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7.1 Summary

Inhibitors of poly(ADP-ribose) (PAR) polymerase (PARPi) have recently entered
the clinic for the treatment of homologous recombination (HR)-deficient cancers.
Despite the success of this approach, drug resistance is a clinical hurdle, and we
poorly understand how cancer cells escape the deadly effects of PARPi without
restoring the HR pathway. By combining genetic screens with multi-omics analysis
of matched PARPi-sensitive and -resistant Brca2-mutated mouse mammary tumors,
we identified loss of PAR glycohydrolase (PARG) as a major resistance mechanism.
We also found the presence of PARG-negative clones in a subset of human serous
ovarian and triple-negative breast cancers. PARG depletion restores PAR formation
and partially rescues PARP1 signaling. Importantly, PARG inactivation exposes
vulnerabilities that can be exploited therapeutically.

7.2 Significance

To explore defects in the DNA damage response in cancer therapy, exciting opportu-
nities have been achieved using the ‘synthetic lethal’ approach. A successful example
is the development of PARP inhibitors to kill cancer cells that are defective in HR;
e.g., due to lack of function of BRCA1 or BRCA2. Thus, there is a real opportunity to
cure patients with HR-deficient cancers if we overcome the hurdle of drug resistance.
At present, it is largely unknown how tumor cells escape PARP inhibition without
restoring BRCA2-mediated HR. Here, we show that loss of PARG governs PARPi resis-
tance in HR-deficient tumors by restoring PARP1 signaling. Importantly, inactivation
of PARG results in vulnerabilities that can be exploited to combat resistance.

7.3 Introduction

Defects in the DNA damage response (DDR) result in genomic instability and are
implicated in many types of cancer1. DDR alterations are responsible for the ac-
cumulation of mutations that result in tumorigenesis, and they can be specifically
exploited for targeted cancer therapy. A prime example of such a tailored approach
is the application of poly (ADP-ribose) polymerase (PARP) inhibitors (PARPi) in the
treatment of tumors defective in homology-directed DNA repair due to BRCA1 or
BRCA2 inactivation2,3. PARP1, a founding member of the PARP family, is a nuclear
protein functioning in various cellular processes, including chromatin remodeling
and DNA damage repair4. Upon DNA damage, PARP1 is rapidly recruited to DNA
nicks where it induces the synthesis of protein-conjugated polymers of ADP-ribose
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(poly(ADP-ribose) [PAR]). PARP1 itself is a prime target of PARylation and the result-
ing PAR chains serve as a platform for the recruitment of downstream repair factors.
PARylation is a transient and reversible modification, as it is counteracted by the
activity of PAR glycohydrolase (PARG), which degrades PAR5. Inhibition of PARP1
leads to the accumulation of unresolved single-strand breaks (SSBs)6. Moreover,
several PARPi trap PARP1 onto chromatin7,8, resulting in the collapse of replication
forks (RF) that hit trapped PARP1. This leads to DNA double-strand breaks (DSBs)
and cells depend on BRCA1/2-mediated repair to resolve these DSBs in an error-free
way. Hence, PARP1 inhibition causes synthetic lethality in tumors with defects in
homologous recombination (HR)2,3. Indeed, this lethality was also observed in
mouse models for BRCA1/2-mutated breast cancer9,10 as well as in patients with
BRCA1/2 mutations who developed breast or ovarian cancer11–13. On the basis of
these positive clinical results, three different PARPi were recently approved as a
monotherapy for the treatment of BRCA1/2-mutated ovarian cancers14.

Drug resistance often follows the introduction of therapeutics in the clinic, and
unfortunately PARPi are no exception11,12. Using cell lines and mouse models,
several mechanisms of PARPi resistance have been identified, including upregulation
of the P-glycoprotein (P-gp; also known as ABCB1) drug efflux transporter9,10 and
restoration of HR activity (reviewed by Annunziato et al.15). While the clinical
significance of P-gp-driven resistance remains controversial, HR restoration has been
observed in human tumors that re-established BRCA1/2 function16,17. Nevertheless,
secondary BRCA1/2 mutations explain only some of the cases of PARPi resistance18.
The requirement of BRCA1 for HR activity can be bypassed by the loss of the 53BP1-
RIF1-REV7 pathway, as shown by various studies15. In contrast, there is no evidence
that HR can be rescued in the absence of BRCA2, suggesting that BRCA2-deficient
tumors employ distinct, HR-independent pathways to overcome PARPi toxicity.

Little is known thus far about HR-independent resistance to PARPi. Loss of the
drug target PARP1 has been described as a mechanism of resistance in HR-proficient
cells19, but this cannot explain resistance in the PARPi target group, since PARP1
loss causes synthetic lethality of BRCA1/2-mutated cells2,3. In this study, we set out
to determine how cells with an irreversible and complete defect in the HR pathway
develop PARPi resistance.
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7.4 Results

7.4.1 Functional genetic screens identify loss of PARG as a
PARPi resistance factor

To identify HR-independent mechanisms of PARPi resistance, we carried out func-
tional genetic screens in two types of in vitro cultures that we derived from
Brca2-/-;p53-/- mouse mammary tumors from K14cre;p53F/F;Brca2F/F (KB2P) mice:
two-dimensional (2D) tumor cell lines (KB2P1.21, KB2P3.4) and three-dimensional
(3D) cancer organoids (ORG-KB2P26S.1)9,20,21. In these cells we introduced a li-
brary of 1,976 short hairpin RNA (shRNA) constructs targeting 391 DDR-related
genes (on average five shRNAs/gene)22. The cells were then selected for 3 weeks
with the PARPi olaparib or AZD2461 (Figure 7.1A) at a concentration lethal to the
parental cells (data not shown). Sequencing of PARPi-surviving populations revealed
a reproducible enrichment of multiple hairpins targeting PARG. The strong effect
of PARG depletion is reflected by the overall top score of Parg among all positively
selected genes, as determined by the MAGeCK (Model-based Analysis of Genome-
wide CRISPR-Cas9 Knockout) algorithm23 (Figure 7.1B-C; Table S7.1). We applied
the same screening approach to a cell line isolated from BRCA-proficient mouse
mammary tumors from K14cre;p53F/F (KP) mice9 and also identified Parg among
the top outliers. In fact, Parg was the only common hit in both BRCA-deficient and
-proficient screens (Figure 7.1D-E). In contrast, shRNAs targeting PARP1 were only
enriched in the BRCA-proficient KP3.33 cells (Figure 7.1C-E), providing functional
evidence that PARP1 loss confers PARPi resistance in BRCA-proficient cells, presum-
ably by preventing PARP1 trapping, but not in BRCA2-deficient cells that depend on
PARP1 for survival.

7.4.2 PARG is frequently lost in PARPi-Resistant KB2P
mouse mammary tumors

Although high-throughput genetic screens are powerful tools for the identification
of gene candidates, in vitro conditions do not fully recapitulate the complexity of
drug response observed in real tumors. We therefore generated a panel of KB2P
mouse mammary tumors that had acquired PARPi resistance in vivo. For this purpose,
21 individual spontaneous KB2P carcinomas were orthotopically transplanted into
multiple syngeneic mice to allow differential treatment of the original donor tumor.
Upon outgrowth, the tumors were either treated with vehicle control or with the
PARPi AZD2461 (Figure 7.2A). As expected, KB2P tumors were initially highly
sensitive to PARPi treatment but eventually developed drug resistance (Figure 7.2B-
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Fig. 7.1. Functional shRNA-based screens in BRCA2-deficient and -proficient cells
identify PARG as PARPi resistance factor. (A) Outline of the functional shRNA
screen. (B) Log ratio (fold change) versus abundance (mean of norm counts)
plot representing the screening outcome in KB2P1.21 cells treated with AZD2461.
(C-D) Distribution of the one-sided p value (gene enrichment) for all 391 genes
targeted by the shRNA-based library in KB2P1.21 cells (C) and KP3.33 (D) cells
upon PARPi treatment. (E) Comparison of the screening outcome between in-
dicated cell lines; dotted grid line indicates p value = 0.05. All p values were
generated per gene with MAGeCK software; each screen was performed and
analyzed in triplicate. See also Table S7.1.

C). The observed resistance cannot be explained by BRCA2 restoration, which is
prevented by the irreversible intragenic deletion in Brca2, nor by upregulation of P-gp
(Figure S7.1A), because of the low affinity of AZD4261 to this transporter24,25.

Our extensive in vivo studies yielded a unique collection of matched PARPi-naive
(n = 21) and PARPi-resistant tumors (n = 34; for some of the donors more than
one resistant tumor was generated). We have recently shown that the resistance
phenotype is stable upon transplantation into allografts21,26. We now used this
collection of tumors to identify genetic factors contributing to PARPi resistance.
For this purpose, we generated transcriptome (RNA sequencing [RNA-seq]) and
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AZD2461, orally for 28 consecutive days. Treatment was resumed when the
tumors reached a size of 100% (initial volume at the start of the treatment)
and the treatment cycles were repeated until acquired resistance (black arrows
mark the beginning of repeated cycles). Graph shows relative tumor volume as a
function of time. (C) Kaplan-Meier curve showing overall survival of mice bearing
KB2P tumors treated with either vehicle or AZD2461. Log rank (Mantel-Cox) p
value is indicated. (D) Flowchart illustrating the steps of multi-omics approach
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DNA copy number variation (CNV) sequencing (CNV-seq) data for all tumors and
carried out an integrative analysis of naive versus resistant samples (Figure 7.2D-
E). First, we identified differentially expressed genes using the DIDS (detection of
imbalanced differential signal) algorithm (cutoff p < 0.05), which is specifically
designed for the detection of subgroup markers in heterogeneous populations27. In
parallel, we selected acquired copy number events, present only in resistant, but
not in naive, samples. Since KB2P tumors exhibit high levels of genomic instability
and accumulate many genetic alterations, we decided to focus on DDR-related
genes, as their contribution to the PARPi response is most plausible. We generated
a list of approximately 1,800 genes that have been implicated in DDR processes
(Table S7.2) and combined it with the significant hits from the DIDS and CNV
analyses. The 82 genes that survived these selection criteria were ranked based
on their recurrence or correlation between expression and CNV data. To integrate
these rankings, we used three different aggregation statistics: mean aggregation,
Stuart aggregation, and robust rank aggregation (RRA)28. Consistent with our
in vitro screens, all three algorithms placed Parg at the top of the list of gene
candidates (Table S7.3). Parg also ranked among the top outliers in a non-curated,
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tumor). (G) Correlation between Parg expression and copy number estimation
for the whole panel of KB2P tumors. Spearman correlation coefficient (ρ), p
value, and expression threshold generated by DIDS algorithm (gray line) are
indicated. (H) Representative images of PARG IHC staining in KB2P tumors; scale
bar, 100 µm. (I) ELISA-based PARG activity assay in tumor organoids (N, naive;
R, resistant); **p < 0.01, ****p < 0.0001 (two-tailed t-test); experiment repeated
three times, data presented as mean ± SD of replicates. (J) Western blot analysis
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genome-wide comparison (Table S7.3). In our panel of 34 PARPi-resistant tumors,
we observed decreased expression of Parg in 17 tumors, and acquired copy number
loss of the Parg locus in 22 tumors (11 deletions, 11 heterozygous loss events), with
a substantial overlap between both datasets (Figure 7.2F-G and S1B). The difference
in PARG levels between PARPi-naive and -resistant tumors was also confirmed by
immunohistochemistry (IHC) (Figure 7.2H). Blinded semi-quantitative analysis of
the PARG staining revealed a significant difference between resistant versus naive
samples (p < 0.015, Mann-Whitney U test). This was further validated using an
ELISA assay in which we monitored the loss of biotinylated PAR from immobilized
histones and thereby directly measured the relative activity of endogenous PARG in
3D cancer organoids derived from PARG-deficient PARPi-resistant tumors and PARPi-
sensitive controls (Figure 7.2I). As expected, PARPi-resistant organoids showed
reduced ability to degrade synthetic PAR (Figure 7.2I) and overall exhibited elevated
levels of endogenous PAR (Figure 7.2J).
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To investigate the contribution of the other candidate genes to PARPi resistance,
we performed a secondary genetic loss-of-function screen using an shRNA library
targeting the identified candidates and 32 non-essential genes as internal controls
(Table S7.4). Parg was again identified as a top outlier by the enrichment analysis in
both KB2P cell lines (Figure 7.2K and Table S7.1), suggesting that loss of PARG is
one of the strongest mechanisms involved in PARPi resistance in our model.

