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CDKN2A, P16-LEIDEN AND FAMILIAL MELANOMA-PANCREATIC 
CANCER SYNDROME 

Familial clustering of cutaneous melanoma has increasingly been documented since 
the 1970s, and one of the first studies that reported an excess of pancreatic ductal 
adenocarcinoma (henceforth referred to as pancreatic cancer; PC) in unbiased 
melanoma families was published in 1990 by Bergman and colleagues.1 The families in  
this study originated from two genetically isolated towns in the vicinity of Leiden, the  
Netherlands. Shortly after the identification of the first melanoma predisposition gene  
CDKN2A (MIM #600160*) in 1994,2,3 a specific Dutch founder mutation† in the CDKN2A gene 
was described in these melanoma-pancreatic cancer prone families, a 19-base-pair deletion 
in exon 2 known as p16-Leiden (c.225_243del).4,5 An excess of PC in CDKN2A-mutated 
melanoma families was subsequently observed in other populations as well.6,7 

To date, the CDKN2A gene has remained the major high-risk predisposition gene for familial 
melanoma and germline mutations are identified in 10-40% of melanoma families.8,9 The 
CDKN2A gene encodes two distinct proteins by using different first exons (1α and 1β) that 
are translated in alternate reading frames (figure 1). The proteins, p16INK4a and p14ARF, are 
both tumour-suppressors that act in two different pathways. The p16-retinoblastoma(Rb)-
pathway controls cell-cycle G1-phase exit, and the p14ARF-p53 pathway induces cell 
cycle arrest or apoptosis.10 Germline mutations associated with familial melanoma occur 
across the entire coding region of the CDKN2A gene, including both exon 1α and exon 1β. 
Heterozygous carriers of a germline mutation have a 70% lifetime risk for developing one 
or more cutaneous melanomas, and the first melanoma generally occurs at a young age 
(mean <45 years).11-15 In a study that included 182 p16-Leiden mutation carriers, the mean 
age at melanoma diagnosis was 39 years and the risk of multiple primary melanomas was 
approximately 40%. Moreover, p16-Leiden mutation carriers that had a melanoma before 
age 40 had a twice as high risk to develop a second primary melanoma than carriers with 
a first melanoma after age 40.15 

An increased risk for PC has been reported for various mutations in CDKN2A that affect 
the p16INK4a protein (exon 1α and exon 2, see figure 1).16,17 The PC risk is particularly high 
for p16-Leiden mutation carriers, approximately 15-20% with a mean age at diagnosis of 
58 years.18-20 In addition to melanoma and PC, several other cancers have been described 
in CDKN2A mutation carriers, including upper and lower respiratory tract cancers 21-24, 
digestive tract cancers 21,25 and breast cancer 26,27. De Snoo et al specifically evaluated 
the non-melanoma cancer risks in a large cohort of 221 p16-Leiden mutation carriers and 

* Mendelian Inheritance in Man; Catalog of Human Genes and Genetic Disorders (http://www.omim.org) 
† In this thesis, the word mutation is used as a synonym for pathogenic variant
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668 first-degree relatives. They confirmed that these (proven or implied) carriers have a 
high risk for PC (RR 46.6) and additionally found an increased risk for particularly cancers 
of the lip, mouth and pharynx (RR 10.8), cancers of the respiratory system (RR 5.7, including 
laryngeal cancer), eye/brain tumours (RR 11.4) and non-melanoma skin cancers (RR 22.3).21 
Germline mutations in the CDKN2A gene, including p16-Leiden, thus seem to cause a 
broad cancer predisposition syndrome.

FIGURE 1. The CDKN2A gene and its two products, p16INK4a and p14ARF. The p16-Leiden mutation is 

located in exon 2 and affects both p16INK4a and p14ARF.

Adapted with permission from Pigment Cell Melanoma Research, 28, Aoude LG, Wadt KA, Pritchard AL, 

Hayward NK, Genetics of familial melanoma: 20 years after CDKN2A, 148-60 (2015)

 
In the first part of this thesis (chapters 2-6), we use the term Familial Atypical Multiple Mole 
Melanoma (FAMMM) syndrome when referring to familial melanoma with or without a known 
germline CDKN2A mutation. However, use of this term is avoided nowadays because the 
correlation between atypical multiple moles (nevi) and melanoma is more complex and 
the atypical nevi phenotype is often absent or shows incomplete co-segregation with the 
melanoma phenotype in many CDKN2A-mutated families.28-30 Therefore, in the second 
part of this thesis (chapters 7-9) we solely use the term familial melanoma, or hereditary 
melanoma when an underlying germline mutation has been identified. 

