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Background. Most falls occur during walking and are due to trips, slips or
misplaced steps, which suggests a reduced walking adaptability. The objective of
this study was to evaluate the potential merit of a walking-adaptability
assessment for identifying prospective fallers and risk factors for future falls in a
cohort of stroke patients, Parkinson’s disease patients, and controls (n = 30 for
each group). Research question. Does an assessment of walking-adaptability
improve the identification of fallers compared to generic fall-risk factors alone?
Methods. This study comprised an evaluation of subject characteristics, clinical
gait and balance tests, a quantitative gait assessment and a walking-adaptability
assessment with the Interactive Walkway. Subjects’ falls were registered
prospectively with falls calendars during a 6-month follow-up period. Generic and
walking-related fall-risk factors were compared between prospective fallers and
non-fallers. Binary logistic regression and Chi-square Automatic Interaction
Detector analyses were performed to identify fallers and predictor variables for
future falls. Results. In addition to fall history, obstacle-avoidance success rate
and normalized walking speed during goal-directed stepping correctly classified
prospective fallers and were predictors of future falls. Compared to the use of
generic fall-risk factors only, the inclusion of walking-related fall-risk factors
improved the identification of prospective fallers. Significance. If cross-validated
in future studies with larger samples, these fall-risk factors may serve as quick
entry tests for falls prevention programs. In addition, the identification of these
walking-related fall-risk factors may help in developing falls prevention

strategies.



Introduction

The incidence of falls increases with age, but is particularly high in patients
with neurological disorders, such as stroke and Parkinson’s disease (PD) [1,2].
Falls can occur as a result of both intrinsic factors (i.e., subject characteristics
and gait impairments) and extrinsic factors (e.g., slippery floor, uneven walking
surface) [3]. For the latter, it is important to be able to adapt walking to the
environment, an aspect of walking that is difficult to assess with clinical tests
[4]. Most falls occur during walking and are due to trips, slips or misplaced
steps [5-7], suggesting a reduced walking adaptability. An evaluation of walking
adaptability could potentially improve the identification of fallers and may help
in developing falls prevention strategies [8]. The Interactive Walkway (IWW;
Figure 7.1) can be used to perform quick and unobtrusive quantitative gait
assessments [9] and to quantify various aspects of walking adaptability [10].
The aim of this study is to evaluate the potential merit of the IWW for
identifying prospective fallers and risk factors for future falls in a composite
cohort with stroke patients, PD patients and controls. First, we will examine
differences in walking ability between fallers and non-fallers. Second, two
methods will be used to identify fallers and risk factors for future falls; one
extensive method and one easily interpretable method fit for use in the clinic.
We expect that walking-adaptability assessments improve the classification of
prospective fallers compared to generic fall-risk factors alone (i.e., subject
characteristics, clinical gait and balance tests, quantitative gait assessments)

and that a poor walking adaptability is a risk factor for future falls.

Methods

Subjects

30 stroke patients, 30 PD patients and 30 controls participated in this study
(Table 7.1). Groups were age- and sex-matched. Patients were recruited from
the outpatient clinics of neurology and rehabilitation medicine of the Leiden

University Medical Center and from a list of patients who were discharged from
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the Rijnlands Rehabilitation Center. Controls were recruited via advertisement.
Subjects were 18 years or older and had command of the Dutch language.
Patients had to be able to stand unsupported for more than 20 seconds and
walk independently. Stroke patients had to be more than 12 weeks post stroke.
PD patients had to fulfill clinical diagnostic criteria according to the UK
Parkinson’s Disease Society Brain Bank [11] and could have a Hoehn and Yahr
stage of 1-4 [12]. PD patients were measured in the ON state. Controls had to
have unimpaired gait, normal cognitive function (Montreal Cognitive
Assessment score = 23; [13]) and normal or corrected to normal vision.
Exclusion criteria were (additional) neurological diseases and/or problems
interfering with gait function. All subjects gave written informed consent, and

the study was approved by the local medical ethics committee (P15.232).

Figure 7.1 The Interactive Walkway for an assessment of walking adaptability, which may unveil

potential fall-risk factors.
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Table 7.1 Group characteristics of stroke patients, Parkinson’s disease patients and controls.

