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8General discussion



8.1 Introduction

In this work, we have made extensive use of several mouse models for studying tumor
development and therapy resistance in two different types of breast cancer: invasive
lobular carcinoma (ILC) and BRCA1-deficient triple-negative breast cancer (TNBC).
This allowed us to identify several known and novel drivers of ILC (Chapters 3 and 4)
and BRCA1-deficient TNBC (Chapter 5), which were also shown to be frequently
aberrated in human tumors. Besides this, we also demonstrated how mouse models
can be used to identify resistance mechanisms in both ILC (Chapter 6) and BRCA-
deficient TNBC (Chapter 7), by treating mice with transplanted tumor fragments
with targeted treatments and comparing therapy-sensitive and -resistant tumors.

In the following sections, we focus on some of the concepts that underlie the work
presented in this thesis. Specifically, we will first elaborate on our approaches used
to identify cancer genes and therapy resistance mechanisms and reflect on several
advantages and shortcomings of the presented approaches. Next, we touch on
several recent advances in sequencing technologies and challenges in increasing the
accessibility of sequencing data for future studies. Finally, we reflect on the current
role(s) of mouse models in cancer research and how this is impacted by increased
human sequencing efforts and the developments of organoid technologies.

8.2 Strengths and weaknesses of insertional
mutagenesis strategies

One of the major goals/challenges in cancer research involves identifying which
genes are driving tumor development, based on the idea that these genes can be
targeted specifically in new therapies. In this work, we have shown how transposon-
based insertional mutagenesis (IM) can be used to screen for candidate cancer genes,
allowing us to identify driver genes in a mouse model of invasive lobular carcinoma
(ILC) (Chapter 3). Moreover, we also have demonstrated how transposon insertions
can be identified from RNA-sequencing data, and how this approach provides an
important biological filter that focuses on transposon insertions that are actually
expressed in the tumors, and therefore most likely to be relevant for tumor formation
(4)

One of the main advantages of IM strategies, compared to other mutagenesis ap-
proaches, is that they provide a relatively unbiased genome-wide approach to
forward genetic screening, whilst allowing efficient retrieval of transposon insertions
via targeted sequencing. Moreover, depending on the used transposon, IM-based
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screens can be used to simultaneously identify both candidate oncogenes and tumor
suppressors in a single screen. As such, IM-based screening approaches have been
successfully used to identify cancer driver genes in a wide variety of cancer types1–7.
In these settings, IM has been particularly effective in identifying cancer drivers that
are not readily apparent in human sequencing data, due to complex amplicons or
more subtle events such as alternative splicing. A clear example is given by our
transposon mutagenesis screen, which identified several ILC driver genes that were
located in an amplicon on human chromosome 1q. Due to the size of this amplicon,
these genes would have been difficult to identify without our screening results.

An important limitation of IM strategies is that different transposon systems have
specific biases8, which can lead to different results depending on the used transposon.
Part of these biases are inherent to the used transposon systems (e.g., piggyBac9,10,
Sleeping Beauty11,12), which have been shown to have integration biases towards
specific genetic sequences and/or certain gene features (e.g., integration within or
upstream of genes)13. Other biases stem from the sequences used to construct the
transposon, which may affect the mutagenicity of the transposon in certain types of
cells. For example, the T2/Onc2 transposon used in our screen contains an MSCV
promoter, which is likely to drive oncogene expression in hematopoietic cells at
a higher rate than in other cell types. For this reason, other transposons such as
the T2/Onc314 transposon have been developed for targeting different cell types by
including different promoter sequences.

These biases may explain to some extent why our screen identified a relatively concise
set of candidate genes, compared to other recent IM screens1,4,7. For instance, SB
transposons generally have a lower integration rate than other, more aggressive
transposon systems such as piggyBac15. This might explain why we identify fewer
integration sites than studies with other transposons7, but it does not explain
differences with SB-based studies1,4. Similarly, the used transposon (T2Onc/2) may
not be particularly active in mammary gland epithelium, due to limited activity of the
MSCV promoter in this tissue. Alternatively, biological constraints might be limiting
the number of potential ILC driver genes, as is suggested by the limited number
of driver mutations associated with ILC16. Finally, sequencing issues (e.g. limited
sequencing depth) might have reduced the sensitivity of our insertion detection.
However, orthogonal analyses using different sequencing approaches (IM-Fusion17,
Tagmap18) identified similar patterns of insertions, indicating that this is unlikely to
be the case.

