
Intelligent Problem-Solvers Externalize Cognitive Operations
Bocanegra, B.R.; Poletiek, F.H.; Ftitache, B.; Clark, A.

Citation
Bocanegra, B. R., Poletiek, F. H., Ftitache, B., & Clark, A. (2019). Intelligent Problem-Solvers
Externalize Cognitive Operations. Nature Human Behaviour, 3, 136-142.
doi:10.1038/s41562-018-0509-y
 
Version: Accepted Manuscript
License: Leiden University Non-exclusive license
Downloaded from: https://hdl.handle.net/1887/81975
 
Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:3
https://hdl.handle.net/1887/81975


 

 

1 

 

Intelligent problem-solvers externalize cognitive operations 

 Nature Human Behaviour: Letter 1 
 2 
 3 
 4 
 5 
 6 

Intelligent problem-solvers externalize cognitive operations 7 

 8 

Bruno R. Bocanegra1,2*, Fenna H. Poletiek2,3, Bouchra Ftitache4, and Andy Clark5 9 

 10 
1 Department of Psychology, Educational, and Child Sciences, Erasmus University 11 

Rotterdam, the Netherlands. 12 
2 Leiden Institute of Brain and Cognition, Leiden University, the Netherlands. 13 

3 Max Planck Institute for Psycholinguistics, Nijmegen, the Netherlands. 14 
4 Institute for Mental Health Care GGZ Rivierduinen, Leiden, the Netherlands. 15 

5 School of Philosophy, Psychology, and Language Sciences, University of Edinburgh, 16 

Scotland, UK.  17 

 18 

 19 

 20 

 21 

Manuscript count: 177 words in Abstract, 3928 words, 38 references and 4 figures in 22 

Main Text. 23 

 24 

*Correspondence to: 25 

Bruno R. Bocanegra 26 

Erasmus University Rotterdam 27 

Burg. Oudlaan 50 28 

3062 PA Rotterdam 29 

The Netherlands 30 

phone: +31 (0)10 4088732 31 

email: bocanegra@essb.eur.nl 32 

  33 



 

 

2 

 

Intelligent problem-solvers externalize cognitive operations 

 Humans are nature’s most intelligent and prolific users of external props and aids 1 

(such as written texts, slide-rules and software packages). Here, we introduce a 2 

method for investigating how people make active use of their task environment 3 

during problem-solving, and apply this approach to the non-verbal Raven 4 

Advanced Progressive Matrices test for fluid intelligence. We designed a click-and-5 

drag version of the Raven test where participants could create different external 6 

spatial configurations while solving the puzzles. We show that the click-and-drag 7 

test was better than the conventional static test at predicting academic achievement. 8 

Importantly, environment-altering actions were clustered in between periods of 9 

apparent inactivity, suggesting that problem-solvers were delicately balancing the 10 

execution of internal and external cognitive operations. We observed a systematic 11 

relation between this critical phasic temporal signature and improved test 12 

performance. Our approach is widely applicable and offers an opportunity to 13 

quantitatively assess a powerful, though understudied, feature of human 14 

intelligence: our ability to use external objects, props and aids to solve complex 15 

problems.  16 

Intelligence shows consistent and strong associations with important life 17 

outcomes such as academic and occupational achievement, social mobility and health1,2. 18 

Over the past decades, great advances have been made by investigating intelligence in 19 

terms of the encoding, maintenance, and manipulation of internal mental representations, 20 

most notably, in working memory3-15. However, real-world problems regularly exceed 21 

the capacity of working-memory and require people to offload memory and intermediate 22 

processing onto the environment. Whether it’s a scientist composing and rearranging 23 

equations and diagrams on a blackboard, or a hunter-gatherer planning a hunting strategy 24 

by positioning and re-positioning place-holder objects in the sand, many theorists have 25 

argued that understanding the full breadth of human intellectual performance depends on 26 

extending our focus to encompass the storage and manipulation of external information16-27 
21.  28 

