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2Scope of this thesis



2.1 Introduction

Breast cancer is the most common malignancy affecting women in the Western
world, with more than 17,000 cases being diagnosed in the Netherlands alone each
year*. Overall treatment of breast cancer is relatively successful, however recurrence
of the disease remains a significant problem in clinical practice1. Breast cancer
is known to be a heterogeneous disease and has therefore been subdivided into
different subtypes, based on histological characteristics2, gene expression patterns3

and expression of different markers such as estrogen receptor-α (ER-α), progesterone
receptor (PR) and human epidermal growth factor receptor 2 (HER2, aka ERBB2),
which are known to drive expression of downstream signaling pathways and increase
cellular proliferation4–6. Genetic analyses have identified several common genetic
alterations associated with specific subtypes7–9, indicating that biological differences
between the subtypes strongly shape tumor development.

2.2 A tale of two breast cancer subtypes

In the remainder of this thesis, we focus on two particular subtypes of human breast
cancer: invasive lobular carcinoma and triple-negative breast cancer.

Invasive lobular carcinoma (ILC) is a histological subtype of breast cancer that
represents 8-14% of all breast cancer cases. The classical form of ILC is characterized
by rows of small discohesive cells, which invade into the surrounding stroma in a
single-file pattern10. This invasive phenotype is generally attributed to the functional
loss of E-cadherin (encoded by the CDH1 gene), a cell-cell adhesion molecule
that forms a key component of adherens junctions and plays an important role in
maintaining epithelial integrity11. Functional loss of E-cadherin occurs in 90% of
all ILCs and is mainly due to mutational inactivation, loss of heterozygosity (LOH)
or impaired integrity of the components of the E-cadherin–catenin complex9,12–14.
Besides this, ILCs are generally ER- and PR-positive and rarely show amplification of
HER2. However, long-term outcome of ILC is generally worse than stage-matched
invasive ductal carcinoma (IDC)15, suggesting that biological differences between
the two subtypes may be influencing treatment efficacy.

Triple-negative breast cancer (TNBC) is a heterogeneous subtype of breast cancer that
is characterized by low expression of ER, PR and HER2. Altogether, TNBC accounts
for 10-17% of all breast cancer cases, depending on the methods and thresholds
used to assess the status of the three receptors16. At the mutational level, TNBCs
are enriched for mutations in TP537 and BRCA117, which plays a key role in the
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repair of DNA double-strand breaks (DSBs) via homologous recombination (HR). As
such, BRCA-deficient TNBCs generally show high levels of chromosomal instability,
which is attributed to the HR deficiency of these tumors18. Compared to other
subtypes, TNBCs occur more frequently in younger patients (<50 years) and are
significantly more aggressive19,20. Moreover, due to the lack of specialized therapies,
chemotherapy currently remains standard-of-care for patients with TNBC21, resulting
in a relatively poor prognosis.

2.3 Identifying drivers of human (breast) cancer

A common feature of ILC and TNBC, is that they respond more poorly to existing
therapies than other breast cancer subtypes. As such, both breast cancer subtypes
would be benefited by the development of novel therapies targeting specific vul-
nerabilities in these tumors. Efforts to identify such vulnerabilities have generally
focused on identifying genes driving tumor development and determining if these
drivers can be exploited to develop novel therapies, either by targeting the drivers
themselves or by exploiting other vulnerabilities stemming from the drivers.

Recently, several human sequencing studies have been undertaken to identify drivers
of human ILC besides functional loss of E-cadherin9,22. Together, these studies
have shed light on additional genetic alterations that are thought to be driver
events, including chromosomal gains of 1q and 16p23, loss of 16q24, activating
mutations in PIK3CA25,26 and inactivating mutations in TP5327. Further molecular
characterization has identified multiple aberrations in other components of the
PI3K-AKT pathway, indicating that PI3K-AKT signaling plays an important role in ILC
development9,22,28. However, a large fraction of human ILCs cannot be explained by
activated PI3K-AKT signaling and TP53 mutations, indicating that other aberrations
are likely to play additional roles in tumorigenesis. Therefore, to identify novel
genes and pathways driving ILC development, we used the Sleeping Beauty (SB)
transposon system to perform an insertional mutagenesis (IM) screen in female mice
with mammary-gland specific inactivation of Cdh1. The results of this screen are
described in Chapter 3.

