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Chapter 1

General introduction






Gait and balance impairments in neurological disorders

Stroke and Parkinson’s disease (PD) are two highly prevalent neurological
disorders, with estimated prevalence rates in the Netherlands of 3,425 per
100,000 for stroke [1] and 1,350 per 100,000 for PD [2]. These neurological
disorders can lead to a great variety of motor and non-motor symptoms [3-5].
Gait and balance impairments are among the most serious motor consequences
of these disorders, because they negatively influence the ability to walk and loss
of this ability has a significant impact on the quality of life of these patients [6-
8]. In addition, fallers seem to experience greater impairments in walking
ability compared to non-fallers [9-12]. A thorough insight into gait and balance
impairments of patients is thus essential to provide the best treatment for
regaining or maintaining their walking ability in order to reduce the risk of
falling.

The archetypal gait impairment after stroke is hemiparetic gait, which
is characterized by temporal and/or spatial asymmetry [13,14]. In addition,
gait impairments in stroke patients often result in slower walking speeds,
smaller step lengths, increased step times, reduced cadences and wider steps
than healthy controls [15-17]. In PD patients, a different gait pattern is seen.
Parkinsonian gait is characterized by a shuffling gait with a stooped posture
and reduced arm swing [18]. Compared to healthy controls, slower walking
speeds, smaller step lengths and increased cadences have been found [18].
Additionally, PD patients may also suffer from episodic gait impairments, such
as freezing of gait (FOG) [6]. The gait impairments listed above can be
evaluated objectively using 3D gait analyses. The results of these analyses
provide a good understanding of the disease-specific gait impairments and
severity of the motor symptoms.

In the clinic, extensive 3D gait analyses are often not performed, mainly
due to the costs and time required to conduct the analysis. In contrast,
subjectively-scored  assessments  examining  disease-specific = motor

impairments are often administered. These include, for example, examinations



of isolated limb movements with the Fugl-Meyer Assessment in stroke patients
or the comprehensive Movement Disorder Society version of the Unified
Parkinson’s Disease Rating Scale in PD patients. Although these clinical tests
provide useful information about the motor symptoms, they fail to reflect their
influence on the walking ability of patients and are often time consuming. The
most commonly used outcome measure of walking ability in the clinic is
walking speed assessed over short distances, for example using the 10-meter
walking test. It is a simple and cost effective outcome measure [19] and has
been found to be associated with falls [20-25], hospitalization [23,24] and life
expectancy [24,25] in older adults. Furthermore, generic gait and balance
assessments examining functional mobility and balance outcomes, such as the
Timed-Up-and-Go test and the Berg Balance Scale, are also frequently used
clinical tests.

Although valuable, quantitative 3D gait analyses and clinical tests do
not account for the full repertoire of walking skills needed for safe walking in
order to prevent falls [26]. There is thus a need for a more comprehensive
assessment of walking ability that incorporates factors directly associated with
walking-related fall risk. A more task-specific assessment of walking ability
could help identify people at risk of falling as well as help personalize

treatments by targeting the identified risk factors.

The tripartite model of walking ability

Walking ability is defined as the ability to walk independently and safely from
one place to the other [27]. In order to determine what should be in a
comprehensive assessment of walking ability, we need to consider what
walking ability entails. The tripartite model [26] is quite instrumental in that
regard. This model comprises three overlapping components that are required
for independent and safe walking (Figure 1.1). The person needs to be able to
1) generate effective stepping and 2) maintain balance while walking. These

two components are often assessed with standard clinical tests, such as the 10-



meter walking test and the Berg Balance Scale. However, people should not
only be able to walk safely in fairly simple and predictable environments, but
should also be able to modify and adapt walking to both expected and
unexpected changes in the environment in order to walk safely in everyday life
[28], as reflected in the third component of the tripartite model: walking
adaptability. The tripartite model was substantiated by the neural control
frameworks put forward by Forssberg [29] and Grillner & Wallen [30], since
differential neural control systems underlie walking adaptability and steady-
state walking (for a review, see Balasubramanian et al. [26]). The three
components of walking ability overlap (Figure 1.1) and the extent to which the
various components are involved during walking depends upon the
environmental and situational context, which is inherently variable and
therefore imposes different demands on walking [27].

Walking adaptability is defined as the ability to modify walking to meet
behavioral task goals and demands of the environment [26]. This component
was previously described by Patla & Shumway-Cook [27], who proposed a
theoretical framework where walking ability is not just the property of the
individual to generate stepping and maintain balance, but reflects an
interaction between the individual and the environment. Patla & Shumway-
Cook [27] defined eight environmental domains that describe the complexity of
the situation. Balasubramanian et al. [26], in turn, proposed nine domains,
changing some domains of Patla & Shumway-Cook [27] and introducing
domains as abilities of the individual to handle these situations. The domains
consisted of obstacle negotiation (e.g., stepping over a doorstep), temporal
constraints (e.g., walking faster to cross a street), cognitive dual-tasking (e.g.,
talking while walking), terrain demands (e.g., walking in a forest), ambient
demands (e.g., walking in the dark), postural transitions (e.g., turning), motor
dual-tasking (e.g., walking while holding a glass), physical load (e.g., walking
with a heavy backpack) and maneuvering in traffic (e.g., walking around people

in a busy shopping street). The demand on a particular domain and the number



of domains involved may vary per environment, which clearly illustrates the

challenge of assessing walking ability.

Generate repetitive Maintain balance

stepping

Walking adaptability

Figure 1.1 Tripartite model of walking ability.

Comprehensive assessment of walking ability

When measuring walking ability in the clinic, there are several points to
consider. First, we would like to address all components of the tripartite model
to provide a completer picture of a person’s walking ability than currently
obtained with standard clinical tests. Although good clinical tests assessing
stepping and balance already exist, there is currently no good assessment of
walking adaptability [26]. Walking-related falls often occur due to trips, slips or
misplaced steps [31-35], suggesting that people have problems adapting
walking. Walking adaptability therefore seems to be related to fall risk and



appears to be an important component of safe walking. Second, for an
assessment to be useful in the clinic, there are certain practical requirements
that need to be taken into account. Assessments should not take up too much
time and should be cheap, easy to use and patient-friendly. Furthermore, while
some clinical tests use subjectively scored assessments, objective examinations
of motor function are preferred. Nevertheless, the most important point is that
a comprehensive assessment provides valid and meaningful information about
someone’s walking ability. Such an assessment may help physicians and
physiotherapists to characterize a person’s walking ability, to select the best
treatment for a specific person, and to monitor changes in walking ability over

time or in response to the selected treatment.

Figure 1.2 The Interactive Walkway with visual context projected onto the walkway.

The Interactive Walkway

The Interactive Walkway (IWW; Figure 1.2; [36]) is a system that may be used
to address all components of walking ability and meets all practical
requirements mentioned above. With the IWW, a quantitative gait assessment

may be performed to gain more insight into gait impairments, which may



provide information about the stepping and balance components of walking
ability. The IWW is an 8- or 10-meter walkway instrumented with an
integrated multi-Kinect v2 set-up for markerless registration of 3D full-body
kinematics during walking. This multi-Kinect v2 set-up may be a good
alternative for other 3D motion registration systems, since it is patient-friendly,
cost-efficient and easy to use. Besides performing quantitative gait
assessments, the IWW may also be used to assess walking adaptability. The
IWW is equipped with a projector to augment the entire walkway with (gait-
dependent) visual context, such as obstacles, sudden-stop-and-start cues and
stepping targets. Using the real-time processed integrated Kinect data,
obstacles can suddenly appear at the position one would step next, demanding
a step adjustment under time pressure demands. The so-elicited gait-
environment interactions potentially allow for assessing various walking-
adaptability aspects and domains (e.g., the ability to avoid obstacles, suddenly
stop or start, perform accurate goal-directed steps) in a safe manner. Taken
together, the IWW has great potential to provide a comprehensive assessment
of walking ability while fulfilling the practical assessment requirements of

being efficient, unobtrusive, patient-friendly, low-cost and objective.

Aims and outline of this thesis

Although the IWW seems promising, it remains still unknown if 1) it can
provide a valid assessment of walking ability and, if so, 2) what its clinical
potential is for assessing walking ability and fall risk in stroke patients and PD

patients. The aim of my thesis is to gain insight into these two aspects.

Part 1: Can the IWW be used for a valid comprehensive assessment of
walking ability?

In the next three chapters, studies to validate the IWW are described. In
Chapter 2, the validity of the IWW for quantitative gait assessments is
evaluated in a group of 21 healthy subjects. The 10-meter walking test is



conducted at comfortable and maximum walking speed, while 3D full-body
kinematics is concurrently recorded with the multi-Kinect v2 set-up of the IWW
and a gold-standard motion-registration system. In Chapter 3 the between-
systems agreement and sensitivity to task and subject variations for various
walking-adaptability assessments on the IWW is addressed. Under varying task
constraints, 21 healthy subjects perform obstacle-avoidance, sudden-stops-
and-starts and goal-directed-stepping tasks. Outcome measures are
concurrently determined with the IWW and a gold-standard motion-
registration system. Based on the insights obtained in these two studies, we
performed another validation study, described in Chapter 4, with the aim to
systematically evaluate the effects of distance to the sensor, body side and step
length on estimates of foot placement locations calculated with Kinect’s ankle
body points in a group of 12 healthy subjects. Estimates of foot placement
locations are required to quantify spatial gait parameters and outcome
measures of walking adaptability. The results of Chapters 2 to 4 were used to
improve the IWW set-up before it was used to examine the clinical potential of
the IWW for assessing walking ability and fall risk in stroke patients and PD
patients (Chapters 5 to 7).

Part 2: What is the clinical potential of the IWW for assessing walking
ability and fall risk?