Humans routinely use their environment when solving problems that require 29 

complex inferences22-25. For example, a police investigator may use an evidence-board to 30 

solve a criminal case. After an initial look, she generates a first interpretation of the 31 

evidence. This interpretation may trigger her to reconfigure the evidence-board according 32 

to this initial hypothesis. Subsequent inspection of this new configuration may then lead 33 
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 her–even in the absence of new evidence–to a novel interpretation, and another re-1 

configuration of the board, and so on22. Another example is a scientist trying to write a 2 

paper. She begins by looking over some old notes and original sources. While reading, 3 

she comes up with a preliminary outline for the paper, which is externalized using 4 

highlights, notes, and textual operations. The reconfigured task environment then triggers 5 

a more refined conceptual structure and the cycle repeats25. In both cases, problem-6 

solvers externalize (partial) solutions to the problem, and reflect on them. The 7 

environment is used as an external working-memory which unburdens internal processing 8 

resources and allows increasingly complex inferences to be made. We are so accustomed 9 

to these cognitively potent loops into the world that we may not realize just how strange 10 

they really are. Existing A.I. programs never proceed by printing out intermediate results 11 

in order to repeatedly re-inspect them. Yet we humans have developed an adaptive form 12 

of fluid intelligence that relies very heavily on this trick. 13 

Although external cognitive operations have recently been investigated in 14 

perception, attention, memory, numerical and spatial cognition26-33, to date, they remain 15 

relatively unexplored in fluid intelligence34. To address this, we designed a click-and-16 

drag version of one of the most common and popular IQ tests across the life-span: the 17 

non-verbal Raven Advanced Progressive Matrices test for fluid intelligence26 (Fig. 1b). In 18 

this complex problem-solving task, participants compare and contrast figures within a 19 

spatial array in order to infer a missing figure (see Fig. 1a). The high complexity of the 20 

array precludes participants from solving items in a single glance. Instead, they have to 21 

actively inspect different (subsets of) figures, each of which will highlight different 22 

emergent perceptual patterns. Our objective was to examine the externalization of 23 

cognitive operations by measuring participants’ active manipulation of the layout of 24 

items while attempting to solve them.  25 

To verify that performance in this click-and-drag Raven test would reflect general 26 

cognitive ability1, we first assessed the test’s ability to predict academic achievement, 27 

compared to the conventional static Raven test.  In Experiment 1a, we tested a sample of 28 

211 university students. Planned contrasts indicated a medium-to-large positive 29 

correlation between Raven accuracy and academic achievement in the click-and-drag test 30 

(𝑟(101)  =  .46,𝑃 <  .001, 95% 𝐶𝐼 = [.29, .60]), and a small-to-medium positive 31 

correlation in the static test, (𝑟(106)  =  .20, 𝑃 =  .038, 95% 𝐶𝐼 = [.01, .37]). The 32 

correlation was stronger in the click-and-drag test compared to the static test when 33 
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 analyzed by Fisher’s r-to-z transformation 1 

(𝑟!"#! = .26, 𝑧 =  2.11, 𝑃 =  .035, 95% 𝐶𝐼 = [.02, .51]). In addition, a regression 2 

analysis indicated a significant interaction between Raven-type and Raven accuracy on 3 

academic achievement 4 

(𝑡 209 = 2.08, 𝑃 = .038, 𝑏 = .16, 𝑆𝐸! =  .08, 𝛽 = .14, 95% 𝐶𝐼 = [0.01, 0.31]), 5 

indicating that the click-and-drag Raven was a stronger predictor of academic 6 

achievement (𝑡 101 = 5.15, 𝑃 < .001, 𝑏 = 2.88, 𝑆𝐸! =  .56, 𝛽 = .46, 95% 𝐶𝐼 =7 

[1.77, 3.99]), compared to the static Raven (𝑡 106 = 2.10, 𝑃 = .038, 𝑏 = 1.64, 𝑆𝐸! =8 

 .78, 𝛽 = .20, 95% 𝐶𝐼 = [0.09, 3.18]). In Experiment 1b, we performed a replication of 9 

the two Raven conditions in a sample of 284 students from a new cohort: we observed a 10 

medium-to-large positive correlation in the click-and-drag test (𝑟 139 =  .37, 𝑃 <11 

