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1.1 Abstract

Cancer is a complex disease, in which cells progressively accumulate mutations
disrupting their cellular processes. A fraction of these mutations drive tumourigen-
esis by affecting oncogenes or tumour suppressor genes, but many mutations are
passengers that do not actively contribute to tumour development. The advancement
of DNA/RNA sequencing technologies has enabled in-depth analysis of thousands of
human tumours from various tissues to perform systematic characterization of their
genomes/transcriptomes and to identify (epi)genetic changes associated with cancer.
Combined with appreciable progress in algorithmic development, this expansion in
scale has resulted in the identification of many cancer-associated mutations, genes
and pathways that are considered to be (potential) drivers of tumour development.
However, it remains challenging to systematically identify drivers in complex am-
plicons or deletions of copy number driven tumours, in non-coding regions of the
genome and drivers affected by complex structural rearrangements. Furthermore,
functional characterization of drivers, including their underlying biological mech-
anism and their effects on tumour evolution, is challenging in the human context
due to the lack of genetically tractable experimental model systems in which the
effects of drivers can be studied in the context of their tumour microenvironment.
In this respect, mouse models of human cancer provide unique opportunities for
pinpointing novel driver genes and detailed characterization of these genes. In this
review, we provide an overview of approaches for complementing human studies
with data from mouse models. We also discuss technological developments for
cancer gene discovery and validation in mice.

1.2 Introduction

Cancer is a disease in which normal cells are deregulated by disruption of their
cellular processes, resulting in increased proliferation, survival and invasion of
surrounding tissues. This disruption is generally attributed to mutations in so-
called ‘driver’ genes, which provide cells with a selective growth advantage and
thereby drive their malignant transformation. Broadly speaking, driver genes can be
divided into two classes of genes: oncogenes and tumour suppressor genes (TSGs)1.
Oncogenes drive tumour development when activated by their mutations and are
typically involved in processes related to proliferation2, whereas TSGs are inactivated
during tumourigenesis and are generally involved in processes protecting cells from
DNA damage and malignant transformation.

Tumours are however mostly not the product of single mutations, but develop
progressively over time through the accumulation of multiple mutations. Depending
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on the affected gene(s), these mutations can increase the fitness or tumourigenic
potential of cells (additional driver mutations), or have no effect on tumourigenesis
(passenger mutations). Over time, this accumulation gives rise to subpopulations
of cells (subclones) harbouring distinct sets of mutations, which are subject to
Darwinian competition (clonal evolution) within the tumour lesion3 (Figure 1.1).
This competition pressures cells to acquire further mutations, resulting in increased
fitness and the continued evolution of competing subclones within the tumour.
External influences such as the immune micro-environment or drug treatment can
also strongly influence the evolutionary process, either by selecting for specific
subclones that are intrinsically resistant to immune surveillance or treatment, or
by applying additional evolutionary pressure to acquire new mutations that confer
resistance4.

To effectively treat patients using precision medicine, in which treatments are
tailored to target specific mutations that are present in a patient’s tumour, it is crucial
to identify exactly which mutations contribute to tumourigenesis and how they
do so. However, although human sequencing studies have identified many genes
contributing to cancer development, they do not provide evidence for causality or
detailed insight into the biological mechanisms by which these genes drive tumour
development. These studies also do not reveal whether drivers are essential for
tumour maintenance and may therefore be of limited use for designing effective
therapeutic strategies. In contrast, preclinical model systems such as genetically
engineered mouse models (GEMMs) provide an experimentally tractable approach,
in which the biological effects of specific mutations can be studied in more detail in a
controlled genetic background. In this review, we describe several aspects of mouse
models and how these can ultimately be applied to improve treatment of cancer
patients. To this end, we first highlight several challenges in translating findings
from human sequencing studies to the clinical setting, before explaining how some
of these challenges can be addressed using complementary approaches in mouse
model systems.

1.3 Challenges in human tumour sequencing
studies

Several major human sequencing studies have been undertaken over the past years,
aiming to identify and catalogue potential driver mutations across many different
cancer types5–8. One of the key challenges in analyzing data from these efforts has
been the separation of driver mutations from passenger mutations. To address this
issue, many computational approaches have been developed to select driver genes
using signals of positive selection in the pattern of somatic mutations in genes across
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Fig. 1.1. Darwinian evolution during tumour development. Tumourigenesis is a multi-
step process in which initially healthy cells progressively acquire multiple mu-
tations disrupting their cellular processes and increasing their tumourigenic
potential. Although many of these mutations are passengers that do not affect
the ability of cells to survive and proliferate, a few rare mutations are drivers that
will strongly increase the fitness of individual cells, allowing them to outcompete
other cells. Over time, this stochastic process gives rise to Darwinian competi-
tion between subclones of cells harbouring different sets of mutations, driving
selection towards subclones with increasing tumourigenic potential. External
interventions such as drug treatments can influence this process by eradicating
subclones that are sensitive to the given treatment. However, they can also drive
selection towards subclones that are resistant to the treatment, leading to the
emergence of therapy resistance that is seen in many cancer patients.

tumour samples. Examples include approaches based on mutation frequency9,10,
biases in the functional consequences of mutations11–14 and clustering of mutations
within genes15.

