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Chapter 1

Introduction
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Chapter 1. Introduction

1.1 Setting the stage: the measurement
problem and the photodetector

Upon measurement a quantum system collapses onto one of the eigenstates of
the measurement operator. The measurement outcome is then given by the
eigenvalue corresponding to this eigenstate.
This is one of the postulates of the Copenhagen interpretation of quantum
mechanics. It divides the world into two realms – the microscopic realm of
quantum systems governed by quantum mechanics and the macroscopic realm
of classical systems (measurement apparatuses) governed by classical mechanics.

Quantum mechanics and classical mechanics contain intrinsically different views
of the world around us. Classical mechanics is deterministic: in principle, if
we know the positions and momenta of all particles in the universe, we can
– with certainty – determine the state of the universe at any other time by
Newton’s laws. Contrarily, from our classical point of view, quantum mechanics
is probabilistic: a quantum system can only be described in terms of a quantum
state, from which we can theoretically determine averages, standard deviations
etc. of physical properties. Practically, we can only determine these variables
using a large set of identically-prepared quantum systems, as “follows” from the
measurement postulate stated above. Moreover, for a single system we cannot
even measure all its properties as dictated by Heisenberg’s uncertainty relation.
Yet, within the realm of quantum mechanics, a quantum system is perfectly
deterministic. Its time-evolution is described by Schrödinger’s equation, imply-
ing that we can, in principle, determine the quantum state of the universe at
any time, if only we had access to its quantum state at a certain time and the
Hamiltonian of the universe.

Single-photon 
     source

Photodetector

Beam splitter a

b

A

B

Figure 1.1: Illustration of the quantum measurement problem. If a superposition of
0 and 1 photon is created using a single-photon source and a beam splitter, photo-
detectors A and B placed in the beam splitter’s output arms a and b will either “click”
or “not-click”, whereas they should attain a superposition of clicking and not-clicking
according to Schrödinger’s equation that describes the unitary evolution of quantum
states.

Let us illustrate this by an example. Consider the set-up depicted in figure
1.1. A single photon, the archetype of a quantum system, is emitted by a
single-photon source. The photon encounters a beam splitter, which “splits”
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1.2. Interpretations of quantum state collapse

the single photon into a superposition of 0 and 1 photon in each of the outputs
of the beam splitter. In this case, the photon state after the beam splitter can
be deterministically described by the state vector

|ψ〉 = α |1〉a |0〉b + β |0〉a |1〉b , (1.1)

where |α|2 and |β|2 are the probabilities of finding the corresponding states
upon measurement.
If this state is absorbed by the photodetectors connected to the outputs of
the beam splitter, one of the detectors “clicks” to indicate it has detected the
photon. That is, once one of the detectors has clicked, the state can be described
by

|ψ〉d = |1〉A |0〉B ∨ |ψ〉d = |0〉A |1〉B . (1.2)

Hence, only one of the detectors, A or B, clicks, which is in contradiction
with the deterministic quantum evolution of the system that implies that the
detectors should be in a superposition of clicking and not-clicking. The latter
behaviour, however, is never observed in experiments and it is precisely this
observation that leads to the formulation of the measurement postulate, which
is also known as the measurement problem.

The mystery of state collapse has been a much-debated issue since the con-
ceivement of quantum mechanics in the 1920s. Some of the view points on
this issue will be presented in section 1.2. However, with the advancement of
technology, we envision that the time has come to address this matter in an
experimental setting. One may wonder whether it is really the measurement
apparatus that induces state collapse. To this end we will consider undressing
the photodetector to a quantum device, a parametric amplifier, in section 1.3.
An overview of the remainder of this thesis is presented in section 1.4.

1.2 Interpretations of quantum state collapse

Ever since the formulation of quantum mechanics, interpretations of the theory
have been put forward. These interpretations often include a view on the
process of quantum state collapse. In this section we will shortly discuss the
phenomenology of some common views, including remarks about problems
raised by the interpretations. For an extended review and literature overview,
see [1].