Stroke Parkinson’s  Control

disease
Age (years) mean % SD 62.5+10.1 63.1+10.0 629+10.3
Sex male/female 18/12 18/12 18/12
MOCA [0-30]* mean * SD 22.5+6.3 - 27.7+14
FMA lower extremity [0-34]* mean % SD 19.7+7.4 - -
Bamford classification PACS/TACS/ 16/2/2/8/1 - -
POCS/LACS/unk

SCOPA-COG [0-43]* mean * SD - 30471 -
MDS-UPDRS motor score [0-132]** mean % SD - 369 +18.0 -
Hoehn and Yahr stage [1-5]** mean % SD - 2307 -

Abbreviations: MOCA = Montreal Cognitive Assessment; FMA = Fugl-Meyer Assessment; PACS =
partial anterior circulation stroke; TACS = total anterior circulation stroke; POCS = posterior
circulation syndrome; LACS = lacunar syndrome; unk = unknown; SCOPA-COG = Scales for
Outcomes in Parkinson’s Disease - Cognition; MDS-UPDRS = Movement Disorder Society version of
the Unified Rating Scale for Parkinson’s disease.

* Higher scores represent better outcomes.

** Higher scores represent worse outcomes.

Experimental set-up and procedure

Before performing the experimental tasks, the Montreal Cognitive Assessment
[14] and Scales for Outcomes in Parkinson’s Disease - Cognition [15] were
administered to assess cognitive abilities. In stroke patients, sensorimotor
impairment was assessed using the Fugl-Meyer Assessment - lower extremity
[16]. Higher scores on these clinical tests reflect better outcomes (Table 7.1). In
PD patients, the Movement Disorder Society version of the Unified Rating Scale
for Parkinson’s disease [17] and Hoehn and Yahr stage [12] were administered
to assess disease severity, with higher scores reflecting worse outcomes (Table
7.1). All subjects completed the Falls Efficacy Scale - International [18] to assess
fear of falling, the Modified Survey of Activities of Fear of Falling in the Elderly
Scale [19] to assess activity avoidance due to fear of falling (higher scores
indicate more fear of falling) and were asked about their fall history in the year

prior to the experiment.



Commonly-used clinical gait and balance tests included the Timed-Up-
and-Go test and the 10-meter walking test at comfortable and maximum
walking speed to assess mobility (longer completion times indicate worse
mobility), the Tinetti Balance Assessment for an evaluation of gait and balance
performance of which the combined score of the two sections was used in this
study (higher scores indicate better performance), the 7-item Berg Balance
Scale to measure static and dynamic balance during specific movement tasks
(lower outcome indicates worse balance) and the Functional Reach Test to
determine the maximal distance one can reach forward from a standing
position (smaller distance indicates worse balance). The order of these
commonly-used clinical tests was randomized.

The validated IWW [9,10,20] was used for quantitative gait and
walking-adaptability assessments. The IWW set-up, using multiple Kinect
sensors for markerless 3D motion registration, is described in detail in
Supplement 7.1. The quantitative gait assessment was performed using an 8-
meter walking test. In addition, subjects performed various walking-
adaptability tasks under varying levels of difficulty: obstacle avoidance, sudden
stops-and-starts, goal-directed stepping (symmetric and irregular stepping
stones), narrow walkway (entire walkway and sudden narrowing), speed
adjustments (speeding up and slowing down), slalom, turning (half and full
turns) and dual-task walking (plain and augmented), yielding a total of 36 trials
(Figure 7.2; see Supplement 7.1 for more details and Supplement 7.2 for a
video). Dual-task walking was assessed using an auditory Stroop task in which
the words high and low were pronounced at a high or low pitch (i.e., congruent
and incongruent stimuli) simultaneously with the 8-meter walking test (plain
dual-task walking) and obstacle-avoidance task (augmented dual-task walking),
respectively. Subjects had to respond with the pitch of the spoken word, which
was different from the spoken word in case of an incongruent stimulus. Stimuli

were presented with a fixed interval of 2 s. Subjects were instructed to



complete each trial at a self-selected walking speed, while also responding to
the Stroop stimuli in case of dual-task walking.