 .001, 95% 𝐶𝐼 = [.22, .50]), and a non-significant small-to-medium positive correlation 12 

in the static test (𝑟(141)  =  .16, 𝑃 =  .052, 95% 𝐶𝐼 = [−.001, .32]). Although the 13 

correlation was numerically larger in the click-and-drag test compared to the static test, 14 

the contrast between the correlations failed to reach a conventional level of significance 15 

when analyzed by Fisher’s r-to-z transformation, (𝑟!"## = .21, 𝑧 =  1.92, 𝑃 =16 

 .054, 95% 𝐶𝐼 = [−.003, .44]). However, a regression analysis indicated a significant 17 

interaction between Raven-type and Raven accuracy on academic achievement 18 

(𝑡 283 = 2.35, 𝑃 = .019, 𝑏 = .12, 𝑆𝐸! =  .05, 𝛽 = .14, 95% 𝐶𝐼 = [0.02, 0.23]), 19 

suggesting that the click-and-drag Raven was a stronger predictor of academic 20 

achievement (𝑡 139 = 4.76, 𝑃 < .001, 𝑏 = 2.37, 𝑆𝐸! =  .50, 𝛽 = .37, 95% 𝐶𝐼 =21 

[1.39, 3.35]), as compared to the static Raven task (𝑡 141 = 1.96, 𝑃 = .052, 𝑏 = 0.84,22 

𝑆𝐸! =  .43, 𝛽 = .16, 95% 𝐶𝐼 = [−.008, 1.69]). Given that the p-value of the difference 23 

between the Fisher r-to-z transformed correlations did not reach conventional levels of 24 

significance but the p-value of the interaction-effect between Raven-type and Raven 25 

accuracy did reach conventional levels of significance, we consider Experiment 1b to 26 

have partially replicated the pattern of results observed in Experiment 1a. Pooling the two 27 

experiments for increased power, we observed a larger correlation in the click-and-drag 28 

test (𝑟 242 =  .43, 𝑃 <  .001, 95% 𝐶𝐼 = . 32, .53 , Fig. 1d), compared to the static 29 

test, (𝑟 249 =  .18, 𝑃 =  .004, 95% 𝐶𝐼 = [.06, .30], Fig. 1c). The correlation was 30 

stronger in the click-and-drag test compared to the static test when analyzed by Fisher’s 31 

r-to-z transformation (𝑟!"## = .25, 𝑧 =  3.08, 𝑃 =  .002, 95% 𝐶𝐼 = . 10, .43 ). 32 
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 Finally, a regression analysis indicated a significant interaction between Raven-type and 1 

Raven accuracy on academic achievement (𝑡 494 = 3.27,𝑃 = .001, 𝑏 = .16, 𝑆𝐸! =2 

 .05, 𝛽 = .15, 95% 𝐶𝐼 = 0.07, 0.26 ), indicating that the more naturalistic click-and-3 

drag Raven was a stronger predictor of academic achievement (𝑡 242 = 7.37,𝑃 <4 

.001, 𝑏 = 2.77, 𝑆𝐸! =  .38, 𝛽 = .43, 95% 𝐶𝐼 = 2.03, 3.51 ), compared to the static 5 

Raven task (𝑡 249 = 2.87,𝑃 = .004, 𝑏 = 1.16, 𝑆𝐸! =  .40, 𝛽 = .18, 95% 𝐶𝐼 =6 

0.36, 1.95 , (see Supplementary Information, section 1.2 for additional analyses). 7 

  Experiments 1a-b suggest that the click-and-drag version of the Raven might be 8 

tapping into an additional behavioral aspect of intelligence that is not currently measured 9 

in the conventional static Raven. One possibility is that participants in the click-and-drag 10 

Raven are using their task environment to externalize cognitive operations which would 11 

otherwise be performed internally in working memory. To investigate this, we tested a 12 

new sample of 70 participants in Experiment 2, with the aim to measure in detail the 13 

extent to which participants in the click-and-drag test were making active use of the task 14 

environment during problem-solving. To do this, we focused on the temporal distribution 15 

of executed actions during the entire task. Our rationale was that, if cognitive operations 16 

are being externalized, changes made to the external layout should guide how figures are 17 

being compared and contrasted immediately after that change. For example, a participant 18 

may initially hypothesize a relationship between the figures. This may trigger actions, 19 

which change the layout, which itself triggers a new hypothesis and more subsequent 20 

actions. If there is periodic coupling between action-induced changes in the environment 21 

and environment-induced triggers of action, actions should cluster together in between 22 

periods of inactivity. However, if actions are performed independently of the changes 23 

they produce in the environment, actions should be uncorrelated and evenly distributed 24 

over time. 25 

To illustrate how to quantify the externalization of cognitive operations, we 26 

simulated action sequences for an idealized dual-mode and single-mode problem-solver 27 

(𝑇 = 3×10! discrete temporal intervals for each, see Supplementary Information, section 28 

