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Chapter 3

A mesoscopic Hamiltonian
for Josephson
travelling-wave parametric
amplifiers

We present a theory describing parametric amplification in a Joseph-
son junction embedded transmission line. We will focus on the
process of four-wave mixing under the assumption of an undepleted
pump. However, the approach taken is quite general, such that a dif-
ferent parametric process or the process under different assumptions
is easily derived. First the classical theory of the coupled-mode equa-
tions as presented by O’Brien et al. [Phys. Rev. Lett. 113 : 157001]
is shortly reviewed. Then a derivation of the full quantum theory is
given using mesoscopic quantisation techniques in terms of discrete
mode operators. This results in a Hamiltonian that describes the
process of parametric amplification. We show that the coupled-mode
equations can be derived from this Hamiltonian in the classical limit
and elaborate on the validity of the theory.

This chapter has been submitted for publication.
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Chapter 3. A mesoscopic Hamiltonian for Josephson . . .

3.1 Introduction

Parametric amplification arises as a result of non-linear optics. In case a
non-linear medium is traversed by a (weak) signal and a strong pump, a wave-
mixing interaction causes the signal to be amplified. The main advantage
of such amplifiers is their low added noise. In comparison: a conventional
low-noise microwave amplifier has a noise temperature Tn of several Kelvins,
which translates into kBTn/~ω ≈ 10 photons of added noise for Tn = 2 K at a
frequency of ω/2π = 4 GHz [1–3]. This number can be reduced to 1/2 or even
0 in a parametric amplifier, depending on its configuration [4]. This makes
parametric amplifiers ideal to amplify signals that are on single-photon level.
In the past decade, many microwave parametric amplifiers have been developed
to read out quantum bits in quantum information experiments (see e.g. [5] for a
review). In most of the designs [6–10] the amplifier is embedded in a resonator to
increase the interaction time of pump and signal, thus to increase the amplifier’s
gain. Due to such a design these amplifiers, however, are inherently limited
in their bandwidth, giving rise to scalability issues now that the number of
quantum bits in a single experiment increases. For this reason travelling-wave
parametric amplifiers (TWPAs) have been developed [11–16]. As these are not
based on resonance, they do not suffer from the intrinsic bandwidth limitation.
However, to achieve a large gain the amplifiers need to be long.
Currently, two sources of non-linearity have been considered for TWPAs. Firstly,
one can base the amplifier design on the intrinsic non-linear kinetic inductance
of superconductors [11, 14–16]. Secondly, one can embed Josephson junctions in
the transmission line, which have a non-linear inductance [12, 13]. Both versions
of the TWPA have been described theoretically using classical coupled-mode
equations [11, 12, 17, 18]. However, a Hamiltonian-description is necessary
to describe the TWPA as a quantum device, which is needed for a recently
proposed experiment testing the limits of quantum mechanics by entangling two
TWPAs within a single-photon interferometer [19]. Some authors consider such
a description impossible due to difficulties of quantum mechanics in describing
dispersion [20] (and references therein) – an important characteristic in TWPAs.
However, in case of a TWPA based on Josephson junctions such a description
appears to be possible. The Josephson TWPA has already been described using
a Hamiltonian based on continuous mode operators [21]. This description was
used to calculate average gain and squeezing effects. In this work we use discrete
mode operators for our analysis and use the resulting Hamiltonian to calculate
photon number distributions, apart from gain effects.

We will first put the concept of parametric amplification on solid ground by
introducing the necessary terminology. Then, a review is given of O’Brien et
al. [18] where the coupled-mode equations were derived, which can be used for
predicting the classical response of a Josephson TWPA in case the non-linearity
in the transmission line is weak. In section 3.4 we proceed in deriving the
Hamiltonian of the Josephson junction embedded transmission line in the limit
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3.2. Terminology

of a weak non-linearity, which we apply to the specific case of a non-degenerate
parametric amplifier with undepleted degenerate pump in section 3.5. In this
section we will also discuss other implementations of the Hamiltonian shortly.
Then we will derive the classical coupled-mode equations once more, but now
from the quantum Hamiltonian. Thus we show that the classical and quantum
theories converge in the classical limit. The chapter is concluded by a discussion
of the validity of the theories in terms of the strength of the non-linearity, i.e.
to which value of the non-linearity it can be considered weak, in section 3.8.

3.2 Terminology

For parametric amplifiers a specific terminology is used that can be confusing
at times. Here an overview of the terminology is presented and it is discussed
under which circumstances the terms play a role. These circumstances are fully
determined by the Hamiltonian that describes the process.
Basically, parametric amplifiers work by the principle of wave mixing. This
mixing process occurs due to a non-linear response of the device to a trans-
mitting electromagnetic field and causes energy transfer between the different
transmitting modes. Suppose that the non-linearity occurs as a result of a
non-linear polarisation of the material,

P =
(
χ(1)

e + χ(2)
e E + χ(3)

e E2 + . . .
)

E, (3.1)

then the Hamiltonian contains a term

HEP ∝ E ·P = χ(1)
e E2 + χ(2)

e E3 + χ(3)
e E4 + . . . . (3.2)

In case the material has a strong χ
(2)
e -contribution, the E3-term in the Hamilto-

nian leads to a three-wave mixing process (3WM) and consequently to a mixing
term in the Hamiltonian of the form

Ĥ3WM = ~χâpâ
†
s â
†
i ei(−∆Ωt+∆φ) + H.c.. (3.3)

This Hamiltonian enables a photon in the pump mode (p) to be scattered into a
photon in the signal mode (s) that is to be amplified and some rest energy, which
is generally referred to as the idler mode (i). As the Hamiltonian conserves
energy, ωi = ωp − ωs. Here, ∆Ω is a phase mismatching term resulting from
dispersion and modulation in the device, to be discussed in section 3.3 (equation
(3.16)) and section 3.6 (equations (3.79) and (3.81)). ∆φ = φp − φs − φi is the
phase difference between the pump, signal and idler that enter the device.

Contrarily, if the material has a dominant χ
(3)
e -contribution, the Hamiltonian

contains a term

Ĥ4WM = ~χâpâp’â
†
s â
†
i ei(−∆Ωt+∆φ) + H.c. (3.4)

and a four-wave mixing (4WM) process takes place, where ∆φ = φp+φp’−φs−φi.
In this case two pump photons are scattered into a signal and an idler photon
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Chapter 3. A mesoscopic Hamiltonian for Josephson . . .

and ωi = ωp +ωp’−ωs. In case âp 6= âp’ the pump is said to be non-degenerate,
whereas it is degenerate if âp = âp’.
Generally, the pump(s) in equations (3.3) and (3.4) are treated as classical
modes, which are undepleted. This implies that the corresponding operators are
replaced by a constant amplitude and can be absorbed in the coupling constant.
This results in a contribution to the Hamiltonian that is identical for 3WM and
4WM

Ĥ3/4WM = ~χ̃â†s â
†
i ei(−∆Ωt+∆φ) + H.c. (3.5)

in which χ̃ = χ |Ap| for 3WM and χ̃ = χ |Ap| |Ap’| for 4WM respectively.

Apart from a distinction in 3WM- and 4WM-devices, parametric amplifiers can
be phase-preserving and phase-sensitive. Phase-preserving amplification occurs
if the signal and idler are in two distinct modes (âs 6= âi as in equations (3.3)
and (3.4)). For this reason such amplifiers are also referred to as non-degenerate.
The amplification is independent of ∆φ and a minimum of half a photon of
noise per unit bandwidth is added to the signal [4]. The process is illustrated
in figure 3.1.
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Figure 3.1: Effect of non-degenerate (or phase-preserving) amplification with an un-
depleted, degenerate pump on (a) a coherent state (α = 1) and (b) a single photon
number state in the I,Q-quadrature plane. The lower half plane depicts (half of the)
Wigner function of the unamplified state using contours, whereas the upper half plane
shows the Wigner function of the state after amplification with filled contours. The
increased width of the latter indicates the increase of noise in the amplified state. The
Wigner functions are calculated using Qutip [22].