Although these approaches have proven successful in identifying many driver genes
affected by hotspot mutations, other types of mutations have proven more challeng-
ing. This is especially the case for DNA copy number driven diseases such as breast
cancer, in which approaches aimed at identifying recurrent copy number gains/losses
typically identify regions harbouring many genes16,17. Similarly, complex structural
rearrangements18 and mutations in non-coding regions19 can be difficult to pin-
point specific target genes, requiring further prioritization of candidate genes using
complementary approaches and/or exhaustive validation of potential drivers.

Another important challenge is the validation of putative driver genes and the
further characterization of their biological mechanism(s), as this insight is crucial for
understanding a driver’s role in tumourigenesis and identifying potential therapeutic
opportunities. Currently, most large-scale studies perform no or limited in vivo
validation of candidate genes20–24, as this additional follow-up is typically time- and
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labour-intensive. Furthermore, although some studies do perform in vitro validation
of candidate genes in human cell line models, this is likely to be of limited relevance25

as cancer cell lines harbour many additional mutations and are grown in a highly
artificial environment. Other in vitro models such as 3D tumour organoids26,27 may
provide an interesting alternative, but also lack a tumour microenvironment and
need to be grown in specific media28, which may limit the clinical translatability of
findings in these models.

Finally, many promising targeted therapies fail in the clinic due to the emergence
of treatment resistance. To understand why this is the case, it is important to
determine how different therapies impact the clonal evolution of a tumour and how
this leads to the development of treatment resistance. These insights can then be
used to develop new strategies that aim to prevent or overcome resistance. However,
detailed studies of clonal evolution and treatment resistance are challenging as
the development of resistance is often a stochastic process, as is evident from the
observation that patients can often develop multiple mechanisms of resistance to
the same treatment29–31. Combined with the limited availability of pre- and post-
treatment tumour samples from patients, this makes human studies less than ideal
for determining the range of potential resistance mechanisms. To identify and predict
these potential resistance mechanisms, we will therefore need experimental systems
that allow us to quantify the range of expected resistance mechanisms for a given
tumour and determine how these are impacted by different treatments or other
factors such as diverse genetic backgrounds.

1.4 Experimental models of human cancer

1.4.1 Patient-derived models

Experimental models of human cancer should be easy to manipulate and recapitulate
the genetic features and microenvironment of the original patient tumour as much
as possible. Human cancer cell lines have often been used for this purpose, as these
represent cell lines derived from patient tumours that are easy to manipulate in vitro.
However, cell lines are grown in a highly artificial environment and therefore undergo
a stringent selection process when being established, resulting in homogeneous
populations that no longer fully represent the genetic heterogeneity of the original
tumour32. More recently, 3D organoid models have been developed to overcome this
limitation by growing cells in three-dimensional media, which allows the formation
of more realistic organ-like structures33. This technique has enabled the development
of in vitro models for tissues that could not be established as cell lines28, suggesting
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that organoids are subject to less evolutionary pressure and are therefore more likely
to reflect the heterogeneity of the original patient tumours.

Human cell lines have been very popular in cancer research, as they remain relatively
close to the human setting, whilst providing a convenient platform for studying
cancer cell biology. As such, these in vitro models have proved instrumental in
delineating key biological signalling pathways and in preclinical drug screening34,35.
A drawback of human cell lines and organoids is however that they do not model
interactions with the tumour microenvironment and the effects of angiogenesis
and drug metabolism. To address these limitations, cell lines and organoids can be
injected into immune-deficient mice (Figure 1.2A) to create in vivo xenograft models.
However, although these xenograft models do capture interactions between tumour
cells and the (mouse) microenvironment, they do not recapitulate interactions with
the immune system due to the use of immunocompromised mice.

An alternative approach is to directly transplant tissue from human tissue into im-
munodeficient host mice, thereby creating patient-derived tumour xenograft (PDTX)
models. Compared to cell line- or organoid-based transplantation models, PDTX
tumours more faithfully retain the molecular, genetic, and histological heterogeneity
observed in the respective cancer patients, even after serial passaging in mice36,37.
As such, PDTX models have been a popular textitin vivo platform for preclinical drug
screening in a large variety of cancer types, such as breast cancer38,39, melanoma29,40

and colorectal cancer41–45. However, drawbacks of PDTX models are that certain
tumour types are much harder to establish in mice than others, and xenografts
may undergo mouse-specific tumour evolution46. Moreover, PDTX models still lack
an active immune system. Humanized mouse models aim to address this gap, by
introducing functional human immune systems into otherwise immunocompromised
mice47.

1.4.2 Genetically engineered mouse models (GEMMs)

A significant limitation of patient-derived models, is that they are typically estab-
lished using heavily mutated, end-stage tumours and can therefore not be used to
study the effects of individual mutations on tumour initiation and progression. In
contrast, genetically engineered mouse models (GEMMs) can be used to introduce
individual mutations identified from human sequencing projects into a clean genetic
background, allowing detailed characterization of these mutations and their effects
on cancer susceptibility, tumour formation, progression and maintenance.