Stroke and PD are two neurological disorders that are highly prevalent and that
have a severe impact on the walking ability of patients. In Chapter 5, the
potential of the IWW as a new technology for assessing walking ability in stroke
patients is evaluated. In total, 30 stroke patients and 30 age- and sex-matched
healthy controls perform clinical tests as well as quantitative 3D gait
assessments and various walking-adaptability tasks using the IWW. The
known-groups validity of the assessments is examined as well as the added
value of assessing walking adaptability over standard clinical tests. A similar

study evaluating the expected added value of IWW assessments in 30 PD



patients is described in Chapter 6. Again, the known-groups validity of all
assessments is examined. Furthermore, the IWW outcome measures are related
to commonly used clinical test scores to indicate their added value. Finally, the
added value of IWW outcome measures over clinical tests scores for
discriminating PD patients with and without FOG is examined.

The final objective of this thesis is to gain insight into the potential
merit of the IWW for assessing fall risk in these patient groups. As indicated
above, walking adaptability seems to be an important risk factor for falls, so
including it in an assessment would potentially allow for a better identification
of (future) fallers. The aim of Chapter 7 is to evaluate the potential merit of the
IWW to identify fallers and risk factors for future falls in a cohort with 30
stroke patient, 30 PD patients and 30 healthy controls. This study comprises
subject characteristics, clinical gait and balance tests, a quantitative gait
assessment and a walking-adaptability assessment. The results will provide
insight into the (relative) importance of stepping, balance and walking
adaptability for independent and safe walking. In Chapter 8 a summary of the
main conclusions, a general discussion of the results and suggestions for future
research are outlined to further develop the IWW as a comprehensive

assessment of walking ability to assess fall risk.
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Walking ability is frequently assessed with the 10-meter walking test (10MWT),
which may be instrumented with multiple Kinect v2 sensors to complement the
typical stopwatch-based time to walk 10 meters with quantitative gait
information derived from Kinect’s 3D body point’s time series. The current study
aimed to evaluate a multi-Kinect v2 set-up for quantitative gait assessments
during the 10MWT against a gold-standard motion-registration system by
determining between-systems agreement for body point’s time series,
spatiotemporal gait parameters and the time to walk 10 meters. To this end, the
10MWT was conducted at comfortable and maximum walking speed, while 3D
full-body kinematics was concurrently recorded with the multi-Kinect v2 set-up
and the Optotrak motion-registration system (i.e., the gold standard). Between-
systems agreement for body point’s time series was assessed with the intraclass
correlation coefficient (ICC). Between-systems agreement was similarly
determined for the gait parameters walking speed, cadence, step length, stride
length, step width, step time, stride time (all obtained for the intermediate 6
meters) and the time to walk 10 meters, complemented by Bland-Altman’s bias
and limits of agreement. Body point’s time series agreed well between the motion-
registration systems, particularly so for body points in motion. For both
comfortable and maximum walking speeds, the between-systems agreement for
the time to walk 10 meters and all gait parameters except step width was high
(ICC = 0.888), with negligible biases and narrow limits of agreement. Hence, body
point’s time series and gait parameters obtained with a multi-Kinect v2 set-up
match well with those derived with a gold standard in 3D measurement accuracy.
Future studies are recommended to test the clinical utility of the multi-Kinect v2
set-up to automate 10MWT assessments, thereby complementing the time to walk
10 meters with reliable spatiotemporal gait parameters obtained objectively in a

quick, unobtrusive and patient-friendly manner.



Introduction

Walking speed is associated with falls [1-3], adverse events [4,5] and life
expectancy [6] in older adults. A standardized clinical test often used to assess
walking speed is the 10-meter walking test (10MWT). However, the 10MWT
only provides a single performance measure (i.e., walking speed derived from
the time to walk 10 meters), reflecting just one aspect of walking ability. To
yield a more comprehensive evaluation of walking ability, quantitative gait
assessments (e.g., step length, cadence and step width) may be conducted using
high-end motion-registration systems. Yet, even the best motion-registration
systems yield limitations when conducting quantitative gait assessments in
clinical settings (e.g., costs, patient-preparation time, calibration procedures,
marker occlusion, and delays in availability of results; [7]).

A promising motion-registration system to instrument the 10MWT is
the Microsoft Kinect sensor, a RGB-D camera that was launched in 2011 in
combination with a Software Development Kit for 3D human-pose estimation,
originating from the gaming industry [8]. The development of 3D human-pose
estimation software, using a large and highly varied training dataset of paired
depth images and ground truth body parts to train very deep decision forests
for efficient and accurate body part recognition [8], was a major undertaking by
Microsoft. It successfully eliminated the need for markers and calibration
procedures, thereby enabling fast and patient-friendly 3D full-body motion
registration (Figure 2.1). This motion-registration system has gained enormous
interest from developers and scientists in the context of assessment and
rehabilitation of balance, posture and gait (e.g., [9-18]), since it allows for
motion registration in a quick and affordable manner. Recently, the second
generation of the Kinect sensor has been introduced. Key differences with the
previous Kinect v1 sensor are that the Kinect v2 sensor is a time-of-flight
camera with an increased resolution of the depth image, a wider field of view

and improved body point tracking [19], possibly leading to improved results.



Several studies have demonstrated that spatiotemporal gait
parameters can be validly obtained using a single Kinect v1 sensor
[9,11,13,14,17], and recently also for a single Kinect v2 sensor [15]. However,
these studies only analyzed a few steps since accurate body point tracking with
the Kinect sensor is only possible between 0.8 and 4.0 meters from the Kinect
v1 sensor and between 0.5 and 4.5 meters from the Kinect v2 sensor due to the
limited field of view and poorer depth-image quality at greater distances. One
way to cover a larger volume, such as the walkway of the 10MWT, is to use
multiple spatially and temporally integrated Kinect sensors. Hereby
measurement volume may be increased, while preserving good quality depth
images for accurate body point tracking. This supposedly allows for the
parametrization of a large number of steps during walking from high quality 3D
body point’s time series. In view of Kinect’s v2 higher resolution depth images,
improved body point tracking and enlarged area for accurate body point
tracking, the current study will explore the potential of a multi-Kinect v2 set-up
for instrumenting the 10MWT.

The objective of this study is to determine the usability of a multi-
Kinect v2 set-up to quantitatively assess gait during the 10MWT. Because the
multi-Kinect v2 set-up has not yet been validated for 3D full-body motion
registration, its performance will be compared to a gold standard in 3D
measurement accuracy (i.e., the Optotrak active-marker 3D optical tracking
system, Northern Digital Inc, Waterloo, Canada). The between-systems
agreement will be examined for raw data (i.e., body point’s time series) and
spatiotemporal gait parameters (e.g., step length, cadence and step width). In
addition, the between-systems agreement for the performance measure of the
10MWT (i.e., time to walk 10 meters) will be assessed between the multi-Kinect
v2 set-up, the Optotrak motion-registration system (i.e., the gold-standard

reference) and the stopwatch (i.e., the clinical standard).



Figure 2.1 RGB image (A) and depth image (B) with the corresponding body points derived with

the human-pose estimation software of Kinect v1.

Figure 2.2 Overview of the multi-Kinect v2 set-up.

Methods

Subjects

A heterogeneous group of 21 healthy subjects in terms of gender (11 males, 10
females), age (mean [range]: 30.2 [19-63] years), height (176.1 [158-190] cm)
and weight (70.5 [53-83] kg) took part in this experiment. Subjects did not have

any medical condition that would influence walking.



Ethics statement

The current study was approved by the ethics committee of the Department of
Human Movement Sciences (VU University Amsterdam, Amsterdam). All
subjects provided written informed consent prior to participation. The subjects
in Figure 2.1 have given written informed consent, as outlined in the PLOS

consent form, to publish this photograph.

Experimental set-up and procedure

Full-body kinematics was recorded with four spatially and temporally
integrated Microsoft Kinect v2 sensors and the Optotrak system (Northern
Digital Inc., Waterloo, Canada). The multi-Kinect v2 set-up is displayed in
Figure 2.2. The four Kinect v2 sensors were positioned on tripods alongside a
walkway of 10 by 0.5 meters at a height of 0.75 meters. The sensors were
placed 0.5 meters from the left border of the walkway with an angle of 70
degrees relative to the walkway direction. The first sensor was positioned at 4
meters from the start of the walkway. The other three sensors were placed at
inter-sensor distances of 2.5 meters. In addition, five Optotrak cameras (i.e., a
combination of two Optotrak 3020 and three Optotrak Certus cameras, which
are all compatible with each other) were positioned around the walkway to
cover the same area as the multi-Kinect v2 set-up. The so-obtained Optotrak
set-up ensured sub-millimeter accuracy throughout the 10-meter walkway. The
coordinate systems of the multi-Kinect v2 set-up and the Optotrak system were
aligned using a spatial calibration grid.

The Kinect for Windows Software Development Kit (SDK 2.0,
www.microsoft.com) provides, with a sampling rate of 30 Hz, the 3D positions
of 25 body points (Figure 2.3B). These body points are: head, neck, spine
shoulder, spine mid, spine base and left and right shoulder, elbow, wrist, hand,
thumb, hand tip, hip, knee, ankle and foot. For motion registration with the
Optotrak system (Northern Digital Inc., Waterloo, Canada, using First Principles

data acquisition software with a sampling rate of 60 Hz), subjects were asked to



wear tight-fitting shorts and a t-shirt to limit clothing-related marker occlusion.
Smart Marker Rigid Bodies (Northern Digital Inc., Waterloo, Canada) were
attached to the head, upper arms, forearms, lower abdomen, upper legs, lower
legs and feet (Figure 2.3A), allowing for 6 degrees of freedom tracking of body
segments. In addition, 30 anatomical landmarks were digitized using a 3-
marker digitizing probe to define various body point positions (so-called virtual
markers) on abovementioned body segments. Smart markers were also placed
on the sternum, hands and feet. The body points represented by Optotrak’s
virtual markers and/or smart markers were selected to closely match Kinect’s
body points (see Supplement 2.1), although sometimes arbitrary positional
differences between the body point’s time series of the two motion-registration
systems could not be prevented because 1) the exact definitions of the body
points given by the human-pose estimation algorithms of Kinect v2 are not
known and 2) virtual markers and smart markers are by definition positioned
at the contours of the body while Kinect v2 body points are typically estimated
within the body. For example, the smart marker representing Kinect’s spine
shoulder was placed on the sternum (see Supplement 2.1), which deviates in
AP direction from the within-body spine shoulder given by the human-pose
estimation algorithm of Kinect v2, thus resulting in a between-systems
positional mismatch. Positions of the neck, spine mid, thumbs and hand tips
body points were not tracked with the Optotrak system due to the limited
number of available smart markers, rendering a total of 19 out of
aforementioned 25 body points eligible for a between-systems agreement
analysis (as specified in Supplement 2.1).