To test whether PARPi-induced loss of PARG is specific to KB2P tumors, we also stud-
ied genetic alterations in Parg in our previously described collection of PARPi-naive
and -resistant BRCA1-deficient mammary tumors from K14cre;Brca1F/F;Trp53F/F
(KB1P) mice24. Also in this cohort, combined RNA-seq and CNV-seq analysis identi-
fied several PARPi-resistant tumors with significantly lower expression and acquired
copy number loss of Parg (Figure S7.1C). Taken together, our in vivo data confirm
and extend the results from the in vitro screens and suggest that PARG depletion
alleviates PARPi toxicity.

7.4.3 PARG downregulation causes PARPi resistance in
vitro

To validate the role of PARG depletion in PARPi resistance, we introduced two indi-
vidual shRNAs against PARG (PARG sh1, PARG sh4) in KB2P1.21 and KB2P3.4 cells,
resulting in substantial decrease of Parg mRNA levels (Figure 7.3A and Figure S7.2A)
and reduced PARG activity (Figure 7.3B and Figure S7.2B) Consistently, genetic de-
pletion of PARG in KB2P cells led to the accumulation of PAR under genotoxic stress
induced by the alkylating agent methyl methanesulfonate (MMS) (Figure S7.2C-D)
but did not affect Parp1 expression levels (Figure S7.2E).

The shRNA-mediated loss of PARG resulted in increased resistance to the PARPi
olaparib and AZD2461 in long-term clonogenic survival assays. This effect was
observed in cell lines derived from both KB2P and KB1P tumor models, in which
PARPi-induced loss of PARG was observed in vivo (Figure 7.3C and Figure S7.3A-
C). To exclude off-target effects of the shRNAs, we also targeted the Parg locus in
KB2P cells using CRISPR-Cas9 technology (Figure 7.3D and Figure S7.3D-F). In
contrast to the control cells, Parg-targeted cells formed many resistant colonies
after 14 days of PARPi selection. This effect was specific to Parg inactivation, as
shown by the TIDE (Tracking of Indels by Decomposition) analysis29. In the initial
tumor cell population, roughly half of the alleles carried frameshift mutations,
and vehicle (DMSO) treatment did not significantly affect allele composition. In
contrast, PARPi selection resulted in a substantial increase in frameshift disruptions
(> 90%), showing that the surviving populations are predominantly PARG deficient
(Figure 7.3D and Figure S7.3D-F, Table S7.5).
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We obtained further evidence for the role of PARG in PARPi resistance with a re-
cently developed small-molecule PARG inhibitor (PARGi) PDDX-004 (PDD00017272),
which is very active against mouse PARG30. In line with this, PDDX-004 caused a
dose-dependent accumulation of nuclear PAR upon MMS-induced DNA damage in
our cell lines (Figure S7.3G-H). Consistent with our genetic inhibition experiments,
the clonogenic assays in KB2P cells also showed an increased PARPi survival upon
chemical inhibition of PARG (Figure 7.3E and Figure S7.3I). Moreover, the viability
of cells exposed to the combination of PARPi and PARGi correlated with the degree
of PARG inhibition, while PDDX-004 alone did not affect cell growth nor PARPi re-
sponse of PARG-depleted cells (Figure S7.3J). In conclusion, both genetic depletion
or inactivation and chemical inhibition of PARG lead to PARPi resistance in KB2P
cells, confirming an important functional role of PARG in mediating PARPi toxicity.

7.4.4 PARG-Depleted KB2P cells remain HR deficient and
fail to protect stalled RFs

The sequence of events that leads to PARPi-induced death of BRCA-deficient cells
includes the inhibition of PAR synthesis, RF collapse, and the formation of DSBs.
In collaboration with the Nussenzweig laboratory, we have recently shown that
RF protection can explain resistance in some of the PARPi-resistant KB2P mouse
mammary tumors26. Given its role in PAR catabolism, however, we did not expect
that the tumors in which we find PARG downregulation would correct the BRCA2
defect by protecting stalled RFs or by BRCA2-independent restoration of HR. To
verify this, we measured the capacity of PARG-depleted KB2P cells to protect stalled
RF using DNA fiber assays. In both control and PARG knockdown KB2P cells,
the induction of replication stress resulted in the degradation of nascent tracts
(Figure S7.4A), suggesting that PARG loss cannot bypass the requirement of BRCA2
for RF stabilization. Next, we assessed the capability of KB2P cells to form RAD51
ionizing radiation (IR)-induced foci (IRIF), a hallmark of HR activity. As expected,
we did not detect any RAD51 IRIF in KB2P cells, regardless of Parg expression levels
(Figure S7.4B-C). Moreover, the same phenotype was observed in PARPi-resistant
KB2P tumors, in which PARG loss was confirmed at the genomic level (Figure S7.4D).
These results demonstrate that loss of PARG causes PARPi resistance independently of
BRCA2 and that resistance cannot be explained by HR restoration or RF protection.

7.4.5 PARG downregulation rescues PARylation upon PARPi
treatment

To assess how PARG depletion causes PARPi resistance, we studied its effect on
PARylation. Upon PARPi treatment, inhibition of PARP enzymes serves as the major
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± SD of triplicate, ∗∗∗∗p < 0.001 (two-tailed t-test). (C) Representative images
(left) and quantification (right) of long-term clonogenic assay with KB2P1.21
cells, treated with PARPi or untreated (DMSO). Data represent mean ± SD of
three independent repeats; ∗∗p < 0.01 (t-test). (D) Representative images (left)
and TIDE quantification (right) of long-term clonogenic assay with KB2P1.21
cells expressing indicated guide RNAs. (E) Representative images (left) and
quantification (right) of long-term clonogenic assay with KB2P1.21 cells treated
as indicated. The experiment was repeated three times; data plotted as mean ±
SD; p < 0.001 (ANOVA). See also Figures S7.2 and S7.3 and Table S7.5.

238 Chapter 7 Selective loss of PARG restores PARylation and counteracts PARP...



barrier to PAR formation, but this is reinforced by the PARG-mediated degradation
of PAR, which acts in the same direction as PARPi. We therefore hypothesized that
PARPi alone does not fully inhibit PARP and loss of PARG would allow sufficient
PAR formation in the presence of PARPi. We tested this hypothesis by measuring
endogenous PAR levels in KB2P cells treated with the PARPi olaparib and the PARGi
PDDX-004 (Figure 7.4A). To discriminate between stabilization of pre-existing and
de novo synthesized PAR, we first incubated cells with the inhibitors for 1 hr and then
exposed them to MMS to stimulate PARP activity. As predicted, olaparib treatment
resulted in a strong reduction of PAR, already at nanomolar doses. Inhibition of
PARG overcame this reduction and MMS treatment led to a further increase of the
PAR signal. These data indicate that olaparib concentrations sufficient to kill cells
do not completely inhibit PARP and that this residual activity is sufficient for PAR
formation if PARG activity is suppressed. We conclude that endogenous PARG activity
is required for efficient inhibition of PAR signaling by PARPi.

We next investigated the effect of different PARP family members on the PARPi
response using BRCA-proficient KP3.33 cells, in which CRISPR/Cas9-mediated dis-
ruption of Parp1, Parp2, or Parp3 was well tolerated (Figure S7.5A-C). While the
PARPi sensitivity of Parp2-/- and Parp3-/- KP3.33 cells was significantly reduced by
PARG inhibition, Parp1 depletion resulted in partial resistance to olaparib (con-
sistent with Murai et al.7), which was not further increased by PARGi treatment
(Figure S7.5D). This result is in line with a previous report suggesting that up to 90%
of cellular PAR results from PARP1 activity31 and shows that PARG-related PARPi
resistance is mainly mediated by PARP1 signaling.

7.4.6 PARG inhibition reduces PARP1-DNA complexes
induced by PARPi treatment

It has been shown that PARP1 association to and dissociation from chromatin is
regulated by its PARylation5 and persistent PARP1-DNA complexes, induced by
clinical PARPi, are toxic to cells7. We therefore measured the levels of chromatin-
bound PARP1 in KB2P cells using a previously described trapping assay7. Immunoblot
analysis showed olaparib-dependent accumulation of PARP1 in chromatin fractions,
which was reduced in cells expressing PARG-targeting shRNAs (Figure 7.4B). Since
stable PARG depletion could result in a substantial proportion of free PARP1 in
a PARylated state, and therefore lower its affinity to chromatin, we repeated the
PARP1 trapping assay in cells exposed to short-time inhibition of PARG (Figure 7.4C).
Although single treatment with PDDX-004 led to decreased levels of chromatin-
associated PARP1, simultaneous inhibition of both PARP1 and PARG resulted in
PARP1 trapping comparable with olaparib alone. We further corroborated this finding
by measuring PARP1 association kinetics at multi-photon laser-induced DNA damage
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Fig. 7.4. PARG deficiency partially rescues PARylation and reduces the accumulation
of PARP1-DNA complexes. (A) ELISA PAR assay in KB2P3.4 cells treated as
indicated; data shown as mean ± SD of triplicate (t-test). ∗∗∗∗p < 0.0001. (B-C)
Immunoblot analysis of PARP1 in chromatin-bound fractions upon genetic (B)
and chemical (C) inhibition of PARG in KB2P cells, treated as indicated; data
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(left) and quantification (right) of analysis of PARP1 recruitment kinetics to
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∗∗p < 0.01; n.s., not significant; two-tailed t-test, data represented as mean ±
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sites in U2OS cells (Figure 7.4D-E). Cells were exposed to 0.5 µmol olaparib and/or
the PARGi PDDX-001/PDD00017273 (1 µmol)30, which alone efficiently inhibited
downstream signaling of both proteins (Figure S7.5E-G). We utilized U2OS GFP-
PARP1 cells and quantified the intensities of laser tracks; first, 1 min post irradiation,
when under native conditions PARP1 accumulation reached a maximum, and then
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15 min after the induction of DNA damage, when most of the chromatin had evicted
PARP1 (Figure S7.5H). Both olaparib treatment alone and the combination with
PDDX-001 resulted in a slight increase of chromatin-associated PARP1 15 min post
irradiation (Figure 7.4D-E). Of note, even more PARP1 protein remained associated
with damaged sites in cells exposed to PARGi only. The results, however, do not show
any evidence that PARG depletion results in more rapid release of chromatin-bound
PARP1. Taken together, our data demonstrate that PARG depletion does not enhance
PARP1 dissociation from chromatin and therefore do not diminish PARP1 trapping
per se. Instead, long-term suppression of PARG prevents excessive PARP1 binding
and thus reduces PARPi-dependent accumulation of toxic PARP1-DNA complexes.
The relevance of this finding is further supported by the fact that PARG depletion
also results in resistance to talazoparib, a highly potent PARP1-DNA trapping agent
in clinical use (Figure 7.4F).

7.4.7 PARG depletion alleviates PARPi-induced DNA
damage

Following different forms of genotoxic stress, PARP1 activity has recently been
shown to limit the rate of RF progression32,33 by modulating fork reversal and
preventing premature restart of reversed RF34,35. Deregulated RF remodeling by
PARP inhibition was suggested to contribute to the synthetic lethality of PARPi with
HR defects, as it increases the fraction of SSBs being processed into DSBs36. As
shown in Figure 7.5A, we confirmed that PARPi treatment increases the DNA fiber
track length upon induction of DNA damage with MMS or camptothecin (CPT).
When PARG was also inhibited in these cells, the track length was significantly
decreased, suggesting that PARG depletion prevents unrestrained RF progression in
PARPi-treated cells (Figure 7.5A and Figure 7.5I). Concomitantly, PARG inhibition
reduced the formation of DSBs in these cells, as measured by the neutral comet assay
(Figure 7.5B and Figure 7.5J).