The first GEMMs were developed by introducing cloned cancer genes into the genome
of transgenic mice (Figure 1.2B), providing the first conclusive evidence that mice
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Fig. 1.2. Schematic overview of different types of mouse models of human cancer.
(A) Patient-derived models are created by transplanting human material into
immune-deficient mice. This can be done by either injecting cell lines or organoids
which were previously derived from human tissue, or by directly grafting human
tumour pieces into mice. (B) In conventional GEMMs, de novo tumourigenesis
is induced either by tissue-specific expression of an oncogene or by germline
inactivation of a TSG. The engineered genes are typically selected based on
pre-existing data from (human) sequencing studies. (C) In conditional GEMMs,
de novo tumourigenesis is induced by tissue-specific inactivation of conditional
TSG alleles and/or activation of conditional oncogenes via Cre-loxP-mediated
recombination. (D) In somatic GEMMs, tumourigenesis is induced either by
injecting lentiviral vectors expressing specific oncogene(s) into the tissue of
interest, or by injecting Cas9 together with sgRNAs targeting specific TSGs. In
the latter approach, Cas9 can also be expressed conditionally in the host mouse.

could be made prone to developing tumours in a specific tissue by introducing
transgenic expression of an oncogene under control of a tissue-specific promoter48.
Later, with the rise of gene-targeting technology, the effects of mutations in tumour
suppressor genes (TSGs) on tumour formation could be studied in knockout mice49.
However, a significant limitation of these conventional GEMMs is that oncogenes
are expressed in all cells of a particular tissue in transgenic mice, whilst TSGs in
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knockout mice are inactivated in all cells. In this respect, conventional GEMMs fail
to mimic sporadic cancers, in which the accumulation of genetic events in a single
cell results in tumourigenesis in an otherwise healthy organ.

To address this issue, conditional GEMMs were developed by employing somatic acti-
vation of oncogenes and somatic inactivation of tumour suppressors50 (Figure 1.2C).
One of the most frequently used conditional strategies is the Cre/loxP recombinase
system51, in which parts of target genes are flanked by loxP recombinase recognition
sites that recombine in the presence of Cre-recombinase to delete intervening DNA
sequences. Using this system, oncogenes can be activated by removing engineered
stop sequences that prevent gene expression in the absence of the recombinase,
whereas TSGs can be inactivated by deleting exons that are crucial for gene function.
Conditional GEMMs have been developed for a large variety of different cancers,
generating a wealth of models that closely mimic the histopathological, molecular,
and clinical features of human tumours52,53.

A limitation of conditional GEMMs is that generating new models is still time-
consuming and expensive. Recent developments in somatic gene-editing techniques
provide incredible potential to speed-up this process by allowing mutations to
be introduced somatically into existing mouse models (Figure 1.2D). Using these
approaches, oncogenes can be introduced by injecting (viral) vectors expressing
these gene(s) into the tissue of interest54. Similarly, TSGs can be inactivated using
CRISPR-Cas9-mediated gene editing by injecting constructs containing Cas9 and
guide RNAs (sgRNAs) targeting the TSGs into Cas9-proficient mice55. Further
developments such as CRISPR interference/activation56 and CRISPR-mutagenesis
approaches57,58 promise to further expand this toolkit, enabling the use of somatic
engineering to rapidly model a wide variety of cancer-associated mutations.

1.5 Identifying cancer drivers in mouse models

1.5.1 Mouse tumour sequencing

Besides studying the effects of candidate cancer drivers, GEMMs can also be used to
identify additional driver mutations by sequencing mouse tumours and identifying
additional genes that are frequently mutated across tumours (Figure 1.3A). Follow-
ing this approach, driver mutations can be detected using various computational
approaches, in the same fashion as previously described for human tumours. One
of the main advantages of using mouse tumour sequencing to identify additional
drivers is that, by sequencing tumours from a specific and controlled genetic back-
ground, we can specifically identify drivers that collaborate with the pre-existing
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driver mutations. As such, whole-exome and whole-genome sequencing approaches
have been used to characterize the mutational landscapes of Kras-mutant mouse
skin squamous cell carcinoma59 and Egfr-, Myc- and Kras-driven lung cancers60,61.
Similarly, copy number-based approaches have identified several driver genes in
mouse models of Brca1- and Brca2-deficient breast cancer62. A potential drawback
of using mouse tumour sequencing to identify driver mutations is that (depending
on the pre-existing drivers) mouse tumours may harbour as many aberrations as
human tumours, complicating the identification of driver genes. This is, for exam-
ple, particularly the case for tumours with high copy number instability, such as
Brca1/Brca2-deficient breast cancer models62. Combined with the relatively low
numbers of tumours involved in mouse studies, this means that mouse sequencing
studies may be relatively underpowered for identifying candidate driver genes.
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Fig. 1.3. De novo driver gene identification in mice. (A) Driver genes can be identified
in mice in the same fashion as for human tumours by using DNA/RNA-sequencing
approaches aimed at identifying recurrent mutations, copy number aberrations,
gene fusions and complex structural rearrangements. (B) Comparative oncoge-
nomics approaches allow refinement of candidate driver gene lists by focusing on
genes that are recurrently mutated in both mouse and human tumours. In such
an approach, candidates are typically first identified for both species individually,
after which shared (orthologous) genes are selected and further prioritized based
on existing knowledge or other data sources.
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1.5.2 Comparative oncogenomics

