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4.1 Abstract

Insertional mutagenesis using engineered transposons is a potent forward genetic
screening technique used to identify cancer genes in mouse model systems. In the
analysis of these screens, transposon insertion sites are typically identified by targeted
DNA-sequencing and subsequently assigned to predicted target genes using heuristics.
As such, these approaches provide no direct evidence that insertions actually affect
their predicted targets or how transcripts of these genes are affected. To address
this, we developed IM-Fusion, an approach that identifies insertion sites from gene-
transposon fusions in standard single- and paired-end RNA-sequencing data. We
demonstrate IM-Fusion on two separate transposon screens of 123 mammary tumors
and 20 B-cell acute lymphoblastic leukemias, respectively. We show that IM-Fusion
accurately identifies transposon insertions and their true target genes. Furthermore,
by combining the identified insertion sites with expression quantification, we show
that we can determine the effect of a transposon insertion on its target gene(s)
and prioritize insertions that have a significant effect on expression. We expect
that IM-Fusion will significantly enhance the accuracy of cancer gene discovery
in forward genetic screens and provide initial insight into the biological effects of
insertions on candidate cancer genes.

4.2 Introduction

Transposon-based insertional mutagenesis (TIM) is a high-throughput method for
cancer gene discovery in mice1. In TIM, discrete DNA elements called transposons
can migrate throughout the genome by a cut-and-paste mechanism, in which they
are excised from their original location in the genome and randomly reintegrated
elsewhere2. Depending on the location and orientation of their reintegration, these
integrations can activate oncogenes or inactivate tumor suppressors, thereby in-
ducing tumor development and progression3. By identifying genomic loci that are
recurrently affected by transposon insertions in multiple independent tumors, this
approach can be used to identify candidate cancer genes1,3,4.

Transposon insertion sites are typically identified using targeted DNA-sequencing
approaches, in which junction fragments containing transposon and flanking ge-
nomic sequences are selectively amplified and sequenced5. The genomic parts of
these sequences are mapped to the reference genome to identify insertion sites and
their genomic locations6. These insertions are then assigned to their putative target
gene(s) using heuristics, typically picking genes in the direct vicinity of the inser-
tion. Examples of such heuristics are nearest gene6, fixed window7 and rule-based
mapping approaches8.
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A significant drawback of DNA-sequencing approaches is that they do not provide
any direct evidence that an insertion actually affects a gene. In ambiguous cases with
multiple genes in the vicinity of an insertion, heuristic approaches are frequently
unable to identify the true target(s) of the insertion. This typically leads to an
arbitrary selection of a single gene (nearest gene), potentially selecting the wrong
gene or missing other targets (false negatives). Alternatively, heuristics may select
many genes in the direct vicinity of the insertion (fixed window, rule-based mapping),
resulting in the selection of many non-target genes (false positives).

Additionally, DNA-sequencing approaches provide limited insight into how the
expression of a target gene is affected by a transposon insertion and which novel
transcripts may result from the insertion. This has two main drawbacks. First, it
prevents prioritizing insertions that have a strong effect on gene expression and are
therefore likely of more importance than insertions without an effect on expression.
This limits effective discrimination between driver and passenger insertions, resulting
in long lists of candidate loci which are likely to include a substantial fraction of
false positives that do not affect expression. Second, it limits our understanding
of how gene expression or the expression of (novel) gene transcripts is affected by
insertions. These insights may be key to ultimately understanding the biological
effect of insertions and how they may contribute to tumorigenesis.

In previous work, Temiz et al. have demonstrated that insertions can be identified in
paired-end RNA-sequencing data using their tool Fusion Finder9. In Fusion Finder,
insertions are detected from discordant mate pair alignments, in which one mate
aligns to a genomic sequence and the other to part of the transposon sequence.
A drawback of this approach is that it does not use information from chimeric
reads overlapping the fusion boundary between the gene and the transposon (split
reads), limiting the accuracy and sensitivity of insertion detection. Additionally, the
dependency on mate pair information prevents its use for analyzing datasets based
on single-end RNA-sequencing.

In this work, we present an approach called IM-Fusion, which uses fusion-aware
RNA-seq alignment to identify transposon insertions from splicing events between
endogenous genes and the transposon. Key advantages of this approach are that
it identifies exactly which gene(s) are affected by a transposon insertion and how
the transposon is incorporated into the resulting gene transcript. Additionally, by
using both split reads and discordant mate pairs to identify insertions, IM-Fusion is
more sensitive than existing approaches and can be used to analyze single-end RNA-
sequencing datasets. Finally, by combining insertions with exon-level expression
data, we are able to accurately predict the consequences of integrations on gene
transcripts.
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4.3 Materials and Methods

4.3.1 IM-Fusion

Insertion detection First, we create an augmented reference genome by adding the
transposon as an extra sequence in the reference genome. Then, for each sample,
we align sequence reads to the augmented reference genome using a fusion-aware
RNA-seq aligner such as STAR10 or Tophat-Fusion11. By default, STAR is used for
alignment, with the argument ‘--chimSegmentMin’ to ensure that chimeric read
alignments are produced. Chimeric alignments from STAR are filtered to select
alignments that represent fusions between the transposon and genomic sequences.
Alignments that overlap with the fusion junction (represented by split-read align-
ments) are grouped by the position of their breakpoints, as these reads precisely
identify the location of a fusion. Each such group is considered to represent a single
gene-transposon fusion. For paired-end sequencing data, alignments that do not
overlap with the fusion boundary are grouped if their mate positions fall within
a pre-defined distance, which depends on the insert size of the dataset. Where
possible, these ‘spanning’ read groups are assigned as additional support for fusions
identified from split-reads. For cases where no such fusion is found, approximate
locations for the corresponding fusions are predicted based on the bounds provided
by the spanning reads.

The identified fusions are annotated to identify which gene(s) and which transposon
feature(s) are involved in each fusion. Fusions that do not involve splice acceptor
(SA) or splice donor (SD) features of the transposon or fusions that represent
biologically implausible situations (such as fusions between transposon features and
gene exons in opposite orientations) are considered artifacts and removed from
the list of fusions. Optionally, fusions supported by less than a pre-defined number
of reads can be removed to avoid fusions with low support. For this filtering, we
provide two distinct measures: a support score and an FFPM (fusion fragments per
million) score. The support score simply indicates the number of reads/mates that
supports the corresponding fusion. The FFPM score is a scaled version of the support
score, which is normalized for differences in sequencing depth between samples.
This score is analogous to the FFPM score used by STAR-Fusion12. The list of filtered
fusions is used to predict approximate locations of the corresponding insertion sites,
based on the breakpoints of the fusions.

Transcript assembly To identify cases in which insertions lead to the expres-
sion of non-canonical transcripts, IM-Fusion provides an optional step which uses
StringTie13 to perform a reference-guided assembly of novel transcripts using the
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read alignment from STAR. The produced transcript annotation is used to assign any
previously unannotated insertions to any novel transcripts that overlap with the in-
sertion. If such a novel transcript overlaps with any known genes, the corresponding
insertion is also assigned to these known genes, as the transcript likely represents an
alternative transcript of these existing genes.

Commonly targeted gene selection Commonly targeted genes (CTGs) are selected
by testing if genes are affected by insertions more frequently than would be expected
by chance according to the Poisson distribution. The Poisson distribution expresses
the probability of a given number of events occurring in a fixed interval of time or
space, as long as the expected number of events in a fixed window is known and
events occur independently. Specifically,

Pg(K = k;λg) =
λkge

−λg

k!

where k is the number of events and λg is the expected number of events in a fixed
window. Here, each insertion represents an independent event and the fixed window
is the genomic region of the gene of interest, optionally expanded to include a
window around the gene. The expected number of insertions is calculated based on
the size of the gene window, the size of the transcriptome (the union of windows for
all genes) and the total number of insertions within the transcriptome windows.

In detail, we first count the number of insertions that were identified for a given
gene g (by the insertion identification step) and were located within a pre-defined
window (by default 20 kb) around the gene. This count is denoted as Ng. Second,
we calculate the expected number of insertions in gene g (λg) based on its window
size and the total number of insertions within the transcriptome as follows:

λg = Wg

Wt
Nt

in which Wg corresponds to the size of the window around gene g, Wt the size of the
transcriptome windows (the sum of windows for all genes in the genome, corrected
for overlap between gene windows) and Nt represents the total number of insertions
within the transcriptome windows. Using λg, we then calculate the probability of
observing Ng or more insertions in gene g as:

pg = Pg(K ≥ Ng;λg)
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After testing all genes of interest (by default all genes with at least one insertion in
the gene), calculated p values are corrected for multiple testing using Bonferroni
correction.