Half of the subjects in each group started with the clinical tests, the
other half with the IWW assessment. With regard to the latter, subjects always
started with the 8-meter walking test, which enabled us to adjust the settings of
the walking-adaptability tasks to one’s own gait characteristics in an attempt to
obtain a similar level of difficulty for each subject (see Supplement 7.1). For
example, available response times for suddenly appearing obstacles were
controlled by self-selected walking speed during the 8-meter walking test and
available response distance (ARD in Figure 7.2). Subsequently, the 8-meter
walking test was performed with the dual task (i.e., plain dual-task walking),
preceded by a familiarization trial in which the auditory Stroop task was
practiced while sitting. The remaining IWW tasks (as specified in Table 7.2)
were randomized in blocks.

After the experiment, subjects were asked to register falls during a 6-
month follow-up period using a falls calendar. Subjects had to report every day
whether they had fallen. A fall was defined as an unexpected event in which the
subject comes to rest on the ground, floor, or lower level [21]. Subjects were
asked to send back their falls calendar every month and were contacted on a

monthly basis to ask about the falls that occurred.

Data pre-processing and analysis

Data pre-processing followed Geerse et al. [9,10], as reproduced in more detail
in Supplement 7.1. 111 trials (3.4% of all trials) were excluded since subjects
did not perform the tasks or trials were not recorded properly (i.e., incorrect
recording or inability of sensors of the IWW to track the subject). These
excluded trials only concerned stroke and PD patients. IWW outcome measures
were calculated from specific body points’ time series, estimates of foot contact
and foot off and step locations, as detailed in Table 7.2 and Supplement 7.1.

Outcome measures of dual-task performance were success rate, response time



and a composite score that represents the trade-off between these two
outcome measures (Table 7.3; [22-24]). The average over trials per IWW task
per subject was calculated for all outcome measures.

Falls calendars were used to classify subjects as prospective faller (i.e.,
those reporting at least one fall during the follow-up period) or non-faller. In
the literature, fallers are classified using both retrospective and prospective
falls. Therefore, non-fallers were defined as subjects that did not report a fall in
the follow-up period or in the year prior to the experiment. Only walking- or
balance-related falls were taken into account. A total of 88 subjects completed
the entire 6-month follow-up period. One PD patient stopped prematurely with
the falls calendar as it took too much time, but was not excluded from the
analyses since this patient was already identified as a prospective faller based
on the received falls calendars. One stroke patient who did not fill in a single
falls calendar was excluded. In total, 33 (37.1%; 37.9% of stroke patients,
50.0% of PD patients and 23.3% of controls) subjects reported at least one fall
in the follow-up period (i.e., prospective fallers), of which 24 (72.7% of
prospective fallers; 27.0% of total) also had a history of falling. In the sample of
56 (62.9%) subjects without a prospective fall, 47 (83.9%; 52.8% of total) were
actual non-fallers according to our definition; consequently, 9 (16.1%; 10.1% of
total) subjects were excluded since they had a history of falling without

prospective falls.

Statistical analysis

Outcome measures of prospective fallers (n = 33) and non-fallers (n = 47) were
compared using chi-squared tests for categorical data and independent-
samples t-tests for continuous variables to examine differences in walking
ability. We computed r to quantify the effect sizes of continuous variables [25],
where values between 0.10-0.29 were regarded as small, between 0.30-0.49 as

medium and above 0.50 as large effect sizes [25].



Binary logistic regression analyses (forward method, Wald test) were
performed on four models (Table 7.3) to identify prospective fallers and
predictor variables for future falls. Model 1 included only subject
characteristics (e.g., age, fall history, group) as potential predictor variables. For
model 2, clinical test scores were added to subject characteristics. Model 3
consisted of subject characteristics, clinical test scores and spatiotemporal gait
parameters. For model 4, also IWW walking-adaptability outcome measures
were added. We calculated the sensitivity (i.e., percentage correctly classified
prospective fallers), specificity (i.e., percentage correctly classified non-fallers)
and overall accuracy (i.e., percentage of correctly classified prospective fallers
and non-fallers) for each prediction model. We also inspected the sign and size
of the coefficients (i.e., describing the relationship between predictor variable
and outcome) to determine the direction of the association with falls and the
relevance of a predictor variable. Receiver operating characteristic curve
analyses were used to assess the predictive accuracy of each model by
estimating the area under the curve (AUC). AUCs of more than 0.70, 0.80 and
0.90 are considered acceptable, excellent and outstanding, respectively [26].
Multiple imputation was performed to handle missing data (1.4%, 69 complete
cases) in 23 out of 48 potential predictor variables. Five imputations were
performed using chained equations including all potential predictor variables
of model 4 and the outcome variable (i.e., prospective faller or non-faller).