1.2.1 The Copenhagen interpretation

The first interpretation of quantum theory was developed in the years 1925 to
1927 in Copenhagen and is therefore known as the Copenhagen interpretation [2].
It says that a measurement apparatus collapses a quantum state irreducibly
and probabilistically to an eigenstate of the observed quantity. Moreover, after
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Chapter 1. Introduction

a measurement, a state can be described in classical terms.
Although the Copenhagen interpretation does not provide an explanation for
state collapse, it does introduce the notion of a measurement apparatus (without
defining what it is) and that there is a clear distinction between the quantum
realm and the classical realm.

1.2.2 Bohmian Mechanics

As a solution to the measurement problem, Bohm proposed an extension of
quantum mechanics by a guiding equation [3, 4]. This equation determines the
real position and momentum of a corpuscle, which is guided by the quantum
wave function and is the source of this wave at the same instance. Then,
within the example given in previous section, when the single-photon quantum
state encounters the beam splitter and splits, the corpuscle, which makes a
detector click, is situated only in one of the branches of the superposition. This
would explain why only one of the detectors clicks and the other does not-click.
Moreover, one of the detectors will click deterministically as the path followed
by the corpuscle only depends on its initial conditions.
This approach to quantum state collapse has its merits as it removes the
uncertainty from the quantum measurement. As a matter of fact, experiments
have been conducted that have been claimed to support this interpretation [5, 6].
However, we find three objections. First, the corpuscle cannot be related to
the particle it describes, since it has no properties except for a position and
velocity [7–9]. This makes the theory unfalsifiable as, in absence of any corpuscle
properties, there is no means of verifying the existence of such a corpuscle.
Furthermore, we doubt that such a corpuscle can exist, because to all known
particles at least an energy can be associated. Thirdly, we note that this
interpretation merely replaces the problem by a different problem, because
in order to predict the measurement outcomes, the corpuscles must have the
right initial conditions. This implies that the measurement problem is replaced
one-to-one by the quantum source problem.

1.2.3 Many-worlds interpretation

The many-worlds interpretation of quantum mechanics is due to Everett [10].
This interpretation postulates that also during and after the process of measure-
ment the unitary evolution described by the Schrödinger equation determines
the evolution of a quantum state. However, after measurement, the measure-
ment outcomes live in different orthogonal “branches” of the universe, such that
they will never interact again. If a measurement can attain two experimental
outcomes, such as a detector clicking or not-clicking, this can be seen as the
single photon encountering a beam splitter: in the many world interpretation
the beam splitter plays the role of a measurement and the two output channels
of the beam splitter can be thought of as the different branches of the universe.
This interpretation might have difficulties with falsification, if one considers the
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1.2. Interpretations of quantum state collapse

branching of universe as the fundamental aspect of the interpretation. Since
the branches of the universe are orthogonal, we cannot detect the existence of
a branched-off universe. That is to say, in analogy to the single photon and
beam splitter, we cannot perform a measurement that acts as a second beam
splitter which overlaps the two created universe branches again. However, this
difficulty is erased if the unitary evolution described by Schrödinger’s equation
is considered as the core aspect of the theory. In that case the many-worlds
interpretation would be falsified by either Bohmian mechanics (discussed above)
or spontaneous collapse theories (discussed below), as these two interpretations
require an extra ingredient to quantum evolution apart from the Schrödinger
equation.