If the transposon employed in the screen is known to be biased toward integrating at
specific nucleotide sequences, λg can be calculated differently to take this integration
bias into account. In this case, instead of using the size of the gene windows, we use
the number of occurrences of the nucleotide sequence with the gene window (Sg)
and within the transcriptome windows (St) to calculate λg:

λg = Sg
St
Nt

To account for a potential bias in integrations on the chromosome on which the
transposon concatemer is located, insertions and genes on the donor chromosome
can be excluded from the analysis. In this case, genes on the donor chromosome are
also excluded when calculating the transcriptome size (Wt/St) and the number of
insertions (Nt).

Differential expression analysis To test for differential expression, we first generate
exon expression counts from the read alignments using featureCounts14. For this
count summarization, we use a flattened version of the reference GTF file, which
is similar to the flattened GTF files produced by DEXSeq15. This flattened GTF is
required to ensure that overlapping exons from different transcripts of the same
gene are only counted once by featureCounts.

Next, to test a given gene g for differential expression, we divide the exons of gene g
into two groups: those before the transposon insertions in the gene (EBg ) and those
after the insertions (EAg ). We assume that the expression counts of exons before the
insertions (EBg ) are not directly affected by the presence of an insertion and therefore
reflect differences in the overall expression of the gene between samples. Based on
this assumption, we normalize the counts of each sample for differences in overall
expression of the gene by dividing the counts by a sample-specific normalization
factor, which is calculated from the counts of the exons in EBg using DESeq2’s
median-of-ratios approach16. We then sum the normalized counts of exons in EAg
per sample, to get a single (normalized) count of expression after the insertion site
for each sample. Finally, to actually test for differential expression in the presence
of an insertion in gene g, we use a two-tailed Mann–Whitney U test to compare
the distribution of these counts between samples with an insertion in gene g and
samples without an insertion in the gene.
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In some cases, the above test is not possible because some samples do not have
at least one exon before and after their insertion sites. This mostly occurs when
insertions are located upstream of the first exon of the gene. To handle these cases,
we first try to remove these problematic samples and repeat the test using the
remaining samples. For cases where this does not leave us with any samples to
test, we provide an additional gene-level test, which compares the expression of the
overall gene between samples with/without insertions after normalizing for overall
differences in sequencing depth.

By default, we do not use multiple testing correction for the differential expression
test, as we primarily select CTGs using the Poisson-based test and use the differential
expression test as an extra test to determine whether to keep the CTG. Additionally,
not all CTGs may be subjected to the same test, as some genes may be tested using
the gene-level test if the exon-level version is not applicable.

Single-sample differential expression To test for differential expression in a single
sample (as opposed to the group-wise test described above), we provide an alter-
native approach that uses the same normalization procedure, but uses a negative
binomial distribution to compare the expression of the sample of interest to samples
without an insertion. In this approach, a negative binomial is fitted using the after
insertion counts of samples without an insertion in the gene. The after count of the
sample of interest is then compared to this distribution using a two-tailed test to
determine if the gene is differentially expressed.

Implementation For convenience and reusability, we implemented the different
steps of IM-Fusion in a Python package called imfusion, which is freely available
on GitHub*. Jupyter notebooks containing the code and results of the various
computational analyses are also available on GitHub†.

The Python package provides commands for each main step of IM-Fusion, including
the construction of the custom reference genome, identification of insertions from
RNA-seq reads, selection of CTGs and analysis of differential expression. The cur-
rent implementation supports the use of STAR or Tophat-Fusion to detect fusions,
although support for additional fusion-aware aligners may be added in the future.
For full functionality, working installations of STAR/Tophat2, StringTie and feature-
Counts are required; as STAR or Tophat2 (which implements Tophat-Fusion) are used
to align reads and detect fusions, StringTie is used to detect novel transcripts and
featureCounts is used to generate the expression counts. Optionally, STAR-Fusion12

*https://github.com/nki-ccb/imfusion
†https://github.com/jrderuiter/imfusion-analyses
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can also be used to detect endogenous gene fusions as part of the STAR insertion
detection pipeline.

4.3.2 Datasets

ILC dataset (RNA-seq) Single-end RNA-sequencing data from 123 tumors were
obtained from a dataset of a Sleeping Beauty (SB) transposon screen in a mouse
model of invasive lobular breast carcinoma (ILC)17. The RNA-seq data were down-
loaded from ENA in fastq format (accession number PRJEB14134) and analyzed
using IM-Fusion (version 0.3.1) to detect SB insertion sites in each sample, as well
as subsequently identify CTGs and their effects. For this analysis, we created an
augmented reference genome using the mm10 version of the mouse genome and
the T2/Onc transposon sequence18. STAR (version 2.5.2b) was used to perform the
alignment, StringTie (version 1.3.0) was used for transcript assembly and feature-
Counts (version 1.5.0-post3) was used to generate expression counts. Reference
genome features were downloaded from Ensembl 76.

ILC dataset (ShearSplink) DNA-sequencing data prepared using the ShearSplink
protocol19 for the same tumors as the ILC RNA-seq dataset were downloaded from
Figshare‡ and analyzed using the ShearSplink pipeline in PyIM§ (version 0.2.0) to
identify SB insertion sites. In essence, this pipeline first extracts genomic DNA from
reads by removing the transposon and linker sequences. The genomic sequences
are then aligned to the reference genome using Bowtie2 (version 2.2.8)20, and the
resulting alignments are grouped by sample and position to identify the location of
insertion sites. Finally, identified insertions are assigned to their predicted target
genes using the windows outlined in KC-RBM8. To reduce the number of identified
target genes for each insertion, we selected a single target gene for each insertion by
picking the closest gene identified by KC-RBM. In cases where this was not possible,
e.g. due to overlapping genes, we retained multiple target genes.

B-ALL dataset Insertion data and paired-end RNA-seq data from 20 B-cell acute
lymphoblastic leukemias (B-ALLs) were obtained from a previously published dataset
of a SB screen performed in a mouse model of B-ALL21. The RNA-seq data were
downloaded from ENA in fastq format (study ID: ERP005291, array expression ID: E-
ERAD-264). The insertion data were obtained from the Supplementary Materials of
the publication or through personal communication. Control samples were omitted
from the performed analyses.

‡DOI: 10.6084/m9.figshare.4765111
§https://github.com/jrderuiter/pyim
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4.3.3 Methods - ILC dataset

Gene-transposon fusion validation in RNA Tumor RNA was extracted as previously
described22 and 300 ng was converted to complementary DNA (cDNA) with a
Moloney murine leukemia virus reverse transcriptase using random hexamer primers
according to manufacturer’s protocol (Tetro cDNA synthesis kit, Bioline). Gene-
transposon fusions were detected by standard polymerase chain reaction (PCR) with
an annealing temperature of 58 ◦C. The following primer sequences were used:

• SA reverse 5’-TTCCCGCGAATCCATCTTTC-3’

• En2SA reverse 5’-GTCGACTGCAGAATTCGATGA-3’

• SD forward 5’-GCCCATCAAGCTTGCTACTA-3’

• Myh9 forward 5’-CTGTGTGGTCATCAACCCTTAT-3’

• Trp53bp2 reverse 5’-ATCGCTCTGGTTTCGATAAGG-3’

• Ctnnd1 forward 1 5’-GCTACATGCCTTGACAGATGA-3’

• Ctnnd1 forward 2 5’-GAGAGGAGAAAGGCAGGAAAG-3’

• Hprt forward 5’-CTGGTGAAAAGGACCTCTCG-3’

• Hprt reverse 5’-TGAAGTACTCATTATAGTCAAGGGCA-3’

To study the effects of individual SB insertions on expression, we visualized single
insertions together with the expression of each of their targets in the affected sample
and tested for differential expression over the insertion site in the sample. The
visualization was generated using the Python package geneviz, which is freely
available on GitHub¶. Gene annotations for the plot were obtained from Ensembl 76.
Expression profiles were generated from the RNA-seq alignment of the sample using
pysam23, by counting the number of reads overlapping each nucleotide position in
the plotted range. Junction strengths were derived from the junction files (SJ.out.tab)
generated by STAR during the alignment. To test for differential expression, we used
the single-sample exon-level test implemented by IM-Fusion.

Effects on CTGs To identify biases in SA/SD insertions for the various CTGs, we
counted the number of times each transposon feature (SD, SA, En2SA) was involved
in the insertions affecting each CTG. The results were visualized to show the different
distributions across CTGs. To test for differential expression, we applied IM-Fusions
group-wise DE test for each CTG.