CANCER SURVEILLANCE OF P16-LEIDEN MUTATION 
CARRIERS

MELANOMA SURVEILLANCE 
Since the early 1980s, Dutch individuals from melanoma-prone families are offered yearly 
dermatologic surveillance at the specialized Pigmented Lesion Clinic of Leiden University 
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Medical Center (LUMC). A study from 1989 showed that melanomas that were detected 
during this surveillance (screen-detected) were at an earlier stage, i.e. lower Breslow 
thickness, and therefore had a more favorable prognosis than melanomas occurring in 
patients not participating in the surveillance program.31 Comparable studies in other high-
risk cohorts confirmed this beneficial effect of regular surveillance on prognosis.32,33 When 
the p16-Leiden founder mutation was identified in the mid-1990s, many families participating 
in the Dutch surveillance program were found to carry this mutation. Van der Rhee et 
al subsequently studied the surveillance program in specifically p16-Leiden mutation 
carriers and again concluded that surveillance melanomas were significantly thinner than 
non-surveillance melanomas (Breslow thickness 0.50 mm and 0.98 mm, respectively).34 
The majority of melanomas in this study were detected within six months after the last 
surveillance and a considerable proportion were interval-melanomas (detected between 
regular screens; 20%). Carriers of the p16-Leiden mutation are therefore currently under 
more intensified, semi-annual, dermatologic surveillance.  

PANCREATIC CANCER SURVEILLANCE – BACKGROUND
PC surveillance programs were first initiated in the United States two decades ago for 
families with a condition called Familial PC (FPC).35,36 Families with at least two first-degree 
relatives with a diagnosis of PC without an identifiable genetic cause are, by definition, 
referred to as FPC.37 Although several cancer predisposition genes are currently known that 
confer an increased risk for PC, germline mutations are identified in only a small minority 
(<10%) of families predisposed to PC.38-41 Therefore, most PC surveillance programs to date 
have focused on FPC families and generally have included only few individuals with a 
known underlying germline mutation.42-44 

The 2013 guideline of the International Cancer of the Pancreas Screening (CAPS) 
Consortium defines the resection of potentially curable lesions, that is early-stage cancer 
or its high-grade precursor lesions, as a general goal of surveillance.45 The dismal 
prognosis of PC (5-year survival rate <5%) is generally a consequence of late diagnosis, 
but when a tumour is resected at an early stage, the 5-year survival rate could improve 
drastically.46,47 Moreover, timely resection of high-grade precursor lesions of PC might 
prevent the development of PC at all. Intraductal papillary mucinous neoplasms (IPMN) 
and the more common pancreatic intraepithelial neoplasms (PanIN) are the most important 
precursor lesions that can be targeted by surveillance.45 IPMNs are macroscopic cystic 
lesions, usually ≥5 mm, that have a high malignant potential when located in the main 
pancreatic duct (MD-IPMN) (figure 2).48 A longitudinal study showed that approximately 
60% of MD-IPMN displays high-grade dysplasia within 5 years, compared to 15% when the 
IPMN is located in one of the branch ducts (BD-IPMN).49 PanINs are smaller, microscopic 
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lesions divided in grade 1 to 3 according to the degree of dysplasia and are located 
in the smaller pancreatic ducts (figure 3).50 Low-grade PanINs (PanIN1-2) are found in a 
substantial proportion (28%) of non-PC specimens and can be indolent for many years 
or not progress to invasive cancer at all, whereas PanIN3 lesions are present in 58% of 
PC specimens and are considered carcinoma in situ.51 Precursor lesions, in particular 
IPMNs, can be detected with imaging of the pancreas because they manifest as small 
cystic lesions of the pancreatic ducts, i.e. ductectasias. Abdominal MRI combined with 
magnetic resonance cholangiopancreatography (MRCP) is considered the most sensitive 
imaging modality to detect these cystic lesions.52 Endoscopic ultrasonography (EUS) is 
better in detecting small solid pancreatic lesions, i.e. early-stage PC, compared to MRI/
MRCP 52 and it is able to detect secondary parenchymal changes caused by PanIN and 
IPMN lesions.53 Current surveillance programs for PC generally use one of these modalities 
or a combination of both.42-45 PC surveillance programs have not (yet) implemented non-
invasive (serum) biomarkers for PC in their protocols, since the only clinically approved 
biomarker carbohydrate antigen 19-9 (CA 19-9) has very limited diagnostic accuracy.54 
However, this is a subject of widespread investigation and various other biomarkers have 
shown promising results in detecting early-stage PC.55,56 

FIGURE 2. Surgical pathology specimen of resected pancreas that includes a branch-duct IPMN (arrows) 