Given the role of PARP1 in DNA repair, we next investigated the PARP1-mediated
recruitment of the scaffold protein XRCC1, a PAR interactor and a key player in the
BER pathway37. To study the effects of PARPi and/or PARGi on XRCC1 recruitment,
we applied the laser micro-irradiation assay to U2OS cells expressing a XRCC1-GFP
fusion protein. We found that under drug-free conditions XRCC1-GFP was rapidly
recruited to sites of laser-induced DNA damage (Figure 7.5C-D). Although a large
proportion of the protein dissociated from chromatin within 60 min after irradiation,
a substantial amount of XRCC1-GFP remained at the sites of DNA damage. In line
with previous reports38, treatment of cells with the PARPi olaparib abrogated XRCC1-
GFP localization to laser-inflicted damage (Figure 7.5C-D). Inhibition of PARG
mitigated the inhibitory effect of olaparib, however, and partially rescued XRCC1-GFP
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recruitment. Importantly, the quantitative analysis of laser track intensities showed
that the restored accumulation, although delayed in time, resulted in a similar
retention of XRCC1-GFP at 1 hr post irradiation as in the control cells (Figure 7.5C-
D). This effect of PARGi is specific to PARylation-induced recruitment of DNA repair
factors, as we did not observe any differences in chromatin association of MDC1,
which localizes to damaged sites in a PARP1-independent manner39 (Figure 7.5E).
As a readout for PARP1 function in the repair of SSBs, we employed the previously
described Fast Micro-method SSB assay40. Consistent with our previous results,
Parg-depleted cells exhibited increased capacity to repair SSBs in comparison with
control cells (Figure 7.5F). This was further confirmed in cells exposed to olaparib for
24 hr. Immunofluorescence (IF) analysis of γH2AX foci revealed that Parg-depleted
cells accumulated less olaparib-induced DNA damage (Figure 7.5G).

Based on our data, we conclude that PARG suppression not only reduces PARP1-DNA
complexes but also rescues controlled RF progression and promotes the recruitment
of DNA repair enzymes to sites of damage in cells exposed to PARPi. Altogether, this
leads to a reduction of PARPi-induced DNA damage and improved PARPi survival
(Figure 7.5H).

7.4.8 PARG deficiency overcomes PARPi toxicity in human
cancer cells

The anticancer efficacy of PARPi has been validated in various clinical studies and
several PARPi were recently approved for the treatment of patients with BRCA1/2-
mutated tumors. We therefore determined whether PARG depletion confers PARPi
resistance in human cancer cells by introducing two individual shRNAs targeting
PARG in BRCA1-mutated SUM149PT (carrying a protein-truncating 2288delT muta-
tion) and BRCA2-deficient DLD-1 cells. Both shRNAs efficiently suppressed PARG
expression and conferred resistance to olaparib (Figure 7.6A-B and Figure S7.6A).
Similarly, chemical inhibition of PARG led to increased survival of both cell lines in
the presence of PARPi (Figure S7.6B-C).

Given that PARG loss causes PARPi resistance independently of BRCA1/2, we ex-
tended our analysis to a recently published pharmacogenomics dataset of 1,001
human cancer cell lines41. In particular, we assessed the correlation between half
maximal inhibitory concentration (IC50) values of PARPi and gene expression levels
of 1,800 DDR-related factors (Table S7.2). Gene expression data and drug responses
to four different PARPi (olaparib, veliparib, rucaparib, and talazoparib) were avail-
able for 935 cell lines from this panel. Statistical analysis revealed a significant
negative association between PARG expression and IC50 values of all four PARPi
(Figure 7.6C and Figure S7.6D); i.e., higher PARG RNA levels were related to in-
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Fig. 7.5. PARG inhibition alleviates PARPi-induced DNA damage. (A) RF progression
assay in U2OS cells exposed to indicated treatments; the experiment was repeated
twice; box extends from 25th to 75th percentile, with a middle line representing
the median and whiskers drawn down to the 10th percentile and up to the 90th;
Mann-Whitney U test; ∗∗∗∗p < 0.001; n.s., not significant. (B) Neutral comet
assay in U2OS cells treated as in (A); Mann-Whitney U test, ∗∗∗∗p < 0.001, data
shown as mean ± SD of a replicate; the experiment was repeated twice. (C-
D) Representative images (C) and quantification (D) of time course analysis
of GFP-XRCC1 recruitment in U2OS cells treated as indicated; ∗∗p < 0.01; n.s.,
not significant; two-tailed unpaired t-test; data represent mean ± SEM of three
independent experiments. Scale bar, 10 µm. (E) Quantification of MDC1 tracks
following immunostaining; statistical analysis as in (D).

creased sensitivity to these drugs. A similar negative association was also observed
for PARP1 gene expression, in agreement with the concept that more PARP1 leads to
more trapping of PARP1 onto DNA in the presence of PARPi.

7.4.9 PARG depletion occurs in triple-negative breast and
serous ovarian cancer

To further assess the clinical relevance of PARG depletion, we measured the hetero-
geneity of PARG expression in large sections of 56 treatment-naive triple-negative
human breast cancer (TNBC) biopsies from high-risk women eligible for PARPi
treatment42,43. IHC analysis (Figure 7.6D-E, and Figure S7.6E) revealed that, al-
though PARG protein was expressed in a vast majority of the biopsies, PARG-negative
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the recruitment of the downstream factors. Together, this results in reduced
PARPi-induced DNA damage and improves PARPi survival. See also Figure S7.5.

areas were found in a sizable proportion of samples. Specifically, 29 (52%) and
14 (25%) out of 56 cancers showed lack of PARG in areas corresponding to >10%
and >20% of the tumor, respectively. Moreover, PARG-negative cells were positive
for PAR, and in some of the samples PAR levels were substantially increased (Fig-
ure 7.6E). Of note, the variable degree of PAR could also reflect the degree of the
endogenous DNA damage among the cases, as PARP enzymes are activated by DNA
damage and these patients did not receive any genotoxic therapy. A similar PARG
expression spectrum was also found in a cohort of serous ovarian carcinomas44, a
cancer type that has been recently approved for PARPi treatment (Figure 7.6D and
Figure S7.6F). Taken together, our data show that PARG-depleted cells pre-exist in a
substantial proportion of clinically relevant tumors and could potentially be selected
by PARPi treatment.

7.4.10 PARG suppression results in acquired vulnerabilities

Molecular alterations that render cells resistant to targeted therapies may also cause
synthetic dependencies, which in turn could be exploited therapeutically to prevent
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Fig. 7.6. PARG depletion in human cancer cells leads to PARPi resistance but results
in acquired vulnerabilities. (A-B) Long-term clonogenic assay with SUM149PT
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distribution. (D) Summary of IHC analysis of PARG expression in TNBCs and
ovarian serous carcinomas. (E) Representative images of PARG and PAR IHC of
TNBC biopsies. Scale bar, 100 µm.

cancer progression. Perturbed PAR signaling due to downregulation of PARG has
been shown to increase the sensitivity to IR45. Susceptibility to IR is also one of
the characteristics of cells with dysfunctional BRCA1/2 proteins46. We therefore
set out to determine whether PARG suppression could potentiate IR toxicity in
BRCA1/2-mutated cells. For this purpose, SUM149PT cells with shRNA-mediated
PARG knockdown were exposed to a range of IR doses and grown for another 7
days. Viability measures showed increased IR sensitivity of PARG-depleted cells in
comparison with control populations (Figure 7.6F). Furthermore, dose-dependent
sensitization was also achieved by chemical inhibition of PARG in SUM149PT, BRCA2-
deficient DLD-1, and KB2P cells (Figure 7.6G-H and Figure S7.6G). Notably, we also
observed synergistic effects between PARG inhibition and treatment with temozolo-
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mide (Figure 7.6I and Figure S7.6H), an alkylating agent that has been previously
shown to potentiate PARPi toxicity8.

Together, these results illustrate that PARG suppression, although detrimental to
PARPi efficacy, provides therapeutic vulnerabilities that could be used to target
resistant tumors.

7.5 Discussion

In this study, we show that loss of PARG is a frequent mechanism of PARPi resistance
in Brca2-mutated tumors. Our data provide an HR-independent mechanism for
tumor cells to adapt their DDR in order to escape the lethal effects of PARPi. PARG is
the main enzyme responsible for degrading nuclear PAR and thereby counteracting
the action of PARP enzymes. Hence, PARG works in the same direction as PARPi and
prevents PAR accumulation. Our finding that PARG depletion causes PARPi resistance
in BRCA2-deficient tumors highlights an important aspect of PARPi therapy: the
endogenous PARG activity in tumor cells is crucial for therapy success. As PARPi
do not fully block PARP activity, loss of PARG activity is sufficient to restore PAR
formation and rescue downstream signaling of PARP1.

Within the PARP family of ADP-ribosyltransferases, three family members, PARP1,
PARP2, and PARP3, have been linked to DNA repair47. PARP1 is the most abundant
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of these and has been shown to play critical roles in the DDR48. Upon DNA damage,
RFs are rapidly and globally reversed and are maintained in the reversed state
by transient PARP-mediated inhibitory ADP ribosylation of RECQ1 helicase, the
enzymatic activity specifically required for restart of reversed RFs34,35. In this way,
PARP1 represents a molecular switch to control transient fork reversal and RF restart
following genotoxic stress35. Neelsen and Lopes36 therefore suggested that the
synthetic lethality of PARPi with HR defects results not only from an increasing load
of SSBs but also from a greater fraction of these lesions being processed into DSBs.
Whereas untreated cells gain extra time to repair DNA damage through RF reversal,
PARPi-treated cells are unable to reverse forks efficiently, resulting in increased
DNA breakage and the requirement for HR-mediated DSB repair. In line with this
hypothesis, we found that PARG depletion restores controlled RF progression in
the presence of PARPi and reduces subsequent DNA damage. We also found a
mechanism at the level of DNA repair that contributes to PARPi resistance induced by
PARG loss: PAR stabilization rescues the recruitment of the downstream scaffolding
protein XRCC1, which is known to bring together a variety of components required
for efficient SSB repair49.

In BRCA-proficient tumors, the toxic effect of PARPi can also be counteracted by the
loss of the drug target PARP1. Consistent with the data of Pettitt et al.19, we found a
significant enrichment for Parp1-targeting shRNAs in our drug resistance screen in
BRCA-proficient mammary tumor cells. In accordance with the concept of synthetic
lethality, however, this hit did not show up when we screened BRCA2-deficient
mammary tumor cells. Previous screens in BRCA1-deficient tumor cells also did not
yield Parp1 as a hit22.

Most PARPi do not only block the catalytic activity of PARP1 but also induce toxic
PARP1-DNA complexes. Our study shows that PARG inhibition reduces the amount
of trapped PARP1 by preventing its excessive binding. This result underscores the
delicate balance between enzymatic PARP1 activity and its toxicity when trapped on
DNA.

Since PAR synthesis and degradation go hand in hand in orchestrating the DNA
damage response, the use of PARGi has been put forward for the treatment of
cancers with DDR defects50, and the possibility of a synthetic lethal interaction
between PARG and BRCA proteins has received considerable interest. However,
several studies that addressed this question have produced contradictory results51–53,
which suggest that sensitivity to PARG depletion may depend on the cell line and the
degree of PARG suppression. Importantly, Koh et al.54 showed that PARG depletion,
although embryonically lethal, can be tolerated in embryonic stem cells cultured
in the presence of PARPi. In our cell lines, both genetic depletion and chemical
inhibition of PARG were well tolerated and did not affect cellular viability. Moreover,
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homozygous loss of Parg was acquired in vivo in a substantial fraction of KB2P
tumors.

PARG-negative clones were also found in a sizable proportion of human high-risk
TNBCs or serous ovarian cancers, potential target groups for PARPi treatment due to
the increased presence of HR-deficient cancers. Taken together, these data suggest
that PARG-negative clones can be specifically selected by PARPi treatment and
modulate therapy response.

While the clinical application of PARPi has initially focused on BRCA1/2-mutated
tumors, the therapeutic scope of these drugs is now being extended to other molec-
ular defects (reviewed by Lord and Ashworth55). Since PARG acts directly at PAR
structures and independently of the HR pathway, stabilization of PARylation via
PARG suppression might represent a generic mechanism of PARPi resistance, relevant
for a broad spectrum of cancers. Although this is bad news for the clinical use of
PARPi, loss of PARG can also be exploited as a potential Achilles’ heel for cancer treat-
ment, as it confers sensitivity to IR45. Our data indeed show that PARG suppression
potentiates the toxicity of radiation therapy in BRCA-deficient cells. Additionally, we
show that PARG inhibition synergizes with temozolomide, a chemotherapeutic agent
that is now being evaluated in the clinic in combination with PARPi56.

Our research has yielded a collection of matched PARPi-naive and -resistant Brca2-/-

mouse mammary tumors, which can be further utilized in a search for additional
resistance mechanisms. Although PARG loss was observed in the majority of the
PARPi-resistant KB2P tumors, it cannot explain resistance in all cases. Three other
candidates, Rps6ka6, Socs4, and Pbrm1, were validated as additional significant hits
in a secondary screen. Since all three of these genes are connected to chromatin,
it will be interesting to understand the underlying mechanism of how they affect
PARPi response in a follow-up study.