A more powerful approach for identifying driver genes using sequencing approaches
is to combine insights from mouse and human datasets and prioritize genes that
are mutated in both species, as these are most likely to represent true driver genes.
This can be done in an ad hoc setting, by identifying drivers of mouse tumours
and comparing these with known mutations in human datasets, or as a deliberate
strategy using comparative oncogenomics. In the latter approach, sequencing data
from mouse and human tumours are typically first analyzed to identify candidate
driver genes for both species individually. These species-specific candidates are
then integrated by only selecting genes and/or networks that are aberrated in
both species (Figure 1.3B). Remaining candidates can optionally be filtered using
additional criteria, such as correlation with gene expression or prior knowledge from
literature.

This comparative strategy has proven particularly effective for distinguishing driver
genes from passengers in chromosomally unstable tumours. For example, in a mouse
model of hepatocellular carcinoma (HCC), Zender et al. identified a focal amplicon
on mouse chromosome 9qA1, which was syntenic with amplifications in human
HCCs on 11q2263. Further filtering based on expression identified two drivers on
this locus, cIAP1 and Yap, which were shown to act synergistically in tumourigenesis.
Similarly, copy number sequencing of metastases from an inducible Hras model of
a traditionally non-metastatic melanoma identified a focal amplification on mouse
chromosome 16, which contained only eight candidate driver genes64. Further
comparison with human RAS- and MET-driven melanomas identified a single gene,
NEDD9, as the driver of these metastases.

1.6 Identifying drivers using forward genetic
screening

Although additional driver genes can be identified by mouse tumour sequencing, this
approach is not always optimal as many mouse models have a long tumour latency
and may be more prone to acquire other types of mutations than those of interest (i.e.,
copy number aberrations rather than point mutations). Forward genetic screening
approaches can address these problems by using various mutagenesis strategies
to induce additional mutations and accelerate tumour formation, after which any
tumours that developed can be studied to identify new drivers. The type of mutations
that occur depends strongly on the used type of mutagenesis, meaning that different
mutagenesis strategies can used to specifically model different kinds of mutations.
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Fig. 1.4. Schematic overview of forward genetic screening approaches. (A) In chemi-
cal mutagenesis approaches, mice are treated with a mutagenic compound and
subsequently monitored for tumour formation. The resulting tumours can then
be sequenced using whole-genome or targeted sequencing to identify mutations
driving tumourigenesis. (B) In transposon-based insertional mutagenesis (TIM),
tissue-specific expression of a transposase enzyme induces the mobilization of
mobile elements called transposons, which can be re-integrated elsewhere in
the genome. By doing so, transposons can result in the activation of oncogenes
or inactivation of TSGs. (C) With in vivo CRISPR/shRNA screening, cells or
organoids are transduced with a library of sh/sgRNAs targeting a set of genes.
The transduced cells/organoids are injected in vivo, after which the mice are
monitored for tumour formation. Developed tumours are sequenced to determine
the abundance of individual sh/sgRNAs, which is contrasted to the starting popu-
lation to identify if sh/sgRNAs targeting specific genes are enriched (potential
TSGs) or depleted (potential oncogenes and/or drug targets).
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1.6.1 Screening using chemical mutagenesis

Chemical-based mutagenesis is one of the oldest mutagenesis strategies, in which
cells or animals are treated with a chemical substance that damages the DNA and
thereby induces mutations. The induced mutations are typically single nucleotide
changes; however, the spectrum of these mutations depends on the used substance
and can vary greatly between different chemicals. During in vivo chemical muta-
genesis screens, animals (typically zebrafish or mice) are treated with a controlled
dose of a chemical mutagen and subsequently monitored for tumour formation (Fig-
ure 1.4A). Developed tumours can be sequenced using whole-genome or targeted
sequencing strategies to identify mutations that may be driving tumourigenesis or
metastasis60,65.

An advantage of chemical mutagenesis compared to other mutagenesis approaches,
is that its bias towards single nucleotide changes makes it suitable for modelling
the effects of human variants, which are often single point mutations that result in
changes in the levels of expression or activity of a gene product. For this reason,
chemical mutagenesis approaches have been used to mimic human mutational
processes and to characterize the genomic landscapes of the mutational landscapes
of mouse skin squamous cell carcinoma59 and Kras-driven lung cancers60. However,
when designing screens, it is important to take the inherent mutational bias of
chemicals into account. Currently, N-ethyl-N-nitrosourea (ENU) is a popular choice
for chemical mutagenesis strategies aiming to model single-nucleotide variants
(SNVs), as it results in a range of point mutations that mirrors the range of mutations
observed in human tumours66.