We also used the Chi-square Automatic Interaction Detector (CHAID)
analysis to identify significant predictors for inclusion in a prediction model
based on a decision tree. Potential predictor variables included in our model
were subject characteristics, clinical test scores, spatiotemporal gait
parameters and IWW walking-adaptability outcome measures. In our model,
we imposed a minimum of one subject per node, a significance level of 0.05
(with a Bonferroni correction) and a division on a maximum of two levels to
keep the decision tree as simple as possible. Sensitivity, specificity and overall

accuracy were calculated.



Quantitative gait assessment
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Figure 7.2 Schematic of the quantitative gait assessment and walking-adaptability tasks on the

Interactive Walkway, as detailed in the main text.
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Results

Prospective fallers had significantly more fear of falling (i.e., higher score on the
Falls Efficacy Scale) and more often avoided activities due to fear of falling (i.e.,
higher score on the Modified Survey of Activities of Fear of Falling in the Elderly
Scale; Table 7.3) than non-fallers. In addition, prospective fallers performed
overall worse on clinical tests (significantly for the Timed-Up-and-Go test,
Tinetti Balance Assessment and 7-item Berg Balance Scale) and IWW tasks
(significantly for the obstacle-avoidance, sudden-stops-and-starts, goal-
directed-stepping and turning tasks) and walked slower and with smaller steps

than non-fallers (Table 7.3).

Binary logistic regression models

Model 1 included fall history (B = 23.11) and age (B = 0.08) as best predictor
variables for prospective falls, models 2 and 3 also only included fall history
and age, while model 4 included fall history (B = 24.16), obstacle-avoidance
success rate (B =-0.07) and reaching distance on the Functional Reach Test (B =
0.20). Sensitivity increased from 72.7% (models 1-3) to 78.8% (model 4),
specificity increased from 97.9% to 100.0% and overall accuracy increased
from 87.5% to 91.3%. AUC increased from 0.926 (95% CI = [0.858 0.995];
models 1-3) to 0.943 (95% CI = [0.886 1.000]; model 4).

CHAID analysis

The CHAID analysis identified three significant predictors for prospective falls
(Figure 7.3). Subjects were initially dichotomized by fall history, with
retrospective falls classifying 24 of 80 subjects as prospective faller of which all
were actual prospective fallers. The remaining 56 subjects without a fall history
(i.e., falls-naive cohort, including 9 prospective fallers) were split by obstacle-
avoidance success rate (> 77.8% and < 77.8%). 35 subjects with a success rate
> 77.8% were classified as non-fallers, of which 33 subjects were non-fallers.

The remaining 21 subjects with an obstacle-avoidance success rate < 77.8%



were finally split by normalized walking speed during goal-directed stepping
on symmetric stepping stones (> 91.9% and < 91.9% or missing). The 6
subjects with a normalized walking speed > 91.9% were classified as
prospective fallers, of which 5 subjects were prospective fallers. The sensitivity
of this model was 87.9% (29 out of 33 prospective fallers correctly identified),
while the specificity was 97.9% (46 out of 47 non-fallers correctly identified),

with an overall accuracy of 93.8%.