Before conducting the experiment, the quality of the depth image of the
subject was checked since some textiles are known to corrupt the infrared
radiation emitted by the previous Kinect v1 sensor, making human-pose
estimation less accurate [17]. No problems were encountered with clothing of
the subjects, possibly owing to the improved properties of the Kinect v2 sensor.

Subsequently, subjects performed the 1I0MWT at two different walking speeds,



namely comfortable walking speed (CWS) and maximum walking speed (MWS).
Both conditions were performed three times in a fixed order (i.e., three times
CWS followed by three times MWS). Subjects were instructed to start walking
at the fourth, high-pitched beep of a standardized auditory start command (i.e.,
three low-pitched beeps followed by one high-pitched beep) and to continue
walking until they had fully crossed the finish line. The standardized auditory
start command was synchronized with the multi-Kinect v2 set-up.
Synchronization between the two motion-registration systems was achieved by
a synchronization movement (i.e., ab- and adduction of both arms) that
participants performed prior the auditory start command of each trial. Motion
registration started before the synchronization movement and ended well after
the subject had passed the 10-meter line. Time to walk 10 meters (i.e., from
final beep onset until the moment that the most forward ankle passed the 10-
meter line, according to the recommendations of Graham et al. [20]) was
determined using a stopwatch. A video showing body point’s time series
simultaneously for both measurement systems during the 10MWT is available
in the supplementary material (see Supplement 2.2). This video also includes

the synchronization movement and the standardized auditory start command.

4 &

Figure 2.3 Body point determination with the Optotrak and Kinect v2 systems. (A) Subject with all

markers of the Optotrak system; (B) Same subject with body points derived with the human-pose

estimation algorithm of Kinect v2.
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Data pre-processing

The 3D positional data of body points were first pre-processed per Kinect
sensor separately. Inferred body points (i.e.,, when a body point was not visible
due to for example occlusion, Kinect’s human-pose estimation software
inferred its position) were considered as missing values. Moreover, since the
sampling frequency of the Kinect system is not constant (i.e., apart from 20
outliers in inter-sample intervals for multiple subjects but confined to one
Kinect sensor, the remaining inter-sample intervals ranged from 32 to 34 ms),
the body point’s time series were linearly interpolated using Kinect's
timestamps to ensure a constant sampling frequency of 30 Hz, without filling in
the parts with missing values. Data points not adhering to the requirements for
valid human-pose estimation (e.g., minimum of 15 tracked body points out of
the 25 body points, tracked data points for the head and at least one foot and no
outliers in segment lengths) were removed from the time series. Subsequently,
data of the four Kinect sensors were combined by taking for each sample the 3D
positions of the body points of a validly estimated human pose. If, for a given
sample, more than one sensor contained valid human-pose data, the associated
body point’s 3D positions were averaged for that specific sample. Optotrak data
were down-sampled to 30 Hz. Subsequently, the cross-covariance and time lag
were determined for paired time series in the mediolateral (ML) and vertical
(V) direction of the elbows, wrists and hands during the synchronization
movement. These time series were first interpolated with a spline algorithm in
case of missing data. The median of the time lags was used to temporally align
the time series of the two motion-registration systems. Time-synchronized 3D
body point’s time series of both systems are presented as supplementary
material, starting from final beep onset until the moment that for both systems
the most forward ankle passed the 10-meter line (see Supplement 2.3). Body
point’s time series with more than 50 percent of missing values were excluded
from further analyses. No time series were excluded for the multi-Kinect v2 set-

up, whereas 17 out of 2,394 time series were excluded for Optotrak, including



two time series of the ankles from which gait parameters were derived. The
missing values of the remaining data were interpolated with a spline algorithm.
The so-obtained time series were used for assessing the between-systems
agreement in body point’s time series (see Data analysis) and for the
quantification of several gait parameters, as specified in the next paragraph.
Several gait parameters were calculated from the body point’s time
series, separately for both measurement systems. The following spatiotemporal
gait parameters were all determined for the intermediate 6 meters (i.e., from
the 2-meter to the 8-meter line), reducing the effect of gait acceleration and
deceleration on the gait parameters [21]. Walking speed (in cm/s) was defined
as the distance travelled between the 2-meter and 8-meter line on the walkway
divided by the time, using the data of the spine shoulder. For the other gait
parameters, estimates of foot contact and foot off were required, stemming
from respectively the maxima and minima of the anterior-posterior (AP) time
series of the ankles relative to that of the spine base [22] (Figures 2.4A and
2.4C). For spatial gait parameters, first left and right step locations were
determined, defined as the median value of the left and right ankle position in
the AP and ML direction during the respective single-support stance phases
(i.e., between foot off and foot contact of the contralateral foot). Based on these
AP and ML step locations, various spatial gait parameters were determined.
Step length (in cm) was calculated as the AP difference of consecutive step
locations (Figure 2.4D). Stride length (in cm) was calculated as the AP
difference of consecutive ipsilateral step locations. Moreover, step width (in
cm) was estimated by taking the absolute ML difference of consecutive step
locations. Cadence (in steps/min) was calculated from the number of steps in
the time interval between the first and last estimate of foot contact. Step time
(in s) was calculated as the time interval between two consecutive instants of
foot contact (Figure 2.4D). Consequently, stride time (in s) was calculated as the
time interval between two consecutive ipsilateral instants of foot contact. For

step length, stride length, step width, step time and stride time, median values



within the 6-meter window were used as outcome measures per trial since
Baldewijns et al. [9] demonstrated superior agreement between registration
systems on a per walk basis.

The performance measure of the 10MWT, that is the time to walk 10
meters (in s), was defined as the time from final beep onset until the moment
that the most forward ankle passed the 10-meter line (Figure 2.4B). For
comparison with the stopwatch score, serving as the clinical reference, the time
to walk 10 meters was also determined from data of the multi-Kinect v2 set-up

and the Optotrak system, the latter serving as the gold-standard reference.

Data analysis
First, the between-systems agreement was calculated for the body point’s time
series from final beep onset until the moment that the most forward ankle
passed the 10-meter line. For the AP direction, the trend was removed using a
bidirectional, second-order Butterworth high-pass filter (cutoff frequency of 0.5
Hz) to reduce the effect of a large within-subject variation (increasing from 0 to
10 meter) on the agreement statistic, which would become arbitrarily high
[23]. The agreement between the time series of the two motion-registration
systems was calculated for each body point in the AP, ML and V direction by
means of the intraclass correlation coefficient for consistency (ICCc1y; [24]).
We selected ICCc,1) in view of abovementioned somewhat arbitrary between-
systems mismatches in body point’s time series (see Supplement 2.1). The
average ICC(c1) was constructed over all trials per system, body point and
direction for each subject. From these values, the average ICCc1) over subjects
was calculated for each system, body point and direction, including confidence
intervals.

Second, the between-systems agreement for spatiotemporal gait
parameters was calculated. Spatiotemporal gait parameters were based on
specific within-system time series’ features (e.g, minima or maxima,

consecutive step locations) and hence less susceptible to arbitrary systematic



between-systems positional differences in body point’s time series. Therefore,
the ICC for absolute agreement (ICCa1); [24]) was selected. The agreement in
the time to walk 10 meters obtained with the multi-Kinect v2 set-up, the
Optotrak system (gold standard) and a stopwatch (clinical standard) was also
assessed using ICCa 1.

In line with Cicchetti [25], we regard ICC values above 0.60 as good and
ICC values above 0.75 as excellent. ICC(a 1) values were complemented by mean
differences and precision values obtained with a Bland-Altman analysis (i.e., the
bias and the limits of agreement, respectively; [26]). Since large differences
were expected between CWS and MWS conditions for all gait parameters,
leading to large within-subject variation that would arbitrarily inflate the
between-systems agreement [23], the agreement for gait parameters and time
to walk 10 meters was analyzed separately for both conditions. In line with
Flansbjer et al. [27], the average time to walk 10 meters was constructed over
the three trials per condition per subject. For the spatiotemporal gait
parameters the average was hence also constructed over the three trials per
condition per subject. For each condition, at least two trials had to be valid (i.e.,
less than 50 percent of missing values and, for the time to walk 10 meters, data
around the 10-meter line and no error in pressing the stopwatch) in order to
compute the average over the trials. This resulted in the exclusion of one
subject for further analysis of the between-systems agreement for the time to

walk 10 meters for the MWS condition.

Results

Agreement between body point’s time series

The agreement (ICC(1)) between the body point’s time series of the multi-
Kinect v2 set-up and the gold-standard Optotrak motion-registration system
for all 19 matched body points in AP (detrended), ML and V directions are
listed in Table 2.1. Apart from the hips, there was a good to excellent agreement

in body point’s time series between the two motion-registration systems in the



AP direction. Furthermore, all gait parameters were derived from time series
with high (i.e, ML time series of the right ankle) or excellent levels of
agreement (all other time series), as highlighted in Table 2.1 (bold values).
Figure 2.5 shows an example of a part of the AP (detrended) and ML time series
of the left and right ankle for the multi-Kinect v2 set-up and the Optotrak
system during a CWS trial with corresponding ICC 1) values (as well as ICC(a 1
values to illustrate the effect of a systematic between-systems mismatch in

body point’s time series on ICC values).

Table 2.1 Between-systems agreement (ICCic1) with 95% CI) for body point’s time series in

anterior-posterior (AP; detrended), mediolateral (ML) and vertical (V) directions. Bold values

represent agreement for time series from which spatiotemporal gait parameters were derived.