1.6.2 Screening using insertional mutagenesis

A drawback of chemical mutagenesis strategies is that their bias towards point
mutations limits their utility for modelling other types of mutations, such as increased
gene expression resulting from gene amplifications. Insertional mutagenesis (IM)
strategies provide an alternative approach, in which viral or transposon sequences
are stochastically inserted into the genome, disrupting the expression of nearby
genes (Figure 1.4B). In transposon insertional mutagenesis (TIM) strategies, this
process is mediated by a transposase enzyme, which excises transposons from a
concatemer located in the genome of the mice and reintegrates them stochastically
elsewhere. By placing the expression of this transposase under a tissue-specific
promoter, mutagenesis can be restricted to specific tissues in the mouse.

The effects of insertions depend on the used transposon, but typically involve the
activation of oncogenes using promoter sequences and/or inactivation of tumour
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suppressors by truncating genes. For example, the T2Onc/2 transposon, which is
frequently used in Sleeping Beauty IM screens67,68, contains enhancer/promoter
(MSCV) and splice donor (SD) sequences that allow the transposon to initiate
transcription and drive the (over)expression of nearby genes. The transposon also
contains two splice acceptor sites (SA/En2SA) combined with a bi-directional polyA
sequence, which allow the transposon to truncate transcripts if integrated within
a gene. Depending on the gene and the relative location of the insertion, these
truncations can inactivate genes by resulting in an unstable transcript or inactive
protein, or activate genes by removing inhibitory protein domains69,70.

A considerable advantage of TIM strategies is that insertions can be specifically
targeted via PCR amplification before sequencing, enabling cheap and efficient
retrieval of the insertion sites compared to genome-wide sequencing. However, a
drawback of transposon-based systems is that they generally show bias in terms of
their insertion patterns, either due to sequence integration biases or biases towards
specific gene features (e.g., gene bodies or promoters)71. For this reason, screens
using different transposon systems (such as the Sleeping Beauty67,68 or piggyBac72,73

systems) may identify different candidate genes, even if screens are performed in
the same genetic background. Moreover, target genes are typically identified using
windows around the insertion sites71,74, which may lead to the identification of
many false positive candidate genes.

Despite these drawbacks, TIM has been valuable for identifying cancer-associated
driver genes in mouse models of a large variety of cancer types, including breast
cancer75–77, melanoma78, hepatocellular carcinoma79 and gastric cancer80. Addition-
ally, as mutagenesis remains constitutively active in these models, TIM has also been
used to identify drivers of metastasis formation81 and acquired resistance to drug
treatments82,83. Finally, new computational approaches based on RNA-sequencing
data have been developed to improve target gene prediction and offer additional
insight into the effects of insertions on the expression of the affected gene84,85.

1.6.3 shRNA screening

In contrast to the previously described genome-wide screening approaches, library-
based screening approaches, such as loss-of-function screens based on RNA inter-
ference (RNAi) technology, can be used to target specific sets of genes. In pooled
RNAi screening approaches, cells are transfected with short hairpin RNAs (shRNAs)
targeting specific genes that, when integrated into the genome, result in heritable
and long-term suppression of the corresponding gene86. To perform an in vivo RNAi
screen, the transfected cells can be injected orthotopically in animals87, which are
monitored for tumour growth (Figure 1.4C). Once developed, tumours are harvested

1.6 Identifying drivers using forward genetic screening 13



and sequenced to quantify the frequency of each shRNA in the tumour cell popu-
lation. By contrasting these frequencies to those of the initial starting population,
this approach can identify which shRNAs are enriched in the tumour and are there-
fore likely targeting TSGs whose loss is beneficial for tumourigenesis. Conversely,
depleted shRNAs may identify potential oncogenes and/or genes that are crucial for
tumour maintenance.

The scope of shRNA screens depends entirely on the used library, meaning that
screens can be designed to target all genes in a genome-wide fashion or to test a
small number of pre-selected candidate genes. As such, shRNA screens can not
only be used to identify novel driver genes, but can also be used for narrowing
down lists of potential drivers or to validate putative driver genes. Compared to
in vitro approaches, in vivo shRNA screens provide the opportunity to expose the
vulnerabilities of tumour cells in the context of their microenvironment and can
be used to study drivers of metastasis and therapy resistance88–90. Drawbacks of
shRNA screening include variable efficiency between shRNAs in the knockdown of
their respective target genes91 and off-target effects92. Successful in vivo shRNA
screens have been reported for a variety of cancer types, including xenograft models
of hepatocellular carcinoma93, lymphoma94,95, leukemia96,97 and glioma98,99.

1.6.4 CRISPR screening

With the development of CRISPR–based technologies, it has also become possible to
perform pooled loss-of-function screens by knocking-out genes using CRISPR–Cas9-
mediated genome editing. CRISPR–Cas9 loss-of-function screens are generally
performed in the same fashion as shRNA screens by transducing cells with pools of
single guide RNAs (sgRNAs) targeting different genes, injecting the transduced cells
in vivo and contrasting the abundance of sgRNAs in tumours with their abundance
in the starting population100–102. However, in contrast to shRNA screening, gene
editing via CRISPR-Cas9 disrupts the genes by DNA cleavage and thereby intro-
ducing insertions/deletions in their genomic sequence, resulting in frameshifts that
induce heterozygous or homozygous knockout of genes rather than a reduction in
expression.