Classification |_ Category % n
Prospective faller ® Prospective faller 41.2 33
Non-faller Non-faller 58.8 47

Total 100.0 80

i Fall history |
L 1

_____ T
jmm———== I' ----- 1 |mEmm——————— L---_--‘_--|
i_ Falls naive | i Retrospective faller !
""" — I
Category % n Category % n
® Prospective faller 16.1 9 " Prospective faller 100.0 24
Non-faller 83.9 47 |__Non-faller 0.0 0
Total 700 56 | | ]Total 300 24
I
1 Ll
i Obstacle-avoidance success rate i
| _d
. — p—
1 >77.8% | 1 <=77.8% i
_____ - S R
| Category % n | Category % n
" Prospective faller 5.7 2 ® Prospective faller 33.3 7
Non-faller 94.3 33 Non-faller 66.7 14
| Total 438 35 Total 262 21
E Goal-directed stepping - symmetric stepping stones
i Normalized walking speed
- |
L p—
i_> 91.9% | i <= 91.9%; missing |
________ 1
1 I
Category % n Category % n
™ Prospective faller 83.3 5 " Prospective faller 13.3 2
Non-faller 16.7 1 Non-faller 86.7 13
|Total 7.5 6 | Total 188 15

Figure 7.3 Decision tree of the CHAID analysis.
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Discussion

This study evaluated the potential merit of the IWW for identifying fallers and
risk factors for future falls in a composite cohort with stroke patients, PD
patients and controls. Prospective fallers experienced more fear of falling, a
well-known fall-risk factor [8,21,27]. Fallers also more often reported fear-
induced activity avoidance than non-fallers. In addition, prospective fallers
walked slower and with smaller steps, and had a poorer performance on
clinical gait and balance tests. As anticipated, prospective fallers performed
worse on various walking-adaptability tasks, including the obstacle-avoidance,
sudden-stops, goal-directed-stepping and full-turn tasks. Since tripping is
considered one of the most common causes of falls in everyday life [5-7],
smaller margins of the leading limb during obstacle avoidance were expected.
Overall, the ability to make step adjustments, either under time pressure
demands or during goal-directed stepping, was impaired in prospective fallers
and was associated with falls in [28,29]. This may point at specific underlying
gait impairments that can be targeted in falls prevention strategies to reduce
fall risk. No differences were found between prospective fallers and non-fallers
for dual-task walking, except for response time during plain dual-task walking
(Table 7.3). An explanation for this might be between-subject variation in task
prioritization in both groups. In the study of Timmermans et al. [30] the
amount of cognitive-motor interference did not differ between obstacle
avoidance over physical obstacles compared to projected obstacles, while task
prioritization did. In Timmermans et al. [30] and in the current study, subjects
were instructed to perform both tasks as well as possible, affording differences
in task prioritization. This likely increased between-subject variation in the
performance of the walking task and the cognitive task, which might explain the
lack of a clear effect of the dual task (Table 7.3). Note that response time during
augmented dual-task walking and the composite scores showed trends towards

poorer dual-task performance in fallers.



We performed two different analyses to identify prospective fallers and
predictor variables for future falls, namely the binary logistic regression and
CHAID analysis, which both performed very well in terms of overall accuracy.
The results of the CHAID analysis are easier to interpret and implement in daily
practice [31]. On the other hand, binary logistic regression models are more
informative on the relevance of a predictor variable (i.e., size of coefficient).
Both analyses identified fall history and obstacle-avoidance success rate as
predictor variables. The CHAID analysis additionally identified normalized
walking speed during goal-directed stepping on symmetric stepping stones as
predictor variable, whereas age and reaching distance on the Functional Reach
Test both significantly increased fall risk (i.e., positive coefficients) in the binary
logistic regression models. Group (i.e., stroke, Parkinson’s disease, control) was
not identified as a significant predictor variable for prospective falls. This
suggests that the presence of a neurological disorder does not automatically
increase fall risk, a finding in line with another study on fall-risk assessments
[32]. Notably, controls without specific disorders also experienced falls
(23.3%). A decreased walking ability in older adults compared to younger
adults has been demonstrated [33], both in steady-state walking and walking
adaptability. Assessing limitations in walking ability, regardless of their cause
(e.g., neurological disorders, ageing), thus likely provides a better indication of
someone’s fall risk. In accordance with previous studies, fall history was the
best sole predictor of future falls in our study [27,34]. All subjects classified as
prospective faller in models 1-3 had a history of falling and the coefficients for
fall history in the models were high. The addition of obstacle-avoidance success
rate and reaching distance led to the correct classification of two more fallers
and one non-faller. Using the CHAID analysis, we subsequently evaluated risk
factors of first falls in the falls-naive cohort. It appeared that subjects who
poorly performed the obstacle-avoidance task and who did not substantially
lower their walking speed during goal-directed stepping are most at risk of