If signal and idler are in non-distinct modes (âs = âi in equations (3.3) and (3.4)),
however, the amplifier is said to be degenerate and works in a phase-sensitive
mode. The latter term results from a critical dependence of the amplification
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3.2. Terminology

process on ∆φ, which causes one quadrature of the signal to be amplified,
whereas the other is de-amplified, see figure 3.2. This implies that for input
signal states with an explicit phase, such as coherent states, the amplifier’s
power gain depends on the phase difference between signal and pump. The gain
is maximised for ∆φ = π/2, whereas for ∆φ = 3π/2 the gain is less than unity,
thus attenuating the signal. For input states that do not have such an explicit
phase, e.g. number states and thermal states, the amplifier power gain is phase
independent. In this process, amplification is possible without adding noise to
the signal [4].
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Figure 3.2: Effect of degenerate (or phase-sensitive) amplification with an undepleted
pump on (a) a coherent state (α = 1) and (b) a single photon number state in the
I,Q-quadrature plane. In the lower half plane (half of the) the Wigner functions of
the unamplified states are depicted using contours. The upper half plane depicts the
Wigner functions of the amplified states for ∆φ = π/2 with filled contours, whereas the
long symmetry axis of the Wigner functions for some different ∆φs are indictated by
dashed lines. One quadrature is amplified, whereas the other is de-amplified, such that
the added noise is 0. If the input state is a coherent state, the power gain varies with
∆φ. The Wigner functions are calculated using Qutip [22].

In both 3WM- and 4WM-devices the amplification process is most efficient if
the phase mismatch ∆Ω = 0, as is illustrated in figure 3.3. A non-zero ∆Ω
arises from dispersion and modulation effects, which are therefore beneficial to
be cancelled.
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Figure 3.3: Effect of phase mismatch on the phase-preserving amplification of a coher-
ent state for an undepleted pump. Depicted are the full-width-half-maximum and the
maximum of the Wigner function of the initial state χ̃∆t = 0 and the final states
χ̃∆t = 1.5 with various amounts of phase mismatch ∆Ω (∆t = 1) in the I,Q-
quadrature plane. The legend refers to the maximum of the Wigner functions. Increas-
ing the phase mismatch reduces the power gain of the amplifier. The Wigner functions
are calculated using Qutip [22].

3.3 The non-degenerate parametric amplifier
with undepleted degenerate pump –
classical theory

The classical theory for Josephson junction embedded transmission lines is
worked out in detail in [17, 18]. In [17] such a line, as schematically depicted in
figure 3.4, is considered and as a result a non-linear wave equation

Cg
∂2Φ

∂t2
− a2

LJ,0

∂2Φ

∂z2
− CJa

2 ∂4Φ

∂z2∂t2
= − a4

2I2
cL

3
J,0

∂2Φ

∂z2

(
∂Φ

∂z

)2

(3.6)

is derived that describes the evolution of the flux Φ = Φ(z, t) through the
line. Here Cg is the capacitance to ground, a the length of a unit cell of the
transmission line, LJ,0 is the Josephson inductance of the junctions at 0-flux,
CJ is the capacitance of the Josephson junction and Ic its critical current. LJ,0

and Ic are related by LJ,0 = ϕ0/Ic with ϕ0 = ~/2e the reduced magnetic flux
quantum, see section 3.4.4. In deriving this equation it is assumed that a� λ,
the wavelength of the propagating modes, and that the non-linearity provided
by the Josephson junctions is weak, such that only the first order non-linear
term (right hand side of equation (3.6)) resulting from the presence of the
Josephson junction needs to be taken into account.

Starting from this equation, [18] derives the coupled-mode equations. This is
a set of coupled non-linear differential equations that describe the evolution
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Figure 3.4: Schematic overview of a Josephson junction embedded transmission line.
The junctions are modelled as a parallel LC-circuit with a non-linear inductor LJ.

of the considered modes of the flux through the parametric amplifier. For the
non-degenerate 4WM parametric amplifier with degenerate pump it is assumed
that only three modes of the field play a role. These are generally referred to as
the pump, the signal and the idler. The pump is the mode that delivers the
energy for the amplification of the small amplitude signal. As a result of energy
conservation, an idler mode is created which also has a small amplitude.
[18] suggests a trial solution for equation (3.6) in the form of

Φ =
∑

n=p,s,i

Re
{
An (z) ei(knz−ωnt)

}
=

1

2

∑
n

An (z) ei(knz−ωnt) + c.c. (3.7)

which describes a superposition of waves that may have varying amplitudes An
while propagating through the line.
Furthermore, the slowly varying amplitude approximation is invoked, i.e., it
is assumed that

∣∣d2An/dz
2
∣∣� |kndAn/dz|, and that the change in amplitude

within a wavelength of transmission line is small, |dAn/dz| � |knAn|, such
that the first order derivatives at the right hand side of equation (3.6) can
be neglected. Furthermore, terms of order |As|2 and |Ai|2 are neglected, as
these are assumed to be small. Then, the amplitudes of the various modes are
described by the following differential equations, upon substituting the trial
solution into equation (3.6),

∂Ap

∂z
= iΞp |Ap|2Ap + 2iXpA

∗
pAsAie

i∆kz (3.8)

∂As(i)

∂z
= iΞs(i) |Ap|2As(i) + iXs(i)A

2
pA
∗
i(s)e

i∆kz (3.9)

where ∆k = 2kp − ks − ki and1

kn =
ωn
√
LJ,0Cg

a
√

1− LJ,0CJω2
n

. (3.10)

1Note that this is just the familiar form of kn, kn = ωn

√
LC/a, where L 7→

L/
(
1− LC//Lω2

)
as a result of the impedance ZJ = ZLJ

//ZCJ
.
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Chapter 3. A mesoscopic Hamiltonian for Josephson . . .

The coupling constants Ξn and Xn follow to be

Ξn =
a4k2

pk
3
n (2− δpn)

16CgI2
cL

3
J,0ω

2
n

(3.11)

Xn =
a4k2

pkski (kn − εn∆k)

16CgI2
cL

3
J,0ω

2
n

(3.12)

with εp = 1 and εs,i = −1. As can be noted, the Ξns modulate the wave number
of the modes in case the pump amplitude is large. Ξp is therefore referred to
as the self-modulation of the pump, while Ξs,i are the cross-modulation terms
between the pump and the signal or idler.
Under the undepleted-pump approximation and assuming As,i � Ap, we can
drop the interaction term in equation (3.8) and treat |Ap|2 as a constant. As a
result, the equation can be solved analytically as

Ap = |Ap,0| ei(Ξp|Ap,0|2z+φp). (3.13)

Since we describe 4WM, which is phase preserving, we can assume φp = 0 with
no loss of generality.

Substituting this result into equation (3.9), it can be rewritten as

∂As(i)

∂z
= iΞs(i) |Ap,0|2As(i) + iXs(i) |Ap,0|2A∗i(s)e

i(∆k+2Ξp|Ap,0|2)z (3.14)

Furthermore, switching to a co-rotating frame such thatAs(i) 7→ As(i)e
iΞs(i|Ap,0|2z,

we can cast the equation in the form

∂As(i)

∂z
= iXs(i) |Ap,0|2A∗i(s)e

i(∆k+∆Ξ|Ap,0|2)z (3.15)

where ∆Ξ = 2Ξp − Ξs − Ξi. This set of coupled differential equations can be
solved analytically as [23]

As(i) =

[
A(s,i),0

(
cosh gzz −

i∆K

2gz
sinh gzz

)
+

+
iXs(i) |Ap,0|2

gz
A∗i(s),0 sinh gzz

]
ei∆Kz/2

(3.16)

with ∆K =
(
∆k + ∆Ξ|Ap,0|2

)
, which is related to ∆Ω in equation (3.4)

through kn + Ξn|Ap,0|2 7→ (kn + Ξn)ωn|Ap,0|2/kn, see section 3.7. gz =√
XsX∗i |Ap,0|4 − (∆K/2)

2
from which the power gain of the signal for a TWPA
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3.3. The non-degenerate parametric amplifier with . . .

of length lT can be determined as

Gs ≡
∣∣∣∣ As

As,0

∣∣∣∣2 =

=

∣∣∣∣ cosh gzlT −
i∆K

2gz
sinh gzlT

∣∣∣∣2 +
|Ai,0|2

|As,0|2

∣∣∣∣∣Xs |Ap,0|2

gz
sinh gzlT

∣∣∣∣∣
2

−

−

(
iAs,0Ai,0

(
cosh gzlT −

i∆K

2gz
sinh gzlT

)
X∗s |Ap,0|2

g∗z |As,0|2
sinh g∗z lT + c.c.

)
.