Insertion comparison To compare the overlap in insertions between IM-Fusion
and ShearSplink, we matched two insertions between IM-Fusion and ShearSplink

¶https://github.com/jrderuiter/geneviz
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under the following conditions: both insertions were identified in the same sample,
had the same predicted target gene and their relative location and orientation was
compatible. The latter restriction was used to ensure that a ShearSplink insertion
was in the correct location to generate the fusion observed by IM-Fusion in the
RNA-seq data. Insertions matched between the two approaches were marked as
‘Shared’, unmatched insertions were designated ‘IM-Fusion only’ or ‘ShearSplink
only’ depending on the approach that identified them.

To identify features distinguishing shared insertions from insertions that were unique
to either approach, we compared the set of shared insertions to the IM-Fusion- and
ShearSplink-specific insertions. For both comparisons (Shared/ShearSplink and
Shared/IM-Fusion), we first defined a set of features that could potentially affect
insertion detection by either method. We then trained a logistic regression model
on these features to predict whether an insertion was matched or unique to the
corresponding approach. This model was used to determine the significance of
each feature. Finally, we visualized the distributions of significant features for both
the matched/unmatched insertions using kernel density estimation (KDE) plots for
interpretation.

Candidate gene comparison To compare the candidate genes identified by Shear-
Splink and IM-Fusion, we first identified significant common insertion sites (CISs)
and differentially expressed CTGs (DE CTGs) separately using the respective ap-
proaches. We then visualized the resulting gene rankings, linking genes that were
identified as candidate genes by both approaches. Candidate genes were colored
to distinguish whether they were (i) shared between both approaches (black), (ii)
were identified to have insertions but were not selected as a CTG/CIS by the other
approach (blue), (iii) were selected as a CTG/CIS but were not differential expressed
(green), (iv) were not selected as a CTG/CIS and were not differentially expressed
(purple) and (v) were omitted entirely by the other approach (red).

ShearSplink insertion validation in DNA Tumor DNA was isolated using a phe-
nol–chloroform extraction. Transposon insertions were detected in 500 ng DNA
by standard PCR with an annealing temperature of 58 ◦C. The following primer
sequences were used:

• En2SA forward 5’-GCTTGTGGAAGGCTACTCGAA-3’

• Nf1 11KOU029-R5.INS_12 reverse
5’-CTCACGTGAAGTGGGAAAGACA-3’

• Nf1 12SKA029-R3.INS_15 reverse
5’-GGCGCACACCTTTAATCCTAAC-3’
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• Nf1 12SKA033-R3.INS_10 reverse
5’-TAGCTCCCTGTGTGTTCCTTTG-3’

• Nf1 12SKA068-L3.INS_15 reverse
5’-AAGGGTGAAGCAGGAGGATTAC-3’

• Nf1 12SKA092-L2.INS_10 reverse
5’-ACGGAGAAGGAGAGAGGGAAA-3’

• Nf1 12SKA104-R3.INS_1 reverse
5’-CCAACATCCCTGTTGTGTGTATG-3’

• Hprt forward 5’-CTGGTGAAAAGGACCTCTCG-3’

• Hprt reverse 5’-TGAAGTACTCATTATAGTCAAGGGCA-3’

Endogenous fusion identification Endogenous gene fusions were identified by ap-
plying STAR-Fusion12 (version 0.5.4) to the raw RNA-seq data (fastq files) using
recommended settings. The resulting list of fusions were combined across samples
and filtered for fusions with breakpoints at known splice junctions, as these are most
likely to reflect proper gene fusions. The filtered fusions were prioritized by grouping
fusions on the involved genes and ranking by the recurrence of these gene pairs
across samples. The fusions involving Fgfr2 were validated using the same approach
as for the gene-transposon fusions, with the following additional primers:

• Fgfr2 forward 5’-TGGCCAGGGATATCAACAAC-3’

• Kif16b reverse 5’-CTTTCCTGAGGGCTAGAGTTTG-3’,

• Myh9 reverse 5’-GATAGCGCCTTTGTCTCCTT-3’,

• Tbc1d1 reverse 5’-CCAGGCTGTGAGAAGGATTT-3’

4.3.4 Methods - B-ALL dataset

Candidate gene comparison To compare IM-Fusion with the DNA-seq results from
the original publication, we applied IM-Fusion to the paired-end RNA-seq data and
compared the identified DE CTGs with the published candidate genes (DE CISs).
To avoid selecting CTGs with very low support in this relatively deeply sequenced
dataset (as these are more likely to represent false positives), we filtered insertions
with fewer than 10 supporting reads or mates from the CTG analysis.

Effect of sequencing depth The B-ALL samples were downsampled to depths of 15,
30, 50 and 70 million reads using Seqtk||. IM-Fusion was applied to each of these
downsampled datasets to identify DE CTGs, using the same settings as were used for

||https://github.com/lh3/seqtk
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the full dataset. The number of insertions and DE CTGs were compared between the
different depths, as well as the overlap in DE CTGs between depths.

Single- versus paired-end comparison A single-end version of the dataset was
simulated by supplying only the first pair as input to IM-Fusion. The results from
the paired-end and single-end analyses were compared by juxtaposing DE CTGs and
insertions in these genes between the two analyses.

Fusion Finder comparison We created an augmented version of the mm10 ref-
erence genome containing the T2/Onc transposon sequence in the same manner
as described by Temiz et al.9. This reference was modified to mask the En2 and
Foxf2 gene loci, which contain sequences homologous to parts of the transposon
sequence. Tophat224 (version 2.1.0) was used to align reads to this augmented
reference, after which the Fusion Finder script (version 3.1) was used to identify
insertions in each sample. The results were compared with IM-Fusions DE CTGs and
published candidate genes by analyzing the overlap between the identified insertions
and the CTGs/CISs. To determine why certain CTGs/candidates were not identified
by Fusion Finder, we visualized the distribution of the used transposon features
and compared the alignments of reads supporting insertions unique to IM-Fusion
between the Tophat2 and STAR alignments using pysam23.

Endogenous fusion identification Endogenous gene fusions were identified in the
same manner as for the ILC dataset.

4.4 Results

4.4.1 Identifying insertion sites from gene-transposon
fusions

Transposon insertions can affect the expression of nearby genes, potentially leading
to the activation of oncogenes or the inactivation of tumor suppressors. For example,
consider the T2/Onc transposon (Figure 4.1A) that is used in this work. When
integrated in the vicinity of a gene, this transposon can induce (over)expression of
nearby genes by initiating transcription from its promoter sequence (MSCV) and
then splicing into the gene using the SD sequence (Figure 4.1B). Alternatively, the
transposon can truncate transcripts using either of its SA sites (SA/En2SA) and
their corresponding polyA (pA) sites (Figure 4.1C). Depending on the gene and the
location of the transposon, these truncations can inactivate the gene by resulting in
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an unstable transcript or inactive protein, or activate the gene by removing inhibitory
protein domains.

In both of these cases, part of the transposon sequence is incorporated into the result-
ing mRNA transcript(s) via splicing between the affected gene and the transposon. As
such, these transcripts effectively represent fusions between the transposon sequence
and the affected gene. We therefore hypothesized that it should be possible to detect
transposon insertion sites from RNA-sequencing by identifying gene-transposon fu-
sions using existing gene fusion detection tools. By further analyzing the breakpoints
of each fusion, we could determine exactly which gene and which feature of the
transposon are involved in the fusion, and use this information to predict the location
of the corresponding insertion site.

A   Sleeping Beauty transposon (T2/Onc)

B   Activation of expression (oncogenes)

C   Transcript truncation (tumor suppressors and oncogenes)

Fig. 4.1. Overview of the T2/Onc transposon and its effects on gene expression.
(A) The transposon sequence contains two splice acceptor sequences (SA and
En2SA) with corresponding polyA sequences (pA), and a single promoter se-
quence (MSCV) combined with a splice donor (SD) sequence. (B) Sense inser-
tions of the transposon either within or upstream of a gene may drive overex-
pression of the downstream gene sequence by initiating expression from the
transposons promoter and SD sequence. (C) Insertions within genes (in either
orientation) may truncate gene transcripts by splicing to either of the SA sites (SA
or En2SA). The resulting truncations may inactive tumor suppressor genes, but
can also activate oncogenes by removing inhibitory domains from the resulting
protein.

4.4 Results 117



4.4.2 IM-Fusion

In this work, we developed a tool called IM-Fusion, that uses a three-step approach
to (i) identify insertions from gene-transposon fusions in RNA-sequencing data, (ii)
select genes that are more frequently affected by insertions than would be expected
by chance and (iii) test if the expression of these genes is significantly changed by
their insertions (Figure 4.2A). A brief description of each of the steps is provided
below, more details are available in the Materials and Methods section.

