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Chapter 1  

General Introduction  

and outline thesis 

Erika van Eijk 



General Introduction and outline thesis 

Clostridium difficile infection 

Clostridium difficile (Clostridioides difficile) is a Gram-positive, spore-forming obligate 

anaerobic bacterium that can asymptomatically colonize the intestine of humans, 

other mammals, reptiles, birds and insects 1,2. The bacterium is ubiquitous in the 

environment and particularly present in soil. Ingestion of spores and the subsequent 

germination into vegetative toxin-producing cells or prior colonization by Clostridium 

difficile within healthy or immuno compromised individuals, and/or elderly patients 

may induce Clostridium difficile infection (CDI) 3. The spectrum of disease ranges 

from mild, self-limited diarrhoea to life-threatening pseudomembranous colitis 4,5. 

Transmission of the bacterial spores occurs via the faecal-oral route and further 

spread is promoted by contact of healthcare workers with contaminated surfaces 

and infected patients. Eradication of spores in healthcare settings is extremely 

difficult due to their metabolically dormant state and resistance against a variety of 

environmental stresses such as desiccation, high temperatures, aerobic conditions 

and many hospital disinfectants and -cleaning agents 4,6-10. C.  difficile spores may 

survive for up to 5 months on environmental surfaces 11,12. Moreover, spores are not 

only shed by symptomatic patients, but also by asymptomatic patients which 

hampers infection control in respect to identifying the source and implementing 

appro priate preventive measures. 

Clostridium difficile infection (CDI) can occur when the normal protective 

intestinal microbiota is disrupted. Under these conditions, C.  difficile can proliferate 

in the gut, causing an inflammatory response induced by the clostridial toxins, toxin 

A (TcdA) and toxin B (TcdB) 13. Although the specific roles of these exotoxins are 

not entirely uncovered, direct effects on the integrity of the tight junctions of the 

colonic epithelium and apoptotic properties targeted against this tissue has been 

well described 14-17 and are associated with the main clinical manifestations of CDI: 

diarrhoea and colitis. Disruption of the colonic epithelium allows the toxins to 

interact with other cells such as immune cells and neurons and may stimulate, 

indirectly, the production of chemokines, pro-inflammatory cytokines, neuro peptides 

and other neuro-immune signals resulting in a systemic inflammation response 18. 
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Originally identified as part of the intestinal microbiota of healthy infants (by Hall 

and O’Toole in 1935 19), it took more than forty years to identify the causal 

relationship between Clostridium difficile and life-threatening pseudomembranous 

colitis 20,21. Fatality of CDI infection has been dramatically demonstrated in the 

Stoke Mandeville Hospital outbreaks in the United Kingdom in 2004 and 2005 22. 

After recognition of European hospital outbreaks of Clostridium difficile infections 

(CDIs) associated with the emergence of PCR ribotype 027, surveillance at national 

level was encouraged by the European Centre for Disease Prevention and Control 

(ECDC) 23. In the United States, the Center for Disease Control and Prevention 

(CDC) estimated on basis of a large population- and laboratory-based surveillance 

that the overall incidence of C.  difficile infection in 2011 was 453.000 and 29.000 

deaths were attributable to this infection 24. Within the health care-associated 

population of CDI, the rate of first recurrence of infection was estimated at 20.9 

percent (61.400 cases) 24, which is consistent with other reports (18-25 percent) 25-29. 

In the US, the CDI incidence rose from 4.5 to 8.6 cases per 1.000 hospital discharges 

between 2001 and 2008. Furthermore, the overall mortality of CDI patients in the 

USA increased significantly from 6.5 to 7.2 percent in 2001-2010, with a total of 

154.184 deaths (7.1 percent) during this time-period 30. In a pilot study, conducted 

by the European C.  difficile Infection Surveillance Network (ECDIS-NET) involving 37 

European acute care hospitals, it was determined that the incidence rate of hospital-

acquired CDI ranged from 0.6 to 18.5 per 10.000 patient days (median 3.7) 31. 