Compared to shRNA screens, CRISPR-based screens have been reported to be re-
markably efficient and suffer less from off-target effects than shRNA screens103,104.
The approach is less amenable to studying dosage-dependent effects as genes are
knocked-out rather than knocked-down, although dosage reduction can be achieved
if Cas9 only induces heterozygous loss of the gene, as we have previously observed
in the validation of candidates from a Sleeping Beauty IM screen77. With the devel-
opment of new technologies, CRISPR-based screening approaches are extending
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beyond loss-of-function screens by enabling gene activation using CRISPRa105, gene
inhibition using CRISPRi106 and the introduction of mutations with CAS9-AID or
CAS9-APOBEC base editors57,58.

1.7 Validating and characterizing candidate driver
genes

After identifying putative driver genes, it remains important to verify that these
genes actually contribute to tumourigenesis. In many studies, human tumour
cell lines are used for this purpose by either knocking-out/down candidate TSGs or
(over)expressing candidate oncogenes and studying the effects of these perturbations
on tumour cell growth. However, as previously described, these in vitro models
suffer from several drawbacks, including the presence of additional mutations
and/or the lack of a tumour microenvironment. An alternative approach is to
use GEMMs to validate driver genes by introducing the corresponding mutations
into a mouse model with a similar genetic background as in which the mutations
were identified, and studying their effect on tumourigenesis (Figure 1.5A). These
additional mutations can be introduced either using germline approaches (such
as the GEMM-ESC strategy)107 or somatic approaches (e.g., via injection of viral
vectors), as described in previous sections.

Once established, the resulting mouse model(s) can be studied to determine how
the added mutation(s) affect tumour formation compared to the baseline mouse
model. For validating putative driver genes, the key question is whether the new
model containing the additional mutation develops tumours with a higher incidence
and/or shorter latency, indicating that the extra mutation does indeed contribute
towards tumourigenesis. The new model can also be used to study the effects of
the extra mutation on tumour metastasis and therapy response. Any developed
tumours can be studied in detail to determine how the added mutation affects various
tumour characteristics, such as the morphology of the tumours and interactions
with the microenvironment and immune system. Additionally, by using sequencing
strategies or screening approaches to identify additional driver genes in these more
complex mouse models, mutational landscapes can be compared between models
with different drivers to determine how additional drivers affect the evolution of
tumours initiated by the engineered mutations, and if this provides clues to any
driver-specific vulnerabilities.

A key advantage of using mouse models to validate candidate driver genes is that they
can provide unambiguous proof of whether candidates are bona fide driver genes in a
given genetic background. Especially CRISPR-CAS9-based somatic cancer modelling
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Fig. 1.5. Validating candidate genes and studying treatment resistance.
(A) Candidate cancer driver genes can be validated in vivo by developing mouse
models containing the observed mutations and monitoring the mice for tumour
formation. Developed tumours can be characterized to determine if they reflect
the expected phenotype(s) and sequenced to identify additional candidate driver
genes. These additional candidates can be introduced into the same baseline
GEMM model to determine their effect on tumourigenesis. By applying this
process iteratively, this type of approach can be used to unravel the contribution
of different cancer genes during various stages of tumourigenesis. (B) Mouse
models can also be used to identify mechanisms of acquired therapy resistance by
transplanting cell lines, organoids or tumour pieces into multiple recipient mice
and subjecting these mice to different treatments. Tumours that become resistant
to treatment can then be sequenced and contrasted to vehicle-treated tumours to
identify acquired mutations driving the resistance phenotype.

enables rapid in vivo testing of (combinations of) candidate cancer genes and has
been used to validate driver genes for a wide range of cancer types, including breast
cancer55, colorectal cancer108, pancreatic cancer109 and liver cancer110. Additionally,
multiplexed somatic engineering approaches provide the opportunity to rapidly
validate multiple candidate genes at the same time, whilst simultaneously studying
Darwinian selection between the different candidates and how this selection is
influenced by cellular/tissue contexts and pre-existing mutations110,111. Finally,
using iterative approaches, drivers can be identified and introduced progressively
into mouse models of increasing complexity. This type of approach can be used to
study tumour formation and progression in detail and establish the contributions of
different driver genes at various stages of tumourigenesis112.
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1.8 Studying drug response and treatment
resistance

Ultimately, knowledge of driver genes and their effects is used to develop novel ther-
apeutic strategies that target specific vulnerabilities of the tumour, enabling effective
treatments with minimal side effects. Following this premise, personalized therapies
are generally designed by either targeting the identified driver genes directly (if
possible) or by targeting other genes in the same signalling pathway. A well-known
example is BRAF-mutant melanoma, which is targeted by inhibiting the mutant BRAF
kinase and/or MEK, which is downstream of BRAF in the RAS/MAPK signalling
pathway. Alternatively, tumours can be targeted therapeutically by exploiting a
synthetic lethality resulting from the driver mutation(s). A classic example of such a
synthetic lethality is PARP inhibition in BRCA-deficient tumours, which specifically
targets cells with defects in their homologous recombination (HR) pathway due to
loss HR-associated proteins such as BRCA1 and BRCA2.