Identifying insertion sites

IM-Fusion identifies transposon insertion sites from gene-transposon fusions in the
RNA-seq data. To identify these fusions, IM-Fusion first creates an augmented version
of the host reference genome by adding the sequence of the transposon as an extra
sequence to the original reference sequence. Then, for each sample, IM-Fusion uses
a fusion-aware RNA-seq aligner to align RNA-seq reads to the augmented reference
and identify gene fusions. By default, STAR10 is used for this purpose, although
Tophat-Fusion11 is also supported. The identified fusions are filtered to only select
fusions between genes and the transposon sequence. These gene-transposon fusions
are then analyzed to identify the involved genes and transposon features, and to
infer the approximate locations of the insertions (Figure 4.2B). Optionally, the
RNA-seq alignment can be used to perform a reference-guided transcript assembly,
which allows IM-Fusion to detect insertions that result in the expression of novel
(unannotated) transcripts.

An important advantage of IM-Fusion over DNA-sequencing based approaches is
that, instead of focusing on deriving the exact location of insertion sites, it focuses
on determining which genes are affected by insertions. This gene-centric approach
allows us to select only those insertions that affect expressed genes and are therefore
most likely to have an actual biological effect. By doing so, IM-Fusion provides an
important filter that strongly enriches for biologically relevant insertions and avoids
selecting many extraneous insertions that are unlikely to affect gene expression.
This greatly increases the specificity of our results, providing more confidence in the
identified hits.

Selecting commonly targeted genes

To identify genes that are commonly targeted by insertions, we use the Poisson
distribution to test whether a given gene has more insertions than may be expected
by chance (see Materials and Methods). To correct for cases in which a single
insertion is detected multiple times in the same gene, either due to its involvement
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A   Overview of IM-Fusion  

Fig. 4.2. Overview of IM-Fusion. (A) The IM-Fusion pipeline. Samples are initially pro-
cessed individually to identify insertions and generate gene and exon expression
counts for each sample separately. The per-sample results are then combined to
identify genes that are recurrently affected across samples. For these genes, we
then combine the expression and insertion data to test for differential expression
over the insertion site. The results of this analysis are used to determine if inser-
tions have a significant effect on the expression of their target genes and exactly
how the insertions affect the resulting gene transcript.
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C   Differential expression analysis

B   Insertion site identification

Fig. 4.2. Continued. (B) Transposons that affect gene expression are included in gene
transcripts and are therefore detectable as fusion transcripts between genes and
the transposon. These fusions are detected by reads or mate-pairs that bridge
the fusion site. The breakpoints of the identified gene-transposon fusions are
analyzed to identify the involved gene(s) and predict an approximate location for
the corresponding insertion(s). (C) Insertion and expression data are combined
to test if an insertion significantly affects the expression of exons downstream of
the insertion site. Expression counts are calculated both before/after the insertion
site for a sample with an insertion and a set of background samples without an
insertion. The ‘before’ count is then used to normalize the sample counts, after
which the normalized ‘after’ counts are compared to the ‘before’ counts to test for
differential expression. Samples with a truncating insertion are expected to show
a lower level of expression after the insertion relative to the background, whilst
samples with an activating insertion are expected to show increased expression
after the insertion.

120 Chapter 4 Identifying transposon insertions and their effects from RNA-sequencing data



in multiple gene isoforms or due to local hopping within the gene, insertions are by
default collapsed into a single insertion per gene per sample (taking the average
location of the insertions) before testing for enrichment. This ensures that selected
CTGs indeed represent recurrent insertions across multiple samples, and not just
multiple insertions within a single or few samples.

Testing for significant effects on expression

To establish whether the expression of a CTG is significantly altered by its insertions,
we test for differential expression over the insertion sites in the gene. The main goal
of this analysis is to determine if we see a significant increase in expression after
the insertion site, indicating that (partial) gene transcripts are (over)expressed by
the insertions, or observe a significant decrease in expression, indicating that gene
transcript(s) are truncated by the insertions.

To perform the test, we first normalize for differences in overall expression of the
gene across all samples based on the expression of exons before the insertion site,
which we assume are not directly affected by the presence of an insertion. After this
normalization, we compare the normalized expression levels after the insertion site
between samples with and without an insertion in the gene to test for differential
expression (Figure 4.2C). By default the test performs a group-wise comparison
using the Mann–Whitney U test, in which the expression of samples with an insertion
is compared to samples without insertions in the gene. Alternatively, we also provide
a single-sample test based on the negative binomial distribution, which determines
whether the gene is differentially expressed in a specific sample.

For cases without exons before the insertion site(s), which can occur if insertions
are located upstream of the gene, an additional gene-level test is provided. This
test compares the expression of the overall gene between samples with/without
insertions, after normalizing for overall differences in sequencing depth.

4.4.3 Applying IM-Fusion to a mouse model of breast
cancer

We tested our approach by using IM-Fusion to identify SB transposon insertions
in 123 tumors from a mouse model of invasive lobular breast cancer (ILC)17. On
average, 0.1% of the reads in each sample were chimeric reads supporting a potential
fusion, of which 0.42% represented a putative gene-transposon fusion (Supplemen-
tary Table S4.1). From these fusions, IM-Fusion identified a total of 2057 transposon
insertion sites across all tumors, with a median of 12 insertions per tumor (Supple-
mentary Table S4.2). A total of 1043 genes were affected by at least one insertion,
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14 of which were selected as differentially expressed (DE) CTGs (Supplementary Ta-
ble S4.3). To confirm the existence of the identified insertions, a subset of insertions
was validated using PCRs targeting the predicted gene-transposon fusion transcripts
(Supplementary Figure S4.1).

Effects of individual insertions

To evaluate the effect of individual insertions, we visualized single insertions together
with the expression of their target genes in the corresponding sample (Figure 4.3A-
D). A first example is shown in Figure 4.3A, which shows an antisense insertion in
the Trps1 gene. This insertion was identified from a fusion between the transposons
En2SA site and the fourth exon of the gene, indicating that the insertion truncated
the gene after this exon. This hypothesis was supported by the expression profile
of the gene in this sample, which showed a marked reduction in expression after
the insertion site. Using the single sample DE test, we confirmed that this reduction
in expression was indeed significant compared to background samples without an
insertion in the gene (Figure 4.3C).

A second example (Figure 4.3B) shows a sense insertion in the Trp53bp2 gene, which
was identified from two distinct gene-transposon fusions. The first fusion, between
the SA site of the transposon and exon 12 of the gene, indicated that the insertion
truncated gene transcription after this exon. However, the second fusion, between
the SD site and exon 13, indicated that the insertion also drove overexpression of
a partial gene transcript downstream of the insertion. Taken together, this showed
that the insertion simultaneously resulted in both the truncation of the original gene
transcript and overexpression of a C-terminal transcript containing exons 11–18.
This overexpression was clearly reflected in the expression levels of the gene, which
were significantly increased after the insertion site (Figure 4.3D). Finally, from the
shown splice junctions we saw that the full-length transcript of Trp53bp2 (and/or
the truncated N-terminal transcript) was still expressed in this sample, though at
lower levels than the partial transcript.

General effects of insertions on CTGs

To determine how each identified CTG was affected by its insertions, we first analyzed
the insertions in each CTG to identify if the gene was biased to SD or SA insertions. In
this analysis, a bias to SD insertions would indicate the gene is mainly overexpressed
by insertions in the gene (Figure 4.1B). Conversely, a bias toward the SA/En2SA
sites would indicate the gene is mainly truncated by its insertions (Figure 4.1C).
Second, we used IM-Fusion to test for differential expression across the insertion
site to determine if the insertions affect the expression of the gene and whether the
observed effect points to truncation or overexpression of the gene. For clarity we
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Fig. 4.3. Examples of identified insertions, CTGs and their effects on gene expression.
(A) An example of an antisense insertion in Trps1 that results in truncation of the
gene transcript. The insertion (red arrow) is shown above the main transcript
of the gene, together with expression levels of the gene. The expression of the
exons is shown along the top in blue, which reflects the number of reads covering
the various exons. Similarly, the black arches below indicate the strength of
the splicing junctions between the different exons, with the height of the arch
indicating the number of reads supporting the splice junction. Taken together,
these expression profiles show a strong decrease in expression after the insertion
site, supporting the hypothesized truncation. (B) An example of a sense insertion
in Trp53bp2 (blue arrow). This insertion results in both truncation of the gene
and overexpression of a partial transcript. (C) Quantified expression levels
before/after the insertion site for the Trps1 insertion shown in (A). Compared
to the samples without an insertion (gray), the sample with this insertion (blue)
shows a significant decrease in expression after the insertion. (D) Quantified
expression levels for the Trp53bp2 insertion. Overexpression of the truncated
transcript is clearly reflected by the increase in expression after the insertion site.
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Fig. 4.3. Continued. (E) Frequencies of the transposon features involved in the insertions
of the top six identified CTGs. A bias toward SA/En2SA favors truncation of the
gene, whereas a bias toward SD favors overexpression. (F) Differential expression
across the insertion sites for each of the CTGs. An increase in the presence of an
insertion indicates overexpression, a decrease indicates truncation.

limited our analysis here to the top six candidate genes; similar results for the other
candidates are available in Supplementary Figure S4.2.