Another limitation of IM strategies is that targeted sequencing approaches aimed at
identifying transposon insertions are unlikely to identify other types of mutations
generated by competing, spontaneous mutational processes occurring in tumors. As
such, naive IM screening approaches may miss additional candidate genes that are,
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for example, aberrated by spontaneous point-mutations or copy number changes.
The risk of additional mutations depends highly on the used mouse model, with
more genomically unstable tumors being more likely to acquire mutations via alter-
native mechanisms. This issue can be mitigated by either applying IM in genomically
stable models, or by combining targeted sequencing strategies with other sequenc-
ing modalities such as exome-sequencing19. Alternatively, RNA-sequencing-based
approaches17,20 such as IM-Fusion can be used for simultaneous identification of
transposon insertions and mutations, as a single RNA-sequencing dataset can be
used for insertion detection, variant calling, gene-fusion detection and differential
expression analyses.

Altogether, IM strategies are effective approaches for identifying candidate cancer
driver genes and potential mechanisms of therapy resistance. Moreover, when
combined with somatic engineering approaches, IM provides an especially powerful
method for identifying candidate cancer genes in specific genetic backgrounds and
rapidly validating these candidates in the same in vivo context. Besides this, deeper
sequencing and single-cell sequencing approaches21 may provide more insight into
the heterogeneity of IM-induced tumors and allow researchers to study clonal
evolution within these tumors. This type of approach – optionally combined with
multiplexed in vivo CRISPR approaches that permit studying interactions between
multiple cancer driver genes22,23 – may help determine how heterogeneous patient
tumors are likely to evolve over time and in response to specific treatments, enabling
the development of better treatment strategies.

8.3 Trade-offs in uncovering therapy resistance
mechanisms

Acquired therapy resistance is currently a major challenge in the clinic that limits
the effectiveness of many chemotherapy drugs and targeted therapies. In this work,
we aimed to identify resistance mechanisms to two different targeted therapies,
FGFR inhibition (FGFRi) in ILC (Chapter 6) and PARP inhibition (PARPi) in BRCA1-
deficient TNBC (Chapter 7). To do so, we transplanted donor tumors into multiple
syngeneic mice, which were subjected to treatment. By subsequently contrasting
therapy-resistant and -sensitive (i.e. vehicle-treated) tumors, this approach allowed
us to identify potential resistance mechanisms to both targeted treatments.

In Chapter 6, we focused on identifying FGFRi resistance mechanisms using inser-
tional mutagenesis, based on the premise that SB-induced tumors can acquire new
transposon insertions during treatment and in doing so become resistant to the
applied therapy24,25. One advantage of using IM for this purpose, is that potential
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resistance mechanisms are relatively easy to identify by using targeted sequencing
to reveal the locations of new insertions in resistant tumors. However, a limitation
of the approach is that the range of identifiable resistance mechanisms may be
limited by integration biases of the used transposon and by the types of mutations
that can be generated by transposon insertions (e.g. gene overexpression and gene
truncation, but not point mutations). Moreover, competing mutagenic processes
may result in additional mutations that may contribute to resistance but cannot be
detected by targeted insertion sequencing, as evidenced by the FGFR2 mutations that
we identified in RNA-sequencing data from several FGFRi-resistant ILC tumors.

In Chapter 7, we used genomic (copy number variation (CNV)-sequencing) and
transcriptomic (RNA-sequencing) approaches to identify potential PARPi resistance
mechanisms in BRCA2-deficient mammary tumors from KB2P mice. One of the main
challenges of this type of approach is that genomically unstable tumors (such as KB2P
tumors) are likely to contain many additional aberrations after treatment, of which
only a very small fraction is likely to be causally involved in treatment resistance. As
such, identifying potential resistance mechanisms requires additional prioritization
of mutations, either using computational algorithms or by integrating data from addi-
tional sequencing approaches, other experiments or external databases. In the KB2P
model, we addressed this issue by requiring genes to be frequently amplified/deleted
and to show a strong effect on expression, providing additional evidence that these
mutations have a functional effect. Additional evidence from a separate shRNA
screen was used to further validate our results, by providing orthogonal evidence
that candidate genes were indeed involved in resistance.