2.2). A dual-mode problem-solver uses a queuing procedure to go back-and-forth 29 

between an external mode where cognitive operations are externalized on the screen, and 30 

an internal mode where cognitive operations are performed internally (see Fig. 2a). The 31 

idea is that a dual-mode problem-solver is switching between externally projecting the 32 

outcome of previously generated internal evaluations, and internally evaluating the 33 
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 outcome of previously executed external actions. On the other hand, a single-mode 1 

problem-solver executes a single type of cognitive operation in the absence of 2 

competitive queuing (see Fig. 2b). In other words, a single-mode problem-solver does not 3 

perform external projections of generated ideas nor internal evaluations of executed 4 

actions. As a consequence, there is no interaction between the two modes and therefore 5 

no clear distinction between them. Importantly, single-mode vs. dual-mode problem-6 

solving is not an all-or-nothing dichotomy, but rather a gradual distinction. A dual-mode 7 

problem-solver simulates a strong coupling between internal and external operations in 8 

the sense that the outcome of the external operations provide the input to the internal 9 

operations and vice versa, whereas a single-mode problem-solver simulates the situation 10 

when internal and external operations are decoupled. Because external operations are 11 

executed independently of internal operations (and vice versa), they cannot be regarded 12 

as separate processing modes, which is functionally equivalent to a single mode of 13 

processing (see Supplementary Information, section 2.2 and Fig. S6 for additional 14 

analyses). 15 

As demonstrated previously36, balancing the execution of two distinct processing 16 

modes should result in a heavy-tailed probability distribution of temporal intervals 17 

between consecutive actions that approximates 𝑃 𝑇 ≈  𝑇!!, whereas executing a single 18 

processing mode should show an exponential distribution 𝑃 𝑇 ≈ 𝑒!!. These 19 

distributions are markedly different: the latter distribution decays rapidly, indicating that 20 

actions are executed at fairly regular intervals, whereas the former distribution decays 21 

slowly, allowing for clusters of actions that are separated by longer intervals36. To 22 

differentiate these temporal signatures we fit 2-parameter gamma distribution functions 23 

with shape parameter 𝑘 and scale parameter 𝜃 to the distribution of rest-intervals between 24 

actions; 25 

 26 

𝑃 𝑡 = !
!(!) !!

  𝑡!!!  𝑒! !!  with a mean 𝜇 =  𝑘𝜃      (1) 27 

 28 

Please note in equation (1) that when the shape parameter is equal to one (𝑘 = 1) 29 

and the scale parameter is equal to the mean (𝜃 = 𝜇), the distribution will be exponential 30 

𝑃 𝑡 =  !
!
𝑒! !! !, indicating that actions are uncorrelated. However, when the shape 31 

parameter is smaller than one (𝑘 < 1) and the scale parameter is larger than the mean 32 
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 (𝜃 > 𝜇), the gamma distribution will show a heavier tail and approximate 𝑃 𝑡 ≈ 𝑘 𝑡!!!, 1 

indicating correlated actions. As can be seen in Fig. 2d, a simulated single-mode 2 

problem-solver (blue) produces an exponential distribution (𝑘 = 1.0, 𝜃 = 1.5, 𝑥 = 1.51), 3 

whereas a simulated dual-mode problem-solver (green) indeed produces a heavy-tailed 4 

distribution (𝑘 = .34, 𝜃 = 54, 𝑥 = 18.26), indicating that the balancing of external and 5 

internal cognitive operations results in periods of action that are clustered in between 6 

periods of inactivity. This phasic temporal signature can also be observed in the partial 7 

autocorrelation function (Fig. 2f), where a dual-mode problem-solver showed 8 

correlations for the first 10 time-lags, which are absent in a single-mode problem-solver. 9 

How did actual participants perform the task? A representative example is 10 

displayed in Fig. 2c. The 2-parameter gamma distribution function fit on the aggregated 11 

data of all participants showed a heavy-tailed distribution of rest-intervals (𝑘 = .25, 12 

𝜃 = 20, 𝑥 = 5.61; Fig. 2e), suggesting that actions were correlated. Indeed, the partial 13 

autocorrelation function showed significant correlations for the first 6 time-lags 14 