In collaboration with the Durocher and Lord laboratories, we have recently identified
that PARPi resistance can also be caused by loss of the Shieldin (SHLD) complex,
which acts downstream of 53BP1 in blocking DNA end resection (Noordermeer et
al., manuscript submitted). Importantly, loss of the SHLD complex is not a generic
PARPi resistance mechanism, since it causes PARPi resistance specifically in BRCA1-
but not in BRCA2-deficient cells. In contrast, loss of PARG explains PARPi resistance
in both BRCA1- and BRCA2-mutated tumors, as it operates independently of the HR
pathway.

Taken together, our findings suggest that PARG is an important mediator of PARPi
response. The presence of PARG-negative cells in treatment-naive tumors from the
clinically relevant groups of high-risk women suggests that PARG loss should be
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assessed as a potential cause of clinical PARPi resistance. In this case, measurement
of PARG activity should further improve clinical decision making for patients with
tumors that lack homology-directed DNA repair.
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7.6 STAR Methods

7.6.1 Contact for reagent and resource sharing

Further information and requests for resources and reagents should be di-
rected to and will be fulfilled by the Lead Contact, Sven Rottenberg
(sven.rottenberg@vetsuisse.unibe.ch).

7.6.2 Experimental model and subject details

Mice All animal experiments were approved by the Animal Ethics Committee of
The Netherlands Cancer Institute (Amsterdam, the Netherlands) and performed
in accordance with the Dutch Act on Animal Experimentation (November 2014).
Brca2-/-;p53-/- mammary tumors were generated in K14cre;Brca2F/F;p53F/F(KB2P) fe-
male mice, described previously20. Tumor implantation experiments were performed
in syngeneic, wild-type F1 (first filial generation) FVB:129/Ola females, at the age
of 6 weeks. Parental FVB (FVB/NRj) and 129/Ola animals were purchased from
Janvier Labs and Harlan Olac, respectively, and crossed at the NKI Animal Facility.
Animals were assigned randomly to the treatment groups and the treatments were
supported by animal technicians who were blinded regarding the hypothesis of the
treatment outcome. Collection of Brca1-/-;p53-/- (KB1P) PARPi-naive and -resistant
mouse mammary tumors was described before24.

Human samples of triple-negative breast and serous ovarian cancer Retrospective
Triple Negative Breast Cancer (TNBCs) biopsies from 56 clinical high-risk patients
(high-risk definition according to the Danish Breast Cooperative Group; www.dbcg.dk
accessed 22.10.2009) that underwent mastectomy between 2003 and 2015 were
selected and classified as being triple negative according to the criteria set in the
ASCO/CAP guidelines (ER < 1%, PR < 1%, HER2 0, 1+ or 2+ but FISH/ CISH
negative). The patients presented a unifocal tumor of an estimated size of more
than 20 mm. None of the patients had previous surgery to the breast and did not
receive preoperative treatment42,43. This study was conducted in compliance with
the Helsinki II Declaration and written informed consent was obtained from all
participants and approved by the Copenhagen and Frederiksberg regional division of
the Danish National Committee on Biomedical Research Ethics (KF 01-069/03).

Paraffin-embedded material from the cohort of ovarian tumors was collected at the
Department of Pathology, University Hospital, Las Palmas, Gran Canaria, Spain, from
surgical operations performed in the period 1995-2005. For the purpose of the
present study, only samples from serous ovarian carcinoma (the type approved for
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treatment by PARP inhibitors) were used from a larger cohort that was reported
previously44, and included also other histological types of ovarian tumors. The use
of long-term stored tissue samples in this study was in accordance with the Spanish
codes of conduct (Ley de Investigación Biomédica) and was approved by the review
board of the participating institution. Patients were informed that samples may be
used for research purposes under the premise of anonymity.

Cell lines All 2D cell lines used in this study were described previously:
KB2P1.21, KB2P3.4, KP3.339, KB1P-G324, U2OS (RRID:CVCL_0042), SUM149PT
(RRID:CVCL_3422), DLD-1 BRCA2(-/-) (Horizon Discovery, #HD 105-007;
RRID:CVCL_HD57), HEK293FT (RRID:CVCL_6911).

For these lines, cell growth media were supplemented with 10 % (v/v) fetal calf
serum (FCS, Sigma) and 50 units ml−1 penicillin-streptomycin (Gibco). KB2P1.21,
KB2P3.4, KB1P-G3 and KP3.33 cells were grown in Dulbecco’s Modified Eagle
Medium/Nutrient Mixture F-12 (DMEM/F12; Gibco) containing 5 µg ml−1 Insulin
(Sigma, #I0516), 5 ng ml−1 cholera toxin (Sigma, #C8052) and 5 ng ml−1 murine
epidermal growth-factor (EGF, Sigma, #E4127). U2OS cells were cultured in DMEM
(Gibco) media supplemented with GlutaMAX (Gibco, #35050-061). SUM149PT
cells were grown in RPMI1640 (Gibco) media, similarly to DLD-1 BRCA2(-/-) cells
for which growth media was additionally enriched with 2 mmol L-glutamine and
25 mmol sodium bicarbonate. HEK293FT cells were cultured in Iscove’s Modified
Dulbecco’s Media (IMDM, Gibco) supplemented with 2 mmol glutamine.

Tissue culture was carried out under standard conditions (37 ◦C, 5 % CO2), except
for KB2P1.21, KB2P3.4 and KB1P-G3 cells which were cultured under low oxygen
conditions (3 % O2). All cell lines used in this study are of female origin, except
for DLD-1 BRCA2(-/-) cells (male). Testing for mycoplasma contamination was
performed on a regular basis.

Tumor-derived organoids KB2P26S.1, KB2P17 and KB2P12 tumor organoids were
derived from a mammary KB2P PARPi-naive tumor (female donor), genotyped and
cultured as described before21. Briefly, cultures were embedded in Culturex Re-
duced Growth Factor Basement Membrane Extract Type 2 (BME, Trevigen; 40 µl
BME:growth media 1:1 drop in a single well of 24-well plate) and grown in Advanced
DMEM/F12 (AdDMEM/F12, Gibco) supplemented with 1 mol HEPES (Sigma), Gluta-
MAX (Gibco) 50 units ml−1 penicillin-streptomycin (Gibco), B27 (Gibco), 125 mmol
N-acetyl-L-cysteine (Sigma), 50 ng ml−1 murine epidermal growth factor (Sigma),
10 % (v/v) Rspo1-conditioned medium (kindly provided by Calvin Kuo, Stanford
University) and 10 % (v/v) Noggin-conditioned medium57. Organoids were cultured
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under standard conditions (37 ◦C, 5 % CO2) and regularly tested for mycoplasma
contamination.

7.6.3 Method details

Generation of PARPi-naive and -resistant KB2P tumors

Spontaneous mammary tumors that arouse in KB2P (K14cre;Brca2F/F;p53F/F) mice
were harvested, genotyped, sampled and cryopreserved (DMEM/F12, 10 % (v/v)
FCS, antibiotics-free), as described before20,58. To obtain matched PARPi-naive
and -resistant tumor panel, 21 individual spontaneous tumors were engrafted as
tumor fragments in the fourth right mammary fat pad of wild-type FVB:129/Ola
female mice (F1). Each tumor donor was transplanted into multiple animals (at
least 2, 1 for control and 1 for PARPi treatment) and starting from 2 weeks after
transplantation, tumor size was monitored at least three times a week. Tumor
volume was determined by caliper measurements (length and width in mm) and
calculated by using the following formula: 0.5 ∗ length ∗width2. All treatments were
initiated when tumors reached approx. 200 mm (100 % relative tumor volume). For
PARPi treatment, AZD2461 powder was reconstituted in deionized water solution
of 0.5 % (w/v) hydroxypropyl methylcellulose (HPMC) to a final concentration
of 10 mg ml−1. AZD2461 solution (100 mg kg−1) or vehicle control (0.5 % HPMC)
were administered to animals orally for 28 consecutive days. Upon tumor relapse to
100 % relative tumor volume, the treatment was repeated and continued for another
28 days, until acquired resistance. Animals were sacrificed when the tumors reached
a volume of 1.500 mm. Tumor sampling included cryopreserved tumor pieces, fresh
frozen tissue and formalin-fixed material (4 % (w/v) formaldehyde in PBS).

Generation of deep sequencing data and analysis

RNA preparation, sequencing and DIDS analysis Fresh-frozen tumor tissues were
subjected to high-speed shaking in 2 ml microcentrifuge tubes containing 1 ml of
TRIsure reagent (Bioline) and stainless steel beads (TissueLyser LT, Qiagen; 10 min,
50 Hz, room temperature). Homogenized lysates were further processed for RNA
isolation following TRIsure manufacturer’s protocol. Quality and quantity of the total
RNA was assessed by the 2100 Bioanalyzer using a Nano chip (Agilent, Santa Clara,
CA). Total RNA samples having RIN > 8 were subjected to library generation.

Strand-specific libraries were generated using the TruSeq Stranded mRNA sample
preparation kit (Illumina Inc., San Diego, RS122-2101/2) according to the manufac-
turer’s instructions (Illumina, Part #15031047 Rev. E). Briefly, polyadenylated RNA
from intact total RNA was purified using oligo-dT beads. Following purification, the
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RNA was fragmented, random primed and reverse transcribed using SuperScript II
Reverse Transcriptase (Invitrogen, part #18064-014) with the addition of Actino-
mycin D. Second strand synthesis was performed using Polymerase I and RNaseH
with replacement of dTTP for dUTP. The generated cDNA fragments were 30 end
adenylated and ligated to Illumina Paired-end sequencing adapters and subsequently
amplified by 12 cycles of PCR. The libraries were analyzed on a 2100 Bioanalyzer
using a 7500 chip (Agilent, Santa Clara, CA), diluted and pooled equimolar into a
10 nmol sequencing stock solution.

Illumina TruSeq mRNA libraries were sequenced with 50 base single reads on a
HiSeq2000 using V3 chemistry (Illumina Inc., San Diego). The resulting reads
were trimmed using Cutadapt59 (version 1.12) to remove any remaining adapter
sequences, filtering reads shorter than 30 bp after trimming to ensure good map-
pability. The trimmed reads were aligned to the GRCm38 reference genome using
STAR60 (version 2.5.2b). QC statistics from Fastqc61 (version 0.11.5) and the above-
mentioned tools were collected and summarized using Multiqc62. Gene expression
counts were generated by featureCounts63 (version 1.5.0-post3) using gene def-
initions from Ensembl GRCm38 version 76. Normalized expression values were
obtained by correcting for differences in sequencing depth between samples using
DESeq’s median-of-ratios approach64 and then log-transforming the normalized
counts. Differentially expressed genes were identified using DIDS27, using a thresh-
old of p < 0.05 for statistical significance. Given that generated p value was a very
conservative estimate of the true p value and was only used as a heuristic filter, we
did not apply multiple testing correction (in accordance with de Ronde et al.27).
Selected genes were subsequently ranked by the number of (resistant) samples that
were considered to show differential expression according to the DIDS criteria.

Genomic DNA extraction and CNV sequencing Genomic DNA was isolated from
fresh-frozen tumor material using standard phenol:chloroform extraction. CNV-
Seq was performed using double stranded DNA (dsDNA), quantified with the
QubitO®dsDNA HS Assay Kit (Invitrogen, #Q32851). To obtain fragment sizes
of 160-180 bp, 2 µg of dsDNA were fragmented by Covaris shearing and purified
using 1.8X Agencourt AMPure XP PCR Purfication beads according to manufac-
turer’s protocol (Beckman Coulter, #A63881). Next, sheared DNA was quantified
and qualified on a BioAnalyzer system with the DNA7500 assay kit (Agilent Tech-
nologies, #5067-1506). Library preparation for Illumina sequencing was carried
out with 1 µg of DNA and KAPA HTP Library Preparation Kit (KAPA Biosystems,
#KK8234). To obtain a sufficient yield for sequencing, 4-6 PCR cycles were per-
formed during the library enrichment step. Prepared libraries were cleaned up using
1X AMPure XP beads and analyzed on a BioAnalyzer system using the DNA7500
chips to determine the molarity. Finally, up to 11 uniquely indexed samples were
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pooled (equimolar pooling) in a final concentration of 10 nmol and sequenced on
an Illlumina HiSeq2500 machine in one lane of a single read 65 bp run, according
to manufacturer’s instructions. The resulting reads were trimmed using Cutadapt59

(version 1.12) to ensure a uniform length of 50 bp reads between samples and to
remove any remaining adapter sequences. After trimming, reads shorter than 30
bp were removed to ensure good mappability. The trimmed reads were aligned to
the GRCm38 reference genome using BWA aln65 (version 0.7.15). The resulting
alignmentswere sorted and marked for duplicates using Picard tools (version 2.5.0).
QC statistics from Fastqc61, Samtools66 (version 1.2) and the above-mentioned tools
were collected and summarized using Multiqc62. Copy number calls were generated
using the QDNAseq67 and QDNAseq.mm10 packages from Bioconductor (versions
1.8.0 and 1.4.0, respectively). To select for acquired copy number events, the CNV
calls from resistant samples were filtered to remove any calls that were already
present in the matched sensitive sample. After this filtering, genes were ranked by
their recurrence (number of resistant samples with a loss/gain), dropping any genes
that were only aberrant in a single sample.