An alternative approach for identifying acquired resistance mechanisms involves
correction of copy number profiles of resistant tumors for events that were present
before treatment, and subsequent application of algorithms such as RUBIC26 or
GISTIC27 to identify recurrent copy number events that are acquired after treatment.
This would potentially allow us to identify DNA copy number alterations (CNAs) that
arose in response to treatment. The main advantage of this approach is that it may
restrict the number of potential candidate genes by focusing on the minimal regions
of recurrent CNAs. However, this approach requires a snapshot of the pre-treatment
copy number state for each tumor to avoid calling events that were already present
in the pre-treatment tumor samples. In our case, these samples were not available.
Moreover, it may be challenging to obtain representative pre-treatment samples
for each donor, due to differences in pre-treatment tumor fragments stemming
from intra-tumor heterogeneity. In addition, this approach assumes that the same
resistance mechanism occurs in each tumor, and it may therefore not have enough
statistical power in a population displaying heterogeneous resistance mechanisms.
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In essence, the main difference between our two resistance screens lies in their focus.
In the IM-based approach, we first used RNA-sequencing data to identify if any
known mechanisms could explain the observed resistance, allowing us to perform a
relatively focused analysis of this genome-wide dataset. We then used insertion-site
sequencing to identify novel resistance mechanisms in an unbiased fashion. Due to
the selective nature of the used transposon, this analysis identified a relatively short
list of novel mechanisms, which might not have been identified through genome-
wide analyses. In contrast, our analysis of the KB2P tumors was performed in a
genome-wide fashion and relied on additional data sources (such as the curated
list of DNA damage response (DDR) genes and the secondary shRNA screen) to
prioritize candidate genes. In this respect, IM-based approaches have the advantage
of being cleaner than a genome-wide analysis, at the risk of missing novel resistance
mechanisms that are not captured by the transposon system. On the other hand, the
sequencing approach has the advantage of potentially being more comprehensive
but runs the risk of missing mechanisms in the analysis stage, due to the added
complexity of the analysis, biases introduced by prior knowledge, and/or lack of
statistical power resulting from small sample size and heterogeneous resistance
mechanisms. As such, the choice of which approach to use likely depends on various
aspects of the used mouse model (such as its degree of genomic instability) and
pre-existing knowledge of potential resistance mechanisms.

Treatment resistance will most likely remain a substantial challenge for many anti-
cancer therapies in the foreseeable future. One particularly challenging aspect of
addressing therapy resistance is that it is essentially a race against evolution, in
which tumors are likely to develop new resistance mechanisms in response to any
applied therapies. As such, effective therapeutic strategies will need to be designed
to minimize or prevent the emergence of resistance, for example by targeting conver-
gent signaling pathways28 or changing treatment strategies (e.g. by employing drug
holidays29 or combination therapies30). However, testing different (combination)
treatments in different genetic backgrounds is likely to be prohibitively expensive
and time consuming, due to the sheer amount of possible combinations involved. As
such, we expect that computational models trained on existing experimental data
will become crucial in modeling how tumor cells and cell populations respond to
specific (combination) treatments, allowing us to predict which (combinations of)
anti-cancer drugs are most likely to be most effective in treating a given tumor and
preventing resistance.
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8.4 Advances in tumor sequencing technologies

For the studies described in this thesis, we have made substantial use of second-
generation sequencing technologies, which have greatly improved our ability to
perform in-depth genomic and transcriptomic characterization of cell populations.
However, one limitation of these technologies, is that they essentially reduce (cancer)
genomes into a large collection of very short sequence reads, which must be pieced
back together using a predefined reference genome to extract anything meaningful
from the data. The fact that these short sequencing reads do not allow de novo
assembly of cancer genomes inherently limits the power of our analyses. Moreover,
this fragmented snapshot is not extracted from individual cells, but from bulk
populations of thousands to millions of tumor cells, meaning that any derivation is
going to be an average blur of a population of cells, rather than a detailed picture of
all individual cells that captures all of their differences.