falling (i.e, 5 out of 9 fallers correctly classified). Reminiscent of a speed-



accuracy trade-off, subjects seem to maintain their normal walking speed (i.e.,
no significant group difference in normalized walking speed), at the expense of
stepping accuracy (i.e, significantly less accurate in prospective fallers).
However, the latter seems more important when walking in the community.
There thus appears to be a discrepancy between their perceived and actual
walking ability, which may be a factor contributing to falls [35]. The amount of
misjudgment has been emphasized to be useful to include in fall-risk
assessments [36] and allows for better personalized interventions [35]. This
was confirmed by the study of Butler et al. [37]; subjects that took higher risks
than their physical ability allowed were more likely to experience a fall in the
upcoming year. Assessing walking adaptability in addition to asking about falls
in the previous year thus seems of added value when assessing fall risk.
Besides, identification of these walking-related fall-risk factors may lead to
more targeted, personalized and possibly more effective falls prevention
programs.

A limitation of this study was the sample size. Although 90 subjects
were included and followed prospectively for falls, this was still relatively small
when the distribution of fallers and non-fallers and the type of analysis are
taken into account. This limits cross-validation of the models and the risk of
overfitting must be considered. This study should therefore be regarded as a
first step in evaluating the proposed comprehensive fall-risk assessment
including generic and walking-related factors. The results, when confirmed by a
larger sample, provide indications for a strategy to identify subjects that are at
a high risk of falling. First, subjects should be asked about their fall history and
subjects with a history of walking-related falls may be advised to follow a falls
prevention program, aimed at improving balance, walking and walking
adaptability. Second, subjects that are falls-naive should perform an assessment
of about five minutes, including the obstacle-avoidance and goal-directed
stepping tasks and a baseline walk (to determine normalized walking speed) to

identify potential fallers. Subjects with poor walking adaptability who do not



reduce their walking speed accordingly, may also be advised to follow a falls
prevention program. Given these walking-related predictor variables, such a
program should be geared towards improving (sudden) step adjustments and
creating awareness about a subject’s ability to adapt walking in order to reduce

their walking-related fall risk.
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Supplement 7.1

Experimental set-up and procedure

The quantitative gait assessment and walking-adaptability assessment were
performed on the Interactive Walkway (IWW; Figure S7.1) using four spatially
and temporally integrated Kinect v2 sensors to obtain full-body kinematics. The
IWW set-up was based on a validated IWW set-up used in Geerse et al. [1,2],
with improved inter-sensor distances following recommendations of Geerse et
al. [3]. The sensors were positioned at a height of 0.95 m alongside a walkway
of 8 by 0.75 m. The first three sensors were placed frontoparallel (i.e., with an
angle of 70 degrees relative to the walkway direction) with a distance of 1.2 m
from the left border of the walkway. The last sensor was positioned frontally at
the end of the walkway, since this will minimize orientation-based biases [4].
The first sensor was positioned at 3 m from the start of the walkway and the
other sensors were placed at inter-sensor distances of 2.1 m. The IWW was
equipped with a projector (EPSON EB-585W, ultra-short-throw 3LCD
projector) to augment the entire 8-meter walkway with visual context for the
walking-adaptability tasks. The coordinate systems of the sensors and
projector were spatially aligned to a common coordinate system using a spatial
calibration grid. IWW data were sampled at 30 Hz using custom-written
software utilizing the Kinect-for-Windows Software Development Kit (SDK 2.0).
Details about the experimental tasks performed on the IWW can be found in

Table S7.1.

Data pre-processing and analysis

The Kinect for Windows Software Development Kit (SDK 2.0,
www.microsoft.com) provides 3D time series of 25 body points using inbuilt
and externally validated human-pose estimation algorithms [1,5-8]. These body
points are: head, neck, spine shoulder, spine mid, spine base and left and right
shoulder, elbow, wrist, hand, thumb, hand tip, hip, knee, ankle and foot. For

offline data analysis, the 3D positional data for these body points were first pre-