Before moving to the clinic, drugs are generally first tested for efficacy in a preclin-
ical setting, either using in vitro models (cell lines, organoids) or in vitro models
(xenograft models, GEMMs, PDTXs). To identify which treatments are most effective
in different cancer types or tumours with different genetic backgrounds, several
efforts have been made to setup large biobanks of PDTX models for high-throughput
drug screening purposes39,42,113,114. By correlating treatment sensitivity with se-
quencing data from the same tumours, these approaches can also be used to identify
genetic markers of intrinsic (pre-existing) therapy resistance. A nice example of this
approach has been given by Bertotti et al., who identified HER2 amplification to be
driving resistance in a subset of cetuximab-resistant colorectal PDTX tumours and
showed that combined inhibition of HER2 and EGFR induced overt, long-lasting
tumour regression42.

Besides intrinsic therapy resistance, many targeted therapies fail in the clinic due
to the emergence of drug resistance which is acquired during treatment. As such,
a key challenge for improving the efficacy of these therapies is to identify (and
ideally pre-empt) (epi)genetic changes that underlie this acquired treatment resis-
tance. Both GEMMs and PDTXs can be used to identify potential in vivo resistance
mechanisms by grafting cell lines, organoids or tumour fragments into multiple
recipient mice; which are then subjected to different treatments (Figure 1.5B). Upon
relapse, resistant tumours can be sequenced and compared with tumours from
vehicle-treated mice to identify possible resistance mechanisms. Using this approach,
our lab identified several resistance mechanisms to PARP-inhibitor treatment in
mouse models of BRCA1- and BRCA2-deficient breast cancer115–117. This type of
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approach can also be combined with various mutagenesis strategies, for example by
using insertional mutagenesis to induce resistance and identify potential resistance
mechanisms82,83,118.

Besides identifying potential resistance mechanisms, an important challenge is to
determine how resistance actually arises and to design therapeutic strategies ac-
cordingly. For example, in cases where tumours acquire additional (epi)genetic
changes during treatment (as described above), therapies should ideally be designed
to pre-empt and prevent the most likely paths of resistance. On the other hand,
cases where resistance is driven by pre-existing sub-populations of intrinsically re-
sistant cells119 will require different treatment strategies. Traditionally, studying
intra-tumour heterogeneity has been challenging with bulk-sequencing technologies.
Single-cell sequencing approaches120,121 promise to revolutionize these analyses by
providing detailed insight into the (transcriptional) heterogeneity of tumour cells, en-
abling the identification of sub-populations of cells that may be driving resistance122.
Furthermore, approaches such as lineage tracing can be used to track the dynamics
of tumour evolution, providing detailed insight into which cell populations expand
and contract during treatment. As such, lineage tracing-based approaches have been
used to identify origins of resistance in mouse models of squamous cell carcinoma123,
prostate cancer124 and mouse intestinal adenomas125.

1.9 Conclusions and future perspectives

The success of personalized anti-cancer therapies hinges on how accurately we can
predict whether a given patient tumour will respond to a given treatment, allowing
clinicians to select the most effective therapeutic strategy for treating a patient.
Ideally such an approach would be implemented by feeding omics data and other
data types (e.g. imaging, pathology) from patient tumours into (computational)
models that predict which therapies are most likely to succeed based on specific
tumour biomarkers (Figure 1.6). Creating such models requires detailed insight
into which mutations are driving tumour development and how these affect therapy
response. Combined with high-throughput drug screening approaches, in vitro
and in vivo model systems provide crucial platforms for assessing sensitivity to
different therapies across multiple cell lines or tumours, enabling the construction
of correlative models that predict the efficacy of these treatments for new tumours.
More detailed genetic modelling in (mouse) model systems can further refine these
correlative models by providing causative evidence that (combinations of) mutations
drive cancer development and/or affect therapy response, and by enabling detailed
characterization of the effects of drivers on other tumour phenotypes, such as tumour
latency, morphology, mutational landscape and interactions with the (immune)
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Fig. 1.6. The roles of model systems in designing personalized combination thera-
pies for effective cancer treatment. This figure illustrates how human/mouse
model systems are ultimately used to identify and characterize cancer driver
genes in different types of cancer, and how these insights can be used to in-
form patient treatment. This process can essentially be divided into two parts:
clinical application and fundamental research. On the clinical side, approaches
to personalized medicine sequence patient tumours to identify mutations and
potential cancer drivers. In parallel, tumour material can also be used to establish
patient-derived model systems, which can be used to screen for drug efficacy and
study treatment resistance. By combining this drug response data with mutations
identified through sequencing, this approach can be used to train computational
models predicting optimal therapies and identify biological features explaining
the observed drug response. On the fundamental side, mouse models can also be
used to identify cancer drivers (through sequencing and genetic screening) and
for drug screening. In contrast to patient-derived models, GEMMs can also be
used to conclusively validate cancer driver genes in vivo and to perform detailed
dissection of how different driver genes affect tumour development and progres-
sion. This information can be used for predictive models in the clinic, but can
also be used to formulate new hypotheses and additional experiments, fueling
further fundamental research into the molecular underpinnings of cancer.

microenvironment. Genetically engineered mouse models also provide a powerful
platform to critically evalutate new candidate drug targets126 and thereby improve
the robustness of preclinical cancer target identification127.