In this respect, one of the most exciting recent developments is the emergence of
single-cell sequencing technologies, which can be used to characterize the genomic
or transcriptomic state of individual cells31,32. This makes single-cell approaches
especially suitable for studying intra-tumor heterogeneity, which is considered to be
one of the main drivers of tumor progression, metastasis and escape from therapy33.
As such, single-cell RNA-sequencing approaches have frequently been used to identify
distinct populations of cells within tumors34–36 and to explore how these popula-
tions may be involved in tumor progression and therapy resistance37–39. Similarly,
single-cell CNV-sequencing and exome-sequencing approaches have been used to
track cancer evolution by deriving how distinct tumor subclones evolved during
tumor progression40,41. Limiting aspects of current single-cell technologies are low
sequencing depths and high costs due to the large numbers of cells that need to
be sequenced for a comprehensive analysis. However, with dropping sequencing
costs and the development of more cost-effective approaches, we expect that single-
cell sequencing will become an increasingly important pillar in studying tumor
heterogeneity and cancer evolution.

Besides this, third-generation sequencing approaches (e.g., Nanopore, PacBio) are
poised to further revolutionize sequencing analyses by providing much longer reads
(10,000-100,000 bp) than current (second-generation) technologies, which are
generally limited to reads of hundreds of base pairs. Increased read lengths provide
substantial benefits for many sequencing analyses, as longer reads are much easier
to stitch back together than short sequences, as demonstrated by de novo assemblies
based on long-read sequencing42. Similarly, identification of complex structural
variations in patient samples have been shown to benefit greatly from longer read
lengths, allowing Nanopore-based approaches to achieve substantial accuracy in
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identifying variants, even with relatively low sequencing depths43. Furthermore, in
RNA-sequencing based approaches, long-read sequencing has been used to identify
novel gene transcripts44 and quantify isoform expression45 more accurately than
current sequencing approaches.

Together, we expect that advances in single-cell and third-generation sequencing
will substantially increase our ability to detect more complex mutational events,
such as structural variants and alternative splicing, whilst simultaneously providing
detailed insight into the heterogeneous tumor environment. However, properly lever-
aging these technologies will also require the development of new computational
approaches for analyzing the produced data, as is evidenced by the widespread devel-
opment of software packages for the analysis of single-cell and long-read sequencing
data.

8.5 Increasing the reproducibility and accessibility
of sequencing data

To optimally exploit the full compendium of sequencing data that is currently being
generated, it will be important to generate and share sequencing datasets in a way
that they can be easily queried, integrated and visualized by fellow researchers.
One of the main challenges in this respect is the heterogeneity of many analyses,
which is fueled by lack of consensus on best practices for analyzing different types
of sequencing data. This has led to the development of many different variants of
sequencing analysis pipelines, which generally differ in their choice of software for
different steps of the analysis. As a result, these pipelines can produce considerably
different results, even when applied to the same datasets46–48, thus complicating the
integration of datasets from different research groups.

To establish a set of best practices, several efforts have been made to address this
issue by benchmarking different approaches on gold-standard datasets46–50. Ideally,
the results of these benchmarks will be used to develop templates for many standard
analyses in community projects (e.g. bcbio-nextgen*, Snakemake workflows†) and to
facilitate the sharing and democratization of sequencing pipelines. An important part
of these projects is the development of open-source workflow management systems
(e.g. Snakemake51, Nextflow52), which allow users to define abstract workflows
that can be shared and reused to analyze new datasets. Together with tools for
managing software installations in virtual environments (e.g., Bioconda53, Docker‡,

*http://bcbio-nextgen.readthedocs.io/en/latest
†https://bitbucket.org/johanneskoester/snakemake-workflows
‡https://www.docker.com
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Singularity54), these developments make it easier to develop workflows that can be
easily shared with, and applied by others, thus increasing the reproducibility and
uniformity of sequencing analyses.

Additionally, with the large amounts of data that are being generated, it is becoming
increasingly important to facilitate the deposition of these data into large central-
ized repositories, where they can be easily be integrated and analyzed by other
researchers. Unfortunately, processed datasets are rarely shared in this fashion,
as existing repositories (e.g. GEO55, ENA56) are generally restricted to specific
data types and therefore provide limited capabilities for integrating and visualizing
datasets from different sequencing modalities. Portals such as cBioportal57 are a
great step forward in this respect, as they provide basic functionality for querying
and visualizing different datasets without requiring specific computational exper-
tise. In future work, it will be important to expand these existing initiatives to
include many more public datasets, ideally upon publication of the corresponding
manuscripts. Besides this, we expect that integration with similar portals containing
data from non-human organisms (such as mouse models) will play an important role
in disseminating insights from these model systems and improve cross-pollination
with human sequencing efforts.