(3.17)

3.3.1 Effect of phase matching

As noted in section 3.2, the amplification process is most efficient if ∆Ω = 0. As
will become clear from the quantum mechanical treatment of the problem in due
course, ∆Ω corresponds to ∆K in equation (3.16). However, due to dispersion
(equation (3.10)) and cross modulation (equation (3.11)) this term cannot be 0
in a transmission line embedded with Josephson junctions. In order to bring it
closer to 0, we need dispersion engineering. In [18], dispersion engineering is

Cc

Cr

Lr

Cg

CJ

LJ,0,Ic

a

Figure 3.5: Unit cell of a Josephson junction embedded transmission line with a re-
sonator for achieving phase matching between the pump, signal and idler mode in a
TWPA.

achieved by embedding resonators in each unit cell in figure 3.4, as depicted
in figure 3.5. If the pump tone is chosen at a frequency close to the resonance
frequency of the resonators, the result is that every resonator gives the tone
a small phase kick (without diminishing the tone’s amplitude too much) and
∆K ≈ 0 may be accomplished. The phase kick required per resonator depends
on the density of resonators. [18] puts a resonator in every unit cell, such that
the phase kick per resonator only needs to be very small. This implies that
only a little of the pump amplitude will be reflected. Contrarily, [12] puts a
resonator after 17 unit cells each containing three Josephson junctions, such
that the required amount of phase shift per resonator is larger, resulting in a
larger reflected pump amplitude accordingly.
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Chapter 3. A mesoscopic Hamiltonian for Josephson . . .

In case every unit cell contains a resonator, taking its effect on the theory into
account is straightforward: we replace the capacitance Cg by an impedance

ZCeff,n = ZCg,n//Zr,n =
1

iωnCg
+

1− Lr (Cr + Cc)ω2
n

iωnCc (1− LrCrω2
n)

(3.18)

in which Lr and Cr are the inductance and capacitance of the resonator with
a resonance at ωr = 1/

√
LrCr. Cc is the coupling capacitance between the

resonator and the transmission line. Subsequently, we substitute 1/iωnZCeff,n

for Cg in the coupling constants Ξn and Xn in equations (3.11) and (3.12), such
that

ΞPM
n =

ia4k2
pk

3
nωnZCeff,n

16I2
cL

3
J,0ω

2
n

(2− δpn) (3.19)

XPM
n =

ia4k2
pkskiωnZCeff,n

16I2
cL

3
J,0ω

2
n

(kn − εn∆k) . (3.20)
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Figure 3.6: Predicted power gain as function of signal frequency without and with
phase matching with parameters taken from [18]. The pump frequency and current are
5.97 GHz and 0.5Ic and the initial idler current is 0. The transmission line parameters
are LJ,0 = 100 pH (Ic = 3.29µA), CJ = 329 fF and Cg = 39 fF and the resonator
parameters Cc = 10 fF, Lr = 100 pH and Cr = 7.036 pF. The calculations have been
performed taking into account 2000 unit cells of 10µm length. The dip in the plot for
a TWPA with phase matching actually contains two dips on closer inspection. They
result from the signal and idler being on resonance with the phase matching resonators
respectively.

The effect of phase matching on the performance of the TWPA is depicted
in figure 3.6. The red dash-dotted curve results from equation (3.17) without
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3.4. Quantum theory of parametric amplification (4WM)

phase matching with LJ,0 = 100 pH (Ic = 3.29µA), CJ = 329 fF and Cg = 39 fF
with 2000 unit cells of 10µm. The blue continuous curve results from adding
resonators to the unit cells and evaluating equation (3.17). For the resonators
Cc = 10 fF, Lr = 100 pH and Cr = 7.036 pF. In both calculations the pump
current, which is linked to the mode amplitude via the characteristic impedance
of the TWPA as Ip = −Ap,0ωp/Zc, is set to 0.5Ic at ωp = 2π × 5.97 GHz. The
initial idler current is set to 0.

In the case that one only adds resonators at specific points in the structure,
these can be taken into account by evaluating the amplifier in parts. The
resonators divide the structure in sections. Within each section, the evolution
of the mode amplitudes follows equation (3.16) with the coupling constants as
given by equations (3.11) and (3.12). Then, between two sections, one evaluates
the transmission coefficient due to the presence of the resonator, updates the
mode amplitudes accordingly and uses those amplitudes as input for the next
section.

3.4 Quantum theory of parametric
amplification (4WM)

In this section we derive the quantum Hamiltonian for the TWPA. In quantum
theory the evolution of the state vector, |ψ〉, describing the system is determined
by the Schrödinger equation,

i~
∂ |ψ〉
∂t

= Ĥ |ψ〉 . (3.21)

where ~ is the reduced Planck constant h/2π. Hence, in order to understand the
quantum behaviour of a parametric amplifier, we need to derive its Hamiltonian.
In this section the Hamiltonian for a 4WM parametric amplifier, where the
non-linearity is provided by Josephson junctions, is derived within Fock space
for discrete modes. Although this may sound quite limiting, it should be noted
that the same method can be easily applied to 3WM devices or devices with
another source of the non-linearity.
We derive the Hamiltonian in three steps. After covering the concept of energy
in transmission lines, a concept which the rest of the derivation relies on, first a
dispersionless LC-transmission line is quantised. As a second step, dispersion
is added to this transmission line by adding an additional capacitance parallel
to the inductance. As a final step the inductance is replaced by a Josephson
junction.

3.4.1 Energy in transmission lines

Typically, non-dissipative transmission lines are quantised as electromagnetic
circuits using currents (I), fluxes (Φ), voltages (V ) and charges (Q) as quantum

33



Chapter 3. A mesoscopic Hamiltonian for Josephson . . .

fields [24]. These give rise to a Hamiltonian via the inductors and capacitors
that characterise the line. The energy stored in these elements is given by

U (t) =

∫ t

t0

P dt′ =

∫ t

t0

V I dt′ (3.22)

– the energy is given by the time-integrated power, P , through the element,
which equals the product of voltage and current. Now the only task is to
calculate the voltage over and current through the element, integrate and sum
over all the elements in the circuit. Specifically, for inductors

U =


∫ I(t)
I(t0)

LI dI ′ =
1

2
LI2∫ Φ(t)

Φ(t0)

1

L
Φ dΦ′ =

1

2L
Φ2

(3.23)

using the current-voltage relation for inductors V = L∂I/∂t in the first line and
Faraday’s induction law V = ∂Φ/∂t along with Φ = LI in the second. Note
that it is implicitly assumed that the current and flux are 0 at t = t0. This
proves to be a critical assumption of utmost importance as will be shown in
section 3.4.3. For the energy stored in capacitors, the same form of the energy
arises if we interchange current with voltage, flux with charge and inductance
with capacitance in equation (3.23).

3.4.2 Quantisation of a non-dispersive transmission line

Consider once more the transmission line in figure 3.4. For the moment we
neglect the non-linearity of the Josephon junction and the Josephson capacitance
CJ, in which case the line is just an ordinary LC-transmission line without
dispersion, as depicted in figure 3.7.
As suggested by the previous section, we postulate the following mesoscopic

Cg

LJ

a

Figure 3.7: Unit cell of a dispersionless LC-transmission line.

Hamiltonian for an electromagnetic (EM) field transmitting through the trans-
mission line

Ĥ =

∫
lq

1

2
LJ ÎLJ

2 +
1

2
Cg V̂Cg

2 dz. (3.24)
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3.4. Quantum theory of parametric amplification (4WM)

Here, LJ = LJ/a is the inductance per unit length and Cg = Cg/a the capaci-

tance per unit length. ÎLJ
is the current through the inductor LJ and V̂Cg

is
the voltage over the capacitor Cg. lq is the quantisation length [25].
As in the classical theory, we assume sinusoidal waves passing through the line.
In this case

V̂Cg =
∑
n

V̂Cg, n =
∑
n

√
~ωn
2Cglq

(
âne

i(knz−ωnt) + H.c.
)
, (3.25)

as suggested by [24], adapted for discrete mode operators [25]. For waves
travelling in positive z-direction, the wave number kn is positive and will
be labelled by a positive n. Waves travelling in negative z-direction have a
negative wave number and will therefore be labelled by a negative n. In general,
k−n = −kn. For frequencies we have ω−n = ωn. The characteristic impedance
of this line is given by Zc =

√
LJ/Cg and the phase velocity of the travelling

waves equals vph = ωn/ |kn| = 1/
√
LJCg.