This analysis showed that most top CTGs (Ppp1r12a, Trps1, Myh9, Tgfbr2 and
Runx1) were clearly biased toward SA/En2SA insertions (Figure 4.3E), indicating
that transcripts of these genes were being truncated by the transposon insertions.
This hypothesis was further supported by the DE tests (Figure 4.3F), which confirmed
that each of these genes showed a significant decrease in expression after the
insertion site, indicating that genes are indeed truncated. Conversely, for one top
CTG, Trp53bp2, we saw a clear bias toward SD insertions, indicating that this gene
is overexpressed by its insertions. This was again supported by the DE analysis,
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which determined that Trp53bp2 showed a significant increase in expression after its
insertion sites.

Comparison with targeted DNA-sequencing

To assess if IM-Fusion identifies similar insertions to targeted DNA-sequencing
approaches, we compared our results to those obtained by targeted DNA-sequencing
of insertions using the ShearSplink protocol19. For this comparison, we matched
insertions between the two approaches (IM-Fusion and ShearSplink) if they identified
the same target gene and had compatible genomic locations and orientations. Note
that, using this approach, an insertion is counted multiple times if it is assigned to
multiple genes, thereby increasing the apparent total number of insertions.

Matched insertions were considered to be shared by both approaches, whereas un-
matched insertions were categorized as ‘ShearSplink-specific’ or ‘IM-Fusion-specific’
depending on their source. This analysis showed that the majority of the insertions
identified by IM-Fusion (578/818) were shared with ShearSplink (Figure 4.4A).
However, a substantial number of insertions were unique to either IM-Fusion (240)
or ShearSplink (2838), indicating a considerable disparity between the two ap-
proaches.

ShearSplink-specific insertions

To investigate why certain insertions were not identified by IM-Fusion, we compared
the ShearSplink-specific insertions to the insertions identified by both approaches.
The goal of this comparison was to identify features that distinguished the two sets
of insertions (see Materials and Methods) and might therefore provide insight into
the underlying reasons for the observed differences. Of the considered features, the
following were determined to be significantly predictive: the expression level of
the predicted target gene, the relative location of the insertion within its target, the
distance of an insertion to its target and the support of the ShearSplink insertion.

The first two of these features point toward biases in the sequencing coverage of the
RNA-seq data that affect the detection of insertions. The first feature, the expression
level of the target gene, indicates that IM-Fusion had trouble identifying insertions
in genes with no or low expression (Figure 4.4B). The lack of insertions in non-
expressed genes was expected, as these insertions are not represented in the RNA-seq
data. As these insertions are unlikely to have any biological effect, their omission is
expected to increase the specificity of IM-Fusion with regard to biologically relevant
insertions. The lack of insertions in genes with low expression reflects an inherent
bias of RNA-seq toward highly expressed genes, which results in less sequencing
coverage for genes with low expression.
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Fig. 4.4. Comparison of insertions identified by IM-Fusion and ShearSplink. (A) Venn
diagram of the insertions identified by ShearSplink (red) and IM-Fusion (blue).
Many IM-Fusion insertions are shared with ShearSplink (green), but a consider-
able number of insertions are unique to either approach. (B and C) Distribution
of features reflecting biases of RNA-sequencing that affect the detection of in-
sertions by IM-Fusion. ShearSplink-specific insertions (red) typically have low
expression compared to shared insertions (green) and are therefore more difficult
to detect by RNA-seq. Similarly, insertions toward the start of the gene are more
frequently missed by IM-Fusion due to the 3’ bias of the polyA tail selection used
in the RNA-sequencing. (D and E) Distributions of support of DNA-seq insertions
and support of RNA-seq insertions. Insertions with low DNA-seq support are
more often missed by IM-Fusion, whilst insertions with low IM-Fusion support are
often not detected by ShearSplink. These differences likely reflect heterogeneity
of subclonal insertions present in the tumor tissue samples used for DNA-seq
and RNA-seq, respectively. (F) Comparison of the frequency-based ranking of
candidate genes identified by IM-Fusion and ShearSplink. Gray lines indicate
the relative rankings of genes that were identified by both approaches. Genes
missed by the other approach are marked red. Genes that were identified to have
insertions but not selected as CISs/CTGs by the other approach are colored blue
or purple, depending on their differential expression status. Genes that were
identified as CISs/CTGs but were not differentially expressed are marked green.

Similarly, the second feature, the relative position of an insertion within the gene,
showed that IM-Fusion misses more insertions at the 5’ end of genes (Figure 4.4C).
This is due to a well documented 3’ bias of the polyA-tail selection used to enrich
for mRNAs in RNA-sequencing, which results in decreasing coverage toward the
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5’ end of gene transcripts. Together, these two biases limit the ability of RNA-seq-
based approaches such as IM-Fusion to detect insertions in lowly expressed genes,
particularly at their 5’ end. This effect can be mitigated by deeper sequencing and
by using a different approach to enrich for mRNAs in the preparation for RNA-
sequencing (such as rRNA depletion).

Another significant feature, the support of an insertion (Figure 4.4D), showed that
IM-Fusion mainly missed ShearSplink insertions with a low support score. This bias
may be due to one or more of the following reasons. First, our RNA-seq data may
not be deep enough to detect very subclonal insertions that are only present in a
very small fraction of the tumor cells. Second, the observed differences may reflect
intratumoral heterogeneity, as we did not use the same tumor fragments for RNA
and DNA extraction and sequencing, but instead used two separate pieces of the
same tumor. For clonal insertions this is not an issue, but subclonal insertions might
be present in only one of the tumor pieces, therefore leading to some of the observed
differences between IM-Fusion and ShearSplink.

Finally, we found that the heuristic assignment of target genes by ShearSplink also
introduced biases. Even after restricting the assignment of target genes to the
closest gene, ShearSplink was unable to identify a unique target gene for some
insertions. For example, insertions within the Arfip1/Fbxw7 locus were frequently
assigned by ShearSplink to both Fbxw7 and Arfip1. Closer inspection of these
insertions indicated that these insertions are in fact closely clustered in Fbxw7 and
are therefore unlikely to affect the Arfip1 transcript that overlaps with Fbxw7. This
hypothesis was supported by the IM-Fusion results, which only identified insertions
in Fbxw7, indicating that Arfip1 is a false positive of the heuristic assignment by
ShearSplink. Similarly, the distance to target gene feature indicated that insertions
further away from their target genes are rarely matched by IM-Fusion. These hits are
also likely to be artifacts of the heuristic assignment of target genes by Shearsplink.

IM-Fusion-specific insertions

To determine why some insertions were only identified by IM-Fusion, we also
compared the set of insertions unique to IM-Fusion to the shared insertions. This
comparison identified the support score of an insertion as the most predictive
feature of IM-Fusion-specific insertions (Figure 4.4E). This feature, which reflects
the number of reads supporting the corresponding gene-transposon fusion, showed
that ShearSplink mainly misses insertions with a low IM-Fusion support score. As
these insertions are only supported by a few reads in the RNA-seq data, they are
likely either false positives of IM-Fusion or subclonal insertions that are present in a
small fraction of tumor cells or in specific parts of the tumor. In the latter case, the
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missed insertions are again likely attributable to heterogeneity between the DNA-
and RNA-seq samples, as previously explained for the ShearSplink support feature.

Comparison of identified candidate genes

To assess if IM-Fusion identified different candidate genes than ShearSplink, we
compared the DE CTGs from IM-Fusion to the genes associated with CISs from the
ShearSplink analysis. This comparison showed that IM-Fusion and ShearSplink iden-
tified 14 and 32 candidate genes respectively, of which 12 were shared between both
approaches. From a comparison of the rankings of the candidate genes (Figure 4.4F),
we saw the strongest concordance between the most frequently recurring candidate
genes, with more discrepancy among the less frequent candidates.