AP

ML

\'

Head

Spine shoulder

0.736 (0.709-0.762)
0.777 (0.747-0.808)

0.753 (0.714-0.792)
0.744 (0.709-0.780)

0.832 (0.801-0.863)
0.870 (0.850-0.890)

Spine base 0.864 (0.852-0.877)  0.824 (0.797-0.850)  0.790 (0.752-0.828)
Left shoulder 0.746 (0.671-0.821)  0.734 (0.658-0.810)  0.824 (0.740-0.908)
Left elbow 0917 (0.847-0.987)  0.764 (0.685-0.842)  0.567 (0.488-0.646)
Left wrist 0.970 (0.961-0.980)  0.903 (0.884-0.922)  0.879 (0.853-0.906)
Left hand 0.973 (0.966-0.980)  0.903 (0.882-0.923)  0.900 (0.880-0.921)
Right shoulder 0.787 (0.761-0.813)  0.751 (0.712-0.790)  0.849 (0.813-0.885)
Right elbow 0.936(0.919-0.953)  0.794 (0.760-0.828)  0.628 (0.569-0.688)
Right wrist 0.939(0.908-0.971)  0.850 (0.787-0.914)  0.773 (0.711-0.834)
Right hand 0.911(0.868-0.953)  0.828 (0.763-0.893)  0.693 (0.622-0.763)
Left hip 0.479 (0.418-0.540)  0.736 (0.693-0.779)  0.572 (0.506-0.637)
Left knee 0.942(0.922-0.963)  0.786 (0.739-0.833)  0.221 (0.152-0.289)
Left ankle 0.970 (0.955-0.984)  0.871 (0.844-0.898)  0.392 (0.342-0.442)
Left foot 0.923 (0.866-0.980)  0.842 (0.781-0.904)  0.443 (0.396-0.491)
Right hip 0.386 (0.308-0.465)  0.749 (0.709-0.789)  0.616 (0.571-0.661)
Right knee 0.847 (0.804-0.890)  0.587 (0.525-0.650)  0.163 (0.128-0.198)
Right ankle 0.911 (0.891-0.932)  0.744 (0.708-0.781)  0.198 (0.133-0.262)
Right foot 0.819 (0.786-0.852)  0.685 (0.641-0.729)  0.279 (0.234-0.325)

Abbreviations: ICC(c1) = intraclass correlation coefficient for consistency; CI = confidence interval.



Agreement of spatiotemporal gait parameters

The agreement statistics of the spatiotemporal gait parameters are presented
in Table 2.2. Apart from step width, the between-systems agreement for
spatiotemporal gait parameters was excellent for CWS (ICCs,1) = 0.888) and
MWS (ICC(a1y 2 0.951) conditions. This was supported by relatively small biases
and narrow limits of agreement (Table 2.2). Step width showed a good
between-systems agreement (CWS: 0.646, MWS: 0.705) with proportionally
higher biases and wider limits of agreement (Table 2.2). Bland-Altman plots for
spatiotemporal gait parameters are available in the supplementary material

(see Supplement 2.4).

Table 2.2 Mean values, between-subjects standard deviations (SD) and agreement statistics (bias,
limits of agreement [95% LoA] and intraclass correlation coefficient for absolute agreement
[ICC@n]) for spatiotemporal gait parameters of comfortable walking speed (CWS) and maximum

walking speed (MWS) conditions.

Multi-Kinectv2 Optotrak system

set-up

mean * SD mean * SD Bias (95% LoA) ICCuy

Walking speed (cm/s) CWS 1428117 1439 +11.8 1.1(0.12.1) 0.995
MWS 220.2+£32.2 220.8+31.7 0.6 (-1.4 2.6) 0.999

Cadence (steps/min) CWS 1159 +6.2 115.0+5.9 -09 (-3.01.2) 0.974
MWS 147.8 +21.9 145.7 £ 21.7 -2.1(-7.43.3) 0.988

Step length (cm) CwWSs 75.5+5.7 754 +5.7 -0.1(-141.2) 0.994
MWS 92.5+8.0 925+78 -0.1 (-2.12.0) 0.992

Stride length (cm) CwWSs 151.0+11.3 151.1+11.2 0.1 (-0.7 0.9) 0.999
MWS 185.6 + 15.7 185.4+15.6 -0.1(-1.6 1.4) 0.999

Step width (cm) CwWs 11.3+21 10.0£3.1 -1.3(-5.2 2.6) 0.646
MWS 12.1+24 10.6 +3.4 -1.5(-5.22.2) 0.705

Step time (s) CwWs 0.52+0.03 0.52+0.03 0.01 (-0.02 0.03) 0.888
MWS 0.42 £ 0.05 0.42 +0.05 0.00 (-0.030.03) 0.951

Stride time (s) CwWSs 1.04 £ 0.06 1.05 £ 0.06 0.01 (-0.02 0.04) 0.962

MWS 0.82 +0.09 0.84+0.10 0.01 (-0.02 0.04) 0.979




(') JusweaSe aynjosqe pue (9)H)) AOUSISISUOD 10 JUSIIYII0D UOIIL[S.110D SSE[ORIIUL 33 YIIM
passasse JuawaaIde swaysAs-usamiaq Surpnppul ‘Tery paads Sunjem a[qeriojwod e jo yed e .10y uondaap () [elere[olpawt pue (papua.niap ‘dy) Jouasod

-IoLsue oy} ur apjue (D pue y sjpued) jysu pue (g pue g s[oued) 9] ay3 Jo saLIas awn (saul] 3oe[q) yenoidQ pue (saul] Aeid) za 10suny-NMN Sz 31N

(s) suuyy, (s) ouury,
9 S 4 € 4 1 0
L 1 L 1 1 1 m.o
= -
) 90
] {? 90 §
: oy [ 60T 5 o leom
so¥°0 = "¥)01 ‘0g8'0 = V01 o1 g €820 = "Y1 ‘g18°0 = 001 o1 g
UORIRIP T - IP{UY YT a uonIRIP T - PV WY 9)
(s)auny, (s) sy
9 q 4 € 4 1 0 9 S 4 € 4 1 0
_ : _ _ _ _ 90-g _ : _ _ _ _ 900
0. -0
o8 o8
z0-§ - 208
[+] 1]
00 g - 008
Z0E - 70E
i = EVanr (repen = (19) - vo oy = (I°W) ‘corn = (19 el
1660 = “Y001 Te60 =001 | £96'0 = "1 ‘€960 = “201
| 90
UONAIIP dV - IPIUY YOI q uondAIIp v - apjuy WSy 4



Agreement of time to walk 10 meters

Mean values of the time to walk 10 meters for CWS and MWS conditions are
presented in Figure 2.6. There was a high level of agreement between the
measurement systems according to the ICCs 1) for both conditions. For the
multi-Kinect v2 set-up and the Optotrak system, ICC(a 1) values were excellent
for CWS (ICC(a,1y = 0.998) and MWS (ICCa,1y = 0.999), with biases being smaller
than one sample (CWS: -0.01 s, MWS: -0.01 s) and narrow limits of agreement
(CWS: [-0.11 0.09] s, MWS: [-0.07 0.06] s). The comparison between the multi-
Kinect v2 set-up and the stopwatch also revealed excellent ICC(4,1) values (CWS:
0.988, MWS: 0.989), but biases were greater (CWS: -0.09 s, MWS: -0.08 s) and
limits of agreement wider (CWS: [-0.23 0.05] s, MWS: [-0.21 0.06] s). The same
was true for the comparison between the Optotrak system and the stopwatch:
excellent ICCn1) values (CWS: 0.987, MWS: 0.990) but biases were
approximately two samples (CWS: -0.08 s, MWS: -0.07 s) and limits of
agreement were again wider (CWS: [-0.26 0.11] s, MWS: [-0.21 0.07] s).

Time to walk 10 meters

10

Time (s)

S N s O

CWS MWS

Figure 2.6 Time to walk 10 meters for CWS and MWS conditions. Bars represent average time to
walk 10 meters for the multi-Kinect v2 set-up (gray bars), the Optotrak motion-registration system

as the gold-standard reference (black bars) and the stopwatch as the clinical standard (white bars).

Discussion
In the current study, we evaluated a multi-Kinect v2 set-up for quantitative gait
assessment during the 10MWT by determining between-systems agreement for

body point’s time series, for spatiotemporal gait parameters and for the time to



walk 10 meters. Performance of the multi-Kinect v2 set-up was compared to
the Optotrak system (i.e., the gold-standard reference) to validate 3D full-body
kinematical data of the just-released Kinect v2 sensor. We observed a good to
excellent agreement between the two motion-registration systems for raw data
(i.e., relevant body point’s time series), spatiotemporal gait parameters and the
time to walk 10 meters.

To the best of our knowledge, this study is the first to statistically
compare unfiltered body point’s time series stemming from a multi-Kinect v2
set-up to a gold-standard reference. Covering the entire measurement volume
with a marker-based motion-registration system was quite difficult and
required many cameras to avoid marker occlusion. In fact, the number of
excluded body point’s time series due to excessive missing values was
substantially larger for the marker-based gold standard in 3D measurement
accuracy (17 excluded time series, average percentage of missing values was
6.8%) than for the multiple-Kinect v2 set-up (no excluded time series, average
percentage of missing values was 5.0%). For the remaining 2377 time series,
ICC(c1y values were generally exceeding 0.60 for all directions, indicating a good
to excellent between-systems agreement. Nevertheless, some time series only
demonstrated a poor to fair between-systems agreement, especially time series
exhibiting a small range of motion. Note that the ICC is constructed using
models that assume equal variance between two variables [24]. With a small
range of motion (i.e.,, with low signal power and hence low true within-system
variation), the noisier Kinect v2 data may have caused the error-variances of
the two motion-registration systems to differ, with consequently a lower
between-systems agreement. This is supported by results of a previous study
[28], showing that larger movements of Parkinson’s disease patients were
better tracked by a Kinect v1 sensor than smaller movements. Thus, as long as
body points are moving (i.e., high signal power), the resultant time series of

Kinect v2 match well with those stemming from a gold standard in 3D



measurement accuracy. Furthermore, low-pass filtering time series may also
increase the between-systems agreement.