From this voltage we determine the current through the inductor by the tele-
grapher’s equations. Specifically

∂Vn
∂z

= −L∂In
∂t

. (3.26)

Thus,

ÎLJ =
∑
n

ÎLJ, n =
∑
n

sgn(n)

√
~ωn

2LJlq

(
âne

i(knz−ωnt) + H.c.
)
. (3.27)

Substituting relations (3.27) and (3.25) into equation (3.24) and using that

∫
lq

ei(∆knm)z dz =


lq sinc (∆knmlq/2) if − lq/2 ≤ z ≤ lq/2

(symmetric bounds)

−i
(
ei∆knmlq − 1

)
/∆knm if 0 ≤ z ≤ lq

(asymmetric bounds)

≈ lqδ∆knm
(3.28)

with ∆knm ≡ ±kn ± km. Here, the plus (minus) sign should be chosen if
the wave number is associated to an annihilation (creation) operator. The
approximation holds if ∆knmlq � 1, for which

δ∆knm =

{
1 if ∆knmlq = 0

0 else,
(3.29)

such that we arrive at

Ĥ0 =
∑
n

1

2
~ωn

(
â†nân + ânâ

†
n

)
=
∑
n

~ωn
(
â†nân +

1

2

)
, (3.30)
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taking into account the commutation relation
[
ân, â

†
m

]
= δ̂nm (See [25] for

details).

3.4.3 The influence of the Josephson capacitance:
quantisation of a dispersive transmission line

So far we have been neglecting the influence of the parallel capacitor CJ in the
transmission line under consideration. Taking this capacitance into account
leads to alterations to the theory presented so far, because we now have a
capacitor CJ parallel to the inductor LJ, as shown in figure 3.8. For frequencies

Cg

CJ

LJ

a

Figure 3.8: Unit cell of an LC-transmission line in which dispersion is added due to
the capacitor CJ parallel to the inductor LJ.

ωn < 1/
√
LJCJ this can be taken into account by a frequency-dependent

inductance,

Leff =
LJ

1− LJCJω2
n

≡ LJΛn, (3.31)

and as a result, first

Zc,n =

√
LJΛn
Cg

, vph,n =
1√
LJΛnCg

=
ωn
|kn|

, (3.32)

implying dispersion is added to the problem, since the phase velocity is now
frequency dependent. Secondly, we have to add an additional capacitive energy
to the Hamiltonian.

For didactic reasons we now give two derivations of the Hamiltonian in which
we take the parallel capacitor into account. In equations (3.33) to (3.36) we
present an erroneous approach, after which the correct manner is presented.

Intuitively, the energy contribution of CJ can be added to the Hamiltonian in
the same way as the energy stored in Cg. That is,

Ĥ =

∫
l

1

2
LJ ÎLJ

2 +
1

2
CJ∆ V̂CJ

2 +
1

2
Cg V̂Cg

2 dz. (3.33)
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Realising that ∆V̂CJ = ∆V̂LJ = ∆V̂Leff
, it can be calculated by the current-

voltage relationship for inductors. The current through Leff equals the current
in equation (3.27) with LJ 7→ Leff. Thus,

∆V̂Leff
=
∑
n

∆V̂Leff, n = L
∑
n

Λn
∂ÎLeff, n

∂t

=
∑
n

kna

√
~ωn
2Cglq

(
−iânei(knz−ωnt) + H.c.

)
.

(3.34)

Using the same relationship, we can calculate ÎLJ
as

ÎLJ
=

1

LJ

∫
∆V̂LJ

dt =
∑
n

kn
LJωn

√
~ωn
2Cglq

(
âne

i(knz−ωnt) + H.c.
)

(3.35)

and we can use the methods of the last section to find (Wrong!)

Ĥ0 =
∑
n

1

2
~ωn

(
â†nân +

1

2

)
(Λn + (Λn − 1) + 1) =

∑
n

~ωnΛn

(
â†nân +

1

2

)
.

(3.36)

This is an odd result: in the transmission line fed by a mode oscillating at
a frequency ωn the mode seems to oscillate at ωnΛn. Indeed, the result is
simply wrong by the exact reason pointed out in section 3.4.1. The voltage
in equation (3.25) is “cosine-like”, whereas ∆V̂CJ

is “sine-like”2. This implies
that the energy cannot be 0 in all elements at the same time, as we assumed
in equation (3.23). Although the sine-like operator ∆V̂CJ is unsuitable to be
used for the purpose of the derivation of the Hamiltonian, it should be noted
that ∆V̂CJ

is a “valid” operator in itself and thus it is suitable for calculating
expectation values from some quantum state |ψ〉.

To solve this problem, consider once more the energy stored in CJ,

UCJ
=

∫ t

t0

VCJ
ICJ

dt′ =
1

2
CJV

2
CJ

(3.37)

However, we can also cast this energy in terms of the flux, given by Faraday’s
induction law as

Φ =

∫
V dt. (3.38)

2In the sense that the expectation value of the operator on a coherent state |α〉 with α ∈ R
scales as either a cosine or a sine.
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Since the flux is the time-integrated voltage, it will be cosine-like, whenever the
voltage is sine-like and vice versa. From the definition

UCJ =

∫ t

t0

VCJICJ dt′ =

∫ t

t0

CJ
dΦCJ

dt′
d2ΦCJ

dt′2
dt′ = −ω2CJΦ2

CJ
, (3.39)

using the current-voltage relation for capacitors I = C∂V/∂t and that ∂2Φ/∂t2 =
−ω2Φ. This suggests that a more fruitful approach is to start out with

Ĥ =
1

2a2

∫
lq

1

LJ
∆Φ̂LJ

2 + CJa2∆Φ̂CJ

∂2∆Φ̂CJ

∂t2
+

1

Cg
Q̂Cg

2 dz. (3.40)

In the above equation we switched to flux and charge variables in all terms for
aesthetic reasons. For the first and third term we might use the current and
voltage variable just as well. The fluxes can be computed from either equation
(3.34) or (3.35), and it follows

∆Φ̂LJ = ∆Φ̂CJ = ∆Φ̂Leff
=
∑
n

kna

ωn

√
~ωn
2Cglq

(
âne

i(knz−ωnt) + H.c.
)
. (3.41)

Substituting, the Hamiltonian (3.40) yields

Ĥ0 =
∑
n

~ωn
(
â†nân +

1

2

)
(3.42)

as expected.

This result can be generalised for any lossless, linear transmission line. From
equation (3.40) we can infer that we can describe the same problem with just
two terms in the Hamiltonian. Rewriting equation (3.40) we find

Ĥ =
1

2a

∫
lq

(
1

LJ
∆Φ̂LJ

+ CJ
∂∆V̂CJ

∂t

)
∆Φ̂CJ

+ Cg V̂Cg

2 dz =

=
1

2a

∫
lq

ÎLeff
∆Φ̂Leff

+ Cg V̂Cg

2 dz

(3.43)

as ILeff
= ILJ

+ ICJ
. The same argument holds if Cg is replaced by a frequency-

dependent effective capacitance Ceff, such that we may write

Ĥ =
1

2a

∫
lq

ÎLeff
∆Φ̂Leff

+ V̂Ceff
Q̂Ceff

dz (3.44)

for any lossless linear transmission line. This yields equation (3.42) after
substitution of the quantum fields.
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3.4. Quantum theory of parametric amplification (4WM)

3.4.4 Adding the non-linearity: quantisation of a non-
linear transmission line

As a last step we replace the inductor LJ, which we considered as an inductor
with a fixed value up to this point, by a Josephson junction. The unit cell for
such a transmission line is depicted in figure 3.9.

Cg

CJ

LJ,0,Ic

a

Figure 3.9: Unit cell of a Josephson junction embedded transmission line in which the
Josephson junction is modelled as a non-linear inductor, LJ, with a parallel capacitor
CJ.

The current through a Josephson junction is

IJ = Ic sin

(
∆ΦJ

ϕ0

)
(3.45)

with ϕ0 = ~/2e the reduced magnetic flux quantum, Φ0/2π, and e the elementary
charge. From the current, we can calculate the Josephson energy in the usual
fashion

UJ =

∫ t

t0

V I dt′ =

∫ t

t0

d∆ΦJ

dt′
Ic sin

(
∆ΦJ

ϕ0

)
dt′ = Icϕ0

(
1− cos

(
∆ΦJ

ϕ0

))
.

(3.46)

Substituting this energy for the inductive energy in equation (3.40) yields

Ĥ =
1

2a2

∫
lq

2aIcϕ0

(
1− cos

(
∆Φ̂J

ϕ0

))
+ CJa2∆Φ̂J

∂2∆Φ̂J

∂t2
+

1

Cg
Q̂Cg

2 dz

=
1

2a2

∫
lq

(
1

LJ,0
∆Φ̂J −

1

12LJ,0ϕ2
0

∆Φ̂J
3 +O

(
∆Φ̂J

5
)

+

+ CJa2 ∂
2∆Φ̂J

∂t2

)
∆Φ̂J +

1

Cg
Q̂Cg

2 dz.