(𝑡𝑠 > 7,𝑃𝑠 < .001, Fig. 2g). Parameter estimates for individual participants confirmed 15 

this result: One-sample t-tests indicated that shape parameters (𝑘) for individual 16 

participants were significantly smaller than 1, 𝑘!"#$ = .29, 𝑡 69 =  32.81, 𝑃 <17 

 .001, 95% 𝐶𝐼 = [.27, .31], and scale parameters (𝜃) were significantly larger than the 18 

mean 𝑥 = 5.61, 𝜃!"#$ = 19.93, 𝑡 69 =  21.51, 𝑃 <  .001, 95% 𝐶𝐼 = 17.72, 22.42 . 19 

In addition, the variation in scale and shape parameters revealed large individual 20 

differences (Fig. 3a-b), ranging from heavier-tailed (green), to more exponentially shaped 21 

distributions (blue). Consistent with this, we observed large individual differences in the 22 

variance of time intervals between actions (inter-movement intervals; IMIs), and that 23 

these individual differences in variances could be accounted for by individual differences 24 

in the shape and scale parameters: A simple regression analysis indicated that individual 25 

differences in variance observed in the inter-movement intervals increased as a function 26 

of the individual differences in variance as described by the shape and scale parameters 27 

𝑘𝜃! (𝑡 68 = 55.52,𝑃 < .001, 𝑏 = .95, 𝑆𝐸! =  .02, 𝛽 = .99, 95% 𝐶𝐼 = [0.91, 0.98], 28 

Fig. 3c). Importantly, this indicates that the scale and shape of individual distributions 29 

were able to capture different strategies used to execute the problem-solving task.  30 

To establish that the execution of external operations was playing a positive 31 

cognitive role during problem-solving, we tested whether temporally clustered actions 32 

were related to improved test performance, by examining shape parameters, scale 33 
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 parameters and average partial autocorrelations (for lags < 5) for individual participants. 1 

Consistent with our expectations, simple regression analyses indicated that scale 2 

parameters increased (𝑡 68 = 4.28,𝑃 < .001, 𝑏 = .72, 𝑆𝐸! =  .17, 𝛽 = .46, 95% 𝐶𝐼 =3 

0.39, 1.06 ), shape parameters decreased (𝑡 68 = 4.01,𝑃 < .001, 𝑏 = −.44, 𝑆𝐸! =4 

 .11, 𝛽 = −.44, 95% 𝐶𝐼 = −0.66,−0.22 ), and autocorrelations increased (𝑡 68 =5 

5.42,𝑃 < .001, 𝑏 = .49, 𝑆𝐸! =  .09, 𝛽 = .55, 95% 𝐶𝐼 = 0.31, 0.66 ), as a function of 6 

Raven accuracy (Figs. 3d-f). This specific pattern of results demonstrates that phasic 7 

temporal signatures were indicative of successful problem-solving. 8 

 In order to exclude the possibility that our results were an artifact of the analysis, 9 

we examined how the variance of IMIs (i.e. calculated using unprocessed time-stamps) 10 

varied with Raven performance. The more evenly spread out actions are over time, the 11 

smaller the variance of IMIs. Therefore, if correlated actions are indeed indicative of 12 

succesful problem-solving, variance should increase as a function of Raven accuracy. A 13 

simple regression analysis indicated that variance increased as a function of accuracy 14 

(𝑡 68 = 3.61,𝑃 = .001, 𝑏 = .92, 𝑆𝐸! =  .26, 𝛽 = .40, 95% 𝐶𝐼 = 0.41, 1.43 , Fig. 15 

4a), suggesting that the systematic relation we observed between phasic task activity and 16 

task performance did not depend on our particular analysis.  17 

Did participants that performed poorly simply lack the motivation to engage with 18 

the task (i.e. not performing enough actions), or did they give up too soon (i.e. not 19 

spending enough time on the task)? Our results do not support these explanations: simple 20 

regression analyses did not indicate that the total number of actions executed (𝑡 68 =21 

0.51,𝑃 = .61, 𝑏 = −0.05, 𝑆𝐸! =  .10, 𝛽 = −.06, 95% 𝐶𝐼 = −0.24, 0.14 ), or the total 22 

amount of time spent on task (𝑡 68 = 0.93,𝑃 = .36, 𝑏 = 0.12, 𝑆𝐸! =  .14, 𝛽 =23 

.11, 95% 𝐶𝐼 = −0.15, 0.40 ) changed as a function of accuracy (Fig. 4b). Instead, our 24 

results suggest a critical role for the distribution of actions over time. Indeed, whereas 25 

poor vs. proficient participants could be differentiated based on the temporal distribution 26 

of their actions (i.e. their shape and scale parameters; Fig. 4c), they could not be 27 

differentiated based on the time they spent and the number of actions they performed 28 