It should be noted that the incidence rate in this study was based on aggregated 

hospital data. In the Netherlands, sentinel surveillance overseen by the National 

Reference Laboratory for C.  difficile in 23 hospitals showed that the incidence rate 

per 10.000 patient days was 3.1 for the period of May 2015 to May 2016 32. Aside 

from the clinical implications, CDI also represents a substantial economic burden 

with estimated annual costs ranging from $ 5.4 billion 33 to $ 6.3 billion 34 in the 

US. The bulk of the economic burden of CDI consists of the costs of hospital-

ization and recurrence of infection 29,35. In the USA, the national annual cost of 

recurrent CDI is estimated at $ 1.5 billion 33. The costs of CDI case management 

in Europe are difficult to determine due to heterogeneous methods 35,36. In 

2006, Kuijper et al. roughly estimated that the potential cost of CDI in Europe 

was € 3 billion, a result which was extrapolated from the (estimated) annual cost 

of management of CDI in the United Kingdom 37. Recently, in a multicentre study 

that was conducted in the UK it was estimated that the median total management 

cost for a first episode of CDI and recurrent CDI was approximately € 7.100 and 
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€ 8.500, respectively 38. Data is scarce on the costs of CDI case manage ment in the 

Netherlands specifically. However, a retrospective cost analysis that was conducted 

to gain insight on the financial burden of an outbreak of  C.  difficile in a tertiary 

hospital in the Netherlands provided some much-needed information 39. It was 

estimated that the costs attributed to this outbreak, involving 72 patients in a time-

period of one year, was € 1.222.376 39.  

Recent years have seen an increase in the incidence and severity of C. difficile 

infections (CDI) in both the United States and Europe, due to the emergence of certain 

PCR ribotypes (RT) 13,40. The increased incidence and severity of the disease are 

associated with outbreaks of ‘hyper-virulent’ C.  difficile strains, particularly PCR ribotype 

027 (also known as NAP1/027/BI) and PCR-ribotype 078 37,41-44. The epidemic PCR 

ribotype 027 was first recognized in Western Europe and North America 2 and 

emergence of this strain has been linked to fluoroquinolone resistance 45. C.  difficile 

strains of both these PCR-ribotypes cause severe CDI with high mortality rates, though 

infections with C.  difficile RT 078, contrary to RT 027, are often located outside the 

hospital environment and affect younger patients 46-49.  

Antibiotic use is a well-established risk factor for CDI, but age of the patient 

and/or underlying comorbidities play an important role in both aetiology and 

severity of the disease 2,13,50. The antibiotic use increases the risk for CDI during 

therapy and in the period of 3 months after cessation of antibiotic therapy. The 

highest risk in contracting CDI after antibiotic therapy was found to be in the 

first month following cessation 51. Antibiotics associated with CDI risk, such as 

clindamycin, broad spectrum penicillins, cephalosporins and fluoroquinolones 

significantly deplete the Gram-negative microflora and augment colonization of 

C.  difficile 4,52,53. Patients who are treated with these antibiotics for another infection 

are prone to infection with this opportunistic pathogen 4. In most cases, patients 

develop antibiotic-associated diarrhoea (AAD). Although C.  difficile is not the sole 

microorganism implicated in AAD, it is the most common causative agent of 

 infectious antibiotic-associated diarrhoea, responsible for 10-25 percent of the cases 
54,55 and the leading cause of nosocomial infectious diarrhoea in adults 56. Other 

pathogens associated with infectious AAD are Clostridium perfringens, Klebsiella 

oxytoca, Staphylococcus aureus, and Candida albicans (approximately 40 percent of 

AAD, C. difficile included), though in a substantial number of cases, the causative 

agent remains unknown 4,57.  
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Antimicrobial treatment and resistance 