In the current study, all spatiotemporal gait parameters were derived
from body point’s time series with high (for the ML time series of the right
ankle) or excellent levels of agreement (for all other time series; see Table 2.1,
bold values). This resulted in excellent between-systems agreement (high
ICCa1y values) of the from these time series derived spatiotemporal gait
parameters walking speed, cadence, step length, stride length, step time and
stride time. These spatiotemporal gait parameters can be accurately obtained
with the multi-Kinect v2 set-up, as testified by negligible biases and narrow
limits of agreement (Table 2.2). Step width was the only gait parameter that
demonstrated good instead of excellent absolute agreement (Table 2.2). The
deviant findings for step width may be due to systematic within-subject
differences in ML ankle position time series between the two motion-
registration systems. An example of such a systematic positional difference is
presented in Figure 2.5. The left ML ankle position obtained with the multi-
Kinect v2 set-up was about 3 to 4 centimeters more lateral compared to
Optotrak’s left ML ankle position (Figure 2.5D) while the right ML ankle
positions matched well between the two systems (Figure 2.5C), resulting in a
substantial bias of 3.6 cm in step width for this specific subject. This systematic
between-systems mismatch for the left ML ankle position was confirmed by a
clear difference between ICC values for consistency and absolute agreement
(ICCc1y = 0.830, ICC(a1y = 0.405; Figure 2.5D), whereas for the right ML ankle
positions the ICC values were similar (ICC(1) = 0.818, ICC(a1y = 0.783; Figure
2.5C). Note that this positional mismatch in ankle time series was not
consistent among subjects in terms of its size, sign and side, which may explain
the relatively larger between-subjects variation in the between-systems
difference for step width (i.e., relatively wider limits of agreement in Table 2.2).

Kitsunezaki et al. [29] also assessed the possibility of instrumenting the

10MWT with multiple Kinect sensors. Specifically, they used two temporally



integrated Kinect v1 sensors that were positioned at the 2-meter and 8-meter
lines of a 10-meter walkway to determine the walking time of the intermediate
6 meters of the 10MWT. The mean difference in walking times obtained with
the clinical standard (i.e., stopwatch) and the two Kinect v1 sensors was 0.15
seconds, which led the authors to conclude that a Kinect-based assessment was
acceptable for practical use [29]. In the current study we quantified the time to
walk 10 meters with a multi-Kinect v2 set-up, a gold-standard motion-
registration system and a stopwatch. Despite examining walking time over a
greater walking distance than Kitsunezaki et al. [29], we found smaller
differences between the three measurement systems (< 0.09 s), especially
between the multi-Kinect v2 set-up and the gold-standard motion-registration
system (0.01 s). Noteworthy is that the agreement between these two motion-
registration systems -in terms of ICC(a 1), biases and limits of agreement- was
better than the agreement of either one with the clinical standard (i.e.,
stopwatch). To put these findings in perspective, the between-systems
differences in the time to walk 10 meters were about 30 to 300 times smaller
than the within-system differences between CWS and MWS conditions.
Moreover, the meaningful change in walking speed of 5 cm/s according to
Perera et al. [30] is at least twice as large as the between-systems differences in
walking speed observed in the current study (i.e., after transforming the time to
walk 10 meters to walking speed, < 2.5 cm/s).

A multi-Kinect v2 set-up, such as the one described in the current
study, may in practice be employed to automate the assessment of the 10MWT.
An advantage of this set-up is that the 10MWT and quantitative gait assessment
can be conducted simultaneously to reduce the time needed for a
comprehensive assessment of walking ability. This could be beneficial for
clinical applications, especially in view of our observation that the set-up can
provide reliable estimates of the time to walk 10 meters and commonly used
spatiotemporal gait parameters in a very quick, unobtrusive and patient-

friendly manner. Other advantages of the Kinect v2 sensor are that 3D



positional data of 25 body points (of up to six persons!) are tracked and
available in real time, without markers, and not requiring time-consuming pre-
registration calibration and post-registration labeling/tracking. Considering
these assets, one may consider a multi-Kinect v2 set-up as a serious alternative
for quantitative gait assessments.

A limitation of the multi-Kinect v2 set-up is the relatively low sampling
frequency of 30 Hz. Although a good agreement between the multi-Kinect v2
set-up and the Optotrak system was found for almost all outcome measures of
the current study, other outcome measures of interest may require higher
sampling rates (e.g., the analysis of stride-to-stride fluctuations in stride times;
[31]). Another limitation of the study was that the between-systems agreement
was only assessed for healthy subjects. Before implementing the multi-Kinect
v2 walkway in the clinic, gait parameters for the patient groups of interest
should be validated first. Moreover, one can imagine that in a clinical context an
accompanying person such as a therapist wants to walk along with a patient for
safety reasons. Because 3D positional data of body points of up to six persons
can be tracked with a Kinect v2 sensor, each being allocated with a unique body
identification number, it is important to ensure the correct allocation of data to
a specific person when tracking multiple persons with multiple Kinects (e.g.,
using minimization of 3D positional data when moving from one camera’s field
of view to another). Therefore, gait parameters need to be validated in various
patient groups both with and without an accompanying person. As in healthy
controls, good human-pose estimation is to be expected for patients. Clark et al.
[32], for example, recently concluded that gait parameters of stroke patients
derived from Kinect v1 data were highly reliable and could provide valuable
additional information for gait analysis alongside the 10WMT. They stated that
their findings provide support for implementing Kinect-based gait assessments
in clinical settings [32]. With the development and validation of the multi-
Kinect v2 instrumented 10-meter walkway, the current study may help pave

the way to fulfill that premise.



Conclusion

Body point’s time series obtained with a multi-Kinect v2 set-up match well with
those derived with a gold standard in 3D measurement accuracy, particularly
so for body points in motion. The excellent absolute agreements with the gold
standard observed for time to walk 10 meters, walking speed, cadence, step
length, stride length, step time and stride time emphasize that those
parameters can be reliably obtained with the multi-Kinect v2 set-up. Future
studies are recommended to test the clinical utility of the multi-Kinect v2 set-up
to automate 10MWT assessments, thereby complementing the time to walk 10
meters with reliable spatiotemporal gait parameters obtained objectively in a

quick, unobtrusive and patient-friendly manner.
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Supplement 2.1

Table S2.1 Overview of the body points obtained with the multi-Kinect v2 set-up and the Optotrak
system. For the latter, anterior-posterior, mediolateral and vertical position time series were
computed from virtual markers and/or smart markers. In case of a single virtual marker or smart
marker, the time series of that specific marker were taken as the time series of the associated body
point. In case of multiple virtual markers and/or smart markers, the associated marker positions

were averaged in all three directions for each time sample.

Kinect body point Smart Marker Rigid Virtual marker Smart marker
Body position position position
Head Head Nasion, inion and left -

and right ear

Neck - - -

Spine shoulder - - Sternum
Spine mid - - -

Spine base Lower abdomen Left and right anterior -

superior and posterior
superior iliac spine
Shoulders Upper arms Head of the humurus -
Elbows Upper arms Medial and lateral -
epicondyles
Wrists Forearms Distal heads of the -
radius and ulna

Hands - - Back of the hand
Hand tips - - -
Thumbs - - -

Hips Upper legs Trochantor major -

Knees Upper legs Medial and lateral -

condyles
Ankles Lower legs Medial and lateral -
malleoli
Feet Feet Calcaneus Head of the distal

phalanx of the hallux




Supplement 2.2

Video of body point’s time series obtained with the multi-Kinect v2 set-up and
the Optotrak system of a single representative trial during the comfortable
walking speed condition of the 10-meter walking test. This video is available at

https://doi.org/10.1371/journal.pone.0139913.s004.



Supplement 2.3
Data of body point’s time series in the anterior-posterior, mediolateral and

vertical direction for the multi-Kinect v2 set-up and the Optotrak system. This

data is available at https://doi.org/10.1371/journal.pone.0139913.s001.



Supplement 2.4

Bland-Altman plots for the spatiotemporal gait parameters for comfortable

walking speed and maximum walking speed conditions.
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Figure S2.1 Bland-Altman plots for walking speed during the comfortable walking speed (CWS)

and maximum walking speed (MWS) condition. Solid lines represent biases between the two

motion registration systems. Dashed lines represent the 95% limits of agreement.
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Figure S2.2 Bland-Altman plots for cadence during the comfortable walking speed (CWS) and

maximum walking speed (MWS) condition. Solid lines represent biases between the two motion

registration systems. Dashed lines represent the 95% limits of agreement.
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Figure S2.5 Bland-Altman plots for step width during the comfortable walking speed (CWS) and
maximum walking speed (MWS) condition. Solid lines represent biases between the two motion

registration systems. Dashed lines represent the 95% limits of agreement.
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The ability to adapt walking to environmental circumstances is an important
aspect of walking, yet difficult to assess. The Interactive Walkway was developed
to assess walking adaptability by augmenting a multi-Kinect-vZ 10-meter
walkway with gait-dependent visual context (stepping targets, obstacles) using
real-time processed markerless full-body kinematics. In this study we determined
Interactive Walkway’s usability for walking-adaptability assessments in terms of
between-systems agreement and sensitivity to task and subject variations. Under
varying task constraints, 21 healthy subjects performed obstacle-avoidance,
sudden-stops-and-starts and goal-directed-stepping tasks. Various continuous
walking-adaptability outcome measures were concurrently determined with the
Interactive Walkway and a gold-standard motion-registration system: available
response time, obstacle-avoidance and sudden-stop margins, step length, stepping
accuracy and walking speed. The same holds for dichotomous classifications of
success and failure for obstacle-avoidance and sudden-stops tasks and performed
short-stride versus long-stride obstacle-avoidance strategies. Continuous walking-
adaptability outcome measures generally agreed well between systems (high
intraclass correlation coefficients for absolute agreement, low biases and narrow
limits of agreement) and were highly sensitive to task and subject variations.
Success and failure ratings varied with available response times and obstacle
types and agreed between systems for 85-96% of the trials while obstacle-
avoidance strategies were always classified correctly. We conclude that
Interactive Walkway walking-adaptability outcome measures are reliable and
sensitive to task and subject variations, even in high-functioning subjects. We
therefore deem Interactive Walkway walking-adaptability assessments usable for
obtaining an objective and more task-specific examination of one’s ability to walk,
which may be feasible for both high-functioning and fragile populations since

walking adaptability can be assessed at various levels of difficulty.