PD = main pancreatic duct

Reprinted with permission from Lancet, 378, Vincent A, Herman J, Schulick R, Hruban RH, Goggins M, 

Pancreatic cancer, 607-20 (2011)
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FIGURE 3. Progression model of pancreatic cancer from PanIN lesions. Normal ductal epithelial cells are 

short and cuboidal, while PanIN-1A lesions are flat and columnar. PanIN-1B lesions are identical to PanIN-1A, 

although papillary architecture can be observed in these lesions. PanIN-2 lesions can be flat or papillary 

and show moderate nuclear and architectural abnormalities. PanIN-3 lesions are papillary and show 

significant nuclear and cytological abnormalities, without the invasion of basement membrane. Pancreatic 

cancer (ductal adenocarcinoma) shows significant architecture and cytological abnormalities followed by 

basement membrane invasion.

Reprinted with permission from Susanto, J.M., 2017, Investigating the use of retinoids and epigenetic 

modification agents as new therapeutic strategies for the treatment of pancreatic cancer, PhD 

thesis, University of New South Wales, Sydney, available at https://sites.google.com/site/josus123/

pancreaticcancer (accessed on December 2018). 

Originally adapted from Modern Pathology, 16, Maitra A, Adsay NV, Argani P, Iacobuzio-Donahue C, De 

Marzo A, Cameron JL, Yeo CJ, Hruban RH, Multicomponent analysis of the pancreatic adenocarcinoma 

progression model using a pancreatic intraepithelial neoplasia tissue microarray, 902-12 (2003), with 

permission.

PANCREATIC CANCER SURVEILLANCE PROGRAM IN LEIDEN
At the LUMC, a PC surveillance program for high-risk individuals was started in the year 
2000. The program is distinctive from other PC surveillance programs worldwide since 
it specifically focuses on the large and unique cohort of p16-Leiden mutation carriers 
that historically live in or originated from the vicinity of Leiden. All p16-Leiden mutation 
carriers, regardless of family history for PC, are eligible from age 45 and are offered annual 
surveillance by MRI/MRCP and, optionally, EUS. In the first evaluation by Vasen et al in 
2011, PC was diagnosed in seven of 79 included individuals (9%) at a mean age of 59 
years.57 All patients had a resectable tumour with a size ranging 5-40 mm, although it was 
also shown that these tumours were aggressively growing since three of five tumours 
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increased in size by 10 mm or more in six months. Cystic duct lesions were detected in 11% 
of individuals, but ‘prophylactic’ surgery was performed in only one of these individuals, 
which revealed PanIN2 lesions on histologic examination. The authors concluded that 
small solid pancreatic tumours as well as small possible precursor lesions can be detected 
with MRI/MRCP-based surveillance of p16-Leiden mutation carriers, but the role of these 
precursor lesions in the development of PC and the timing and extent of (prophylactic) 
surgery remained to be determined.  

GENETIC TESTING IN FAMILIAL MELANOMA

INDICATIONS FOR GERMLINE CDKN2A ANALYSIS
Criteria for performing germline CDKN2A mutation analysis in a melanoma family have 
been proposed in an international guideline published in 2009.58 These criteria are based 
on the patient’s personal and family history for melanoma and PC and the geographic 
location of the family. In countries with a moderate to high incidence of melanoma such 
as the Netherlands and other Northern European countries, the guideline recommends 
CDKN2A mutation analysis to patients with melanoma if they have at least three primary 
melanomas, or when there are at least two additional diagnoses of melanoma and/
or PC among close (first or second-degree) family members (“rule of threes”). For lower 
incidence countries such as those in Southern Europe, a comparable “rule of twos” was 
proposed. These patients/families have a presumed 10% or greater mutation probability. 
Current Dutch referral guidelines generally adhere to this international guideline, although 
patients with a juvenile melanoma (<18 years) and patients with both melanoma and PC are 
also eligible for CDKN2A diagnostics regardless of family history (table 1).