(3.47)
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in which we have Taylor-expanded the cosine-term and defined the Josephson
inductance as LJ,0 = ϕ0/Ic. From this equation it is clear immediately that
the generalised Hamiltonian of equation (3.44) does not capture the non-linear
behaviour.

To address the non-linearity of the transmission line we also calculate the non-
linear flux operator derived from equation (3.41). The dependence of LJ and
thus Λn in the non-linear flux operator on ∆ΦJ is found from the Josephson
current and the flux ∆ΦJ = LJIJ,

LJ(∆ΦJ) =
ϕ0

Ic

∆ΦJ/ϕ0

sin (∆ΦJ/ϕ0)
≡ LJ,0

∆ΦJ/ϕ0

sin (∆ΦJ/ϕ0)
(3.48)

Furthermore, as in the classical theory, we give an explicit time and spatial
dependence to the creation and annihilation operators, ân

(†) 7→ ân
(†)(z, t), in

the voltage operator of equation (3.25). Invoking the slowly varying amplitude
approximation, the time and spatial dependence of these operators is neglected
in deriving the other field operators. Hence, from equation (3.41), we find for
the non-linear Josephson junction flux operator

∆Φ̂J =
∑
n

a

√√√√~ωn
2lq

LJ,0∆Φ̂J/ϕ0

sin
(

∆Φ̂J/ϕ0

)
− ω2

nLJCJ∆Φ̂J/ϕ0

(
âne

i(knz−ωnt) + H.c.
)

=
∑
n

√√√√ 1

1− Λn
∑
m,l ∆Φ̂J,m∆Φ̂J,l/6ϕ2

0 +O
(

∆Φ̂J
4
)∆Φ̂J,n

(0)

(3.49)

with ∆Φ̂J,n
(0) given by equation (3.41). In the second line of this equation, we

have written explicitly that ∆Φ̂J
2 =

∑
n,m ∆Φ̂J,n∆Φ̂J,m. This recurrent relation

can be solved iteratively resulting in

∆Φ̂J =
∑
n

1 +
Λn
12

(
∆Φ̂J

(0)

ϕ0

)2

+O

(∆Φ̂J
(0)

ϕ0

)4
∆Φ̂J,n

(0) (3.50)

Substitution of this expression in the Hamiltonian of equation (3.47) yields the
Hamiltonian for a 4WM parametric amplifier where the non-linearity is due to
Josephson junctions. Up to first non-linear order (or fourth order in ∆Φ̂J) we
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find

ĤTWPA =
∑
n

~ωn
(
â†nân +

1

2

)
+

+
∑

n,m,l,k

−i~2e−i∆ωnmlkt

96LJ,0I2
c l

2
q∆knmlk

(
ei∆knmlklq − 1

)
·

·

[ (
1− 4LJ,0ΛnCJω

2
k

){
ˆ̃a + H.c.

}
n·m·l·k

+

+ 4LJ,0ΛnCJ

(
2
{
ω
(
−iˆ̃a + H.c.

)}
n·m

{
ˆ̃a + H.c.

}
l·k

+

+
{

ˆ̃a + H.c.
}
n·m

{
ω
(
−iˆ̃a + H.c.

)}
l·k

)]
,

(3.51)

where ˆ̃an ≡ sgn (n)
√

Λnωnân and we have chosen the asymmetric integral
bounds of equation (3.28). The subscript n ·m · l · k below the braces indicates
multiplication, e.g. {Λω}n·m = ΛnωnΛmωm. ∆knmlk ≡ ±kn ± km ± kl ± kk for
the different terms resulting from expansion of the brackets. A plus (minus)
sign refers to a corresponding annihilation (creation) operator, e.g. the term

ânâ
†
mâ
†
l âk corresponds to ∆knmlk = kn − km − kl + kk. Similarly, ∆ωnmkl ≡

±ωn ± ωm ± ωl ± ωk.

This is the main result of this chapter. This Hamiltonian describes the full
quantum behaviour of Josephson TWPAs up to first non-linear order. However,
we will point out two remaining issues and how they may be dealt with. Firstly,
this Hamiltonian does not conserve energy a priori. For energy conservation
∆ωnmlk must equal 0, which does not follow necessarily from the equation. At
this point we can demand energy conservation by considering only interactions
between modes for which ∆ωnmlk = 0. However, one could also reason that
∆ωnmlk 6= 0 adds to the phase mismatching term ∆Ω in equation (3.4), which
at small magnitudes (compared to ωn) already greatly reduces the gain of the
amplifier. From this argument it follows that ∆ωnmlk ≈ 0. If the latter is
the case, and ∆ωnmlk is not strictly 0 this might lead to line broadening of
the modes. For now we will assume strict energy conservation and demand
∆ωnmlk = 0.

A second problem in the expression above is the explicit dependence of the
mixing term on the quantisation length. This dependence arises both as a
consequence of the dispersion in the line as well as an intrinsic dependence of
the mixing term that scales as l−2

q . Due to dispersion, ∆knmlk and ∆ωnmlk
cannot equal 0 simultaneously, which introduces an lq-dependence if we demand
∆ωnmlk = 0 for the interacting modes.
Partly, the two contributions to the quantisation length dependence of the
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mixing term cancel each other as

−i
(
ei∆knmlklq − 1

)
∆knmlk

= lq

(
1− i

2
∆knmlklq +O

(
(∆knmlklq)

2
))

. (3.52)

The intrinsic dependence of the mixing term on lq can be further resolved by
introducing a classical pump – see section 3.5. To deal with the remaining
lq-dependence due to dispersion, we can assume that the dispersion effects are
small enough such that ∆knmlk ≈ 0, while ∆ωnmlk = 0. We will make this
assumption in the following sections. The problem is also resolved considering
a transmission line of length lq for quantisation, of which just a part contains
Josephson junctions and using continuous mode quantisation [21].

3.5 Implementations

Using equation (3.51) one can analyse the different implementations of an
amplifier. In this section, we will study the non-degenerate amplifier with
degenerate pump in detail, the same amplifier implementation that was studied
classically in section (3.3). Treating the pump as a classical mode, we will solve
the problem of the explicit appearance of the quantisation length in the mixing
coupling constants in section 3.5.1. The section ends with a short discussion of
other implementations of 4WM amplifiers in section 3.5.2.

3.5.1 The non-degenerate parametric amplifier with un-
depleted degenerate classical pump – quantum the-
ory

As noted in section 3.3, for the non-degenerate parametric amplifier with
degenerate pump, it is assumed that only three modes, the pump, signal and
idler, play a role. Then, from equation (3.51) we can determine the interaction
Hamiltonian of the amplifier as

Ĥint =
∑

n,m=p,s,i

~ξnm
(
â†nânâ

†
mâm +

cm
2
â†nân +

cn
2
â†mâm

)
+

+ ~
(
χâpâpâ

†
s â
†
i + H.c.

)
+

+
∑

n,m=p,s,i

cncm~ξnm
2 (2− δnm)

−
cncm~ ξnm|Λ=0 (8− 2δnm)

3
·

·
(
ωn
ωm

(Λm − 1) +
ωm
ωn

(Λn − 1)

)
,

(3.53)

taking into account the commutation relations explicitly as cn ≡
[
ân, â

†
n

]
= 1̂.

The first two lines in this equation determine the dynamics of the amplifier,
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whereas the last two lines represent the added zero-point energy. The coupling
constants are found to be

ξnm =
~ΛnωnΛmωm

16I2
cLJ,0lq

(2− δnm) (1 + Λξnm) (3.54)

χ =
~Λpωp

√
ΛsωsΛiωi

8I2
cLJ,0lq

(
1 + Λχ

)
(3.55)

where

Λξnm ≡
2

3

(
Λn
Λm

+
Λm
Λn
− 2

)
(3.56)

Λχ ≡
LJ,0CJ

6

(
ωpωs

(
− 2Λp + 5Λs − 3Λi

)
+ ωpωi

(
− 2Λp − 3Λs + 5Λi

)
+

+ ωsωi

(
4Λp − 2Λs − 2Λi

))
(3.57)

and ξnm|Λ=0 implies that ξnm should be used without the contribution of Λξnm .

In equation (3.53), the ξn=m-term represents the self modulation and the
ξn 6=m-terms represent the cross modulation. The term in the equation with
coupling constant χ is where the magic happens. This term represents the real
amplification process in which two pump photons are scattered into a signal
and an idler photon.

For a parametric amplifier to work effectively, the device must be driven into
its non-linear regime, which is generally achieved by applying a pump current
close to the critical current of the device in addition to the much weaker signal
current. In this case we can approximate the Hamiltonian to second order in
âs,i

(†). Moreover, as ~ξnn � ~ωn, we can neglect the terms resulting from the
commutation relations as well. Hence, to a good approximation,

ĤTWPA ≈
∑

n=p,s,i

~ωnâ†nân +
∑

n=p,s,i

~ξpnâ†pâpâ
†
nân + ~

(
χâpâpâ

†
s â
†
i + H.c.