Introduction

An important aspect of walking is one’s ability to adapt walking to
environmental circumstances [1-3]. Walking adaptability includes the ability to
avoid obstacles, make sudden stops and starts and accurately place the feet to
environmental context [1]. Most walking-related falls result from inadequate
interactions with environmental context, leading to balance loss due to a trip,
slip or misplaced step [4-6]. Walking adaptability thus seems to be an
important determinant of fall risk, yet a comprehensive well-tested objective
assessment of walking adaptability is lacking [1].

We try to fill this lacuna with the Interactive Walkway (IWW), a 10-
meter walkway augmented with projected gait-dependent visual context, such
as obstacles suddenly appearing at the position one would step next,
demanding a step adjustment under time pressure. The basis of the IWW is an
integrated multi-Kinect v2 set-up for markerless registration of 3D full-body
kinematics during walking [7], which was recently validated over the entire 10-
meter walkway against a gold standard in 3D measurement accuracy for both
kinematics and derived gait parameters [7,8]. We have now equipped this set-
up with a projector to augment the entire walkway with visual context, such as
obstacles, sudden-stop-and-start cues and stepping targets, based on real-time
processed integrated Kinect data. The so-elicited gait-environment interactions
potentially allow for assessing various walking-adaptability aspects (e.g., the
ability to avoid obstacles, suddenly stop or start, perform accurate goal-
directed steps) as well as subject-specific variations and adaptations affecting
walking-adaptability performance (e.g., adopting a slower walking speed to
enhance goal-directed stepping accuracy).

The objective of this study is to determine the usability of the IWW for
walking-adaptability assessments in a group of healthy adults in terms of
between-systems agreement and sensitivity to task and subject variations.
Walking-adaptability tasks and associated outcome measures are selected for

their proven ability to distinguish between persons who vary in adaptive-



walking limitations [2,3,9-12]. To determine the between-systems agreement,
IWW-based walking-adaptability outcome measures are compared to those
concurrently derived with a gold standard. The sensitivity to task variation is
assessed by comparing walking-adaptability performance as a function of
context variations, including different obstacle sizes and sequences of stepping
targets. Sensitivity to subject variation is explored by quantifying speed-
performance trade-offs between self-selected walking speed and adaptive
stepping performance (success rates, safety margins). We expect that walking-
adaptability outcomes agree well between systems and are sensitive to task

and subject variations.

Methods

Subjects

A heterogeneous group of 21 healthy subjects (mean [range]: age 30 [19-63]
years, height 176 [158-190] cm, weight 70 [53-83] kg, 11 males) without
severe visual deficits or any medical condition that would affect walking
participated. The local ethics committee approved the study. All subjects gave

written informed consent prior to participation.

Experimental set-up and procedure

Full-body kinematics for walking over the entire 10-meter walkway was
obtained with the IWW using four spatially and temporally integrated Kinect v2
sensors (Figure 3.1A) and the Optotrak system (Northern Digital Inc., Waterloo,
Canada) for 19 matched body points as in [7; see also Supplement 3.1]. IWW
and Optotrak data were sampled at 30 Hz (using custom-written software
utilizing the Kinect-for-Windows Software Development Kit [SDK 2.0]) and 60
Hz (using First Principles data acquisition software), respectively. The IWW
was equipped with a projector (Vivitek D7180HD, ultra-short-throw Full HD

projector) to augment the entire 10-meter walkway with visual context for



three sorts of walking-adaptability tasks: obstacle avoidance, sudden stops-

and-starts and goal-directed stepping (Figure 3.1).
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Figure 3.1 The set-up of the Interactive Walkway with visual context projected on the walkway (A).
The four Kinect v2 sensors were positioned on tripods at a height of 0.75 meters alongside a
walkway of 10 by 0.5 meters. The sensors were placed frontoparallel (i.e., with an angle of 70
degrees relative to the walkway direction) with a distance of 0.5 meters from the left border of the
walkway. The first sensor was positioned at 4 meters from the start of the walkway and the other
sensors were placed at inter-sensor distances of 2.5 meters. Schematics of the walking-adaptability
tasks: obstacle avoidance with gait-dependent (B) and position-dependent obstacles (C), sudden
stops-and-starts (D) and goal-directed stepping with symmetric stepping stones (E), asymmetric

stepping stones (F) and variable stepping stones (G).



The obstacle-avoidance task consisted of 25 trials with one or two obstacles (a
projected red rectangle) per trial. In total, 40 obstacles were presented,
including 20 gait-dependent obstacles (obstacle at predicted foot-placement
position appearing two steps ahead; Figure 3.1B) and 20 position-dependent
obstacles (obstacle at an unpredictable predefined position appearing when a
subject’s ankle was within 1.5 meters from that obstacle; Figure 3.1C). Gait-
dependent obstacles were 0.5 (width of the walkway) by 0.3 meters. Position-
dependent obstacles were larger (0.5x0.5 meters) to increase the need for
making step adjustments. Subjects were instructed to avoid suddenly
appearing obstacles while walking at self-selected comfortable speeds.

The sudden-stops-and-starts task (Figure 3.1D) consisted of 25 trials
with in total 40 cues (i.e., one or two sudden-stop-and-start cues per trial) to
assess one’s ability to suddenly stop and start walking. The cue was a big blue
rectangle with a width of 0.5 meters that filled the walkway from an
unpredictable predefined position till its end and appeared as soon as a
subject’s ankle was within 1 meter from this position, triggering the subject to
stop walking. After a random period between 5 and 10 seconds, the rectangle
disappeared, triggering the subject to start walking again. Subjects were
instructed to walk at self-selected comfortable speeds and to stop behind the
cue and to start walking as soon as the cue disappeared.

The goal-directed-stepping task consisted of symmetric-stepping-
stones (SSS; Figure 3.1E), asymmetric-stepping-stones (ASS; Figure 3.1F) and
variable-stepping-stones (VSS; Figure 3.1G) conditions. Subjects were
instructed to step as accurately as possible onto the white shoe-size-matched
stepping targets at a self-selected comfortable walking speed. For SSS, seven
different imposed step-length trials ranging from 30 to 90 cm in steps of 10 cm
were performed, all with three repetitions, yielding a total of 21 trials. For ASS,
stride length remained 90 centimeters while left (L) and right (R) imposed step
lengths were varied in separate trials from 15 to 75 centimeters in steps of 15

centimeters yielding five different imposed stepping asymmetries (L/R: 15/75,



30/60, 45/45, 60/30, 75/15), all with three repetitions, yielding 15 trials. For
VSS, imposed step lengths varied within each trial on a step-to-step basis
randomly between 30 and 90 centimeters. Ten different VSS trials were
performed, consisting of 21 stepping stones each.

The walking-adaptability tasks were block-randomized and preceded
by a familiarization trial. Four ankle-to-shoe calibration trials, in which the
subject was standing in two shoe-size-matched targets at different positions on
the walkway, were also included to determine the average distance between
shoe edges and the ankle for both systems. This calibration was needed to

determine several walking-adaptability outcome measures (see below).

Data pre-processing and analysis

Data pre-processing followed established procedures [7]; details about the
procedure and pre-processed data are presented as supplementary material
(see Supplements 3.1 and 3.2). Due to excessive missing data, 62 out of 2,016
trials were excluded from further analysis, mainly for the gold-standard
motion-registration system (i.e., marker occlusion and/or orientation issues)
and concerning one subject.

The continuous walking-adaptability outcome measures were available
response time (ART) and margins of the trailing and leading limb during
obstacle crossing for the obstacle-avoidance task, ART and margin to the stop
cue for the sudden-stops-and-starts task, step length, stepping accuracy and
walking speed for SSS and VSS, and left and right step lengths, stepping
accuracy and walking speed for ASS. These continuous outcome measures were
calculated from specific body points’ time series, estimates of foot contact and
foot off and step locations, as detailed in Table 3.1, for both measurement
systems alike in an aligned coordinate system, including the coordinates of
obstacles, sudden-stop cues and targets. For all continuous outcome measures,
statistical analyses were performed over averages over trials. For dichotomous

outcome measures, step locations were extrapolated to the actual shoe



dimensions based on the ankle-to-shoe calibration to determine whether or not
obstacle-avoidance and sudden-stop trials were successfully performed, from
which success rates were deduced. Successful gait-dependent obstacle-
avoidance maneuvers were classified as short-stride or long-stride strategies

[13].

Statistical analysis

Between-systems agreement was determined for continuous outcome
measures using intraclass correlation coefficients for absolute agreement
(ICCta1); [14]), with values above 0.60 and 0.75 representing good and excellent
agreement, respectively; [15]. This analysis of between-systems agreement was
complemented by mean differences and precision values obtained with a
Bland-Altman analysis (i.e., the bias and the limits of agreement, respectively;
[16]). For dichotomous outcome measures we report the percentage of non-
matched ratings.