To determine why some ShearSplink candidate genes were not identified by IM-
Fusion, we examined them in more detail. Five genes (Arfip1, Gm26836, Gm14798,
Ppp2r2a and Bach2) were not identified at all by IM-Fusion, suggesting that these
are either false positives of the ShearSplink analysis, as we have already argued for
Arfip1, or are weak/subclonal insertions that were not picked up by IM-Fusion. For
Nf1, IM-Fusion did detect several weak insertions, which were only supported by
single reads and were therefore filtered from the CTG analysis. These insertions,
together with additional validation of several ShearSplink insertions (Figure S4.3
Supplementary Figure S4.3), demonstrated that Nf1 was not a false positive of the
ShearSplink analysis. However, closer inspection showed that Nf1 insertions were
generally supported by few reads in the ShearSplink data, thereby explaining their
omission by IM-Fusion.

Several other genes (Setd5, Gab1, Ppp1r12b, e.g.) were identified to have insertions
by IM-Fusion, but were not detected in enough samples to be selected as a CTG.
Further analysis showed that insertions in missing samples were supported by few
ShearSplink reads, indicating that these insertions are missed due to their low
clonality. This also explains why several of these genes (Ppp1r12b, Nfix, Rmb47, etc.)
are not differentially expressed in the presence of an insertion, as we are less likely
to pick up expression differences if the signal is weak due to subclonality.

A few candidate genes, including Fgfr2 – the top hit from the ShearSplink analysis,
were not selected as DE CTGs due to a lack of differential expression. Closer analysis
showed that Fgfr2 is affected by a mix of sense and antisense insertions. Whilst the
antisense insertions merely truncate the gene, the sense insertions both truncate the
gene and induce the overexpression of a partial C-terminal transcript (Supplementary
Figure S4.4). Together, this results in a mix of samples with increased and decreased
expression, thereby representing a more complex pattern of expression changes than
the overall changes that the DE test was designed to detect. This indicates that,
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although the DE test is useful for prioritizing candidate genes, frequently recurring
CTGs that are not differentially expressed should be investigated in more detail
to avoid filtering out more complex cases of differential expression. This can, for
example, be done by grouping samples based on the orientation of their insertions
(as done here) or on the involved SD/SA sites if these are expected to have different
effects on expression.

Finally, besides the known candidates, IM-Fusion identified two novel candidates
that were not identified by ShearSplink. Interestingly, both of these genes were
identified in similar numbers of samples (two to three samples) by both ShearSplink
and IM-Fusion, indicating that IM-Fusion may have more power to identify rare
CTGs.

4.4.4 Application of IM-Fusion to paired-end
RNA-sequencing data from B-ALL tumors

To test IM-Fusion on paired-end RNA-sequencing data, we used an additional dataset
of SB-induced B-cell acute lymphoblastic leukemias (B-ALL) for which both tar-
geted DNA-sequencing and relatively deeply sequenced paired-end RNA-sequencing
(70–90 million reads) was available21. In the original analysis of this dataset, Van
der Weyden et al. first identified CISs from targeted DNA-sequencing data, and then
selected predicted target genes that showed significant differential expression in the
presence of an insertion (DE CISs). For our comparison, we applied IM-Fusion using
only the RNA-sequencing data and compared the identified insertions and CTGs
to the results of the DNA-seq analysis. In light of the higher sequencing depth of
the B-ALL dataset (relative to the ILC dataset), we removed insertions with fewer
than 10 supporting reads in the CTG analysis to avoid selecting genes that are
recurrently detected but have low support, as these are likely to represent false
positives (Supplementary Figure S4.5).

CTG comparison

On average, 0.72% of the mate pairs in each sample reflected chimeric alignments, of
which 0.45% supported potential gene-transposon fusions (Table S4.4). From these
fusions (Supplementary Table S4.5, IM-Fusion identified six CTGs (Jak1, Stat5b,
Cblb, Zfp423, Dlx3 and Bmi1), of which all except Bmi1 and Dlx3 coincided with the
six DE CISs identified by the DNA-seq analysis (Figure 4.5A-B). Two genes were only
identified by the DNA-seq analysis (Foxp1 and Il2rb). Closer inspection of the original
DNA-seq data showed that insertions in these genes were generally supported by
<10 reads (Supplementary Table S4.6), suggesting that these insertions are subclonal
and are therefore not represented in the RNA-seq sample due to the afore-mentioned

4.4 Results 129



A

C

B

Fig. 4.5. Comparison of candidate genes identified by IM-Fusion and the original
DNA-sequencing analysis in the B-ALL dataset. (A) Comparison of candidate
gene rankings between IM-Fusion (left) and the original DNA-seq-based analysis
(right). Colors are coded as in Figure 4.4F. (B) Overlap of IM-Fusions DE CTGs
and the published DE CISs. (C) Comparison of DE CTG rankings by IM-Fusion on
the single- and paired-end versions of the B-ALL dataset.

issues with sample heterogeneity. Interestingly, both of the novel CTGs (Bmi1, Dlx3)
have been reported to play a role in the development of B-ALL25,26, suggesting that
these are true hits that were missed by the DNA-based analysis.

Effect of sequencing depth

To determine how sequencing depth affects the detection of insertions and CTGs, we
made use of the high sequencing depth of the B-ALL dataset to repeat the analysis at
reduced depth by downsampling the original dataset to 15, 30, 50 and 70 million
reads per sample. These analyses showed that the number of detected insertions
increases linearly with the sequencing depth (Supplementary Figure S4.6A), indicat-
ing that additional sequencing depth provides more power to detect insertions. In
contrast, only one extra DE CTG (Dlx3) was detected at higher sequencing depths
(Supplementary Figure S4.6B-C), suggesting that deep sequencing may provide
limited returns when screening for candidate genes. However, less insertions were
detected in some of these CTGs at the lower depths (Supplementary Table S4.7),
demonstrating that a higher sequencing depth will provide more accuracy in the
detection of weak insertions.
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Single- versus paired-end sequencing

To study the added value of paired-end sequencing, we simulated a single-end
version of the dataset by applying IM-Fusion to only one of the paired-ends. Although
the analysis of the single-end dataset identified the same DE CTGs as the paired-
end analysis (Figure 4.5C), the paired-end data yielded on average two times
higher support scores for insertions due to the higher effective depth of paired-end
sequencing, and identified a number of insertions that were not detected in the
single-end sequencing data (Supplementary Table S4.8). Overall, this suggests that
paired-end sequencing data is not strictly necessary for detecting insertions, but is
beneficial for the detection of weak insertions.

Comparison with Fusion Finder

Finally, to compare IM-Fusion with existing approaches, we analyzed the B-ALL
dataset using Fusion Finder9, which uses Tophat224 to identify transposon insertions
from discordant mate pairs in paired-end RNA-sequencing data. Comparison of the
identified insertions showed that Fusion Finder identified recurrent insertions in
Cblb and Dlx3, but was only able to identify insertions in a single sample for Jak1
and Bmi1, and was unable to detect insertions in any of the other DE CTGs identified
by IM-Fusion (Supplementary Table S4.9).

More detailed analyses of the results showed that the insertions in CTGs missed
by Fusion Finder are (i) biased toward SD insertions and (ii) mainly supported
by chimeric reads overlapping the fusion boundary, rather than mate pairs that
span the fusion (with one mate on either side of the fusion). The latter explains
why the majority of these insertions were not detected by Fusion Finder, as Fusion
Finder does not incorporate split read information into its insertion detection. This
highlights an important advantage of using fusion-aware aligners such as STAR and
Tophat-Fusion, as these aligners explicitly account for chimeric fusion reads in their
alignment, resulting in increased sensitivity for the detection of these insertions.

Although Fusion Finder failed to detect insertions involving the SD site of the
transposon in this dataset, it did identify SD insertions in the original study by Temiz
et al.9. We expect that the differences between our result and theirs are due to
differences in read lengths, as the B-ALL dataset uses 100 bp reads compared to the
50 bp read length used in their dataset. The longer read length makes it more likely
that reads overlap the fusion boundary, making an approach that uses chimeric reads
preferable with longer read lengths.
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4.5 Discussion

We have presented IM-Fusion, a novel approach for identifying transposon insertion
sites from gene-transposon fusions in RNA-sequencing data. A key advantage of
this approach is that it focuses on identifying insertions that affect gene expression.
As such, IM-Fusion provides a significant filter that strongly enriches for insertions
that actually affect the expression of their target genes and are therefore most likely
to be biologically relevant. This greatly increases the specificity of the approach,
providing more confidence in detected insertions and genes and increasing our
power to identify rare candidate genes. Furthermore, by combining the insertions
with a differential expression analysis, IM-Fusion provides valuable insight into the
effect of insertions on the affected target genes.