Paradoxically, CDI is generally treated using antibiotics that simultaneously prohibit 

regeneration of the protective gut microflora, so infection may persist and relapses 

may be promoted. At present three antibiotics, metronidazole, vancomycin and fidax-

omicin, are commonly used to treat CDI 58,59. The drug of choice is dependent on 

the severity of CDI and the risk to develop a recurrent episode 53. Metronidazole is 

often administered when the infection ranges from mild to moderate, as this 

antibiotic has a low cost and does not increase the risk for the development of 

vancomycin resistance in C.  difficile or other microorganisms (Enterococcus spp.) as 

overuse of vancomycin might 2,4,53,60. Oral vancomycin is often indicated when 

patients suffer from a severe or complicated CDI and is superior to treatment with 

metronidazole under these circumstances 2,60. Recently, treatment with vancomycin 

has been increased due to decreasing costs, lower side effects and evidence that 

vancomycin is more efficacious in mild to moderate infections compared to 

 metronidazole 59,61-64. In case of recurrent disease and patients with high relapse 

risk, treatment with fidaxomicin is preferred over vancomycin 2,4,60. Another 

advantage of fidaxomicin over the first-line therapies metronidazole and vancomycin 

is that the former antibiotic agent has a minimal impact on the microbiota of the 

host as it targets specific anaerobic Gram-positive bacteria 4,60. Despite the superi-

ority over vancomycin in preventing relapses of CDI, fidaxomicin is not yet prescribed 

on a large scale due to the high cost of this treatment 2,4,60,65,66.  

Significant resistance to the standard antimicrobial therapy has not yet 

occurred in the clinic, although an increase of treatment failure associated with 

metronidazole has been observed 63,64,67,68 and sporadic resistance has been 

reported 69-72. However, in light of the development of resistance to clindamycin and 

fluoroquinolones through their extensive use in the past, it is most probable that 

resistance to the standard therapy will arise over time 4. Indeed, selective pressure 

induced by increased prescription of even a narrow-spectrum antibiotic as fidax-

omicin may increase the risk of development of resistant C.  difficile strains as has 

been shown in vitro 53,73. It should be noted that the broad-spectrum antibiotics 

clindamycin and fluoroquinolones are not used to treat CDI but are commonly 

administered to resolve other bacterial infections 53. Nonetheless, their impact on 

the integrity of the microbiota is a predisposing factor in the occurrence and recur-

rence of CDI 13,53.  

Chapter 1: General Introduction and outline thesis 5

1



Resistance to clindamycin and fluoroquinolones are exemplary for the extensive 

arsenal of antimicrobial resistance of C.  difficile 53,74. Multidrug resistant (MDR) 

strains of C.  difficile are common 3,74,75 and resistance patterns among MDR strains 

are very diverse, as are the mechanisms that confer resistance. For instance, in a 

recent study conducted in the US, it has been shown that out of 139 clinical isolates 

from patients diagnosed with CDI almost 60 percent of strains were resistant to three 

types of antibiotics or more 75. Fluoroquinolones are inhibitors of type II topoiso-

merases, which include gyrase and topo isomerase IV, enzymes essential for DNA 

replication. C.  difficile lacks genes encoding topoisomerase IV but does contain gyrA 

and gyrB genes that encode subunits of the gyrase 76. Resistance to fluor oquinolones 

can occur through point mutations in the quinolone-resistance determining region 

(QRDR) of the DNA gyrase subunits, GyrA and/or GyrB, that decrease the affinity 

for fluor oquinolones 77-79. The most frequent amino acid substitution found in 

C.  difficile is a threonine to isoleucine mutation in the GyrA subunit (Thr82Ile) 79. 

Interestingly, this particular GyrA amino acid substitution is found in epidemic PCR 

ribotype 027 strains that have emerged in the beginning of this century but are not 

found in historical isolates of the same ribotype 74,76,80. In contrast, changes in the 

pathogenicity locus (PaLoc) of C.  difficile RT 027 previously hypothesized to account 

for the hyper-virulence and transmissibility of this particular ribotype were present 

in both pre- and post-epidemic isolated of RT 027. Thus, the acquisition of fluor-

oquinolone resistance marked a pivotal point in the evolution of RT 027 45,81. Despite 

its clear link to epidemicity in PCR ribotype 027 strains, fluoroquinolone resistance 

is not an exclusive trait of this ribotype: it is also common in other ribotypes 74,80. 