OTHER GENES ASSOCIATED WITH FAMILIAL MELANOMA
Several melanoma predisposition genes other than CDKN2A are currently known, but 
mutations in these genes are much rarer compared to mutations in CDKN2A (table 2).8,9 
The CDK4 gene, which functions in the same cell-cycle pathway as CDKN2A, i.e. the p16-
retinoblastoma(Rb) pathway, was identified shortly after CDKN2A by using a candidate 
gene sequencing approach. CDK4 mutations found in melanoma families are all located 
in codon 24 (p.R24H and p.R24C), leading to reduced p16INK4a inhibition of CDK4 and 
therefore an increase in CDK4 kinase activity and thus cell cycle progression. Melanoma 
families with a CDK4 mutation are phenotypically comparable to CDKN2A-mutated 
families, although other cancers such as PC are not frequently seen in the very few families 
identified thus far.59
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TABLE 1. Dutch referral criteria for germline CDKN2A diagnostics
Familial melanoma
(diagnostic criteria)

	 family with three relatives with melanoma, of which two are first-degree relatives 
(all first- and second-degree relatives)

	 family with two first-degree relatives with melanoma, of which one has multiple 
primary melanomas

Other families 	 family with two first-degree relatives with melanoma

	 family with two first- or second-degree relatives with melanoma and one first- or 
second-degree relative with pancreatic cancer

	 person with three or more primary melanomas

	 person with a juvenile melanoma (<18 years)

	 person with both melanoma and pancreatic cancer

Reference: Vasen HFA, Hes FJ and de Jong MM. Erfelijke en familiaire tumoren: Richtlijnen voor diagnostiek en pre-
ventie. Leiden: Stichting Opsporing Erfelijke Tumoren/Vereniging Klinische Genetica Nederland/Werkgroep Klinische 
Oncogenetica, 2017. Available from https://www.stoet.nl/wp-content/uploads/2017/02/Richtlijnen-2017.jpg 

TABLE 2. Established melanoma predisposition genes other than CDKN2A
Gene Pathway/Function Non-melanoma cancers Ref.

CDK4 Cell-cycle control - 59

TERT Telomere integrity - 60

POT1 Telomere integrity Glioma, leukaemia, 
possibly other cancers

61-64

ACD Telomere integrity Leukaemia 64,65

TERF2IP Telomere integrity Leukaemia 64,65

BAP1 DNA damage response Uveal melanoma, malignant mesothelioma, renal cell 
carcinoma, basal cell carcinoma

66,67

MITF Melanocyte homeostasis Renal cell carcinoma,
pancreatic cancer

68,69

The CDKN2A and CDK4 genes were for many years the only known high-penetrance 
melanoma predisposition genes. The rise of new sequencing technologies in the last 
decade resulted however in the recent identification of several new predisposition genes 
and key pathways. One of these pathways controls telomere integrity and germline 
mutations have been reported in multiple genes involved in the regulation of telomere 
length (TERT) and telomere maintenance (POT1, ACD, TERF2IP) (figure 4). A specific mutation 
in the promotor region of TERT (c.-57T>G) causes an increased transcription of TERT and 
is found in only a few, although heavily affected, melanoma families.60,70 It is hypothesized 
that overexpression of TERT results in longer telomeres and therefore enhanced survival of 
cancerous cells, although this has not been proven for the c.-57T>G variant.70 The shelterin 
complex protects the telomeres from DNA repair mechanisms and regulates TERT activity. 
Germline mutations have been identified in three of its six components, POT1, ACD and 
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TERF2IP, and it has been demonstrated that germline POT1 mutations do indeed result in 
increased telomere length.61,62,65 Mutations in these genes are also found in families with a 
predisposition for glioma or leukaemia 63,64 and these cancers are reported in some of the 
melanoma pedigrees as well. POT1 germline mutations are also increasingly being reported 
in patients and families with a wide range of other cancers, including thyroid cancer 71, 
colorectal cancer 72, Hodgkin’s lymphoma 73 and cancers in the Li-Fraumeni (TP53) spectrum, 
in particular (cardiac) angiosarcoma 74,75. The POT1 gene might thus be associated with many 
different types of cancer other than melanoma. The BAP1 (BRCA1-associated protein) gene 
is involved in several tumour suppressor pathways including the DNA damage response. 

FIGURE 4 Schematic view of the telomere. The shelterin complex (TERF1, TERF2, TERF2IP, TINF2, 

ACD, POT1) is depicted on the left and the telomerase complex (TERT and other associated proteins) 

is depicted on the right. The telomerase complex adds telomere repeat sequences to the 3’ end 

of the telomere. The shelterin complex is anchored to the double stranded TTAGGG region of the 

telomere by the subunits TERF1 and TERF2 and protects the telomeres from DNA repair mechanisms 

and regulates TERT activity.