8.6 A future for mouse model systems?

Model systems have long been important cornerstones of cancer research, as they
provide renewable and manipulatable biological systems that can be used to for-
mulate and test hypotheses. Compared to other systems, mouse models have been
particularly useful as they provide a controlled and experimentally tractable in vivo
setting that remains relatively close to human biology. As a result, many different
types of mouse models of human cancer have been developed over the years, of
which we provided an overview in Chapter 1. These developments have given rise
to a vast collection of mouse models with different genetic backgrounds, mimicking
important aspects of many human cancer types58,59.

An important advantage of model systems such as mouse models, compared to hu-
man sequencing projects, is that they can provide unambiguous, causative evidence
of whether a given mutation is involved in tumorigenesis or therapy resistance.
For example, by introducing a mutation into a mouse model that does by itself
not develop tumors, we can unequivocally establish whether the added mutation
results in increased tumor formation60. Human sequencing projects are much more
limited in this respect, as without further validation these projects can generally only
provide correlative evidence61. As such, model systems play an important role in
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the follow-up of driver genes identified in these projects, by allowing us to validate
their role(s) in tumor formation and determine how they may affect other tumor
characteristics such as therapy response.

The utility of mouse models in cancer research will likely be enhanced by the
development of lentiviral and CRISPR-based somatic engineering approaches62,63,
which allow the rapid introduction of mutations into existing baseline mouse models
(Chapter 5). As such, these approaches can be used to speed-up the creation of
new mouse models containing specific mutations, greatly expanding the capacity to
further validate and characterize candidate driver genes. Moreover, by combining
vectors containing/targeting different driver genes, somatic engineering can also be
used to generate complex mouse models with different combinations of mutations,
enabling more detailed dissection of interactions between different driver genes and
how these influence tumor development and therapy response.

However, mouse models are not alone and face competition from human-based mod-
els. For instance, human tumor-derived organoid systems have recently gained much
popularity in cancer research by enabling efficient derivation of three-dimensional
(3D) cell culture models that maintain the genomic complexity of tumors more
faithfully than conventional cell line models64,65. For this reason, organoids have
been touted as an effective approach for generating in vitro models of patient tumors,
which can be sequenced and screened with anti-cancer drugs to identify mutations
and correlate these with therapy response66. Besides this, organoids can also be
manipulated using lentiviral and CRISPR-based somatic technologies, allowing vali-
dation of driver genes or mutations that are predicted to influence therapy response.
Combined with falling sequencing costs and increasing patient sequencing efforts,
these efforts in organoid models are poised to provide a wealth of data correlating
human tumor genotypes with drug response. Given enough data, this may sub-
stantially improve our ability to build computational models predicting a patient’s
therapy response, without requiring detailed modelling in (mouse) model systems.

Organoid-based approaches are however limited by the fact that they are grown
in a rather artificial in vitro environment, and as such do not faithfully reflect
the complexity of the tumor microenvironment and/or interactions with an active
immune system. As a result, (humanized) mouse models are much better suited for
studying the effects of immune-based therapies, which have gained much popularity
due to their unparalleled success in treating specific cancer types67–70. Besides this,
mouse models of de novo tumorigenesis provide opportunities for studying all stages
of tumor initiation, progression and metastasis, which is challenging to do with
models based on end-stage patient tumors. Finally, detailed in vivo characterization
is likely to remain important to gain insight into the role of specific drivers in
different stages of tumorigenesis, which can be used to design and develop novel

294 Chapter 8 General discussion



therapies targeting driver-specific vulnerabilities. As such, we expect that mouse
model systems will continue to play an important role in cancer research. However,
to maximize their impact, studies should focus on exploiting the unique properties of
mouse models to complement patient- and organoid-based approaches, rather than
mimicking studies that are better performed in more human-like (in vitro) models.
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