Therefore, the emergence of the epidemic RT 027 strains is most likely multifactorial. 

In support of this view, in a recent study it was proposed that the use of the disac-

charide trehalose in the food industry significantly contributed to the emergence of 

RT 027 strains 82. Sensitivity to low concentrations of trehalose was attributed to a 

single point mutation in the trehalose repressor (treR), thereby creating a fitness 

advantage over several other ribotypes lacking this mutation 82. Interestingly, another 

epidemic strain, RT 078, also showed enhanced growth in presence of low concen-

trations of trehalose, although the molecular basis for the increased sensitivity to 

this specific carbon source differed from RT 027 82. 

In contrast to fluoroquinolone resistance, which is mediated by a chromosomal 

resistance determinant and non-transferable, clindamycin resistance is acquired by 

horizontal gene transfer of the mobilizable non-conjugative  transposon Tn5398, 
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which contains two copies of erythromycin ribosomal methylase (erm) genes of 

class B 83. In Clostridium difficile, ribosomal methylation of bacterial 23S rRNA 

caused by the products of these genes, is the most common mechanism of resis-

tance 74, resulting in prevention of antibiotic binding, and thus, antimicrobial 

activity 81. Like clindamycin resistance, tetracycline resistance in C.  difficile is acquired 

through horizontal gene transfer. Transposons linked with tetracycline resistance are 

Tn5397, Tn916, Tn916-like, and Tn6164 84-91. Although these elements are capable of 

 transferring a number of the tet class of genes (tetM, tet44 and tetW), tetM is the 

predominant class identified in C.  difficile 53. The product of the tetM gene, the TetM 

ribosome protection protein, confers resistance through binding and displacing tetra-

cycline from its binding site on the ribosome 92. It is noteworthy that 11 percent of 

the genome of the C.  difficile reference strain 630 is comprised of mobile genetic 

(i.e. horizontally acquired) elements 89. 

The mechanisms described above, that are specific to a particular class 

of antimicrobials, are not the only ones capable of conferring resistance to fluor -

oquinolones and tetracyclines. In many bacteria, general mechanisms exist 

that confer resistance to multiple classes of antimicrobials 93. For instance, the 

multidrug resistant chloramphenicol-florfenical resistance (cfr) gene may confer 

resistance to different classes of clinically relevant antibiotics 53,74,94,95. A cfr-like 

gene was also identified in C.  difficile 96 and it was established that the product of 

this gene can function as a legitimate Cfr protein 94. Similarly, active drug efflux 

by ATP-binding cassette (ABC) transporters can contribute to resistance to 

different classes of anti microbials 97,98 and a recent study demonstrated that the 

ABC transporter CD2068 of C.  difficile could potentially function as multidrug efflux 

transporter 99. Moreover, the highly resistant endospores of C.  difficile are intrinsi-

cally resistant to many anti microbials, due to metabolic dormancy 4,100,101. Clearly, 

C.  difficile has developed multiple mechanisms to avoid the activity of many classes 

of anti microbials 53,99.  

The extensive arsenal of resistance mechanisms alone already underscores the 

need for development of new therapeutic options. But there are other reasons for 

pushing the development of novel antimicrobials against CDI as well. First, metro -

nidazole and vancomycin are both broad-spectrum antibiotics targeting not only 

Clostridium difficile, but also certain bacteria that are part of the protective micro-

biota. Dysbiosis of the microbiota caused by these antibiotics may perpetuate CDI 13. 
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This may at least partly explain why the average cure rate achieved by the standard 

therapy recommended for CDI does not exceed 80-90 percent 102. Other underlying 

causes that may lead to suboptimal results in terms of clinical cure and prevention 

of relapse in relation to the standard therapies are the spore-forming ability of 

C.  difficile and the altered immunity of CDI patients 103. An additional concern is that 

vancomycin-use leads to increased prevalence of vancomycin-resistant enterococci 

(VRE), other important nosocomial pathogens 104, and/or result in VRE overgrowth. 