DDR-related gene list The DDR gene set was generated based on the gene list
from Thanos Halazonetis (Geneve University) and the NCBI search (terms: ‘DNA
repair’, ‘DNA damage response’, ‘DNA replication’, ‘telomere-associated genes’). See
Table S7.2 for the complete gene list.

Final ranking of gene candidates To obtain a final ranking for the 82 candidate
genes, we first created two new DIDS and CNV rankings, containing only these
candidate genes. Next, to prioritize candidates with a strong correlation between
copy number and expression, we created a third ranking by calculating the spearman
correlation between the copy number values and expression of each gene across all
samples, and sorting the genes by decreasing correlation. These three ranks were
aggregated using the R package RobustRankAggreg68 (version 1.1) to obtain the
final rankings using three different aggregation methods (Stuart, RRA and Mean).
To handle ties within the DIDS/CNV ranks (due to the discrete nature of these ranks),
genes with the same values in these ranks were assigned the same rank value before
the aggregation.

Immunohistochemistry analysis

PARG IHC analysis in KB2P tumor panel Immunohistochemical staining was per-
formed on formalin-fixed paraffin embedded (FFPE) material of the KB2P tumor
panel. First, antigen retrieval was performed by cooking the samples in citrate buffer
6.0 pH (ScyTek Laboratories) for 15 min in pressure cooker (110 ◦C).
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Next, endogenous peroxidase activity was blocked by incubation a with methanol
solution of 3 % (v/v) H2O2 for 20 min. 10 % (v/v) milk solution in PBS was used as
a blocking buffer (30 min, room temperature) and PBS containing 1 % (w/v) bovine
serum albumin and 1.25 % (v/v) normal goat serum was used as antibody diluent.
Incubation with primary PARG antibody (Thermo Fisher Scientific; #PA5-14158;
diluted 1:100, final concentration 20 µg ml−1) was carried out overnight at 4 ◦C and
followed by 30 min incubation with secondary Goat-a-Rabbit-Bio antibody (DAKO,
#E0432; 1:1000) at room temperature. For detection, samples were exposed to
PBS solution containing DAB substrate (Sigma, #D5905) and 0.025 % (v/v) H2O2

(Sigma, #A31642) for 20 min and hematoxylin counterstaining. Semi-quantitative
(scoring: 1-low signal, 2-high signal) PARG expression analysis was carried out by a
pathologist who was blinded regarding the identity of the samples.

PARG/PAR analysis in TNBC and serous ovarian carcinoma cohorts Five-mm tis-
sue sections were cut from the formalin-fixed, paraffin-embedded tissue blocks and
mounted on Super Frost Plus slides (Menzel-Gläser, Braunschweig, Germany), baked
at 60 ◦C for 60 min, deparaffinized, and rehydrated through graded alcohol rinses.
Heat induced antigen retrieval was performed by immersing the slides in citrate pH
6.0 buffer and heating them in a 750 W microwave oven for 15 min followed by
immunohistochemistry staining with the primary antibodies as follows: anti-PARG
antibody from Thermo Scientific (PA5 14158; diluted 1:2000) and anti-PAR antibody
from GeneTex (10H, GTX75054, diluted 1:2500. The sections were incubated with
the primary antibodies overnight in a cold-room, followed by subsequent processing
by the indirect streptavidin-biotin-peroxidase method using the Vectastain Elite kit
(Vector Laboratories, Burlingame, CA, USA) and nickel-sulphate-based chromogen
enhancement detection as previously described69, without nuclear counterstaining.
For negative controls, sections were incubated with non-immune sera. The results
were evaluated by two experienced researchers, including a senior oncopathologist,
and the data expressed as percentage of positive tumor cells within each lesion.

Constructs, lentiviral transductions and genome editing

Constructs A collection of 1,976 lentiviral hairpins targeting 391 DDR-related
mouse genes (pLKO.1; DDR library) were derived from the Sigma Mission library
(TRCMm1.0) as described before22. Custom-made shRNA library (pLKO.1) targeting
82 candidate genes (identified by the multi-omics analysis of KB2P tumors) and 32
non-essential genes (552 shRNAs in total, on average 5 shRNAs/gene) was obtained
from the Sigma Mission collection (TRCMm1.0) (see also Table S7.4). Non-essential
genes were used as negative controls for the enrichment analysis, and were selected
based on the work of Hart and colleagues70 and RNA-Seq data from KB2P tumors
(non-expressed genes).
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Individual hairpin constructs used in the validation studies were selected from
the TRC library: mouse PARG - sh1: TRCN0000126559, sh4: TRCN0000126562;
human PARG - sh1: TRCN0000051303, sh2: TRCN0000051305) (see also Ta-
ble S7.6). For CRISPR/Cas9-based genome editing two different systems were
used: (1) for targeting Parg locus (Figure 7.3D and Figure S7.3D-F) the Cas9 ex-
pressing pGSC_Cas9_Neo vector (kind gift from Bastiaan Evers, NKI) was used
and individual gRNAs (see Table S7.6) were cloned into the iKRUNC-Puro system
described previously71; (2) for targeting Parp1, Parp2, Parp3 loci (Figure S7.5A-
D) lentiCRISPRv2 vector was used and individual gRNAs (see Table S7.6) were
cloned as described previously72. For laser micro-irradiation experiments, pEGFP-
C1-XRCC1 (gift from Simon Bekker-Jensen) and pEGFP-c3-PARP1 (gift from Valerie
Schreiber) vectors were used. pEGFP-N1-CHD2 vector has been described before73.
All constructs were verified by Sanger sequencing.

Lentiviral transductions Lentiviral stocks, pseudotyped with the VSV-G envelope,
were generated by transient transfection of HEK293FT cells, as described before74.
Lentiviral titers were determined using the qPCR Lentivirus Titration Kit (Applied
Biological Materials), following the manufacturer’s instructions. For all experiments
the amount of lentiviral supernatant used was calculated to achieve the MOI (multi-
plicity of infection) of 50, except for the transduction of the lentiviral library (genetic
screens) for which an MOI of 1.5 was used. To ensure efficient transduction, cells
were incubated with lentiviral supernatants overnight in the presence of polybrene
(8 µg ml−1). Antibiotic selection was initiated 24 hr post-transduction and was car-
ried out for 5 consecutive days. Tumor-derived organoids were transduced according
to a previously established protocol21.

Genome editing For CRISPR/Cas9-mediated genome editing with the iKRUNC sys-
tem, KB2P1.21 or KB2P3.4 cells were first transduced with the lentiviral pGS-Cas9
(Neo) construct (MOI 50) and grown under G418 selection (500 µg ml−1) for 5
days. Next, neomycin-selected cells were incubated with lentiviral supernatants of
iKRUNC-Puro vectors (gRNA-encoding constructs, MOI 50) and exposed to 3 µg ml−1

puromycin for 5 days. To induce gRNA expression, puromycin-surviving cells were
treated for another 5 days with 3 µg ml−1 doxycycline (Sigma). For CRISPR/Cas9-
mediated genome editing with lentiCRISPRv2 system, KP3.33 cells were transduced
with the lentiviral supernatant (MOI 50) and grown under Puromycin (3 µg ml−1)
selection for 5 days. To assess the modification rate, genomic DNA was extracted
(Puregene Core Kit A, Qiagen) and 100 µg was used as an input for the PCR am-
plification of the targeted sequence. PCR reaction was performed with Thermo
Scientific Phusion High-Fidelity PCR Master Mix (Thermo Scientific), according to
manufacturer’s instructions (3-step protocol: annealing - 60 ◦C for 5 s, extension
time 15 s) and using primers listed in Table S7.6. Resulting PCR products were
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purified using the MinElute PCR Purification Kit (Qiagen) and eluted in 50 µl of
water. Finally, 2 µl of purified DNA served as a template for the BigDye Terminator
v3.1 reaction (Thermo Fisher). BigDye PCR reactions were performed with the same
forward primers as in the preceding PCR reactions (no reverse primer used) and
according to the BigDye manufacturer’s protocol. Allele composition was deter-
mined with the TIDE analysis29 by comparing sequences from modified and parental
(non-transduced control) cells.

Functional genetic screens

The DDR shRNA library and the shRNA library targeting candidate genes (secondary
screen) were stably introduced into 2D lines (KP3.33, KB2P1.21, KB2P3.4) and
organoids (ORG-KB2P26S.1) by lentiviral transduction (MOI 1.5). After antibiotic
selection (puromycin, 3 µl ml−1, 5 days) cells were seeded for the clonogenic assay
with PARPi or pelleted for the genomic DNA isolation (day 0; control samples for
the enrichment analysis). The total number of cells used in a single screen was
calculated as following: library complexity ∗ coverage (1000x). Cells were seeded
at low confluency to avoid contact inhibition between single clones (2D cells -
30,000 cells per 10 cm dish; organoids - 50,000 cells/well, 24-well format) and in
the presence of PARPi (KB2P1.21/KB2P3.4: 200 nmol olaparib, 300 nmol AZD2461;
KP3.33: olaparib 10 µmol; ORG-KB2P26S.1: 25 nmol AZD2461). Cells were selected
with PARPi for 3 weeks, and media was refreshed at least twice per week. PARPi-
surviving clones were pooled and genomic DNA was extracted (QIAmp DNA Mini
Kit, Qiagen). shRNA sequences were retrieved by a two-step PCR amplification, as
described before22. To maintain screening coverage, the amount of genomic DNA
used as an input for the first PCR reaction was taken into account (6 µg of genomic
DNA per 106 genomes, 1 µg per PCR reaction). Resulting PCR products were purified
using MinElute PCR Purification Kit (Qiagen) and submitted for Illumina sequencing.
Sequence alignment and enrichment analysis (day 0 vs PARPi-treated population)
was carried out using MaGECK software23.

Long-term clonogenic assays

Long-term clonogenic assays were performed in 6-well (KB2P1.21, KB2P3.4, KB1P-
G3, KP3.33) or 12-well plates (SUM149PT, DLD-1 BRCA2(-/-)). Cells were seeded
at low density to avoid contact inhibition between the clones (KB2P1.21 - 3,000
cells/well, KB2P3.4 and KP3.33 - 2,000 cells/well, KB1P-G3 - 5,000 cells/well,
SUM149PT and DLD-1 BRCA2(-/-) - 3,000 cells/well) and cultured for 2 weeks,
except for control (DMSO-treated) KB2P1.21, KB2P3.4, KB1P-G3 and KP3.33 cells,
which were stopped after 7 days. Media was refreshed at least twice a week. For the
quantification, cells were incubated with Cell-Titer Blue (Promega) reagent and later
fixed with 2 % formaldehyde and stained with 0.1 % crystal violet. Clonogenic assays
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with cells with CRISPR/Cas9-based genome editing were quantified with TIDE, simi-
larly to a previously described method75. Drug treatments: cells were grown in the
continuous presence of temozolomide, PARPi (olaparib, talazoparib or AZD2461),
and/or PARGi (PDDX-004), at the indicated concentrations. All compounds were re-
constituted in DMSO (PARP/PARG inhibitors: 10 mmol, temozolomide: 5 mg ml−1).
For the ioninizing irradiation studies, cells received single irradiation doses 24 hr
after seeding. IR treatments were carried out using Gammacell 40 Extractor (Best
Theratronics Ltd.).

RT-qPCR

To determine gene expression levels, total RNA was extracted from cultured cells
using ISOLATE II RNA Mini Kit (Bioline) and used as a template to generate cDNA
with Tetro cDNA Synthesis Kit (Bioline; oligo (dT)18 mix). Quantitative RT-PCR
was performed using SensiMix SYBR Low-ROX Kit (Bioline; annealing temperature -
60 ◦C) in a Lightcycler 480 384-well plate (Roche), and analyzed using Lightcycler
480 Software v1.5 (Roche). Mouse Hrtp and human HPRT were used as house-
keeping genes (control). The primer sequences used in this study are listed in
Table S7.6.