(Fig. 4d, see Supplementary Information, section 2.3 for additional analyses). 29 

Although a further–and more highly powered–replication study will be required to 30 

firmly substantiate the superior predictive power of the click-and-drag Raven, our 31 

findings suggest that an IQ test that allows participants to externalize cognitive operations 32 

may be a better predictor of academic achievement than the conventional static IQ test. 33 
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 Why would this be the case? We would suggest that the click-and-drag Raven task 1 

provides a better test of a problem-solver’s capacities to perform what Kirsh and Maglio 2 

dubbed ‘epistemic actions’ 32. Whereas pragmatic action is performed with the aim to 3 

bring one physically closer to a goal, epistemic action is performed in order to extract or 4 

uncover useful information that is hidden or difficult to compute mentally20,26,33. For 5 

example, the purposeful reconfiguration of external figures in the click-and-drag Raven 6 

task can enable a problem-solver’s attentional system to lock-on to configural patterns 7 

that were previously obscured. By reordering the figures, a featural dimension can 8 

become easier to parse, leaving more resources available to discover patterns in the 9 

remaining featural dimensions. 10 

In daily life, we perform epistemic actions quite naturally, for example when we 11 

shuffle scrabble tiles in ways that respond to emerging fragmentary guesses while 12 

simultaneously cueing better ideas, leading to new shufflings, and so on. From this 13 

perspective, epistemic actions may be considered part and parcel of the reasoning 14 

process17,20, and are likely to be important in academic contexts. Given that students 15 

routinely have to solve complex problems within information-rich, re-configurable 16 

(digital) environments, it seems reasonable to assume that skills at epistemic action may 17 

be especially beneficial. The click-and-drag Raven task, we suggest, may a better 18 

detector of this kind of crucial cognitive ability than the conventional static Raven task. 19 

Consistent with this interpretation, it has been observed that tasks that allow room 20 

for people’s natural propensity to perform epistemic actions often have real-world 21 

predictive power in various cognitive domains26. For instance, Gilbert has shown that an 22 

intention offloading task that allowed the externalization of cognitive operations was a 23 

better predictor of real-world intention fulfilment than a task that did not28. Also, 24 

participants tend to persevere less with sub-optimal, idiosyncratic, task-specific strategies 25 

in paradigms that allows cognitive operations to be externalized29-31, which may increase 26 

the generalizability of task outcomes. 27 

In a recent paper, Duncan et al. proposed that a critical aspect of fluid intelligence 28 

is the function of cognitive segmentation, which is the process of subdividing a complex 29 

task into separate, simpler parts34. To investigate this, Duncan et al. presented participants 30 

with Raven-style matrix problems and asked them to work out the missing figure by 31 

drawing figure elements in a blank answer box. This allowed participants to externalize 32 

partial solutions to the problem and encouraged them to cognitively segment the problem 33 
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 into its constituent subcomponents. Consistent with the present study, they found that 1 

their modified matrix problems showed a slightly higher correlation with a criterion IQ 2 

test (.53) than conventional matrix problems (.41). These findings raise the following 3 

interesting question: Was the click-and-drag Raven task better at predicting academic 4 

achievement because it helped participants to split the overall problem into simpler 5 

subcomponents? 6 

We agree with the claim that cognitive segmentation is a critical function of fluid 7 

intelligence. Indeed, we would argue that both in our click-and-drag Raven task and 8 

Duncan et al.’s modified matrix task, external operations were the means through which 9 

participants were able to cognitive segment the problems that were presented to them. 10 