)
,

(3.58)

where we have neglected the constant zero-point energy, which does not influence
the dynamics of the amplifier, and we introduced

ξpn =
~ΛpωpΛnωn
16I2

cLJ,0lq
(4− 3δpn)

(
1 + Λξpn

)
. (3.59)

Here, the factor 4− 3δnm (instead of 2− δnm) arises from converting the double
sum into a single sum. Notably, the coupling constants corresponding to the
self- and cross-modulation differ by a numerical factor of 4. In [21] this factor
was found to be 2. However, as discussed below, both this work and [21] find
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identical operator equations of motion. In equation (3.58), χ is still given by
equation (3.55).

Furthermore, we can make the approximation that the pump can be treated as a
classical mode and we can replace the corresponding operators with amplitudes.
In accordance to the classical treatment of the problem in section 3.3, we will
choose the flux, Φ̂Cg

=
∫
V̂Cg

dt, for the amplitude. Upon comparing this
expression with its classical analogue (cf. [25]), equation (3.7), we find

âp 7→ −i
√
ωpCglq

2~
Ap. (3.60)

Then, for the signal and idler mode, which are still treated quantum mechanically,
we find the classical-pump Hamiltonian

ĤTWPA
(CP) ≈

∑
n=s,i

~
(
ωn + ξ′n |Ap|2

)
â†nân − ~

(
χ′A2

pâ
†
s â
†
i + H.c.

)
(3.61)

with

ξ′n =
Λpω

2
pΛnωn

32I2
cLJ,0Zc,pvph,p

(4− 3δpn)
(
1 + Λξpn

)
=

=
k2

pΛnωn

32I2
cL2

J,0

(4− 3δpn)
(
1 + Λξpn

) (3.62)

χ′ =
Λpω

2
p

√
ΛsωsΛiωi

16I2
cLJ,0Zc,pvph,p

(1 + Λχ) =

=
k2

p

√
ΛsωsΛiωi

16I2
cL2

J,0

(1 + Λχ) .

(3.63)

Although ξ′p does not appear in the classical-pump Hamiltonian, it is still defined
here for future reference.

Generalising these equations to the case in which resonators are added for
dispersion engineering is straightforward. Due to our results in section 3.4.3
this is as easy as making the substitution Cg 7→ 1/iωnZCeff

(implicit in Zc,n,
vph,n, kn and Λn) as discussed in section 3.3.1.

To calculate the gain predicted by a parametric amplifier from the quantum
theory, we calculate the Heisenberg equations of motion of the operators. By
substituting equation (3.58) as the Hamiltonian and approximating the pump
as a classical mode, this yields

∂Ap

∂t
= −i

(
ωp + 2ξ′p|Ap|2 + cpξpp

)
Ap + 2iχ′∗A∗pâsâi (3.64)

∂âs(i)

∂t
= −i

(
ωs(i) + ξ′s(i)|Ap|2

)
âs(i) + iχ′A2

pâ
†
i(s), (3.65)
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where again we showed the effect of the commutation relations explicitly. How-
ever, again we can neglect ξpp, since ξpp � ξ′p|Ap|2. Under the undepleted
pump approximation we can neglect the last term in equation (3.64) as well
and solve for the pump amplitude directly, as in the classical case. Hence, in
the co-rotating frame introduced in section 3.3,

∂âs(i)

∂t
= iχ′ |Ap,0|2 â†i(s)e

−i∆Ωt. (3.66)

Thus we find, similar to the classical theory

âs(i) =

[
âs(i),0

(
cosh gtt+

i∆Ω

2gt
sinh gtt

)
+

+
iχ′ |Ap,0|2

gt
â†i(s),0 sinh gtt

]
e−i∆Ωt/2 (3.67)

with

∆Ω = 2
(
ωp + 2ξ′p |Ap,0|2

)
−
(
ωs + ξ′s |Ap,0|2

)
−
(
ωi + ξ′i |Ap,0|2

)
=

=
(
4ξ′p − ξ′s − ξ′i

)
|Ap,0|2

(3.68)

gt =

√
|χ′|2 |Ap,0|4 − (∆Ω/2)

2
. (3.69)

Then, if the state spends a time tT in the TWPA,

Gs,q ≡
〈
â†s âs

〉〈
â†s,0âs,0

〉 =

=

∣∣∣∣ cosh gttT+
i∆Ω

2gt
sinh gttT

∣∣∣∣ 2

+

〈
â†i,0âi,0

〉
+1〈

â†s,0âs,0

〉 ∣∣∣∣∣χ′ |Ap,0|2

gt
sinh gttT

∣∣∣∣∣
2

−

−

i 〈âs,0âi,0〉〈
â†s,0âs,0

〉(cosh gttT+
i∆Ω

2gt
sinh gttT

)
χ′∗|Ap,0|2

g∗t
sinh g∗t tT+c.c.


(3.70)

in which the term on the second line yields 0 in case the signal or the idler is
initially in a number state.

One can also calculate the photon number distribution in the output of a
parametric amplifier from the theory in the limit of a classical undepleted pump.
To this end we calculate the evolution of the state vector from equation (3.21)
in the interaction picture,

|ψI (t)〉 = e−i ĤTWPA
(CP,rot)t/~ |ψI (0)〉 (3.71)
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where

ĤTWPA
(CP,rot) = −~

(
χ′ |Ap|2 â†s â

†
i e−i∆Ωt + H.c.

)
(3.72)

is the classical pump Hamiltonian rewritten in the co-rotating frame. Assuming
∆Ω = 0 and χ′ ∈ Re, we can rewrite the propagator in equation (3.71) using an
ordering theorem [26]

e−i ĤTWPA
(CP,rot)t/~|∆Ω=0 = ei tanh(κ)â†s â

†
i e− ln(cosh(κ))(1+â†s âs+â

†
i âi)ei tanh(κ)âsâi

(3.73)

where the amplification κ ≡ χ′ |Ap|2 t.
For a single-photon input state |1〉s |0〉i, we calculate the output state as

|ψI (t)〉 =

∞∑
n=0

(i tanh (κ))
n

cosh2 (κ)

√
n+ 1 |n+ 1〉s |n〉i (3.74)

from which we easily compute that the probability of finding N signal photons
in the output state equals

Pr (ns = N) = |〈N |ψI (t)〉|2 =
tanh (κ)

2(N−1)

cosh4 (κ)
N. (3.75)

For a coherent state |α〉s |0〉i we find

|ψI (t)〉 = e−|α|
2/2

∞∑
n,m=0

(i tanh (κ))
m

(cosh (κ))
1+n

αn√
n!

√(
n+m

n

)
|n+m〉s |m〉i (3.76)

and

Pr (ns = N) = e−|α|
2
N∑
n=0

(tanh (κ))
2(N−n)

(cosh (κ))
2(1+n)

|α|2n

n!

(
N

n

)
. (3.77)

These probabilities are visualised in figure 3.10, in which can be observed how
the photon number distribution spreads out as a function of the TWPA gain.

3.5.2 Other implementations

Although it is most trivial to use the TWPA based on Josephson junctions as a
non-degenerate amplifier with degenerate pump, there are other implementation
schemes, which will be discussed shortly in this section. As in the last section
we assume that only the pump(s) is (are) a source of amplification.

� Non-degenerate pump, signal and idler: Instead of feeding the TWPA with
a single pump tone, we can apply two pump tones at different frequencies.
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Figure 3.10: Photon number distribution in the output state of a TWPA for (a) a
single-photon state and (b) a coherent state α = 1 as a function of amplification
κ = χ′ |Ap|2 t (left axis) or, equivalently, gain G (right axis), assuming ∆Ω = 0. The
colourbar, which is cut off at Pr < 10−6, indicates the probability of finding N photons
in the output state. The average number of photons in the output state is indicated in
red.
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In this case we will find, in first order, three (primary) idler tones, one of
which will arise as a result of mixing with the two different pump tones
ωi = ωp1 + ωp2 − ωs, which has been considered theoretically in [18]. Two
other idler tones result from each pump working in a degenerate regime,
for which ωi(1,2) = 2ωp(1,2)−ωs. However, in turn, each of these idler tones
will be the source of (secondary) idler tones at yet different frequencies,
such that we end up with a whole spectrum of idlers. A manner to prevent
this from happening is to engineer stop bands into the transmission line,
such that only specific modes will transmit. However, the generation of
many idler tones complicates the analysis for such devices. Still, in general
it can be said that such a device will work in the phase-preserving regime.