Modeling of human cancer using genetically engineered mice is complicated by
the observation that tumours generally contain multiple driver lesions, which can
strongly influence their sensitivity to treatments targeting specific drivers. As a result,
accurately assessing therapy response may require the generation of complex mouse
models containing multiple driver genes that are frequently encountered together in a
given type of cancer. Using germline engineering approaches, generating models with
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multiple driver lesions has been challenging due to the extensive breeding and animal
husbandry involved. Somatic approaches using CRISPR-CAS9 based gene editing
and overexpression vectors alleviate this bottleneck, by providing the technology to
quickly create new mouse models by introducing different combinations of mutations
into a pre-existing baseline mouse model. The rapidly ongoing refinement of these
tools will further expand the repetoire of mutations that can be modelled in this
manner, enabling the rapid creation of new models reflecting the mutations observed
in patient tumours, which can be used to test the effects of novel therapeutic
strategies targeting these mutations.

Besides designing novel therapies, other important clinical challenges include identi-
fying which patients are most at risk of developing cancer and should be screened for
preventative treatments. Although factors such as genetic background and lifestyle
have been shown to have a profound influence on cancer risk and survival, our
insights into how these factors influence cancer development is still limited. Due to
their tightly controlled genetics, mouse models are uniquely suited for examining
the effects of genetic backgrounds and how these interact with specific driver genes
in an in vivo setting. Similarly, mouse models can also be used to model the effects
of specific lifestyles (e.g. diet, gut microbiome, circadian rithm, exposure to muta-
gens) on cancer risk and development128. Combined, insights from such models
will hopefully allow us to incorporate knowledge of genetic modifiers and lifestyle
influences into clinical tests, improving the identification of individuals at high risk
for cancer and matching preventive therapies.

Improved screening imposes its own challenges, as population screening programmes
identify many lesions that will not necessarily progress to cancer and do therefore
not actually require treatment. Unfortunately, in many cases it is currently not
possible to distinguish which lesions are indolent and which will progress to invasive
cancer, leading to overdiagnosis and overtreatment129. Identifying which tumour
cell-intrinsic and -extrinsic factors contribute to tumour progression will hopefully
provide important insight into the tumourigenic process and allow us to develop
tests that distinguish between high- and low-risk lesions. These studies will require
models that allow us to study the early stages of cancer, which is not possible using
end-stage tumour material from patients. GEMMs can provide a powerful platform
for this type of research, as lesions in these models can be studied at any stage during
tumour progression. Moreover, by introducing mutations identified in pre-malignant
lesions from patients, mouse models can be used to determine the contributions of
these mutations to tumour progression and to screen for additional factors that may
be required for malignant transformation.

Tumour progression, metastasis and escape from therapy are phenomena which are
driven by intra-tumour heterogeneity130. Single-cell sequencing approaches provide
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a particularly promising approach for studying tumour progression by enabling
detailed characterization of distinct cell populations within a given tumour120,121.
For example, combined with (CRISPR-based) lineage tracing131,132, single-cell ap-
proaches in GEMM tumours can be used to study the early dynamics of pre-malignant
lesions and determine which cell populations play a role in driving eventual tu-
mourigenesis. Similarly, longtitudinal sampling of mouse tumours may be used to
determine how cell populations within tumours evolve during tumour progression
and under therapeutic pressure, providing insight into how certain (epi)genetic
changes may drive tumour evolution and the development of therapy resistance.
Finally, detailed characterization of non-tumour cells within the tumour can be used
to explore the interactions with the (immune) microenvironment133,134 and how
these interactions change during tumour progression or during therapy stress.

It is important to keep in mind is that tumours arising in GEMMs of human cancer
may not necessarily reflect all characteristics of human tumours. For example,
GEMM tumours may contain lower numbers of somatic mutations compared to
the cognate human tumours61 and fewer mutations seem to be required for cancer
formation in mice compared to humans135. As such, it remains important to establish
whether mouse tumours accurately reflect the aspects of the (sub)type of human
cancer that we wish to study, both in terms of morphology, genetic landscape and
transcriptional profile. Additionally, due to their limited genetic heterogeneity, it is
unrealistic to expect that mouse models will sufficiently represent the heterogeneity
of patient populations. It will therefore remain crucial to combine findings from
mouse models with information from other sources, including sequencing data
from patient populations and experimental data from other model systems, such as
(human) tumour organoids and PDTX models.

Finally, efforts to collect catalogue mouse sequencing data have been relatively
limited compared to efforts involving human sequencing studies. To fully exploit the
large compendium of mouse sequencing and screening data, it will be important
to collect these data in centralized repositories and create portals to query these
data, allowing researchers to quickly explore existing datasets and compare tumour
characteristics across different mouse models. Fortunately, several efforts are already
underway to collect data in application-specific databases136, to create portals
visualizing data from PDTX models and to adapt software like cBioPortal137 for
visualizing tumour data from non-human organisms. We expect that these initiatives
will play an important role in disseminating insights from mouse models and improve
accessibility for cross-pollination with human sequencing efforts.
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