However, we would also argue that, in addition to segmentation, external operations 11 

enable a problem-solver to recombine task subcomponents in novel ways and 12 

perceptually re-encounter them, which, when followed up with critical reflection, allow 13 

participants to gain novel insights into the structure of the problem. In other words, 14 

external operations not only facilitate the cognitive segmentation of a task, but they also 15 

produce changes (intended or serendipitous) in the external input which enable an agent 16 

to reconceptualize the problem. In this respect, it would be interesting for future research 17 

to investigate whether the act of cognitive segmentation is perhaps necessarily 18 

implemented through external operations (i.e., either in the form of active task 19 

manipulations or more passive attentional task restructuring34). 20 

Given that the click-and-drag Raven task displayed a higher correlation with 21 

academic achievement, it would also be interesting to investigate how the temporal 22 

profile of problem-solving relates to academic outcomes. To investigate this, one could 23 

measure the temporal profiles of task actions and task performance both during the Raven 24 

task as well as during a criterion task (e.g. relating to achievement). Then, one could test 25 

whether the type of temporal profiles exhibited during the Raven and citerion task are 26 

associated, and to what extent this generalization of task strategy can account for the 27 

association between Raven and criterion task performance. In other words: to what extent 28 

can the association in task outcomes be explained by epistemic strategies that generalize 29 

over tasks? 30 

It is important to note two methodological limitations of the current study. Given 31 

that we only tested undergraduate students, further research is needed in order to assess 32 

whether our findings are also applicable to the general population. Also, further research 33 
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 is needed in order to generalize our findings to Raven items other than the particular 1 

items we selected for our experiments.  2 

In sum, our work offers a widely applicable approach for investigating how 3 

people use their task environment during problem-solving. Our results suggest that an IQ 4 

test that allows information processing to be offloaded onto the environment may be 5 

better than a more conventional static IQ test at predicting academic achievement. 6 

Furthermore, we provide a quantitative demonstration of the degree to which intelligent 7 

problem-solvers may benefit from external cognitive operations. The ability to use 8 

external objects, props and aids in order to solve complex problems is considered by 9 

many to be a unique feature of human intelligence16-25,37, which may have provided the 10 

core impetus to the advancement of civilization22-25,37. Our study supports the emerging 11 

view that much of what matters about human intelligence is hidden not in the brain, nor 12 

in external technology, but lies in the delicate and iterated coupling between the two17-13 
25,37-38.  14 

 15 
16 
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 Methods summary 1 

No statistical methods were used to determine sample size but our sample sizes are 2 

similar to those reported in previous publications4-6,15,27,29-32. The assignment of 3 

participants to between-subjects conditions (click-and-drag vs. static Raven task) was 4 

randomized and was not blinded to investigators. Both in the click-and-drag and static 5 

Raven tasks, items were presented in a fixed order of increasing difficulty for each 6 

participant (i.e., SPM-D5, SPM-D9, APM-1, APM-8, APM-13, APM-14, APM-17, 7 

APM-21, APM-27, APM-28, APM-34). Data collection and analysis were not performed 8 

blind to the conditions of the experiments. No participants or data points were excluded 9 

from the analyses. 10 

Informed consent. All experiments reported were conducted in accordance with relevant 11 

regulations and institutional guidelines and was approved by the local ethics committees 12 

of the Faculty of Social and Behavioural Sciences, Leiden University and the Erasmus 13 

School of Social and Behavioral Sciences, Erasmus University Rotterdam. All 14 

participants signed a consent form prior to participating in the experiment, and received 15 

written debriefing after participating in the experiment. 16 

Experimental studies. In Experiment 1a, two-hundred and eleven Leiden University 17 

students (156 women, 55 men, Mage = 21.4 years, SDage = 3.2 years), and in Experiment 18 

1b, two-hundred and eighty-four Erasmus University students (236 women, 48 men, Mage 19 

= 20.4 years, SDage = 3.1 years), with normal or corrected-to-normal vision were 20 

randomly assigned to either a conventional static Raven IQ test or a click-and-drag Raven 21 

IQ test. Academic achievement was assessed using average exam grades on a 10-point 22 

scale for a selection of Bachelor of Psychology courses. In order to validate the Raven 23 

Advanced Progressive Matrices tests for fluid intelligence, we selected first-year courses 24 

in the Bachelor curricula that were general in their content and that required abstract and 25 

logical reasoning. For Leiden University students we selected the courses Introduction to 26 

Psychology, Introduction to Research Methods and Inferential Statistics, and for Erasmus 27 

University students we selected the courses Introduction to Research Methods and 28 

Practical Statistics. In Experiment 2, we recorded the time-course of mouse actions for a 29 

new sample of seventy Leiden University students (53 women, 17 men, Mage = 20.8 30 

years, SDage = 3.4 years) performing the click-and-drag Raven IQ test. All participants 31 

were undergraduate students participating for course credit or a small monetary reward 32 