� Non-degenerate pump, signal only: In case we apply two pump tones at
different frequencies, we can engineer a quasi phase-sensitive amplifier,
if the signal frequency is chosen at 2ωs = ωp1 + ωp2. It will work only
in a quasi phase-sensitive regime, because each pump will also cause a
primary idler tone to arise from a phase-preserving interaction with the
signal. In turn this gives again rise to a whole set of secondary idler tones.
If the transmission line is engineered such, that the primary idlers at
ωi(1/2) = 2ωp(1/2) − ωs fall into stop bands, the device will work as a real
phase-sensitive device.

� Pump, signal and idler with DC current: If we put the TWPA in between
two bias-Ts we can add a DC current to the device. In this manner
we can use the device as quasi 3WM, as has been demonstrated in [14].
Adding the current, we should insert ΦJ 7→ ΦJ +ΦDC into the Hamiltonian
in equation (3.47) which yields, among others, a term proportional to
Φ̂J,0

3ΦDC. Continuing the analysis, this yields a term proportional to

ΦDC

(
âpâ
†
s â
†
i + H.c.

)
in the Hamiltonian, which is a 3WM-term. Of course

the full Hamiltonian will contain 4WM-terms, since the pump acts as
a separate source as well. However, choosing the amplitude of the DC
current large with respect to the amplitude of the pump tone, the latter
terms can be made small. This implementation of the amplifier is phase-
preserving in general, however, it can be used as a phase-sensitive device
as well by choosing ωp = 2ωs.

3.6 Paramp terminology – revisited

This chapter started out with an introduction on TWPA terminology. After our
extensive excursion into 4WM paramp theory, we have reached the point that
we can understand the Hamiltonian in equation (3.4) fully. The only difference
between that Hamiltonian and our result in equation (3.58) is that the former
uses a co-rotating frame, whereas the latter does not. If we cast equation (3.58)
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in a co-rotating frame, we can identify

χ|eq.(3.4) = χ|eq.(3.55) (3.78)

∆Ω|eq.(3.4) = (4ξpp − ξps − ξpi) â
†
pâp (3.79)

or, in case we absorb a classical pump into the coupling constants

χ̃|eq.(3.5) = − χ′|eq.(3.63) |Ap|2 (3.80)

∆Ω|eq.(3.5) =
(
4ξ′p − ξ′s − ξ′i

)
|Ap|2 . (3.81)

3.7 Marrying the quantum and classical
theories

Although the classical theory of the non-linear wave equation and the quantum
evolution described by Schrödinger’s equation seem to be a world apart, in fact
the two descriptions can be mapped onto one another. This will be done in this
section.
The marriage between the two theories runs via the Heisenberg equations
of motion of the operators and the connection between the classical mode
amplitudes on the one hand and creation and annihilation operators on the
other. Starting from the Heisenberg equations of motion with a classical
undepleted pump and neglecting small terms (cf. equations (3.64) and (3.65))

∂Ap

∂t
= −i

(
ωp + 2ξ′p|Ap|2

)
Ap (3.82)

∂âs(i)

∂t
= −i

(
ωs(i) + ξ′s(i)|Ap|2

)
âs(i) + iχ′A2

pâ
†
i(s). (3.83)

As the classical coupled-mode equations are defined in space, whereas the
Heisenberg equations of motion are equations in time, the first step is to change
coordinates from time to space, yielding the spatial Heisenberg equations of
motion. From equation (3.25) we can infer that −ωn∂t = kn∂z by taking both
the derivative to time and to space. Therefore,

∂Ap

∂z
= i

(
kp + 2

kpξ
′
p

ωp
|Ap|2

)
Ap (3.84)

∂âs(i)

∂z
= i

(
ks(i) +

ks(i)ξ
′
s(i)

ωs(i)
|Ap|2

)
âs(i) − i

ks(i)χ
′

ωs(i)
A2

pâ
†
i(s). (3.85)

As a last step we change the operators back into the classical amplitudes of
the modes by virtue of equation (3.60). By substitution, we arrive at the
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classicalised spatial Heisenberg equations of motion

∂Ap

∂z
= i
(
kp + Ξq

p|Ap|2
)
Ap (3.86)

∂As(i)

∂z
= i
(
ks(i) + Ξq

s(i)|Ap|2
)
As(i) + iXq

s(i)A
2
pA
∗
i(s), (3.87)

where

Ξq
n =

knξ
′
n

ωn
(2− δpn) =

a4k2
pk

3
n (2− δpn)

16CgI2
cL

3
J,0ω

2
n

(
1 + Λξpn

)
(3.88)

Xq
s(i) =

ks(i)χ
′

ωs(i)

√
ωi(s)

ωs(i)
=

a4k2
pkski

16CgI2
cL

3
J,0ω

2
s(i)

(1 + Λχ) . (3.89)

This set of equations is identical to equations (3.8) and (3.9) after mapping
An 7→ Aneiknz and removing small terms up to some details: Ξq

n contains a
factor

(
1 + Λξpn

)
which Ξn does not. Additionally, the factor (1 −∆k/ks(i))

in Xs(i) has been replaced by (1 + Λχ) in Xq
s(i). The factor with Xn, however,

cannot arise from the quantum theory, since it would need to arise from a
coupling constant χ in the Hamiltonian which is somehow different for the
signal and idler mode. Such a difference is not permitted by the quantum theory.
However, if we would not have neglected the contribution to χ, χ′ and thus Xq

n

due to dispersion, those coupling constants would have been multiplied, up to
first order in ∆k, by (1− i∆klq/2), see equation (3.52). This term resembles
the factor (1−∆k/ks(i)) from the classical theory, although it depends on the
unphysical quantisation length. Still, the prediction of gain of both the classical
coupled-mode equations and the classicalised spatial Heisenberg equations of
motion agree well. As can be observed in figure 3.11, in case we do not add
dispersion engineering there is hardly a difference in predicted gain, whereas
only the maximum gain differs in both approaches in case we add dispersion
engineering. This is solely due to the factor ∆k/ks(i) in Xs(i).

3.8 Validity

In the presented theory we made several assumptions. Firstly, we only took
the first non-linear contribution of the Josephson energy into account and,
secondly, it was assumed that the pump can be treated as a classical mode
which is undepleted. In this section, the implications of these assumptions will
be presented.

The theory presented above is derived from a first-order Taylor expansion of the
Josephson energy. This implies that at a certain magnitude of the flux through
the junction the theory becomes invalid as higher order terms need to be taken
into account. To estimate this flux, we inspect once more the Josephson energy,
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derived from the classical non-linear wave equation and the classicalised spatial Heisen-
berg equations of motion from the quantum theory. The comparison is made for the
case with and without phase matching using the same parameters as in figure 3.6. The
difference in gain with phase matching is due to the ∆k/k-term present in the classical
coupled-mode equation coupling constant Xn, but absent in the classicalised spatial
Heisenberg equation of motion coupling constant Xq
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UJ = Icϕ0

(
1− cos

(
∆ΦJ

ϕ0

))
= Icϕ0

∞∑
n=1

(−1)
n−1

(2n)!

(
∆ΦJ

ϕ0

)2n

. (3.90)

Thus, we find that the second-order (n = 3) non-linear effects are approximately
4!(∆ΦJ,p/ϕ0)2/6! smaller than the lowest-order non-linear terms. Hence, if
we require that the contribution to the energy of the second-order terms is
less than 5% of the energy contribution of the first-order terms, we find that
our theory breaks down at ∆ΦJ,p/ϕ0 ≈ 1.2 (or Ip/Ic ≈ 0.78). The dominant
second-order amplification term causes two secondary idler modes to appear
at ω(i’),{i”} = 4ωp − ω(s),{i} implying the general form of the Hamiltonian
in equations (3.4) and (3.61) becomes invalid. Moreover, the second-order
terms cause additional modulation effects. It is only in the third-order non-
linear terms that (â†s â

†
i )2-contributions start to play a role. Furthermore,

additional secondary idlers are generated and the modulation effects are fur-
ther increased. The former terms have an energy contribution approximately
4!(∆ΦJ,p/ϕ0)2/8! ≈ 6×10−4 smaller than the first-order non-linear terms at the
critical flux (∆ΦJ,p/ϕ0 = π/2), whereas the latter have an energy contribution
of approximately 4!(∆ΦJ,p/ϕ0)4/8! ≈ 4 × 10−3 at the critical flux. Therefore
these terms can be neglected for all practical purposes.
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The undepleted pump approximation breaks down, if the flux of signal and idler
photons in the amplifier becomes close to the flux of pump photons. Typically,
this happens when Is,0 ≥ Ip,0/10 [14, 18], in which the case the full coupled-
mode equations of equations (3.8) and (3.9) need to be considered to calculate
the output amplitudes. Alternatively, for the quantum case the full Hamiltonian
of equation (3.53) is to be considered to evaluate the evolution of the quantum
state.