Using narrow-spectrum antimicrobials limits these off-target effects and thus 

contributes to both the integrity of the microbiota and reduces the development 

and spread of antimicrobial resistance in other bacteria. Second, prescribing fidax-

omicin instead of the first-line antibiotics is still considered as not favourable, 

in terms of cost-effectiveness 13,105. Third, it has been reported that although 

 administering fidaxomicin leads to a reduction of the relapse rate, sustained cure 

may be limited to 75 percent among treated patients who have experienced multiple 

CDI  recurrences 103.  

Novel drugs for CDI targeting DNA replication 

Evidently, there is an urgent demand for more efficient therapies and tools to combat 

CDI 103. In recent years, tremendous efforts have been made by pharmaceutical 

industry and academia to develop new treatments for CDI, which are directed at the 

various stages of infection 105. The latter is reflected in diversity the strategies that 

have been employed such as, microbiologic approaches for treatment of CDI (faecal 

microbiotica transplantation (FMT), microbiota supplements), non-microbiologic 

approaches for CDI treatment and prevention (passive immunization and vacci-

nation) and antibiotic inactivation for CDI prevention and alternative antibiotics 

(new antimicrobials, off-label and derivatives) 60,62,65,103,105-107. However, drug 

discovery and development of new antibiotics against C. difficile is challenging in 

terms of the characteristics that have to be met 108. Ideally, the new antimicrobial 

agents should possess specific physiochemical properties, such as low solubility, 

high molecular weight, high polarity and low permeability and absorption, coupled 

with the ability to withstand excretion by efflux pumps 108. Furthermore, the 

spectrum of activity should be narrow to safeguard the integrity of the normal gut 

flora. As the ‘one drug-one target’ model has proven its limited viability in regard to 

emergence of resistance and recurrence, novel targets and mechanisms of action 
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should be explored 108,109. Additionally, new agents should be superior or at least 

non-inferior to the standard therapy, in terms of efficacy and tolerability, and 

should display decreased permeability at the site of action 108. Finally, the drug 

acquisition cost of the new agent should be reasonable, so its use will not be limited 

due to high pricing. Promising candidates (such as ramoplanin, cadazolid, ridinazole, 

and tigecycline) are in different stages of development and reviewed exten-

sively 59,60,65,103,105,106. Hereafter, a few interesting compounds with direct relevance 

for this thesis are highlighted.  

Cadazolid (Actelion Pharmaceuticals) has dual mode of action directed at the 

50S ribosome unit and DNA gyrase due to its chimeric structure with quinolonyl and 

oxazolidinone moieties 65,103,105. This antibiotic has received a fast track status by the 

FDA to accelerate its development but has shown no superiority over vancomycin 110.  

Another FQ-hybrid antibiotic under investigation is MBX-500 (Microbiotix) 111, 

which consists of a FQ-pharmacophore covalently linked to anilinouracil (AU) 

component 112. Mechanistically, MBX-500 functions as a dual gyrase/topoisomerase 

inhibitor and DNA polymerase inhibitor 103,108. Although in vivo efficacy has been 

demonstrated in several animal studies 111,113, no data is available for efficacy in 

humans 103.  