PAR immunoblotting

Tumor-derived organoids or 2D cells were washed with PBS, trypsinized and then
lysed for 30 min in RIPA buffer supplemented with protease inhibitors (cOmplete
Mini EDTA-free, Roche) and 1 µmol PARG inhibitor ADP-HPD (Merck). The protein
concentration was determined using Pierce BCA Protein Assay Kit (Thermo Scien-
tific). SDS-Page was carried out with the Invitrogen NuPAGE SDS-PAGE Gel System
(Thermo Fisher; gel: 4 % to 12 % Bis-Tris, buffer: MOPS, input: 50 µg protein),
according to the manufacturer’s protocol. Next, proteins were electrophoretically
transferred to a nitrocellulose membrane (Biorad) and then the membrane was
blocked in 5 % (w/v) milk (PAR) solution in Tris-buffered saline Triton X-100 buffer
(TBS-T; 100 mmol Tris, 7.4 pH, 500 mmol NaCl, 0.1 % (v/v) Triton X-100). Mem-
branes were incubated overnight with primary antibodies in blocking buffer, at 4 ◦C.
Horseradish peroxidase (HRP)-conjugated secondary antibody incubation was per-
formed for 1 hr at room temperature in blocking buffer and signals were visualized
by ECL (Pierce ECL Western Blotting Substrate, Thermo Scientific). Primary antibod-
ies used in this study: mouse monoclonal anti-PAR (H10) (Millipore), 1:1000; rabbit
polyclonal anti-PARP1 (#9542, Cell Signaling), 1:1000; rabbit polyclonal anti-PARP3
(#ALX-210-541- R100, Enzo Life Sciences), 1:500; rabbit polyclonal anti-Histone H3
(#ab1791, Abcam), 1:5000; mouse monoclonal anti-GADPH (6C5) antibody (Santa
Cruz), 1:5000 dilution. Secondary antibody used in this study: rabbit polyclonal
anti-mouse immunoglobulins/HRP (Dako), diluted 1:5000.
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PARP1 trapping assay

The PARP1 trapping assay was adapted from Murai et al.7. In brief, 24 hr prior
the assay, KB2P cells were seeded on 10 cm dishes to achieve ~90 % confluency.
Drug treatments: (1) KB2P cells with genetic depletion of PARG (Figure 7.4B)
were treated with olaparib (0, 0.1 or 1 µmol) and 0.01 % MMS for 2 hr; (2) KB2P
cells with chemical inhibition of PARG (time-course experiment, Figure 7.4C) were
first pre-incubated with 0.5 µmol olaparib and/or1 µmol PDDX-004 for 1 hr, and
then exposed to the same treatments but in a presence of 0.01 % MMS for 30 min;
following incubation with MMS cells were further incubated with olaparib and/or
PDDX-004 for 0.5 or 2 hr, as shown on Figure 7.4C. After indicated treatments
cells were trypsinized and subsequently lysed to isolate chromatin-bound fractions.
Fractionation was performed with Subcellular Protein Fractionation Kit from Thermo
Scientific (#78840, Rockford, IL, USA), following the manufacturer’s instructions
and in the presence of 1 mM of PARGi ADP-HPD (#118415, Calbiochem) in the
lysis buffers. Immunoblotting was carried out as described in previous section
(Immunoblotting). Experiments were repeated three times.

PARG activity assay

Enzymatic activity of endogenous PARG was measured using HT Colorimetric PARG
Assay Kit (#4683-096-K, Trevigen), following the manufacturer’s instructions. Ex-
periments were repeated three times.

PAR ELISA assay

To measure endogenous PAR levels cells were seeded on 6-well plate 24 hr prior to
PARPi, PARGi or combined PARPi/PARGi treatment to achieve ~90 % confluency
at the day of the assay. Cells were treated with different doses of inhibitors for
2 hr, and additionally some of the samples were exposed to 0.01 % MMS for the
last 60 min. Cell lysis, protein isolation and PAR ELISA were carried out using HT
PARP In Vivo Pharmacodynamic Assay II kit (#4520-096-K, Trevigen), according to
the manufacturer’s protocol. Protein concentration was measured with Pierce BCA
Protein Assay kit (Thermo Scientific).

PAR immunofluorescence analysis

PAR levels were measured using the adapted immunofluorescent PAR cell assay
described before76. Briefly, cells were seeded on Corning 96-well special optics
plates (#CLS3720, Sigma) 24 hr prior the assay to achieve ~90 % confluency. Next,
cells were treated with a range of PARGi doses for 2 hr, and for the last 60 min
cells were additionally exposed to 0.01 % MMS. After incubation with drugs, plates
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were fixed with ice-cold 95 % (v/v) methanol/PBS (100 ml/well) for 15 min at
−20 ◦C. Plates were then washed twice with PBS and cells were permeabilized by
adding 100 µl per well of 0.1 % (v/v) Triton X-100 in PBS and incubating for 20
min at room temperature. Incubation with the primary mouse monoclonal anti-PAR
(H10) antibody (Millipore), diluted 1:4000 in PBS solution containing 5 % (v/v)
FBS and 0.05 % (v/v) Tween-20, was carried out overnight at 4 ◦C. After three
washes with PBS, cells were incubated for 1 hr (room temperature) with polyclonal
AlexaFluor488 goat anti-mouse immunoglobulins (1:1000) and Hoechst (1:5000;
Thermo Scientific) diluted in 5 % (v/v) FBS/0.1 % (v/v) Triton X-100 in PBS. PAR
immunofluorescent signal was detected with a Leica TCS SP8 confocal system (Leica
Microsystems), using a HC PL APO 40x/1.10 W objective. Total nuclear intensities
were measured per nuclei with ImageJ software. For each well, four different areas
(200 cells on average) were imaged and analyzed. Each experiment was repeated
three times.

RAD51/53BP1 IRIF analysis

Cultured cells Cells were seeded on Millicell EZ slides (#PEZGS0816, Millipore) 24
hr prior the assay to achieve ~90 % confluency. Cells were then irradiated using the
Gammacell 40 Extractor (Best Theratronics Ltd.) at the dose of 10 Gy and allowed
to recover for 4 hr. Next, cells were fixed with 4 % (w/v) solution of formaldehyde
in PBS for 30 min and permeabilized in 0.2 % (v/v) Triton X-100 in PBS++ (PBS
solution containing 1 mmol CaCl2 and 0.5 mmol MgCl2) for 20 min. To minimize the
background, cells were further incubated for 30 min in staining buffer (1 % (w/v)
BSA, 0.15 % (w/v) glycine and 0.1 % (v/v) Triton X-100 in PBS++). Staining buffer
was also used as a solvent for antibodies - primary antibodies: rabbit anti-RAD51 (gift
from Roland Kanaar, Erasmus MC, Rotterdam), diluted 1:5000, rabbit polyclonal
anti-53BP1 (Abcam), diluted 1:1000, secondary antibody - goat polyclonal anti-
rabbit, Alexa FluorO®658-conjugated, diluted 1:1000. Incubation with primary
and secondary antibodies was done for 2 hr and 1 hr, respectively. All incubations
were performed at room temperature. Samples were mounted with VECTASHIELD
Hard Set Mounting Media with DAPI (#H-1500; Vector Laboratories). Images
were captured with Leica SP5 (Leica Microsystems) confocal system and analyzed
using an in-house developed macro to automatically and objectively evaluate the
DNA damage-induced foci22. Fraction of positive cells was determined for each
sample using following criteria: RAD51 > 5 foci/nucleus, 53BP1 > 10 foci/nucleus.
Experiment was performed in triplicate (on average 100 cells/replicate). As a
positive control for RAD51 staining, BRCA-proficient KP3.33 cells were used.

In situ analysis of GEMM tumors Matched PARPi-naive and -resistant KB2P tumors,
and KP (K14cre;p53F/F) tumor (positive control) were re-transplanted into wild-type
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syngeneic mice. Upon tumor outgrowth to 500 mm tumors were locally irradiated
(dose: 15 Gy) using CT-guided high precision cone beam micro-irradiator (X-RAD
225Cx) or left untreated (control). Two hr post-irradiation tumors were isolated
and fixed in 4 % (w/v) solution of formaldehyde in PBS. FFPE material was then
used for immunofluorescent staining. First, samples were deparaffinized and antigen
retrieval was done by cooking samples in DAKO Target Retrieval Solution pH 9
(#S236784, DAKO) for 20 min in microwave at ~600 W. Next, samples were
permeabilized in 0.2 % (v/v) Triton X-100 in PBS for 20 min and further incubated
with DNase (1000 u ml−1; #04536282001, Roche) in humidified chamber for 1 hr
at 37 ◦C. Incubation with antibodies, mounting, imaging and analysis were carried
out as described for cultured cells. At least five different areas were imaged and
analyzed for each sample. All incubations were performed at room temperature,
unless otherwise stated.

Immunofluorescent staining of Olaparib-Induced γH2AX foci Cells were seeded on
Corning 96-well special optics plates (#CLS3720, Sigma) 24 hr prior the olaparib
treatment to achieve ~60 %. Next, cells were incubated with olaparib for the next
24 hr and subsequently fixed and stained following the same protocol as described
for RAD51/53BP1 IRIF assay (cultured cells). Primary antibody used in this assay:
Phospho-Histone H2A.X (Ser139) rabbit monoclonal antibody, Cell Signaling, #2577
(1:200 in staining buffer). Immunofluorescent signal was detected with a Leica
TCS SP8 confocal system (Leica Microsystems), using a HC PL APO 40x/1.10 W
objective. Foci were quantified using in-house developed macro to automatically
and objectively evaluate the DNA damage-induced foci22. For each condition, four
different areas (200 cells on average) were imaged and analyzed. Experiment was
performed in triplicate and repeated twice.

DNA fiber assay

Replication fork progression assay Fork progression was measured using an
adapted method described previously in Zellweger et al.35. Briefly, asynchronously
growing U2OS cells were first incubated with 0.5 µmol PARPi (olaparib or AZD2461)
for 1 hr and further treated with 0.5 µmol PARPi alone, or in combination with
1 µmol PDDX-001, for another 60 min. Next, cells were labeled with 30 µmol CIdU
(Sigma-Aldrich) for 30 min, washed twice with PBS, and labeled with 250 µmol IdU
in the presence of genotoxic agents - 50 µmol MMS or 25 nmol CPT for another 30
min. Following pulse labelling, cells were quickly trypsinized and resuspended in
PBS at 2.5 ∗ 105 cells per ml. Next, labeled cells were diluted 1:8 with unlabeled
cells, and 2.5 ml of cells were mixed with 7.5 ml of lysis buffer (200 mmol Tris-HCl,
7.5 pH, 50 mmol EDTA, and 0.5 % (w/v) SDS) on a glass slide. After 9 min, the
slides were tilted at 15-45, and the resulting DNA spreads were air dried, fixed in 3:1
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methanol/acetic acid, and refrigerated overnight. The DNA fibers were denatured
with 2.5 mol HCl for 1 hr, washed with PBS, and blocked with 2 % (w/v) BSA in
PBST (PBS and Tween 20) for 40 min. The newly replicated CldU and IdU tracks
were labeled (for 2.5 hr in the dark, at RT) with anti-BrdU antibodies recognizing
CldU (rat; Abcam) and IdU mouse (BD), respectively. After washing for 533 min in
0.2 % (v/v) PBS-T, the following secondary antibodies were used (1 hr incubation,
in the dark, at RT): anti-mouse Alexa Fluor 488 (Molecular Probes) and anti-rat
Cy3 (Jackson ImmunoResearch Laboratories, Inc.). After washing for 533 min in
PBS-T (0.2 % (v/v)), the slides were air dried completely, mounted with 20 µl per
slide Antifade gold (Invitrogen), and sealed to a coverslip by transparent nail polish.
Microscopy was performed with a fluorescence microscope (IX81; Olympus; objec-
tive lenses: LC Plan Fluor 603, 1.42 NA oil) and acquired with a charge-coupled
device camera (Orca AG; Hamamatsu Photonics). The images were processed with
CellR software (version 2.6; Olympus). On average 120 fibers were quantified per
condition; experiment was repeated twice.