3.9 Conclusions

After an introduction to the relevant terminology and the classical theory of
the coupled-mode equations of Josephson travelling-wave parametric amplifiers,
we derived the mesoscopic quantum Hamiltonian up to first non-linear order
describing the process using discrete mode operators. We found that such a
description is possible, even when taking into account dispersion effects in the
transmission line and showed that the classical coupled-mode equations can be
derived from this Hamiltonian.
In the derivation, however, there are a few remaining issues. Firstly, it was
found that in the non-linear terms of the Hamiltonian, energy and momentum
conservation could not be fulfilled simultaneously. Furthermore, the non physical
quantisation length is inherent to the theory. The latter can be solved solely
under the approximation of a classical undepleted pump. However, the matter
can also be resolved in case one derives the Hamiltonian using continuous modes
and a transmission line, of which only a part contains the non-linearity. For the
concurrent conservation of energy and momentum, we have not been able to
find a satisfactory solution.
We found that our Hamiltonian, and therefore the coupled-mode equations, are
valid to pump currents up to approximately 0.78Ic. For larger pump currents
more non-linear orders have to be taken into account, for which the same recipe
can be followed as shown in this chapter. The same recipe can also be followed
to derive the Hamiltonian for TWPAs that have another source of non-linear
behaviour, such as kinetic inductance.
To make the theories more applicable to experimental realisations of TWPAs,
we suggest that the theories can be expanded by taking into account losses as
well as reflections within the device and reflections at the boundaries of the
device at which it is coupled to its environment.

Acknowledgements

We would like to thank G. Nienhuis and M.J.A. de Dood for valuable discussions
and suggestions. We are grateful to T.H. Oosterkamp for carefully proofreading
the manuscript. We also express our gratitude to the Frontiers of Nanoscience
programme, supported by the Netherlands Organisation for Scientific Research
(NWO/OCW), for financial support.

52



References

References

[1] E.W. Bryerton, M. Morgan, and M.W. Pospieszalski. Ultra low noise
cryogenic amplifiers for radio astronomy. In 2013 IEEE Radio and Wireless
Symposium, pages 358–360, 2013.

[2] Low noise factory. https://www.lownoisefactory.com. Accessed: Oct.
4, 2018.

[3] Caltech Microwave low noise amplifiers. http://www.caltechmicrowave.
org/amplifiers. Accessed: Oct. 4, 2018.

[4] C.M. Caves. Quantum limits on noise in linear amplifiers. Phys. Rev. D,
26:1817–1839, 1982.

[5] X. Gu, A.F. Kockum, A. Miranowicz, Y.X. Liu, and F. Nori. Microwave
photonics with superconducting quantum circuits. Phys. Rep., pages 1 –
102, 2017.

[6] M.A. Castellanos-Beltran and K.W. Lehnert. Widely tunable parametric
amplifier based on a superconducting quantum interference device array
resonator. Appl. Phys. Lett., 91:083509, 2007.

[7] N. Bergeal, F. Schackert, M. Metcalfe, R. Vijay, V.E. Manucharyan, L. Frun-
zio, D.E. Prober, R.J. Schoelkopf, S.M. Girvin, and M.H. Devoret. Analog
information processing at the quantum limit with a Josephson ring modu-
lator. Nature, 465:64–68, 2010.

[8] N. Roch, E. Flurin, F. Nguyen, P. Morfin, P. Campagne-Ibarcq, M.H.
Devoret, and B. Huard. Widely tunable, nondegenerate three-wave mixing
microwave device operating near the quantum limit. Phys. Rev. Lett.,
108:147701, 2012.

[9] C. Eichler, Y. Salathe, J. Mlynek, S. Schmidt, and A. Wallraff. Quantum-
limited amplification and entanglement in coupled nonlinear resonators.
Phys. Rev. Lett., 113:110502, 2014.

[10] T. Roy, S. Kundu, M. Chand, A.M. Vadiraj, A. Ranadive, N. Nehra, M.P.
Patankar, J. Aumentado, A.A. Clerk, and R. Vijay. Broadband parametric
amplification with impedance engineering: Beyond the gain-bandwidth
product. Appl. Phys. Lett., 107:262601, 2015.

[11] B. Ho Eom, P.K. Day, H.G. LeDuc, and J. Zmuidzinas. A wideband,
low-noise superconducting amplifier with high dynamic range. Nature
Phys., 8:623–627, 2012.

[12] T.C. White, J.Y. Mutus, I.-C. Hoi, R. Barends, B. Campbell, Y. Chen,
Z. Chen, B. Chiaro, A. Dunsworth, E. Jeffrey, J. Kelly, A. Megrant,
C. Neill, P.J.J. O’Malley, P. Roushan, D. Sank, A. Vainsencher, J. Wenner,
S. Chaudhuri, J. Gao, and J.M. Martinis. Traveling wave parametric

53

https://www.lownoisefactory.com
http://www.caltechmicrowave.org/amplifiers
http://www.caltechmicrowave.org/amplifiers


Chapter 3. A mesoscopic Hamiltonian for Josephson . . .

amplifier with Josephson junctions using minimal resonator phase matching.
Appl. Phys. Lett., 106:242601, 2015.

[13] C. Macklin, K. O’Brien, D. Hover, M.E. Schwartz, V. Bolkhovsky, X. Zhang,
W.D. Oliver, and I. Siddiqi. A near–quantum-limited Josephson traveling-
wave parametric amplifier. Science, 350:307–310, 2015.

[14] M.R. Vissers, R.P. Erickson, H.-S. Ku, L. Vale, X. Wu, G.C. Hilton, and
D.P. Pappas. Low-noise kinetic inductance traveling-wave amplifier using
three-wave mixing. Appl. Phys. Lett., 108:012601, 2016.

[15] A.A. Adamyan, S.E. de Graaf, S.E. Kubatkin, and A.V. Danilov. Super-
conducting microwave parametric amplifier based on a quasi-fractal slow
propagation line. J. Appl. Phys., 119:083901, 2016.

[16] S. Chaudhuri, D. Li, K.D. Irwin, C. Bockstiegel, J. Hubmayr, J.N. Ullom,
M.R. Vissers, and J. Gao. Broadband parametric amplifiers based on
nonlinear kinetic inductance artificial transmission lines. Appl. Phys. Lett.,
110:152601, 2017.

[17] O. Yaakobi, L. Friedland, C. Macklin, and I. Siddiqi. Parametric amplifi-
cation in Josephson junction embedded transmission lines. Phys. Rev. B,
87:144301, 2013.

[18] K. O’Brien, C. Macklin, I. Siddiqi, and X. Zhang. Resonant phase matching
of Josephson junction traveling wave parametric amplifiers. Phys. Rev.
Lett., 113:157001, 2014.

[19] T.H.A. van der Reep, L. Rademaker, X.G.A. Le Large, R.H. Guis, and T.H.
Oosterkamp. An experimental proposal to study spontaneous collapse of
the wave function using two travelling-wave parametric amplifiers. Arxiv,
1811.01698, 2018.

[20] D. Barral Raña. Spatial propagation and characterization of quantum states
of light in integrated photonic devices. PhD thesis, Universidade de Santiago
de Compostela, 2015.

[21] A.L. Grimsmo and A. Blais. Squeezing and quantum state engineering
with Josephson travelling-wave amplifiers. npj Quantum Inf., 3:20, 2017.

[22] J.R. Johansson, P.D. Nation, and F. Nori. Qutip 2: A python framework
for the dynamics of open quantum systems. Comp. Phys. Comm., 184:1234–
1240, 2013.

[23] J.A. Armstrong, N. Bloembergen, J. Ducuing, and P.S. Pershan. In-
teractions between light waves in a nonlinear dielectric. Phys. Rev. A,
127:1918–1939, 1962.

[24] U. Vool and M. Devoret. Introduction to quantum electromagnetic circuits.
Int. J. Circ. Theor. Appl., 45:897–934, 2017.

54



References

[25] R. Loudon. The quantum theory of light. Oxford University press, 3rd

edition, 2000.

[26] S.M. Barnett and P.M. Radmore. Methods in theoretical quantum optics.
Oxford University press, 1997.

55