1.2.4 Environmental decoherence

Environmental decoherence describes the loss of quantum interference by inter-
actions with the environment [11–13]. Consider the state matrix of the pure
state described in equation (1.1) given by

ρ̂p = |ψ〉 〈ψ| =
[
|α|2 αβ∗

α∗β |β|2
]
. (1.3)

Due to coupling with the environment the off-diagonal terms in the state matrix
exponentially tend to 0, leaving the mixed state ρ̂m = diag(|α|2, |β|2). Such
processes have been observed in an experimental setting [14, 15].
The diagonal matrix ρ̂m is indistinguishable from a classical mixture and there-
fore it has been argued that it describes a collapsed state. However, strictly this
is not the case: environmental decoherence only accounts for the destruction of
quantum interference effects. It does not destroy the superposition of classical
alternatives, as we will argue now.
Consider a set of marbles, let them be red and blue. If we draw a classical
marble blindly (which is either red or blue) there is some probability of finding
either colour. However, we know – since they are classical marbles – that the
marble possessed that colour already before looking at it. However, in the
case of quantum marbles, which are in a superposition of red and blue, the
marble will decohere in our hand (the environment) before looking. Assuming
the decoherence process lasts long enough to reduce the quantum marble’s
initial pure state ρ̂p to a final mixed state ρ̂m, the state matrices of the classical
and quantum marbles are the same before looking. However, although the
classical and decohered state matrix are identical, for the quantum marble the
colour is not necessarily determined before looking. In other words, although
decoherence destroys the quantum mechanical interference phenomena of the
system, it does not destroy the superposition of classical alternatives. This
implies that environmental decoherence cannot account for the measurement
problem.
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Chapter 1. Introduction

1.2.5 Spontaneous collapse

As a last interpretation, we will discuss the idea of spontaneous collapse. Spon-
taneous collapse theories consider the option that the Schrödinger equation is
incomplete and extend the evolution of a quantum state by a phenomenological
collapse rate. The main idea is that every particle has an intrinsic collapse
rate, which increases with particle mass. As such, the collapse rate of a single
nucleon is small, such that it will behave according to the Schrödinger equation
within the time frame of an experiment. Macroscopic particles, however, have
such large collapse rates that the signatures of quantum mechanics are never
observed in an experiment, because the quantum behaviour is too short-lived.
In this view, the measurement problem can be thought of as a quantum system
(with a small collapse rate) coupling to a measurement apparatus (with a large
collapse rate). Thus the quantum system collapses due to the collapse rate that
increases upon coupling.
The main disadvantage of this approach is that it is only phenomenological.
There have been hypotheses developed as to what determines the collapse rate,
mainly in the direction of trace dynamics [16] and gravity [17–19]. Proposals
for the collapse rate (per nucleon) are orders of magnitude apart – the theory
of Continuous Spontaneous Localisation (CSL) sets it at 10−17 Hz [20], whereas
Adler estimates the collapse rate per nucleon at 10−8±2 Hz [21]. It is an area of
active research to set bounds to the collapse rate [22–24].

1.3 Undressing the photodetector: the
parametric amplifier

The interpretations presented in previous section are distinctly dissimilar in
their view of quantum state collapse. However, they all agree that large systems
appear to be classical, whereas microscopic systems behave quantum mechani-
cally. From this notion an important question arises

What is large?

This question is currently approached by performing experiments on larger and
larger physical systems to verify whether these systems behave according to
quantum mechanics (see [25] for a review). At the moment of writing, systems
of the size of small viruses have shown quantum mechanical behaviour [26] and
an experiment testing the quantum behaviour of micrometre sized mirrors is
being prepared [27].
Yet, in view of measurement apparatuses the question What is large? can be
reformulated as

What is a measurement apparatus?
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1.3. Undressing the photodetector: the parametric amplifier

To illustrate, consider once more the experiment described in section 1.1. Now,
suppose the photodetector is a photomultiplier tube (PMT), see figure 1.2. In
PMTs an incoming photon causes a (primary) electron to emit from a cathode
by the photoelectric effect. This electron is accelerated towards a dynode by
an electric field. Due to the impact of the electron on the dynode, several
(secondary) electrons are emitted. These, in turn, are accelerated towards a
second dynode in which the process of electron multiplication is repeated. In
the end, this results in a measurable current pulse of electrons arriving at the
anode of the device.
Suppose now that a superposition of 0 and 1 photon, as described by equation
(1.1) enters the PMT. Based on the postulate that measurements are responsible
for quantum state collapse, one may wonder where during the amplification
process within the PMT the state collapse happens, if it happens within the
PMT at all. That is, at what point between the emission of the primary electron
and the current pulse leaving the PMT the detector “decides” to click or not-
click. Equivalently, one may wonder how many electrons are in superposition of
remaining in and being emitted by a dynode when state collapse happens.