Replication fork protection assay KB2P cells were seeded 24 hr prior the assay to
achieve ~75 % confluency. On the next day, cells were pulse-labeled with CldU
(25 µmol) for 20 min, washed with warm medium and pulse-labeled with IdU
(250 µmol) for another 20 min. Next, cells were incubated for 3 hr with 0.9 µmol
MMS to induce replication stress. After MMS incubation, cells were trypsinized,
washed and lysed on microscopy slides in lysis buffer (0.5 % (w/v) sodium dode-
cyl sulfate (SDS), 200 mmol Tris 7.4 pH, 50 mmol EDTA). DNA fibers were spread
by tilting the slide, air-dried and fixed in methanol/acetic acid (3:1) for 10 min.
Fixed DNA spreads were treated with 2.5 mol HCl for 75 min. Immunofluorescent
staining was performed as described in the previous section (RF progression assay).
Images were acquired on a Leica DM-6000RXA fluorescence microscope, with Leica
Application Suite software. CldU and IdU track lengths were measured using ImageJ
software. At least 100 IdU and CldU ratios per condition were analyzed.

Neutral comet assay Asynchronously growing U2OS cells were first incubated with
0.5 µmol olaparib for 1 hr and further treated with 0.5 µmol olaparib alone, or in
combination with 1 µmol PDDX-001, for another 60 min. Next, DNA damage was
induced by 30 min incubation with 25 nmol CPT in the presence of PARPi and/or
PARGi. Cells were then collected by trypsinization and resuspended in PBS at the
concentration of 106 cells per ml. 20 µl of cell suspension was then loaded onto
600 µl of 0.8 % (w/v) Low Melting Point (LMP) agarose (Lonza) in PBS, previously
equilibrated to 37 ◦C (for 60 min). Next, 60 µl of cells resuspended in LMP was
spread on the comet slide (CometAssay®Kit, Trevigen). Slides were incubated at
4 ◦C for 15 min to allow solidification of the cells-LMP mixture and further incubated
in a lysis buffer (CometAssayO®Lysis Solution, Trevigen) overnight at 4 ◦C. On the
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next day, slides were first incubated in electrophoresis buffer (300 mmol sodium
acetate, 100 mmol Tris, 8.3 pH) for 1 hr and then electrophoresis was performed
using the comet chamber at 21 Volt for 30 min, at 300 mA and 4 ◦C. Next, slides were
rinsed twice in water, placed in 70 % ethanol at 4 ◦C for 20 min and incubated at
37 ◦C until dry. Slides were than stained with SYBR®Gold (Thermo Fisher Scientific)
diluted at 1:30,000 in Tris-EDTA (10 mmol Tris-HCl 7.5 pH, 1 mmol EDTA) for 30
min in dark. Images were recorded on a Leica DM6 B upright digital research
microscope at 10x magnification. The images were analyzed using the Open Comet
plugin (http://www.cometbio.org/) for Fiji. At least 95 cells were analyzed per
sample and plotted using GraphPad PRISM 7.0c. The experiment was repeated
twice.

Fast micromethod DNA single-strand break assay The assay was performed as
described before40. Briefly, KB2P1.21 cells were seeded on Corning 96-well special
optics plates (#CLS3720, Sigma) 24 hr prior the assay (10,000 cells/well). On the
next day, cells were first treated with olaparib and 0.01% MMS for 30 min to induce
base damage. After that incubation plates were either processed (time point 0) or
further incubated with olaparib for 3 hr (time point 3 hr). Following incubation
with drugs, media was removed and cells were incubated for 1 hr in dark with 50
ml of 1 % (v/v) solution of PicoGreen (Thermofisher) in PBS. This incubation was
performed at 4 ◦C to avoid additional DNA repair. After 1 hr 250 µl of NaOH solution,
adjusted to a final pH of 12.45 with EDTA, was added to cells and the measurement
of the fluorescence signal (485 nm/538 nm) was immediately started using Tecan
Infinite 200 PRO (Tecan) plate reader. Measurements were taken every 60 s for 25
min. The data were analyzed as described before40. BCA protein measurements
were taken to assure equal amount of cells per condition. The experiment was
performed in triplicate and repeated twice.

Laser Micro-Irradiation Assays

PARP1-GFP: Multiphoton Laser Mico-Irradiation U2OS cells were transiently trans-
fected (using Lipofectamine 2000, Invitrogen; according to the manufacturer’s
protocol) with pEGFP-c3-PARP1 (kind gift from Valerie Schreiber) vector. Cells
grown on 18 mm coverslips were placed in a Chamlide CMB magnetic chamber
and the growth medium was replaced by CO2-independent Leibovitz’s L15 medium
supplemented with 10 % (v/v) FCS and penicillin-streptomycin. Cells were treated
with DMSO (control), 0.5 µmol olaparib, 1 µmol PDDX-001 or olaparib/PDDX-001
combination for 1 hr prior to micro-irradiation. Laser micro-irradiation was carried
out on a Leica SP5 confocal microscope equipped with an environmental chamber
set to 37 ◦C. DSB-containing tracks (1.5 µm width) were generated with a Mira
modelocked titanium-sapphire (Ti:Sapphire) laser (l = 800 nm, pulse length =
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200 fs, repetition rate = 76 MHz, output power = 80 mW) using a UV-transmitting
633 1.4 NA oil immersion objective (HCX PL APO; Leica). Confocal images were
recorded before and after laser irradiation at 5 s or 10 s time intervals over a period
of 2-3 min. Images recorded after multi-photon micro-irradiation of living cells
were analyzed using ImageJ software. The average pixel intensity of laser tracks
was measured within the locally irradiated area function (Idamage), in the nucleo-
plasm outside the locally irradiated area (Inucleoplasm) and in a region not containing
cells in the same field of view (Ibackground). The relative level of accumulation ex-
pressed relative to the protein level in the nucleoplasm was calculated as follows:
(Idamage − Ibackground)− (Inucleoplasm − Ibackground).

XRCC1-GFP: UV-A Laser Micro-Irradiation The laser micro-irradiation assay was
performed as described before73. Briefly, U2OS cells were transiently transfected
(using Lipofectamine 2000, Invitrogen; according to the manufacturer’s protocol)
with pEGFP-C1-XRCC1 (gift from Simon Bekker-Jensen). Cells were grown on
18 mm coverslips and sensitized with 10 µmol 50-bromo-2-deoxyuridine (BrdU) for
24 hr. On the next day, the growth medium was replaced with CO2-independent
Leibovitz’s L15 medium supplemented with 10 % FCS and penicillin-streptomycin
and cells were kept at 37 ◦C. Cells were treated with DMSO (control), 0.5 umol
olaparib, 1 µmol PDDX-001 or olaparib/PDDX-001 combination for 1 hr prior to
micro-irradiation. For micro-irradiation, the cells were placed in a Chamlide TC-
A live-cell imaging chamber that was mounted on the stage of a Leica DM IRBE
widefield microscope stand (Leica) integrated with a pulsed nitrogen laser (Micro-
point Ablation Laser System; Andor). The pulsed nitrogen laser (16 Hz, 364 nm)
was directly coupled to the epifluorescence path of the microscope and focused
through a Leica 403 HCX PLAN APO 1.25-0.75 oil-immersion objective. The laser
output power was set to 60 to generate strictly localized subnuclear DNA damage,
resulting in XRCC1, but not in XRCC4 accumulation73. Following micro-irradiation,
cells were incubated for the indicated time points at 37 ◦C in Leibovitz’s L15 and
subsequently fixed with 4 % formaldehyde before immunostaining. Typically, an
average of five cells was micro-irradiated (2 iterations per pixel) within 1 min using
Andor IQ software (Andor). For each condition, 20-25 cells were micro-irradiated,
and experiments were repeated three times (60-75 cells in total). Following DNA
damage, cells were further incubated for 5, 10, 15 or 60 min. Next, cells were fixed
with 2 % formaldehyde in PBS for 20 min. Cells were post-extracted with 0.5 %
Triton-X100 (Sigma) in PBS, and blocked with 20 mmol glycine and 0.5 % BSA in
PBS for 15 min and used for antibody incubations. Samples were incubated with
primary antibodies overnight at 4 ◦C and with secondary antibodies supplemented
with 0.1 mg ml−1 DAPI for 1 hr at room temperature. Samples were subsequently
mounted in Polymount (Polysciences). Antibodies used in this study are: primary
rabbit polyclonal anti-MDC1 (#ab11171-50, Abcam), diluted 1:1000 and secondary
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goat anti-rabbit AlexaFluor-555-conjugated, diluted 1:1500 (#A-21429, Thermo
Fisher). The MDC1 (AF-555), XRCC1-GFP (GFP) and CHD2-GFP (GFP) signal was
detected using Zeiss AxioImager D2 widefield fluorescence microscope equipped
with 403, 633 and 1003 PLAN APO (1.4 NA) oil-immersion objectives (Zeiss) and
an HXP 120 metal-halide lamp used for excitation. Images were recorded using the
ZEN 2012 software. Tracks were evaluated in ImageJ, by calculating the ratio of
track to background (nuclear) intensities for each channel.

PARPi toxicity analysis in a panel of 1,001 cancer cell lines

The pharmacogenomics dataset of 1,001 human cancer cell lines, published
recently41, was used to assess the corelation between PARG or PARP1 expression and
IC50 values of PARPi. For this purpose, expression data for DDR-related genes (see
Table S7.2) and drug response data to olaparib, veliparib, rucaparib and talazoparib
was extracted, resulting in a smaller dataset for 935 out of 1,001 cell lines. For sta-
tistical analysis Pearson correlation was estimated for each gene and the correlation
p values were computed using the relation between the estimated coefficient and
the student-t distribution. Negative correlation means that a lower IC50 associates
with higher expression (= more sensitive).

7.6.4 Quantification and statistical analysis

Statistical parameters including sample size, precision measures and statistical
significance are reported in the figures, corresponding figure legends and Method
Details sections.

Genetic screens See Figure 7.1, Figure 7.2K and Table S7.1. Genetic screens were
performed in triplicate and statistical analysis was carried out using the MAGeCK
software.

In vivo studies See Figure 7.2.

Survival analysis The effect of PARPi treatment in mice carrying KB2P tumors
was measured by survival analysis of control (n = 21) vs AZD2461-treated group
(n = 34). Data are presented as Kaplan-Meier curves and the p value was computed
using Log-Rank (Mantel Cox) statistics (Figure 7.2C).

Statistical analysis of deep-sequencing data See Figure 7.2D, Figure 7.2G, and
Figure S7.1. Detailed description of the bioinformatics analysis is reported in the
Method Details section.
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Immunohistochemistry analysis of PARG expression Semi-quantitative compari-
son of the PARG staining of resistant (n = 34) versus naive (n = 21) KB2P tumors
was carried out by a trained pathologist who was blinded regarding the sample iden-
tity. Group comparison was performed using Mann-Whitney U test. Representative
images are shown (Figure 7.2H).

qRT-PCR analysis Gene expression measurements were performed in triplicate,
normalized to expression of house keeping genes, and presented as mean ± SD of
replicates. Statistical significance was estimated with the two-tailed unpaired t-test.
See Figure 7.3A, Figure 7.6A-B, Figure S7.2A, Figure S7.2E, and Figure S7.3B.

PARG activity assays and PAR ELISA assay Experiments were performed in trip-
licate, repeated three times and presented as mean ± SD of repeats. Statistical
significance was estimated with the two-tailed unpaired t-test. See Figure 7.2I,
Figure 7.3B, and Figure S7.2B for the PARG activity assays and Figure 7.4A for the
PAR ELISA assay.

PAR immunofluorescence assay Intensities of PAR signal were measured per nu-
clei, for four different imaging areas per condition, each containing on average 200
cells; the experiment was repeated three times. Results were presented as a mean
for each area (12 areas in total) ± SD. Statistical analysis was performed using the
two-tailed unpaired t-test. See Figure S7.2D.

Long-term clonogenic assays See Figures 7.3C, 7.3E, 7.4F, 7.6F-I, S7.3A, S7.3C,
S7.3I, S7.3J, S7.5D, S7.6A, S7.6C, S7.6G, and S7.6H. All experiments were repeated
three times, unless otherwise stated, and data are presented as mean ± SD of
replicates. For statistical analysis the two-tailed unpaired t-test (Figures 7.3C, 7.4F,
S7.3A, S7.3C, S7.3H, S7.5D, and S7.6A) or ANOVA (Figures 7.3E, S7.6G-J, S7.3G,
S7.6B, S7.5F, and S7.6G) test was used.