The compound 362E exerts it action on DNA polymerase in a similar fashion 

as the AU component of MBX-500, though belongs to another class of PolC 

inhibitors: both inhibitors bind via specific domains to the DNA strand and DNA 

polymerase simultaneously leading to the formation of an inert ternary complex 
114,115. The antimicrobial activities of 362E were similar to those of the standard 

therapy, when tested in a small panel of C.  difficile strains 116. Furthermore, the speci-

ficity of 362E regarding C.  difficile towards purified C.  difficile PolC 115 was supported 

by the results of agar dilution data, where it demonstrated lower activity against the 

majority of a modest collection of Gram-positive anaerobes 116. Currently, this 

compound is still in the phase of preclinical development.  

The common factor between the agents discussed above is that they are – at 

least partially – directed against DNA replication proteins (Figure 1). DNA replication 

is the process in which a mother cell duplicates its DNA semi-conservatively, to 

ensure that upon division both daughter cells contain the same genetic information.  
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Figure 1. Schematic representation of the bacterial replisome and accessory 
replication proteins 

Indicated is the core of the replisome and the other accessory replication proteins.  
For simplicity, replication initiation proteins and regulators have been omitted from 
this figure.  

By and large, the mechanisms of DNA replication are conserved across all domains 

of life. Faithfull replication of the bacterial DNA is an essential requirement for 

viability of bacterial cells, and stringent coordination of proteins involved in this 

process is needed to accomplish this. In contrast to C.  difficile, DNA replication 

has been extensively studied in the non-pathogenic Gram-positive model 

bacterium Bacillus subtilis (B. subtilis), which is a high A+T content Firmicute, like  

C.  difficile 117-119. The process of DNA replication can be divided in an initiation and 

an elongation phase. In this section, the description of the function of proteins 

involved in these particular phases is based on extensive work done in B. subtilis.  

In most organisms, DNA replication starts by binding of a replication initiator 

protein at a specific chromosomal location. In bacteria with a single chromosome, 

such as B. subtilis, this protein is the highly conserved DnaA 120, and the chromo-

somal location is the origin of replication, oriC. DnaA binds to specific DnaA boxes 

in the oriC where it melts and unwinds the double-stranded (ds) DNA helix and 

recruits the replicative DNA helicase and other proteins 120-123. Subsequently, the 

replicative helicase DnaC is loaded onto ssDNA by three proteins: DnaI, DnaB and 

clamp loader
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DnaD, which are all proven to be essential for DNA replication 124. DnaI is the loader 

ATPase and is responsible for the assembly of the helicase hexamer on single- 

stranded (ss) DNA 124. DnaI, DnaB and DnaD proteins are conserved in many, but 

not all, low G+C Gram-positive bacteria 118. The replicative DNA helicase, encoded 

by the dnaC gene in B. subtilis, is responsible for unwinding of the DNA helix at the 

replication fork and is conserved in all prokaryotes 118,125,126. As B. subtilis contains 

one chromosome, two replication forks are assembled at the singular origin of repli-

cation which move bi-directionally 127. For lagging strand DNA synthesis, short RNA 

primers have to be synthesized by primase (DnaG) 128 that are extended by DNA 

polymerase into Okazaki fragments. B. subtilis primase interacts with the replicative 

DNA helicase and is thought to form a complex that modulates primase 

activity 129,130. Loading of the helicase marks the start of the elongation phase, in 

which the leading and lagging DNA templates are replicated. This highly progressive 

process is carried out by the DNA polymerase III holoenzyme. The main subunits in 

the B. subtilis PolIII complex are two α subunits; PolC and DnaE. Both polymerases 

are essential for DNA replication in B. subtilis, and also for cell viability 131. PolC 

possesses a proofreading exonuclease domain and is responsible for rapid 

elongation of both the leading strand and the lagging strand 124,131. In contrast, 

subtilis DnaE is an inefficient and error prone polymerase, which is indispensable for 

synthesis of the lagging strand but not for leading strand synthesis 124,132. The 

combination of PolC and DnaE is not found in Gram-negative bacteria, as they do 

not possess PolC 133. Other subunits of the B. subtilis polymerase III holoenzyme are 