processed per Kinect sensor separately. Body points labelled as inferred (i.e.,
Kinect’s human-pose estimation software infers positions when segments are
partially occluded for example) were treated as missing values. The body
point’s time series were linearly interpolated using Kinect’s time stamps to
ensure a constant sampling frequency of 30 Hz, without filling in the parts with
missing values. We removed data points from the time series when they did not
meet our stringent requirements for valid human-pose estimation (e.g., a
minimum of 15 out of the 25 possible body points should be labeled as tracked,
including the head and at least one foot and ankle, without outliers in segment
lengths). In addition, a manual check of the data was added to remove errors of
the algorithm due to depth occlusion of the right leg by the left leg.
Subsequently, data of the four Kinect sensors were combined by taking for each
sample the 3D positions of the body points of a validly estimated human pose.
If, for a given sample, more than one sensor contained valid human pose data,
the associated body point’s 3D positions were averaged for that specific sample.

Body point’s time series with more than 50% of missing values were
excluded from further analyses. However, percentages of missing data for all
three groups did not exceed 27.3% with an average of 5.0 = 2.1% for the body
points’ time series of interest (i.e., ankles, spine base and spine shoulder). The
missing values of the remaining data were interpolated with a spline algorithm.
The so-obtained time series were used for the calculation of the spatiotemporal
gait parameters and walking-adaptability outcome measures.

The outcome measures of the IWW assessment were calculated from
specific body points’ time series, estimates of foot contact and foot off and step
locations, as detailed in Table 7.2. Estimates of foot contact and foot off were
defined as the maxima and minima of the anterior-posterior time series of the
ankles relative to that of the spine base [1,2,9]. Step locations were determined
as the median anterior-posterior and mediolateral position of the ankle joint
during the single-support phase (i.e., between foot off and foot contact of the

contralateral foot; [1,2]). Shoe edges and center of the foot were also needed to



calculate several outcome measures. Ankle-to-shoe calibration trials, in which
the subject was standing in two shoe-size-matched targets at a position on the

walkway in front of the last Kinect, were included to determine the average

distance between shoe edges and the ankle.

Figure S7.1 Set-up of the Interactive Walkway with visual context projected on the walkway.



‘paads pasodwt ay3 3e pamo[[oj aq 03

sey] 3 s309[qns ay3 Jo Juo.gj Ul Jajaouwl auo saeadde and paads e uayy

‘Kemy{lem Suimo.rreu A[uappns a3

JO S3[D0[q Y3 USIMId] 10 Aem3{[em Y3 JO SAUI[ A} USaMID] Suniepy

'sauols guiddais
paydew-azis-a0ys ayy ojuo a[qissod se Apjeindoe se Juiddayg
“JeaddesIp sand ay) se uoos se

Jupjiem 11e3s pue sand dois urreadde Auappns ay3 puryaq Surddois

‘sapoeisqo Surreadde Ajuappns Suiproay

‘paads Sunjjem pajoa[as-J[as Je Sunj[e

SMSS %09

SMSS %08

SMSS %0%T

SMSS %02T

MA+MS4S'T = MM

‘ST =14V

MA+MS = MM

MA+MS4S'T = MM

YSLI pue 3] IS UT UOHELIBA %0§
Y311 pue o] IS Ul UONELIEA %GT
S 98e1aA. 0467 T

1S a8e1aA® 9,6/,

1S 98e1oay

(set om1) s 64°0 = LUV
(sreryoaay) s T = LYV

(srern om1) s §2°0 = LYV

(srery oaap) s T = L9V

as

ns

NS

Mmi

SSI

SSS

sjuaunsnipe paads

Aemy[em mo.LreN

Suiddays pajoaarp-feon

sye)s-pue-sdois usppns

dUEpIOoAE 3[2eISqO

s)sp3 Q11quidopy-Bupyipm

1593 Sunj[em 1a1ouw-g

JUaWISSasSy 3106 aarpIUDNY

sansLIveIRY)

AymoygIp jo 9Ad1 U

SJUIUWISSISSY

‘Kemy|[ep) 9A1DRISIU] 93 UO Syse) A11[iqerdepe-3upjjem pue Juawssasse 31ed aaneynuend) 1°LS a[qeL