Sensitivity to task variation was examined using repeated-measures
ANOVAs on continuous outcome measures of obstacle-avoidance and goal-
directed-stepping tasks. For ART and obstacle-avoidance margins, a System
(IWW, Optotrak) by Obstacle (gait-dependent, position-dependent) by Limb
(trailing, leading) repeated-measures ANOVA was conducted. For step length,
stepping accuracy and walking speed of SSS, a System by Imposed step length
(30, 40, ..., 90) repeated-measures ANOVA was conducted. For left and right
step lengths, stepping accuracy and walking speed of ASS, a System by Imposed
step-length asymmetry (L/R: 15/75, 30/60, 45/45, 60/30, 75/15) repeated-
measures ANOVA was conducted. For step length, stepping accuracy and
walking speed of VSS, a System by Trial repeated-measures ANOVA was
conducted. For the average stepping accuracy of the three goal-directed-
stepping conditions, a System by Condition (SSS, ASS, VSS) repeated-measures
ANOVA was conducted. One subject was excluded from the analyses of the goal-

directed-stepping tasks due to multiple trials with excessive missing values.
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The assumption of sphericity was checked according to Girden [18]. If
Greenhouse-Geisser’s epsilon exceeded 0.75, the Huynh-Feldt correction was
applied; otherwise the Greenhouse-Geisser correction was used. Main effects
were examined with a Least Significant Difference post-hoc test for factors with
three levels and contrast analyses for factors with more than three levels.
Paired-samples t-tests were used for significant interactions. Effect sizes were
quantified with np2.

Sensitivity to subject variation was examined by exploring speed-
performance trade-offs. We determined Pearson’s correlations between self-
selected walking speed and stepping accuracy for all goal-directed-stepping
tasks and between the speed-dependent ART and margins for obstacle-
avoidance and sudden-stop tasks (i.e., significant positive correlations signal
speed-performance trade-offs). We also assessed the influence of obstacle-
avoidance and sudden-stop ratings on ART using a System by Rating (success,
failure) repeated-measures ANOVA. In addition, obstacle-avoidance success

rates were compared with a System by Obstacle repeated-measures ANOVA.

Results

Between-systems agreement

Excellent between-systems agreement was observed for ART and margins for
obstacle-avoidance and sudden-stops-and-starts tasks, walking speed for all
goal-directed-stepping conditions (SSS, ASS and VSS) and step length and
stepping accuracy of VSS, supported by very high 1CC1) values, small biases
and narrow limits of agreement (Table 3.2). The between-systems agreement
for stepping accuracy of SSS and step lengths and stepping accuracy for ASS
was overall good to excellent (Table 3.2). Between-systems statistics were
ambiguous for step length of SSS (low ICCa1) values, negligible biases and very
narrow limits of agreement; Table 3.2). Significant between-system biases,

indicated in Table 3.2, all corresponded to significant System effects of



associated outcome measures in the ANOVAs for the analysis of sensitivity to
task and subject variations.

Success rates of gait-dependent and position-dependent obstacles were
(mean = SD) 94.7 + 12.8% and 92.1 + 15.6% for the IWW and 96.8 + 6.5% and
93.2+12.1% for the gold standard, respectively. The percentage of non-matched
ratings was 3.7% for gait-dependent obstacles (3.0% false negatives) and 5.1%
for position-dependent obstacles (3.1% false negatives). Given the uneven
distribution of ratings over categories (~95% success vs. ~5% failure), we also
determined the percentages of specific agreement [19] for obstacle-avoidance
successes (97.7%) and failures (61.5%), suggesting that the agreement for
failures was considerably lower. The systems matched perfectly for classified
avoidance strategies (0% non-matched ratings), with an overall preference for
the long-stride strategy in avoiding gait-dependent obstacles (80.5 = 15.3%).
Success rates for sudden stops were 58.1 + 23.5% for the IWW and 49.5 +
22.0% for the gold standard, with 14.8% between-systems dis-matches (11.7%

false positives).

Sensitivity to task variation

A significant Obstacle (F(1,20) = 7.98, p = 0.010, np? = 0.285) effect was found
for ART, with longer ARTs for position-dependent obstacles (0.834 + 0.016 s)
than for gait-dependent obstacles (0.784 * 0.011 s). Significant Obstacle
(F(1,20) = 508.73, p < 0.001, np? = 0.962) and Limb (F(1,20) = 29.40, p < 0.001,
np? = 0.595) effects were found for obstacle-avoidance margins, as well as a
significant ObstaclexLimb interaction (F(1,20) = 99.95, p < 0.001, n,? = 0.833).
While margins were overall greater for gait-dependent obstacles and for the
trailing limb, the interaction revealed that the difference between trailing and
leading limbs was only evident for gait-dependent obstacles (27.7 + 5.3 cm vs.
12.2 + 5.3 cm) and not for position-dependent obstacles (11.4 + 2.9 cm vs. 9.4 *
4.9 cm).
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Figure 3.2 Step length (A, B and C), stepping accuracy (D, E and F) and walking speed (G, H and I)

for the symmetric-stepping-stones (SSS; A, D and G), the asymmetric-stepping-stones (ASS; B, E and

H) and the variable-stepping-stones (VSS; C, F and I) of the goal-directed-stepping task.



Subjects were well able to adjust their foot placement to the presented
goal-directed-stepping targets (Table 3.2 and Figure 3.2). This was confirmed
by very strong effects of Imposed step lengths on performed step lengths for
SSS (F(4.2,79.0) = 162327.08, p < 0.001, np2 = 1.000; Figure 3.2A) and ASS (left:
F(1.2,22.6) = 936.64, p < 0.001, np2 = 0.980; right: F(1.2,22.7) = 913.62, p <
0.001, np% = 0.980; Figure 3.2B). Stepping accuracy varied significantly with
Imposed step-length asymmetry (F(2.4,45.7) = 20.63, p < 0.001, ny2 = 0.521),
with significant quadratic (F(1,19) = 53.99, p < 0.001, n,% = 0.740) and fourth-
order (F(1,19) = 18.83, p < 0.001, ny? = 0.498) contrasts (Figure 3.2E); no
significant main or interaction effects were found on stepping accuracy for SSS
(Figure 3.2D) or VSS (Figure 3.2F). Walking speed varied with step-length
manipulations for SSS (F(2.7,50.6) = 607.50, p < 0.001, np2 = 0.970; with
significant linear [F(1,19) = 1189.66, p < 0.001, ny? = 0.984] and quadratic
[F(1,19) = 9.29, p = 0.007, np? = 0.328] contrasts; Figure 3.2G) and ASS
(F(2.7,50.6) = 4.72, p = 0.007, np? = 0.199; with a significant linear contrast
[F(1,19) = 13.67, p = 0.002, np2 = 0.418]; Figure 3.2H). Average stepping
accuracy varied significantly over goal-directed-stepping conditions
(F(1.5,28.3) = 36.80, p < 0.001, 12 = 0.659); stepping accuracy improved from
ASS (2.99 = 0.21 cm) to VSS (2.57 £ 0.15 cm) to SSS (1.93 £ 0.08 cm), with

significant differences between all conditions.

Sensitivity to subject variation

Self-selected walking speed affects the available response time for
obstacle-avoidance and sudden-stop tasks on the IWW, and thereby the
difficulty of these walking-adaptability tasks. For sudden stops the overall
success rate was 53.8 * 22.4%, with a clear influence of rating on ART (F(1,20)
= 172.88, p < 0.001, np?> = 0.896); ARTs were longer for successful stops
(0.536+0.012 s) than for failed stops (0.416 + 0.012 s). In Figure 3.3 sudden-
stop success and failure rates are depicted as a function of ART, showing a

steady increase in stopping successes (and hence a decrease in stopping



failures) with longer ARTs. A speed-performance trade-off was also found on
margins to the stopping cue, with longer ARTs being associated with larger
margins, for both systems alike (IWW: r(20) = 0.597, p = 0.004; gold standard:
r(20) =0.698, p < 0.001).

The influence of obstacle-avoidance ratings on ART could not be
determined because of a ceiling effect; overall success rate was 94.2 + 11.3%,
with slightly higher success rates for gait-dependent obstacles (95.8 + 2.1%)
than for position-dependent obstacles (92.6 * 2.9%; main Obstacle effect,
F(1,20) = 7.05, p = 0.015, np? = 0.261). Obstacle-avoidance margins were not
associated with ART (i.e., no speed-performance trade-off; r(20) = [-0.115
0.211], p > 0.359).

Clear speed-performance trade-offs were observed for goal-directed
stepping, with faster walking speeds being associated with poorer stepping
accuracy, as evidenced by significant positive correlations between self-
selected walking speed and stepping accuracy for SSS, ASS and VSS, for both
systems alike (IWW: r(20) = 0.722, p < 0.001, r(20) = 0.715, p < 0.001 and r(20)
= 0.637, p < 0.001, respectively; gold standard: r(20) = 0.523, p = 0.018, r(20) =
0.668, p=0.001 and r(20) = 0.569, p < 0.001, respectively).

Sudden-stop success and failure rates

Rate (%)

20 [ ISuccess
10 " Failure
I I I

<350  350-400 400-450 450-500 500-550 550-600 >600
Available response time (ms)

Figure 3.3 Sudden-stop success and failure rates for different available response times.

Discussion

We determined the usability of IWW walking-adaptability assessments in a

group of healthy adults in terms of between-systems agreement and sensitivity



to task and subject variations. We expected that walking-adaptability outcome
measures agreed well between systems and were sensitive to task and subject
variations. The results were in line with our expectations, which led us to
conclude that the IWW is usable for walking-adaptability assessments.

First, the between-systems agreement for continuous walking-
adaptability outcomes proved to be good to excellent, with high ICC values,
small biases and narrow limits of agreement (Table 3.2). For the SSS conditions
of goal-directed stepping, however, ICC values for step length were
considerably lower, suggesting a poor between-systems agreement, which
stood in stark contrast with excellent Bland-Altman agreement statistics
(negligible biases and narrow limits of agreement; Table 3.2). This discrepancy
was likely due to a lack of subject heterogeneity in step lengths since these
were experimentally imposed with stepping targets, yielding minimal between-
subject variance (see also Figure 3.2A) and hence arbitrarily low ICC values
[20]. This discrepancy illustrates the importance of a complementary set of
agreement statistics instead of relying solely on ICC as the measure for
between-systems agreement [20]. The between-systems agreement for
dichotomous walking-adaptability outcomes varied, ranging from 100% overall
agreement for obstacle-avoidance strategies to 85.2% for successes and
failures in sudden stops. The specific agreement for obstacle-avoidance failures
was lower (~60%), yet based on a limited number of observations. Future
research may exploit IWW’s possibility to vary task difficulty to achieve a
similar distribution of obstacle-avoidance successes and failures to properly
quantify their between-systems agreement.

