

Smoothly breaking unitarity : studying spontaneous collapse using two entangled, tuneable, coherent amplifiers

Reep, T.H.A. van der

Citation

Reep, T. H. A. van der. (2019, June 13). *Smoothly breaking unitarity : studying spontaneous collapse using two entangled, tuneable, coherent amplifiers. Casimir PhD Series.* Retrieved from https://hdl.handle.net/1887/73911

Version:Not Applicable (or Unknown)License:Leiden University Non-exclusive licenseDownloaded from:https://hdl.handle.net/1887/73911

Note: To cite this publication please use the final published version (if applicable).

Cover Page

Universiteit Leiden

The handle <u>http://hdl.handle.net/1887/73911</u> holds various files of this Leiden University dissertation.

Author: Reep T.H.A. van der Title: Smoothly breaking unitarity : studying spontaneous collapse using two entangled, tuneable, coherent amplifiers Issue Date: 2019-06-13

Smoothly breaking unitarity

Studying spontaneous collapse using two entangled, tuneable, coherent amplifiers

PROEFSCHRIFT

ter verkrijging van de graad van Doctor aan de Universiteit Leiden, op gezag van Rector Magnificus prof. mr. C.J.J.M. Stolker, volgens besluit van het College voor Promoties te verdedigen op donderdag 13 juni 2019 klokke 16.15 uur

 door

Thomas Hendrik Abraham van der Reep

geboren te Rotterdam in 1989

Promotor:	Prof. dr. ir. T.H. Oosterkamp
Promotiecommissie:	Prof. dr. H. Ulbricht (University of Southampton,
	United Kingdom)
	Prof. dr. G.A. Steele (Technische Universiteit Delft)
	Prof. dr. E.R. Eliel
	Prof. dr. M.A.G.J. Orrit
	Dr. M.J.A. de Dood

Casimir PhD series, Delft-Leiden 2019 – 21 ISBN: 978-90-8593-397-7

An electronic version of this thesis can be found at https://openaccess.leidenuniv.nl

The work described in this thesis was performed at the Huygens-Kamerlingh Onnes Laboratory, Universiteit Leiden, Niels Bohrweg 2, 2333 CA, Leiden and at the Faculty of Applied Sciences, Technische Universiteit Delft, Lorentzweg 1, 2628 CJ, Delft.

Part of this research is supported by the NanoFront consortium, a programme of the Netherlands Organisation for Scientific Research (NWO) that is funded by the Dutch ministry of Education, Culture and Science (OCW).

COVER DESIGN BY Tijs Hol – What is large? The cover visualises the underlying idea of this thesis. It shows an artist's impression of a phase space representation of a quantum state with pointers (measurement apparatuses). The larger the pointer, the more likely it is that a measurement of the state takes place, as indicated by the transparency of the pointers.

Copyright[©] 2019 T.H.A. van der Reep

PRINTED BY Ridderprint BV

Contents

1	Intr	ntroduction				
	1.1	Setting the stage: the measurement problem and the photodetector				
	1.2	Interpretations of quantum state collapse	3			
		1.2.1 The Copenhagen interpretation	3			
		1.2.2 Bohmian Mechanics	4			
		1.2.3 Many-worlds interpretation	4			
		1.2.4 Environmental decoherence	5			
		1.2.5 Spontaneous collapse	6			
	1.3	Undressing the photodetector: the parametric amplifier	6			
	1.4	Overview of the thesis	8			
	Refe	rences	9			
2	Elei	ments of microwave technology	11			
	2.1	Introduction	12			
	2.2	Microwave transmission line theory	12			
	2.3	Microwave reflection	14			
		2.3.1 Non-impedance-matched, dispersionless transmission lines	14			
		2.3.2 Reflection planes	17			
	2.4	Coplanar waveguides	18			
	2.5	Microwave resonators (CPW)	20			
	Refe	rences	21			
3	A n	nesoscopic Hamiltonian for Josephson travelling-wave para-				
	met	ric amplifiers	23			
	3.1	Introduction	24			
	3.2	Terminology	25			
	3.3 The non-degenerate parametric amplifier with undepleted					
	nerate pump – classical theory		28			
		3.3.1 Effect of phase matching	31			
	3.4	Quantum theory of parametric amplification (4WM)	33			
		3.4.1 Energy in transmission lines	33			
		3.4.2 Quantisation of a non-dispersive transmission line \ldots	34			

		3.4.3	The influence of the Josephson capacitance: quantisation			
			of a dispersive transmission line	36		
		3.4.4	Adding the non-linearity: quantisation of a non-linear			
			transmission line	39		
	3.5	Imple	mentations	42		
		3.5.1	The non-degenerate parametric amplifier with undepleted			
			degenerate classical pump – quantum theory $\ldots \ldots$	42		
		3.5.2	Other implementations	46		
	3.6	Paramp terminology – revisited				
	3.7	Marry	ring the quantum and classical theories	49		
	3.8	Validi	ty	50		
	3.9	Concl	usions	52		
	Refe	erences		53		
4	An	experi	imental proposal to study spontaneous collapse of the			
	wav	e func	tion using two travelling-wave parametric amplifiers	57		
	4.1	Introd	luction	58		
	4.2	Mode	$l - lossless case \ldots \ldots$	59		
	4.3	Interf	erence visibility	61		
	4.4	The e	ffect of losses	62		
	4.5	Obser	ving spontaneous collapse	65		
		4.5.1	Collapse onto a number state	65		
		4.5.2	Collapse onto a coherent state	66		
	4.6	Exper	rimental realisation and feasibility	67		
	4.7	Concl	usions	70		
	Refe	erences		71		
	App	endices	3	73		
		Α	Experimental realisation using resonator-based parame-			
			tric amplifiers	73		
		В	Non-degenerate vs. degenerate amplifiers	73		
		\mathbf{C}	Analytical model	74		
		D	Output of numerical calculations	77		
		\mathbf{E}	Definition of interference visibility	77		
		\mathbf{F}	Comparison of full and reduced Hilbert space	77		
		G	Interference visibility with losses	78		
		Η	Interference visibility with collapse onto coherent states	81		
5	Dev	elopin	ng a travelling-wave parametric amplifier with low in-			
	sert	ion lo	SS	85		
	5.1	Introd	luction	86		
	5.2	2 Designing the TWPA				
		5.2.1	Design considerations	86		
		5.2.2	From coplanar waveguide to TWPA	87		
		5.2.3	Sonnet calculations	87		
		5.2.4	Analytical approximation	88		

5.3	Eleme	nts of fabrication	89			
	5.3.1	Josephson junctions	91			
	5.3.2	Low air bridges	98			
5.4	TWPA	<u> </u>	99			
	5.4.1	Design and fabrication	100			
	5.4.2	Measurement set-up	102			
	5.4.3	Results – single-tone excitation	102			
	5.4.4	Results – double-tone excitation	117			
5.5 Conclusions						
Refe	rences		121			
Acknowledgements						
Samenvatting						
Curriculum vitae						
List of publications						