(€4.00).  33 
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 Both the static and click-and-drag IQ tests consisted of 11 items taken from the 1 

Raven Standard and Advanced Progressive Matrices. In the static test participants were 2 

instructed to inspect the array of figures and decide which figure was missing, whereas in 3 

the click-and-drag test participants were instructed to sort these figures into the grid using 4 

the mouse, leaving one of the bottom three positions empty. Next, they selected the 5 

missing figure from the 8 alternatives presented below the array. There was a time-limit 6 

of 4 minutes to complete each item and the time remaining to complete the item was 7 

displayed at the top of the screen. 8 

Data distributions was assumed to be normal but this was not formally tested. All 9 

statistical tests conducted in the reported experiments were two-tailed. For further 10 

analyses and details of the experimental methods, see Supplementary Information. 11 

 12 

Data availability statement. The data that support the findings of this study are available 13 

from the corresponding author upon request. 14 

 15 

Code availability statement. The routines/code that were used to perform the statistical 16 

analyses in this study are available from the corresponding author upon request. For the 17 

routine/code that was used for simulating the dual-mode and single-mode problem-18 

solvers see Supplementary Software.    19 

 20 

Supplementary Information is available in the online version of the paper at 21 

www.nature.com/nature. 22 
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  1 
Figure 1 | Predicting academic achievement using the conventional and the adapted 2 
click-and-drag Raven Advanced Progressive Matrices test in Experiments 1a-b. a, 3 
Conventional IQ test item in the style of the Raven Advanced Progressive Matrices. b, 4 
Adapted click-and-drag Raven IQ test item. Average exam grades for performance levels 5 
(accuracy) in Experiments 1a-b for c, the static Raven test (n = 251), and d, the click-and-6 
drag Raven test (n = 244). Error bars represent the mean ± s.e.m.  7 
 8 
Figure 2 | Simulated data for the dual-mode (green), and single-mode model (blue), 9 
and empirical data for experimental participants (black) in Experiment 2. a, Time-10 
course of the dual-mode priority parameters x! ∈ 0, 1  for external operations (solid 11 
green line), and internal operations (dashed gray line), and the resulting action-intervals 12 
(green bars), and rest-intervals (white bars). b, Time-course of the single-mode action 13 
parameter x! ∈ 0, 1  (solid blue line), and the action threshold value (dashed gray line), 14 
and the resulting action-intervals (blue bars), and rest-intervals (white bars). c, sample of 15 
action-intervals (dark gray bars) and rest-intervals (white bars) from participants’ 16 
experimental data. This sample was selected visually to represent the typical degree of 17 
temporal clustering observed in our data-set. Probability distribution of rest-intervals 18 
(open circles) and gamma distribution functions (solid lines) for d, the dual-mode model 19 
(green) and single-mode model (blue, T = 3×10! simulated intervals per model), and e, 20 
the experimental data (black, n = 70, T = 7.1×10! intervals in total). Partial 21 
autocorrelation function (absolute coefficients) for f, the dual-mode model (green) and 22 
single-mode model (blue), and g, the experimental participants (black, dashed line 23 
indicates the upper-bound of the 95% confidence interval for uncorrelated temporal 24 
intervals). 25 
 26 
Figure 3 | Shape parameters, scale parameters, partial autocorrelations as a 27 
function of Raven IQ test performance in Experiment 2. a, Shape and scale 28 
parameters for individual participants in Experiment 2 (n = 70). b, Rest-interval 29 
distributions for two sets of 5 participants at the ends of the correlated scale-shape 30 
spectrum (see green and blue selection in a). c, Individual differences in variance 31 
observed in inter-movement intervals, as a function of individual differences in variance 32 
described by shape and scale parameters. d, Shape parameters e, scale parameters and f, 33 
average partial autocorrelations (for lags < 5) as a function of Raven test accuracy.  34 
 35 
Figure 4 | Variance of inter-movement intervals, total nr. of movements, total time 36 
spent on task as a function of Raven IQ test performance in Experiment 2. a, 37 
Geometric mean variance of IMIs b, total nr. of movements and time spent as a function 38 
of Raven accuracy in the click-and-drag Raven test. Error bars represent the mean ± 39 
s.e.m. Mean performance levels (Raven acc) as a function of c, scale and shape 40 
parameters and d, the nr. of movements and time spent. Error bars represent the mean ± 41 
s.e.m.  42 