Analysis of DNA damage-induced foci See Figures S7.5G, S7.4B, and S7.4D. For
the analysis of γH2A foci (Figure 7.5G), foci were counted per nuclei, in four
different imaging areas per condition, each containing on average 200 cells. Results
were presented as a mean ± SD of the three replicates. Statistical analysis was
performed using the two-tailed unpaired t-test. For the analysis of RAD51/53BP1
irradiation-induced foci (Figures S7.4B and S7.4D), foci were counted per nuclei
and data are presented as mean ± SD of replicates (triplicate for cultured cells and
five replicates for GEMM samples) and group comparison was performed using the
two-tailed unpaired t-test. On average 100 cells were analyzed per replicate.
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Fast micromethod SSB assay See Figure 7.5F. Assay was performed in triplicate
and repeated twice, data are shown as mean ± SD of the two repeats. Statistical
significance was assessed using two-tailed unpaired t-test.

DNA fiber assays See Figures 7.5A, S7.5A, and S7.5I. For the fork protection assay
(Figure S7.4A), at least 100 fibers were measured per condition and statistical
significance was assessed with the Mann-Whitney U test. For fork progression
analysis (Figures 7.4C and S7.5I), on average 120 fibers were quantified and group
comparison was performed with the two-tailed unpaired t-test. Experiments were
repeated twice.

Neutral comet assay On average 100 comets (cells) were analyzed per condition
and each data point represents tail moment (Figure 7.5B) or olive moment (Fig-
ure S7.5J) of a single comet, together with a mean ± SD of all cells per condition.
Statistical significance was assessed using Mann-Whitney U test. Experiments were
repeated twice.

Micro-irradiation assays See Figures 7.4E, 7.5D-E, and S7.5F-G. In each exper-
iment on average 15-20 cells were micro-irradiated and analyzed per condition.
Experiments were repeated three times and data are presented as mean ± SEM
of independent experiments. Statistical analysis was performed using two-tailed
unpaired t-test.

Immunoblotting See Figures 7.2J, 47.4B-C, and S7.5A-B. Immunoblotting experi-
ments were repeated three times. Representative images are shown.

PARPi Toxicity Analysis in a Panel of 1,001 Cancer Cell Lines See Figures 7.6C and
S7.6D. Correlation between gene expression and IC50 values for PARPi was assessed
using Pearson correlation, which was estimated for each gene and the correlation p
values were computed using the relation between the estimated coefficient and the
student-t distribution.

7.6.5 Data and software availability

The deep sequencing data generated in this study is available in the European
Nucleotide Archive (ENA) under accession number PRJEB20535. Raw data from
this manuscript: https://doi.org/10.17632/r9cm2kh8mt.1.
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7.7 Supplementary Material

7.7.1 Supplementary Figures
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Fig. S7.1. Multi-omics analysis of PARPi-resistant mouse mammary tumors. Related
to Figure 7.2. (A) Expression (RNA-seq) of Pgp drug efflux transporter in KB2P
PARPi-naive and resistant tumors; p value: two-tailed t-test. The box extends
from the lower to upper quartile values of the data, with a line at the median;
whiskers (whis) are a function of the inner quartile range, they extend to the
most extreme data point within (whis ∗ (75% − 25%)) data range. (B) Copy
number log2 ratios of chromosome 14 shown for all KB2P tumors; the Parg locus
is indicated by the red dashed line. KB2Px-R/Ny: x - original donor ID number,
y - ID of individual resistant tumors derived from the same donor tumor, R -
resistant, N - naive. (C) Correlation between Parg expression and copy number
estimation for a panel of KB1P tumors. Spearman correlation coefficient (ρ)
and p value (DIDS algorithm) are indicated.
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Fig. S7.2. Suppression of PARG in KB2P cells. Related to Figure 7.3. (A) RT-qPCR
analysis of Parg expression in KB2P3.4 cells expressing indicated shRNAs;
∗∗∗∗p < 0.001 (two-tailed t-test), data shown as mean ± SD of triplicate. (B)
ELISA-based PARG activity assay in the cell lines indicated; data represent mean
± SD of triplicate, ∗∗∗∗p < 0.001 (two-tailed t-test). (C-D)Immunofluorescence-
based PAR detection in the indicated cell lines upon MMS (0.01 %) treatment.
Representative microscopic images (C) and quantification of the assay (D) are
shown; ∗∗∗∗p < 0.001 (two-tailed t-test), data are presented as mean ± SD of
single areas imaged (experiment repeated three times, four areas/experiment,
average 300 cells/area); scale bar, 100 µm. (E) RT-qPCR analysis of Parp1 gene
expression in KB2P PARG kd cells; n.s. - not significant (two tailed t-test), data
are shown as mean ± SD of triplicate experiments.
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Fig. S7.3. Downregulation of PARG drives PARPi resistance in KB2P cell lines. Re-
lated to Figure 7.3. (A) Long-term clonogenic assay using KB2P3.4-scr sh
(scramble shRNA, control), -PARG sh1 and -PARG sh4 cells and the PARPi
AZD2461 or olaparib. Representative images of stained wells (left) and quantifi-
cation of the assay (right; mean ± SD of three repeats) are shown; ∗∗p < 0.01
(two-tailed t-test). (B) qRT-PCR analysis of Parg expression in KB1P-G3 cells
expressing the hairpins indicated; ∗∗∗∗p < 0.001 (two-tailed t-test), data shown
as mean ± SD of triplicate. (C) Clonogenic assay in KB1P-G3 cells expressing the
hairpins indicated and treated with olaparib; ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001
(two-tailed t-test); data represents mean ± SD of two repeats. (D) Outline of
the long-term clonogenic assays in KB2P cells expressing control (NT) or gRNAs
targeting Parg. (E) Example of the TIDE analysis: spectrum of alleles identified
by the algorithm in the samples indicated.
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Fig. S7.3. Continued. (F) Long-term clonogenic assay using KB2P3.4 cells expressing the
indicated gRNAs. Representative images (left) and TIDE quantification of allele
composition (right) are shown. (G-H) Chemical inhibition of PARG using PDDX-
004 in the cell lines indicated. Representative images of PAR immunofluorescent
staining (G) and quantification (H) are shown; data represent mean ± SD
of three repeats; scale bar, 100 µm. (I) Long-term clonogenic assay using
KB2P3.4 cells treated with the PARPi olaparib and PARGi PDDX-004 alone or in
combination. Representative images of stained cells (left) and quantification of
the assay (right) are shown. Data on the graph represent experiments repeated
three times (mean ± SD); p value (ANOVA) is indicated. (J) Clonogenic assay
in KB2P cells expressing the shRNAs indicated, and treated with olaparib;
∗∗p < 0.01, n.s. - not significant (two-tailed t-test); data shown as mean ± SD
of triplicate.
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Fig. S7.4. PARG loss causes PARPi resistance independently of HR and RF protection.
Related to Figure 7.4. (A) DNA fiber assay using KB2P3.4 cells treated with
MMS (0.9 µmol); ∗∗∗p < 0.001, n.s. - not significant (Mann-Whitney U test). Er-
ror bars represent SD and red lines represent mean values. (B-C) RAD51/53BP1
IRIF formation assay in the given cell lines; KP3.33 (p53-/-) cells were used as
HR-proficient control in this assay; 53BP1 served as DNA damage marker. Quan-
tification (B) and representative images (C) are shown. A cell was considered
positive when: RAD51 ≥ 5 foci/nuclei, 53BP1 ≥ 10 foci/nuclei. Data represent
mean ± SD; ∗∗∗∗p < 0.0001, n.s. - not significant (two-tailed t-test); scale bar,
10 µm.
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Fig. S7.4. Continued. (D) Example of RAD51 foci formation analysis in a KB2P2 tumor
pair, representative for all PARPi-resistant tumors for which alterations in the
Parg gene were identified by DeepSeq analysis. Matched naive samples, as
well as KP (p53-/-) tumor (positive control) were taken along for the analysis.
Microscopy images (upper panels) and foci quantification (lower panels) are
shown. For quantification, a fraction of positive cells (≥ 5 foci/nuclei for RAD51
and ≥ 10 foci/nuclei for 53BP1) was calculated for five different areas of each
tumor (shown as single data point on the graph, error bars represent SD).
∗∗∗p < 0.0001, ∗∗∗∗p < 0.0001, n.s. - not significant (two-tailed t-test). 53BP1
was used as a marker of DNA damage. Scale bar, 25 µm.
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Fig. S7.5. PARG depletion partially restores downstream signaling of PARP1. Related
to Figures 7.4 and 7.5. (A-B) Immunoblot analysis of PAR (A), PARP1 and
PARP3 (B) cellular levels in KP3.33 expressing the gRNAs indicated. Red arrow
(B) indicates band specific for PARP3. Histone 3 (H3) was used as a loading
control. Data representative of experiments repeated twice. (C) TIDE analysis
of allele modification rates in KP3.33 cells expressing the gRNAs indicated;
data representative for experiment repeated twice. (D) Clonogenic assay with
KP3.33 cells expressing the gRNAs indicated, treated with olaparib; ∗∗p < 0.01,
∗∗∗∗p < 0.0001, n.s. - not significant; data shown as mean ± SD of two repeats.
(E) PARG inhibition in U2OS cells by PDDX-001; data presented as mean ± SD
of two repeats.
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Fig. S7.5. Continued. (F) GFP-XRCC1 recruitment analysis in DMSO (control) or olaparib-
treated GFP-XRCC1 U2OS cells; representative images (right) and quantification
(left) are shown. XRCC1 recruitment was used as a readout for PARP1 inhibition.
(G) GFP-CHD2 binding to the site of DNA damage in GFP-CHD2 U2OS cells
treated with DMSO (control) or PDDX-001; representative images (right) and
quantification (left panel) are shown. CHD2 association to chromatin was used
as a positive control for PARG inhibition. (H) Time-course recruitment analysis
of GFP-PARP1 to laser tracks in control cells (DMSO). For experiments shown
in (F-H) data are represented as mean ± SEM of two independent repeats;
∗∗∗∗p < 0.0001 (t-test); in all images scale bar, 10 µm. (I) Fork progression
assay in U2OS cells exposed to the treatments indicated. Box extends from 25th

to 75th percentile, with a middle line representing the median and whiskers
drawn down to the 10th percentile and up to the 90th. (J) Neutral comet assay
in U2OS cells treated as indicated. Data shown as mean ± SD of a replicate.
Experiments shown in (I-J) were repeated twice; ∗∗∗∗p < 0.001, n.s. - not
significant, Mann-Whitney U test.
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Fig. S7.6. PARPi response of PARG-depleted human cancer cells. Related to Fig-
ure 7.6. (A) Quantification of long-term clonogenic assays shown in Figure 7.5A.
Graph represents mean ± SD values of triplicates; ∗∗p < 0.01 (two-tailed t-test).
(B) Chemical inhibition of PARG with PDDX-004 in indicated cells. Data repre-
sent mean ± SD of three repeats. (C) Quantification of a long-term clonogenic
assay in SUM149PT (upper panel) and DLD-1 BRCA2(-/-) (lower panel) cells
treated with the PARPi olaparib and the PARGi PDDX-004 alone or in combina-
tion. Data presented as mean ± SD values of three repeats.
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Fig. S7.6. Continued. (D) Correlation analysis between IC50 values of PARPi (veliparib
and talazoparib) and expression of DDR genes in a panel of 935 human cancer
cell lines; PARP1 and PARG are highlighted; Pearson correlation was computed
and p values were determined using the relation between estimated coefficient
and the student-t distribution. (E) Validation of PARG antibody used in IHC
analyses; representative images of SUM149PT cells expressing indicated shRNAs
are shown; scale bar, 100 µm. (F) Example of PARG IHC staining in two ovarian
serous carcinomas; scale bar, 100 µm. (G-H) Response of KB2P1.21 cells to
ionizing radiation (IR) and temozolomide (TMZ), treated with PARGi PDDX-004.
Data is presented as mean ± SD.
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7.7.2 Supplementary Tables (available online)

Tab. S7.1. Genetic screens identify Parg as a PARPi-resistance factor. Related to Figures 7.1
and 7.2.

Tab. S7.2. DDR-related genes. Related to Figures 7.2 and 7.6.

Tab. S7.3. Overview of candidate genes identified in multi-omics analysis of matched
KB2P PARPi-naive and -resistant tumors. Related to Figure 7.2.

Tab. S7.4. Custom-made shRNA library targeting candidate genes (identified by multi-
omics analysis of KB2P tumors) and additional 32 non-essential genes (con-
trols). Related to Figure 7.2.

Tab. S7.5. TIDE analysis of clonogenic assays using KB2P cells expressing gRNAs targeting
Parg. Related to Figure 7.3.

Tab. S7.6. Oligonucleotides used in this study. Related to STAR methods.
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