ 〈ncoll

B,i 〉, Σi,1, is the same

except that cosh (1− η)κ 7→ sinh (1− η)κ. For the term scaling as ei(φup,s+φup,i)

we find a contribution

Σ2 =
8 cosh (1− η)κ sinh (1− η)κ

cosh6 ηκ
·

·
∫

e−(|αup,s|2+|αup,i|2+|αlow,s|2+|αlow,i|2) |αup,s|2 |αup,i|2 |αlow,s| |αlow,i| ·

·
(
|αup,s|2 + |αlow,s|2

)
B0 (2 |αlow,s| |αlow,i| tanh ηκ) ·

· [B1 (2 |αup,s| |αup,i| tanh ηκ)− |αup,s| |αup,i| tanh ηκ] ·
· d |αup,s|d |αup,i|d |αlow,s|d |αlow,i|

(4.51)

to 〈ncoll
B,s 〉+ 〈ncoll

A,s 〉 and 〈ncoll
A,i 〉+ 〈ncoll

B,i 〉. The contribution from the other expo-
nentially scaling terms from equations (4.43) and (4.44) contributing to the
integral yield the same values, whence

〈ncoll
B,s 〉+ 〈ncoll

A,s 〉 = Σs,1 + 4Σ2, (4.52)

〈ncoll
A,i 〉+ 〈ncoll

B,i 〉 = Σi,1 + 4Σ2. (4.53)

Using equations (4.48), (4.52), (4.49) and (4.53) we easily compute the inter-
ference visibilities for signal and idler. We evaluated the integrals in these
equations using Mathematica.
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