Reprinted with permission from Pigment Cell Melanoma Research, 28, Aoude LG, Wadt KA, Pritchard 

AL, Hayward NK, Genetics of familial melanoma: 20 years after CDKN2A, 148-60 (2015)

Germline mutations in BAP1 cause a specific cancer predisposition syndrome with a 
high penetrance for uveal melanoma (28%), malignant mesothelioma (22%), cutaneous 
melanoma (18%), renal cell carcinoma (9%) and basal cell carcinoma (6.5%). Also, specific 
benign skin lesions called atypical Spitz tumours (AST) or melanocytic BAP1–mutated 
atypical intradermal tumours (MBAIT) are typically found in BAP1 mutation carriers.66,67 
MITF is a lower (medium) penetrance melanoma predisposition gene and is involved 
in melanocyte homeostasis. Only one specific gain-of-function mutation in codon 318 
(p.E318K), which causes an increase of MITF transcriptional activity, is associated with both 
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sporadic and familial melanoma.76 MITF p.E318K carriers more frequently develop multiple 
primary melanomas and there is possibly an increased risk for renal cell carcinoma and 
pancreatic cancer as well.68,69 In figure 5, all these currently known melanoma predisposition 
genes are plotted relative to their frequency and effect size. More genes with a possible 
association with familial melanoma are presented in chapter 8. 

In addition to these high- and medium-penetrance melanoma predisposition genes, 
several common risk variants (single nucleotide polymorphisms; SNPs) derived from large 
population-based genome wide association studies (GWAS) have been associated with 
(sporadic) melanoma (figure 5).77-79 These individual SNPs only marginally or moderately 
influence melanoma risk, but an aggregation of risk variants might substantially increase 
risk. One of the best established of these risk factors is the MC1R gene. The MC1R gene 
plays an important role in skin pigmentation and specific variants that are most strongly 
associated with a red hair colour phenotype (RHC variants) increase melanoma risk 
approximately twofold.80 Other variants that are less strongly associated with red hair 
colour confer a much smaller melanoma risk and are called non-RHC variants. Studies 
have shown that both RHC and non-RHC variants also modify melanoma penetrance in 
CDKN2A-mutated families.81,82 Common susceptibility SNPs are typical candidates to be 
incorporated in a polygenic risk score (PRS) model, and such models have already shown 
to improve risk stratification in familial breast cancer.83,84

FIGURE 5. [Legend on the next page]
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FIGURE 5. Graphic display of the phenotypic effect size of currently known genes involved in 

melanoma susceptibility, plotted against their frequency of occurrence. Note: the high-penetrance 

genes are randomly plotted within the blue circle. SNP = Single Nucleotide Polymorphism

Adapted with permission from Journal of Clinical Oncology, 28, Stadler ZK, Thom P, Robson ME, 

Weitzel JN, Kauff ND, Hurley KE, Devlin V, Gold B, Klein RJ, Offit K, Genome-wide association studies 

of cancer, 4255-67 (2010)

AIMS AND OUTLINE OF THIS THESIS

This thesis has three general aims. 
-	 Our first aim is to investigate the full cancer phenotype of p16-Leiden mutation carriers 

and to study potential modifiers of cancer risk in these carriers (PART I).
-	 Our second aim is to evaluate and improve the p16-Leiden pancreatic cancer (PC) 

surveillance program.
-	 Our third and final aim is to evaluate and improve genetic testing for hereditary 

melanoma (PART II).

PART I Cancer phenotype and pancreatic cancer surveillance of p16-Leiden mutation 
carriers
In chapter 2, we prospectively evaluate a cohort of p16-Leiden mutation carriers for the 
occurrence of any cancer and we investigate the influence of tobacco use on cancer 
risk. In chapter 3, we genotype seven PC-associated SNPs in a nation-wide cohort of 
p16-Leiden mutation carriers and we investigate if these SNPs modify PC risk and could 
explain the interfamilial variability in the occurrence of PC among these families. In chapter 
4, we compare the frequency, features and natural history of precursor lesions of PC and 
PC itself between two different high-risk groups (p16-Leiden vs. FPC surveillance cohorts). 
In chapter 5, we report two high-risk patients who developed a second primary PC after 
a limited resection of their first PC and we discuss the possible implications of these 
findings for the surgical management of patients with an early-stage screen-detected PC. 
In chapter 6, we investigate if a serum protein signature can differentiate between PC and 
non-PC in the p16-Leiden PC surveillance cohort and we discuss if this biomarker test has 
the potential to be implemented in the surveillance program.

PART II Genetic testing in familial melanoma; CDKN2A and beyond
In chapter 7, we study the association between germline CDKN2A mutations and several 
clinical features present in a melanoma family, and we develop a clinical scoring system 
(CM-Score) that can predict the presence of a germline CDKN2A mutation in melanoma 
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families. In chapter 8, we investigate the role of other (candidate) melanoma predisposition 
genes in a large cohort of Dutch non-CDKN2A melanoma families through comprehensive 
multi-gene panel testing.

In the final chapter 9, we discuss the main findings of these studies in the context of the 
most recent literature. 
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