‘upjfem pauresysuodun jo paads Sunjem pajds[as
-JI9S = SMSS ‘UIPIM 100] = M ‘UIPIM d3Is = AAS ‘YIpIM Aemd{fem = (M ‘3Sus] das =TS ‘own asuodsal ajqe[ieae = LYV *(3{Sel [enp YIIm adueploAe 3[0€3sqo)
Sunjjem ysej-[enp pajuswdne = [qV ‘(3{Sel [enp Yam 3593 Sunjjem J93ouw-g) unjem ysel-fenp ure[d= [qd ‘Suiny [0 = [ ‘Suam jjey = LH ‘umop Summois

= (S ‘dn Surpaads = 1S ‘Suimo.reu uappns = NS ‘Aemy[em ainua = p7 ‘sauols Surddals denda.il = S ‘sauols Surddays oLoWWAS = §SS :SUONBIAIQQY

9¢€ s[eLn [el0],
se3 dooayg A1031pne Ue Sem ySe) [enp ay [, sSel (srern om1) s G20 = 1AV
[enp e Surutioytad osfe a[iym saoelsqo surreadde Ajuappns uipioay (sretnoaa)sT=14v S LAV
se3 dooqys A103ipne
ue sem Se} [enp ayJ, se} [enp e Suruwioyrad osfe a[iym Sunjrepn Z lad Sunjrem ysel-renq
"MO.LIE 3]} JO UONDIIP Y} Ul 3[qIssod se ajes pue Isej
Se wInj [[nJ B axew o0} sey 323(qns ay3 satenbs pajuassaad omy ay3 uj 1 AR
"}1B)S 93 03 3JB( Y[EM pUE WIN} 0} Sey 303[qns ay3 ‘SMSS sZ =14V
%00T Jo paads e yaim 303[qns ayy sayoeoadde and Juruwany e usypp se=J4v Z I1H Suruang,

‘SMSS %06 Jo _uww.uw e yum $9[0€3S(O0 U2aM]}a( 9dUue]sip a[qeLIeA

syalqns ayy yoeoadde jeyy sapeisqo Suraowr sy} punole SUD[EA\ SI[IBISGO UIIMID(] SIULISIP ILNDWWAS 7 worers



References

1.

Geerse DJ, Coolen BH, Roerdink M. Kinematic validation of a multi-Kinect v2 instrumented 10-
meter walkway for quantitative gait assessments. PLoS One. 2015;10(10):e0139913.

Geerse D], Coolen BH, Roerdink M. Walking-adaptability assessments with the Interactive
Walkway: between-systems agreement and sensitivity to task and subject variations. Gait
Posture. 2017;54:194-201.

Geerse D, Coolen B, Kolijn D, Roerdink M. Validation of foot placement locations from ankle
data of a Kinect v2 sensor. Sensors-Basel. 2017;17(10):E2301.

Wang Q, Kurillo G, Ofli F, Bajcsy R. Evaluation of pose tracking accuracy in the first and second
generations of Microsoft Kinect. Proceeding of the International Conference on Healthcare
Informatics; 2015 October 21-23; Dallas, United States. IEEE; 2015.

Clark RA, Pua YH, Oliveira CC, Bower K], Thilarajah S, McGaw R, et al. Reliability and
concurrent validity of the Microsoft Xbox One Kinect for assessment of standing balance and
postural control. Gait Posture. 2015;42(2):210-213.

Dolatabadi E, Taati B, Mihailidis A. Concurrent validity of the Microsoft Kinect for Windows v2
for measuring spatiotemporal gait parameters. Med Eng Phys. 2016;38(9):952-958.

Mentiplay BF, Perraton LG, Bower K], Pua YH, McGaw R, Heywood S, et al. Gait assessment
using the Microsoft Xbox One Kinect: concurrent validity and inter-day reliability of
spatiotemporal and kinematic variables. ] Biomech. 2015;48(10):2166-2170.

Xu X, McGorry RW. The validity of the first and second generation Microsoft Kinect™ for
identifying joint center locations during static postures. Appl Ergon. 2015;49:47-54.

Zeni JA, Richards ]G, Higginson JS. Two simple methods for determining gait events during

treadmill and overground walking using kinematic data. Gait Posture. 2008;27(4):710-714.



Supplement 7.2

Video of assessments on the Interactive Walkway in a patient with stroke. This

video is available at https://youtu.be/k702kc5R-K8.