An important advantage of using RNA-sequencing rather than targeted DNA-
sequencing for identification of transposon insertions, is that RNA-sequencing pro-
vides much more information than just the location of insertion sites. For example,
IM-Fusion uses RNA-expression information to determine how a gene is affected by
the presence of an insertion. The same expression data may also be used to identify
more global changes in gene expression associated with tumor subtypes or with
specific insertions17, or be used to detect single nucleotide variants and somatic
gene fusions that contribute to tumorigenesis. As an example of the latter, we have
identified several endogenous fusions in the ILC and B-ALL datasets (Supplementary
Figure S4.7 and Table S4.10), including several Fgfr2 fusions that reflect known
oncogenic fusions previously identified in human cancers27. Most importantly, these
extra analyses can be performed on the same RNA-seq sample, thereby inherently
avoiding potential discrepancies resulting from the use of different tumor material
for DNA- and RNA-sequencing, an issue that we encountered in the analyses of both
the ILC and the B-ALL datasets.

A potential limitation of IM-Fusion is that it requires splicing between the transposon
and the affected genes to identify the corresponding insertions. As a result, it will
not detect transposon insertions that affect expression via enhancer sequences, as
the effects of these insertions are not mediated via splicing. In our analyses, this
does not seem to be an issue, as DNA-sequencing approaches did not identify any
candidate genes that were perturbed via enhancer effects. This suggests that the
MSCV enhancer sequence present in the T2/Onc transposon is not particularly active
and that the transposon therefore mainly affects expression via splicing. This notion
is in agreement with previous studies reporting preferential intragenic insertion of
the T2/Onc transposon8, making it less likely to act as an enhancer. Enhancer effects
may however play a more important role in case other transposons are employed.
Similarly, IM-Fusion may be unable to detect insertions that result in transcript
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instability or degradation, as these will be under-represented in the RNA-seq data.
Although we do not observe evidence pointing to transcript degradation in the
presence of (clonal) SB insertions (Supplementary Figure S4.8), other transposons
might have different effects on transcript stability.

A strategy to identify both insertions whose effects are mediated by transcriptional
enhancement and insertions that affect expression via splicing, would be to combine
DNA- and RNA-sequencing methods, ideally using RNA and DNA isolated from the
same sample. In such a combined approach, RNA-sequencing could be used to iden-
tify and characterize insertions that are mediated via splicing. For insertions that are
uniquely identified by DNA-sequencing, the RNA-seq data could be used to analyze
their effects on expression of the predicted target genes. Such a strategy would
effectively unite the advantages of both approaches, by combining the unbiased
identification of insertion sites by DNA-sequencing with the additional biological
information provided by RNA-sequencing in a single analysis.

Although Temiz et al.9 have provided a proof-of-concept showing that transposon
insertions can be identified via paired-end RNA-sequencing, our analysis was per-
formed on a much larger dataset (123 versus 20 samples), allowing us to determine
biases that affect insertion detection in DNA- and RNA-sequencing data and identify
potential limitations of either approach. Furthermore, IM-Fusion improves on Fusion
Finder by using a fusion-aware RNA-seq aligner to identify transposon insertions,
which enables the use of single-end RNA-sequencing data and increases the sensitiv-
ity and the accuracy of insertion detection by also using chimeric reads to identify
gene-transposon fusions. Finally, IM-Fusion is provided as comprehensive software
package that enables users to perform the entire analysis from start to finish, in-
cluding the generation of augmented reference genomes, identification of CTGs and
testing for differential expression.

In summary, IM-Fusion provides a convenient approach for the identification of
insertion sites and their effects on target gene expression from standard single- and
paired-end RNA-sequencing data. By combining the identification of insertion sites
with expression data, our approach provides valuable insight into the effect of an
insertion on its target gene(s) and helps prioritize insertions that are biologically
relevant. We expect that this approach will significantly enhance the accuracy of
cancer gene discovery in forward genetic screens and prioritization of the identified
candidate cancer genes for functional validation studies.
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4.6 Supplementary Material

4.6.1 Supplementary Figures

A Sample overview
# Sample Chrom. Position Strand Support Transposon feature Gene Type
1 13SKA014-R3 15 77807867 1 198 En2SA Myh9 Shared
2 12SKA029-R3 15 77807867 1 10 En2SA Myh9 IM-Fusion-specific
3 12SKA101-L3 15 77807867 -1 10 SA Myh9 Shared
4 12SKA102-R3 15 77807867 -1 2 SA Myh9 IM-Fusion-specific

1 182448400 1 7 SD Trp53bp2 Shared
5 11KOU051-R3 1 182448400 1 23 SD Trp53bp2 Shared
6 12SKA017 2 84615087 1 6 SA Ctnnd1 IM-Fusion-specific
7 12SKA108-R3 2 84650405 1 2 SA Ctnnd1 Shared
8 11KOU012-R5 2 84650405 1 9 SA Ctnnd1 Shared

B Validation results

Hprt

Ctnnd1 FW2 - En2SA 

Ctnnd1 FW1 - En2SA 

SD - Trp53bp2

Myh9 - SA

Myh9 - En2SA 

MQ1 2 3 4 5 6 7 8

Fig. S4.1. Validation of gene-transposon fusions from the ILC dataset via targeted
PCR on cDNA. A selection of predicted insertions from IM-Fusion were validated
using PCR primers targeting the corresponding fusions. (A) Overview of the
samples used in the validation. The Type column indicates whether the insertion
was shared or only identified by IM-Fusion. Samples were chosen to (i) include
a mix of SA/SD/En2SA insertions and (ii) span a range of low/high support
scores. (B) Results of the validation, showing that each of the expected fusions
is indeed detected in the cDNA of the corresponding sample. MQ (= MilliQ) is
a water control, which was used a negative control.
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B

Fig. S4.2. Feature bias and differential expression for all DE CTGs in the ILC dataset.
(A) Frequencies of the transposon features involved in the insertions for each
CTG. A bias towards SA/En2SA favors truncation of the gene, whereas a bias
towards SD favors overexpression. (B) Differential expression across the inser-
tion sites for each CTG. An increase in the presence of an insertion indicates
overexpression, a decrease indicates truncation.
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A Sample overview
# Insertion id Sample Chrom. Position Strand Support Gene Type

1 11KOU029-R5.INS_12 1566_15_11KOU029-R5 11 79461479 1 11 Nf1 Shared
2 12SKA029-R3.INS_15 2049_38_12SKA029_R3 11 79359162 -1 10 Nf1 ShearSplink-specific
3 12SKA033-R3.INS_10 2800_1_12SKA033-R3 11 79426158 -1 6 Nf1 ShearSplink-specific
4 12SKA068-L3.INS_15 2800_20_12SKA068-L3 11 79439837 1 2 Nf1 ShearSplink-specific
5 12SKA092-L2.INS_10 2800_36_12SKA092-L2 11 79446215 -1 15 Nf1 ShearSplink-specific
6 12SKA104-R3.INS_1 2800_44_12SKA104-R3 11 79382459 -1 58 Nf1 ShearSplink-specific

B Validation results
1 2 3 4 5 6 MQ

Nf1-1

Nf1-2

Nf1-3

Nf1-4

Nf1-5

Nf1-6

Hprt

Fig. S4.3. Validation of ShearSplink insertions from the ILC dataset via targeted PCR
on DNA. Several ShearSplink insertions in Nf1 were validated using PCR primers
targeting the insertion sites. (A) Overview of the samples and insertions used in
the validation. The Type column indicates whether the insertion was shared or
only identified by ShearSplink. (B) Results of the validation, showing that each
of the expected insertions is indeed detected in the DNA of the corresponding
sample. MQ (= MilliQ) is a water control, which was used a negative control.
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B

A

Fig. S4.4. Detailed analysis of insertion effects in Fgfr2 in the ILC dataset. (A) Strati-
fying the differential expression test for the orientation of insertions in samples
shows that samples with sense insertions (using the SA/SD sites) show sig-
nificant overexpression of the end of the gene, whilst samples with antisense
insertions (using the En2SA site) show a decrease in expression. (B) The major-
ity of samples with a sense insertion show both truncation of the transcript via
the SA site and overexpression via the SD site. This indicates that these samples
effectively have a truncated gene transcript, but that the remainder of the gene
is simultaneously overexpressed as a separate transcript.
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B

Fig. S4.5. Number of supporting mates in the B-ALL paired-end RNA-sequencing
data, before and after filtering by support scores. (A) Support for top genes
(ranked by insertion frequency) before filtering insertions for a minimum sup-
port of 10 reads. This shows that a number of genes (such as Pten, Gm6206 and
Ube2d2a) recur frequently, but have very low support and are therefore more
likely to represent false positives or weak/subclonal insertions. (B) Support for
the top genes after filtering for a minimum support of 10 mates. This shows
that the remaining genes all have a reasonable number of supporting reads. As
such, this filtering improves the confidence in any CTGs identified from this
filtered set of insertions and improves detection power by limiting the number
of tests (thereby reducing the multiple testing correction).
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A B