One of the main challenges of identifying candidate cancer drivers using an IM-based
forward genetic screen, is that these screens can detect many potential cancer genes,
of which only a fraction is actually involved in driving tumorigenesis. Besides this, it
can be challenging to identify how genes are affected by their transposon insertions,
as the targeted DNA-sequencing approaches that are typically employed for detecting
insertion sites29–31 do not provide any evidence of how insertions affect gene expres-
sion. We reasoned RNA-sequencing-based insertion site detection approaches could
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alleviate these issues by focusing on detecting insertions that are actually expressed
(and therefore more likely to have an actual effect), whilst simultaneously providing
insight into how the expression of candidate genes is affected. To demonstrate this,
we developed a computational approach and accompanying software package called
IM-Fusion, which identifies transposon insertions from gene-transposon fusions in
RNA-sequencing data. Details of the approach, including a comparison with targeted
DNA-sequencing-based approaches, are described in Chapter 4.

As a result of their chromosomal instability, BRCA-deficient TNBCs develop character-
istic patterns of copy number aberrations32, suggesting that these aberrations harbor
additional genes driving tumorigenesis. Unfortunately, these aberrations generally
harbor tens-to-hundreds of genes, complicating the search for the true driver genes
in these regions. To address this issue, computational approaches (e.g. RUBIC,
GISTIC) have been developed to identify minimal recurrently aberrated regions and
thereby narrow down lists of potential drivers33,34. Besides this, comparative oncoge-
nomics approaches have also been used to restrict lists of candidate driver genes, by
focusing on genes that are recurrently aberrated in tumors from both mouse models
and human patients35. In Chapter 5, we explore the copy number landscape of
BRCA1-mutated TNBC using several mouse models containing previously identified
drivers such as Myc, Met and Rb1. By applying RUBIC in a comparative analysis
between both mouse and human tumors, we show that engineered MYC overexpres-
sion in BRCA1-deficient TNBC dramatically reshapes the copy number landscape
and identify MCL1 as a druggable driver in these tumors.

2.4 Preventing therapy resistance

Besides identifying druggable target genes, a significant challenge in the development
of targeted therapies is the emergence of (acquired) therapy resistance, which is
unfortunately frequently observed in patients after prolonged treatment with several
targeted therapies36. To prevent the development of therapy resistance, it is crucial
to gain an understanding of how tumors become resistant to therapies and use
these insights to develop new (combination) treatments that aim to prevent or
overcome resistance. Besides this, it is important to identify which patients are
likely to be intrinsically resistant to treatment, so that these patients can be treated
accordingly.

As part of the insertional mutagenesis screen described in Chapter 3, we identified
FGFR2 as a key driver of ILC, suggesting that FGFR inhibition would be a suit-
able therapeutic strategy for treating FGFR-driven ILC. Although no FGFR-targeting
therapies are currently approved for the treatment of human cancers, several thera-
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peutics are currently being evaluated in phase I/II clinical trials for different types
of cancers37,38). Unfortunately, studies with some of these inhibitors have shown
that tumors can develop resistance to treatment, mainly via secondary mutations
in FGFRs39–41 and activation of alternative RTKs42–45. In Chapter 6, we explore
the effectiveness of FGFR inhibition in FGFR-driven ILCs by transplanting tumor
fragments into multiple recipient mice and treating them with the FGFR inhibitor
AZD4547. Besides this, we exploit the ongoing transposon mutagenesis in these
tumors to identify potential resistance mechanisms to AZD4547, which may be used
for developing novel (combination) therapies that prevent or overcome resistance.

In BRCA-deficient TNBC, the most promising targeted treatments have aimed to
exploit vulnerabilities resulting from the HR-deficiency incurred by BRCA1/BRCA2
loss18. This has led to the development of several PARP inhibitors, which indirectly
induce the accumulation of DSBs in the DNA46,47. These DSBs cannot be repaired in
an error-free fashion without BRCA1/2, leading to extensive DNA damage and cell
death in BRCA-mutant cells48,49. Unfortunately, the clinical effectiveness of PARP
inhibitors is limited by the emergence of therapy resistance50,51, typically due to
restoration of HR function via secondary mutations in BRCA1/252,53 or mutations
in the 53BP1-RIF1-REV7 pathway (reviewed by Annunziato et al.54). However, for
BRCA2-mutant tumors, there is no evidence that HR can be restored in the absence
of BRCA2, suggesting that other mechanisms must be driving therapy resistance. To
identify these additional resistance mechanisms, we combined in vitro screens in
BRCA2-deficient mammary tumor cells with multi-omics analysis of BRCA2-deficient
mouse mammary tumors that acquired PARPi resistance in vivo. The results of these
analyses are described in Chapter 7.

2.5 Future perspectives

Coming to the end of this thesis, in Chapter 8 we reflect on the methods and
results presented in this work and how they may be applied or extended in future
endeavours. Besides this, we also consider several technological advances and
important challenges that remain to be addressed in the field. Finally, we discuss
several limitations of mouse models in the light of expanding human datasets and
development of three-dimensional cell culture models, and what this means for the
future role of mouse models in cancer research.
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