Figure 1.2: Schematic overview of a photomultiplier tube (PMT). An incoming photon
causes emission of an electron in the photocathode. This primary electron is accel-
erated by an electric field towards a dynode, where it causes the emission of several
secondary electrons. This process is repeated to yield a measurable current pulse at the
PMT’s anode. A scintilator in front of the PMT may be used to decrease the effective
energy of the incoming photon. Figure taken from [28].

In this thesis we investigate an experiment addressing these questions. In
principle, we could take the experimental set-up depicted in figure 1.1 and try
to interfere the outputs of the two photodetectors. However, photodetectors are
devices which are hard to describe within a quantum mechanical framework due
to coupling to the environment and interfering their outputs is not at all trivial.
However, the main characteristic of the photodetector – producing a click in the
form of a detectable current by means of amplification when a photon enters
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Chapter 1. Introduction

the device – can be mimicked by means of an electronic amplifier.
A certain class of electronic amplifiers, the so-called parametric amplifiers, is
especially suited for this experiment. They produce gain due to non-linear
wave mixing resulting from the variation of an amplifier parameter while the
signal-to-be-amplified traverses the device. A parametric amplifier is tuneable
in gain, can be quantum limited in noise figure and, most importantly, it can
be described in quantum mechanical terms. Within an interferometer set-up
we can interfere the outputs of two of such amplifiers which are entangled by
feeding the interferometer with single photons. Building the whole set-up by use
of superconducting devices, one can hope to achieve a sufficiently small coupling
to the environment and add mass to the problem simultaneously. The latter
occurs via the interaction of the electromagnetic waves transmitting through
the set-up which are caused by the massive Cooper pairs in the superconducting
transmission lines. By increasing the gain of the amplifiers, more and more
Cooper pairs will partake in the quantum mechanical superposition, which
can be seen as analogous to the increase in emitted electrons from the PMT
dynodes.

1.4 Overview of the thesis

In this thesis we will take the first steps towards such an experiment. Chapter
2 presents a minimum background in microwave engineering as a basis for the
rest of the thesis.
In chapter 3, a mesoscopic theory is developed that describes the process of non-
linear wave mixing and the resulting gain in a transmission line embedded with
Josephson junctions. Such a theory will be necessary to model the parametric
amplifiers within a quantum mechanical framework correctly for the final
experiment.
In chapter 4, we will present a prediction on the interference visibility that
can be expected from an interferometer that has a parametric amplifier added
to each of the interferometer arms. In this chapter we will also discuss the
influence of losses in the interferometer on this visibility. This allows to estimate
how small the coupling to the environment must be in order for the proposed
experiment to work. Furthermore, we will argue how the interference visibility
might change in case the quantum state collapses within the interferometer.
In the final chapter of this thesis, chapter 5, we present our findings on our
attempts to develop a low-loss travelling-wave parametric amplifier. We present
the design, fabrication procedure and findings from a transmitting device. The
latter is used to validate the theory presented in chapter 3.
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9



Chapter 1. Introduction

A Kapitza—Dirac—Talbot—Lau interferometer for highly polarizable
molecules. Nat. Phys., 3:711–715, 2007.

[16] S. L. Adler. Generalized quantum dynamics. Nucl. Phys. B, 415:195 – 242,
1994.

[17] F. Karolyhazy. Gravitation and quantum mechanics of macroscopic objects.
Nuovo Cimento A, 42:390–402, 1966.
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