the β-clamp, τ (and γ) subunit, δ subunit and the δ’ subunit encoded by dnaN, dnaX, 

holA and holB respectively. The β-clamp encircles primed DNA strands and is able 

to slide across the strands. It intimately links the DNA polymerases to the DNA 

template, thereby ensuring the high processivity of DNA replication 132,134. Loading 

of the β-clamp on DNA depends on initiation of Okazaki fragment synthesis and 

the actual loading is performed by the clamp-loader complex, which in B. subtilis 

consists of a τ trimer, a δ and δ’ monomer 129,130,135. The β-clamp and the τ/γ 

subunits are conserved in most bacteria, while the δ and δ’ subunits are more 

variable 118. The whole complex responsible for DNA synthesis (that includes one 

or more DNA polymerases, proofreading enzymes and factors ensuring processivity 

such as the beta-clamp) is commonly termed replisome (Figure 1).  

Other accessory proteins are also important for DNA replication, including DNA 

ligase, single-stranded DNA-binding protein (SSB) and DNA gyrase. The primary 
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function of DNA ligase is to catalyse the joining of breaks in duplex DNA that are left 

as a result of the discontinuous lagging strand synthesis, repair or recombination 136. 

Disruption of the gene encoding ligase is  detrimental for cell growth in B. subtilis 

and therefore considered to be essential 136. SSB maintains and protects the 

ssDNA strands produced by the replicative helicase 137. The unwinding and 

reannealing of double stranded DNA can result in topological problems that are 

resolved by topo isomerases. DNA gyrase is a topoisomerase type II and its main 

function is the introduction of negative supercoils that relax the DNA helix ahead of 

the replication fork 138. Therefore, it is essential for the progression of the  replication 

machinery, and thus for process of DNA replication as a whole.  

Though this overall mechanism of DNA replication is conserved, details 

differ substantially between organisms, with respect to the proteins performing the 

various functions 117, the molecular mechanisms 139 and the way their activity is 

regulated 129,140-147.  

Due to their essential nature, proteins involved in DNA replication are attractive 

targets for the development of antimicrobials. However, to date, none of the 

antimicrobials used in the clinical setting, target the main components of the DNA 

replication machinery 148 and topoisomerase II is the only replication-associated 

protein that is targeted by commonly used therapeutics. The development of new 

therapeutics is hindered by a limited characterization of the replication machinery 

of bacterial pathogens, such as C.  difficile. 

Erika van Eijk: The replication machinery of Clostridium difficile: a potential target for novel antimicrobials12



Outline of this thesis 

Chapter 1 is this introduction. 

Chapter 2 provides an overview of DNA replication proteins that potentially may 

serve as targets for antimicrobials in drug-resistant pathogens and includes the in 

silico identification of the replication proteins of C.  difficile. Additionally, the mode of 

action and the current developmental status of the compounds directed at the core 

replication machinery and accessory replication proteins are discussed.  

In chapter 3 we determined the complete genome sequence of our reference 

laboratory strain, C.  difficile 630Δerm, and compared this sequence to the sequence 

of C.  difficile 630. This revealed an unexpected transposition of the mobile genetic 

element CTn5. The genome sequence now offers an appropriate reference for all 

molecular work on this strain.  

Apart from the identification and characterization of gyrase and DNA poly merase in 

previous studies, no information on DNA replication proteins or the mechanism of 

replication was available. To address this hiatus, we sought out to identify core 

 replication proteins and to experimentally validate the functional role of these 

proteins. The findings of this experimental work, with a focus on helicase and 

primase, are presented in chapter 4 and chapter 5, respectively.  

In chapter 6, we tested the antimicrobial activity of the DNA polymerase inhibitor 

362E against a large and diverse panel of clinical C.  difficile isolates. Furthermore, we 

have determined the transcriptional response of C.  difficile to replication inhibition 

by 362E.  

Finally, in chapter 7, we place our findings in a broader perspective and provide an 

outlook for the field. 
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