C

Fig. S4.6. Effects of downsampling in the B-ALL dataset. (A) The number of detected
insertions as a function of sequencing depth, showing a linear relation between
sequencing depth and the number of insertions. (B) The number of DE CTGs
detected at different sequencing depths. (C) Overlap between DE CTGs detected
across the different sequencing depths.
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A Sample overview

Sample Left gene Right gene Left breakpoint Right breakpoint Support (junction)

12SKA127-R3 Fgfr2 Kif16b 7:130167703:- 2:142834136:- 5
12SKA035-L3 Fgfr2 Myh9 7:130167703:- 15:77767663:- 3
11KOU023 Fgfr2 Tbc1d1 7:130167703:- 5:64256715:+ 11

B Validation results

Hprt

MQ1 2 3

Fgfr2-Tbc1d1

Fgfr2-Myh9

Fgfr2-Kif16b

Fig. S4.7. Validation of endogenous Fgfr2 fusions from the ILC dataset via targeted
PCR on cDNA. (A) Overview of endogenous fusions from STAR-Fusion (Supple-
mentary Table S4.10) involving Fgfr2, which reflect oncogenic fusions of FGFR2
identified in human breast cancers. (B) Validation results for these fusions,
showing that each of the expected fusions is indeed detected in the cDNA of
the corresponding sample. MQ (= MilliQ) is a water control, which was used a
negative control.

4.6 Supplementary Material 141



Without
insertion

With
insertion

0
1
2
3
4
5
6
7
8

E
xp

re
ss

io
n 

be
fo

re
in

se
rti

on
s 

(lo
g2

)

Fgfr2 expression

0.0 0.2 0.4 0.6 0.8 1.0

Clonality

2
3
4
5
6
7
8
9

10 rs= -0.09
p = 4.79e-01

Fgfr2 expression vs. clonality

Without
insertion

With
insertion

0

2

4

6

8

10

E
xp

re
ss

io
n 

be
fo

re
in

se
rti

on
s 

(lo
g2

)

Trps1 expression

0.0 0.2 0.4 0.6 0.8 1.0

Clonality

2

4

6

8

10

12 rs= 0.54
p = 1.81e-05

Trps1 expression vs. clonality

Without
insertion

With
insertion

5

6

7

8

9

10

11

E
xp

re
ss

io
n 

be
fo

re
in

se
rti

on
s 

(lo
g2

)

Ppp1r12a expression

0.0 0.2 0.4 0.6 0.8 1.0

Clonality

7

8

9

10

11

12 rs = 0.38
p = 5.22e-03

Ppp1r12a expression vs. clonality

Without
insertion

With
insertion

2
3
4
5
6
7
8
9

10

E
xp

re
ss

io
n 

be
fo

re
in

se
rti

on
s 

(lo
g2

)

Myh9 expression

0.0 0.2 0.4 0.6 0.8 1.0

Clonality

6

7

8

9

10

11

12 rs = 0.09
p = 6.29e-01

Myh9 expression vs. clonality

Without
insertion

With
insertion

0

1

2

3

4

5

6

7

E
xp

re
ss

io
n 

be
fo

re
in

se
rti

on
s 

(lo
g2

)

Trp53bp2 expression

0.0 0.2 0.4 0.6 0.8 1.0

Clonality

2

3

4

5

6

7 rs = 0.09
p = 7.22e-01

Trp53bp2 expression vs. clonality

Fig. S4.8. Effects of ShearSplink insertions on transcript stability (quantified using
expression before the insertion sites) in the ILC dataset. Compares expres-
sion between samples with and without an insertion (left) and across samples
with varying levels of insertion clonality (right), showing that (clonal) insertions
do not result in reduced expression. Expression values were quantified using
the exons before the insertion sites (after normalizing for overall differences in
expression between samples), as the expression of these exons should not be
affected by the insertion(s). Correlations and p values were calculated using
Spearman’s Rank correlation (indicated as rs and p, respectively). For brevity,
results are shown for the top 10 ShearSplink candidate genes (continued on the
next page).
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Fig. S4.8. Effects of ShearSplink insertions on transcript stability (continued).
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4.6.2 Supplementary Tables (available online)

Tab. S4.1. Quantification of fusion reads in the ILC dataset. Quantification of the
number of RNA-seq reads in each sample of the ILC dataset, together with the
number of reads supporting gene-fusions and how many of these fusion reads
support gene-transposon fusions. The two ratio columns indicate the fraction
of fusion reads relative to the total number of reads and the fraction of fusions
that support gene-transposon fusions.

Tab. S4.2. Fusions identified by IM-Fusion in the ILC dataset. Overview of all inser-
tions identified by IM-Fusion in the ILC dataset. The genomic breakpoints
of the corresponding fusions are described in the Chromosome, Position and
Strand columns. The Feature columns describe the transposon features that
are involved in the fusions and the position of the transposon breakpoints.
The Gene columns describe the genes involved in each fusion, whilst the Novel
transcript column indicates if a novel transcript is created by the fusion. Finally,
the Support and Ffpm columns indicate the degree of support for each fusion
(see Methods for more details).

Tab. S4.3. Overview of the CTGs identified by IM-Fusion in the ILC dataset. DE CTGs
were selected with a corrected CTG p value < 0.05 and a DE p value < 0.05.
The DE direction column indicates the direction of the differential expression
after the insertion site.

Tab. S4.4. Quantification of fusion reads in the B-ALL dataset. Quantification of the
number of RNA-seq reads in each sample of the B-ALL dataset, together with
the number of reads supporting gene-fusions and how many of these fusion
reads support gene-transposon fusions. The two ratio columns indicate the
fraction of fusion reads relative to the total number of reads and the fraction
of fusions that support gene-transposon fusions (same as for Supplementary
Table S4.1).

Tab. S4.5. Fusions identified by IM-Fusion in the B-ALL dataset. Overview of all inser-
tions identified by IM-Fusion in the B-ALL dataset. The table structure is the
same as described for Supplementary Table S4.2.
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Tab. S4.6. Overview of B-ALL insertions from the original DNA-sequencing analysis
for each of the published candidate genes. Due to lack of the original
annotation, insertions were selected for each gene if they occurred within 20kb
of the gene. The Support column indicates the number of reads supporting
the insertions. The RNAseq column states whether the insertion was also
identified in the (single-end) RNA-sequencing analysis performed using IM-
Fusion. Altogether, these tables show that the majority of the insertions not
identified by IM-Fusion had a relatively low depth in the DNA-sequencing data.
Additionally, Foxp1 and Ill2rb are generally only supported by insertions with
low depth.

Tab. S4.7. Number of samples with insertions in each DE CTG of the B-ALL dataset at
different sequencing depths, showing that additional insertions in Jak1,
Stat5b and Dlx3 are detected at the higher depths.

Tab. S4.8. Overview of single- and paired-end support scores for insertions identi-
fied by IM-Fusion for the DE CTGs in the B-ALL dataset. For brevity, the
table is limited to the strongest insertion for each gene in the corresponding
sample. This table highlights four insertions that were missed by the single-end
analysis, as well as differences in support scores between the single-end and
paired-end dataset, although the majority of the paired-end insertions are
identified from chimeric reads spanning the fusion junction.

Tab. S4.9. Overview of insertions identified by Fusion Finder in the B-ALL dataset.
For brevity, this table is limited to the published candidate genes and DE CTGs
from the IM-Fusion analysis, as these were the candidates of interest for the
comparison.

Tab. S4.10. Overview of the top endogenous fusions detected in the two RNA-seq
datasets. (A) Top 20 fusions identified in the ILC dataset. Fusions with En2
and Foxf2 were filtered from the results, as these genes contain sequences
that are homologous with the En2SA and SD sequences of the transposon.
These fusions therefore actually represent gene-transposon fusions, rather
than endogenous fusions, which is also evident from the observation that all
involved fusion partners coincide with candidate genes from the IM-Fusion
analyses. The three predicted Fgfr2 fusions were validated using a targeted
PCR (Supplementary Figure S4.7), thus confirming the presence of these
fusions. (B) Top 20 fusions identified in the B-ALL dataset, using the same
filtering. The engineered Etv6-Runx1 fusion was detected in most samples,
supporting the validity of the results. This fusion was likely missed in the
remaining four samples due to (i) differences in expression of the fusion
and/or (ii) differences between the mouse/human sequences of Runx1 (as the
reference used for STAR-Fusion contains the mouse Runx1 sequence, whilst
the engineered fusion was created using the human sequence).
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