Second, continuous walking-adaptability outcomes were sensitive to
task and subject variations. With goal-directed stepping, task variations led to
different step lengths, stepping accuracies and walking speeds (Figure 3.2)
while ARTs and margins of the trailing limb varied with obstacle type. This
testifies to the power of projected visual context in modifying gait and in

eliciting (sudden) step adjustments, in line with previous studies exploring the



same concept during treadmill walking [3,21-23], as well as to the sensitivity of
continuous walking-adaptability outcomes. Success rates differed between
obstacle types, although differences were very small in the vicinity of a ceiling
effect. Future studies may increase obstacle-avoidance difficulty with the IWW
by reducing ART, projecting larger obstacles, and/or adding attention-
demanding secondary tasks [24]. Varying task difficulty with ART
manipulations seems particularly effective, since in the present study ART had
a prominent effect on sudden-stop success rates (Figure 3.3) and in other
studies on obstacle-avoidance success rates [12,25]. Sensitivity to subject
variation was further demonstrated by speed-performance trade-offs in goal-
directed stepping (subjects who walked faster stepped less accurately onto
targets) and sudden stops (subjects with shorter ARTs had smaller margins to
the stop cue). Revealing such context-dependent interactions by objectively
quantifying a complementary set of outcome measures can be considered one
of the strengths of the IWW, which may prove useful in identifying fallers [26]
and designing tailored interventions to reduce fall risk [1].

Taken together, our results confirmed that IWW walking-adaptability
outcome measures are reliable (albeit that obstacle-avoidance failure rates
have to be considered with caution) and sensitive to task and subject
variations, even in high-functioning subjects. Sensitivity to task and subject
variations is important for walking-adaptability assessments in relatively high-
functioning groups (such as community-dwelling older adults), where ceiling
effects are a common concern in fall-risk assessments [27]. The same holds for
floor effects in relatively fragile groups (such as fall-prone populations). The
IWW potentially allows for walking-adaptability assessments that are feasible
for both high-functioning and fragile populations since task difficulty can be
varied. IWW assessments are also relatively safe (e.g., visual instead of physical
obstacles), unobtrusive (markerless data) and hence time-efficient and patient-
friendly. The premise is that persons at risk of falling during walking may be

better identified with task-specific assessments attuned to common causes and



circumstances of falls [4-6], such as IWW walking-adaptability tasks. Future
studies are warranted to determine which walking-adaptability tasks and
associated outcomes are good indicators of safe walking and accurate

predictors of falls during walking.
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Supplement 3.1
Data pre-processing
The Kinect for Windows Software Development Kit (SDK 2.0,
www.microsoft.com) provides 3D time series of 25 body points using inbuilt
and externally validated human-pose estimation algorithms [1-5]. These body
points are: head, neck, spine shoulder, spine mid, spine base and left and right
shoulder, elbow, wrist, hand, thumb, hand tip, hip, knee, ankle and foot (Figure
S3.1B). For offline data analysis, the 3D positional data for these body points
were first pre-processed per Kinect sensor separately. Body points labelled as
inferred (i.e., Kinect’'s human-pose estimation software infers positions when
segments are partially occluded for example) were treated as missing values.
The body point’s time series were linearly interpolated using Kinect’s time
stamps to ensure a constant sampling frequency of 30 Hz, without filling in the
parts with missing values. We removed data points from the time series when
they did not meet our stringent requirements for valid human-pose estimation
(e.g., a minimum of 15 out of the 25 possible body points should be labeled as
tracked, including the head and at least one foot and ankle, without outliers in
segment lengths). Subsequently, data of the four Kinect sensors were combined
by taking for each sample the 3D positions of the body points of a validly
estimated human pose. If, for a given sample, more than one sensor contained
valid human pose data, the associated body point’s 3D positions were averaged
for that specific sample. Note that the online integration process of multiple
Kinect v2 data was similar to this offline integration process, except for the
linear interpolation based on time stamps.

For motion registration with the Optotrak system (Northern Digital
Inc., Waterloo, Canada), Smart Marker Rigid Bodies (Northern Digital Inc.,
Waterloo, Canada) were attached to the head, upper arms, forearms, lower
abdomen, upper legs, lower legs and feet, allowing for 6 degrees of freedom
tracking of body segments (Figure S3.1A). In addition, 30 anatomical landmarks

were digitized using a 3-marker digitizing probe to define various body point



positions (so-called virtual markers) on abovementioned body segments. Smart
markers were also placed on the sternum, hands and feet. Body point’s time
series of the Optotrak system were computed from the virtual markers and/or
smart markers to resemble corresponding Interactive Walkway (IWW) body
points (see Table S3.1). In case of a single virtual marker or smart marker, the
time series of that specific marker was taken as the time series of the associated
body point (e.g.,, sternum data representing the spine shoulder body point of
the IWW). In case of multiple virtual markers and/or smart markers, the
associated marker positions were averaged in all three directions for each time
sample. Positions of the neck, spine mid, thumbs and hand tips body points
were not tracked with the Optotrak system due to the limited number of
available smart markers, rendering a total of 19 out of aforementioned 25
matched body points.

The coordinate systems of the IWW (3D body points and projector
pixels) and the Optotrak system were spatially aligned to a common coordinate
system using a spatial calibration grid. Optotrak data were down-sampled to 30
Hz. Subsequently, the cross-covariance and time lag were determined for
paired time series in the mediolateral and vertical direction of the elbows,
wrists and hands during the synchronization movement (i.e., ab- and adduction
of both arms). These time series were first interpolated with a spline algorithm
in case of missing data. The median of the time lags was used to temporally
align the time series of the two motion-registration systems. Body point’s time
series with more than 50% of missing values were excluded from further
analyses. The missing values of the remaining data were interpolated with a
spline algorithm. The so-obtained time series were used for the calculation of
the walking-adaptability outcome measures. In the current study, only the time
series of the spine shoulder, spine base and left and right ankle in the anterior-
posterior direction were needed for the calculation of the walking-adaptability

outcome measures (Figure S3.2).
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Figure S3.1 Body point determination with the Optotrak system and the Interactive Walkway. (A)

Subject with all markers of the Optotrak system; (B) Snapshot of available Interactive Walkway
body points of the same subject (derived with established human-pose estimation algorithms of

Kinect v2).
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Figure S3.2 Raw time series of the two systems for the body points of interest to the current study.

Note the missing values in the ankle data for the Optotrak time series.



Table S3.1 Overview of Optotrak marker data for deriving body points resembling Interactive

Walkway body points.
Interactive Walkway = Smart Marker Rigid Virtual marker Smart marker
body points Body position position position
Head Head Nasion, inion and left -
and right ear
Neck - - -
Spine shoulder - - Sternum
Spine mid - - -
Spine base Lower abdomen Left and right anterior -
superior and posterior
superior iliac spine
Shoulders Upper arms Head of the humurus -
Elbows Upper arms Medial and lateral -
epicondyles
Wrists Forearms Distal head of the -
radius and ulna
Hands - - Back of the hand
Hand tips - - -
Thumbs - - -
Hips Upper legs Trochantor major -
Knees Upper legs Medial and lateral -
condyles
Ankles Lower legs Medial and lateral -
malleoli
Feet Feet Calcaneus Head of the distal
phalanx of the hallux
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Supplement 3.2
Data of body point’s time series in the anterior-posterior, mediolateral and
vertical direction for the Interactive Walkway and the Optotrak system. This
data is available at: https://ars.els-cdn.com/content/image/

o 1-52.0-S0966636217300553-mmc2.zip

e 1-52.0-S0966636217300553-mmc3.zip

e 1-52.0-S0966636217300553-mmc4.zip

e 1-52.0-S0966636217300553-mmc5.txt
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The Kinect v2 sensor may be a cheap and easy to use sensor to quantify gait in
clinical settings, especially when applied in set-ups integrating multiple Kinect
sensors to increase the measurement volume. Reliable estimates of foot placement
locations are required to quantify spatial gait parameters. This study aimed to
systematically evaluate the effects of distance from the sensor, side and step
length on estimates of foot placement locations based on Kinect’s ankle body
points. Subjects (n = 12) performed stepping trials at imposed foot placement
locations distanced 2 m or 3 m from the Kinect sensor (distance), for left and right
foot placement locations (side), and for five imposed step lengths. Body points’
time series of the lower extremities were recorded with a Kinect vZ2 sensor, placed
frontoparallelly on the left side, and a gold-standard motion-registration system.
Foot placement locations, step lengths, and stepping accuracies were compared
between systems using repeated-measures ANOVAs, agreement statistics and two
one-sided t-tests to test equivalence. For the right side at the 2 m distance from
the sensor we found significant between-systems differences in foot placement
locations and step lengths, and evidence for nonequivalence. This distance by side
effect was likely caused by differences in body orientation relative to the Kinect
sensor. It can be reduced by using Kinect’s higher-dimensional depth data to
estimate foot placement locations directly from the foot’s point cloud and/or by
using smaller inter-sensor distances in case of a multi-Kinect v2 set-up to estimate

foot placement locations at greater distances from the sensor.



Introduction

Quantitative gait assessments are a major undertaking in clinical settings (e.g.,
calibration procedures, patient-preparation time) and are costly due to
expensive equipment [1]. The Microsoft Kinect v2 sensor may be a cheaper and
easier to use alternative. It entails a RGB-D camera to create a depth image of
its surrounding. Using machine-learning algorithms, the high-dimensional
depth data can be reduced to 25 lower-dimensional three-dimensional (3D)
body points of up to six people simultaneously, thereby eliminating the need for
markers and calibration procedures [2]. The Kinect v2 sensor, originally
developed for the gaming industry [2], has increasingly been studied in terms
of its usability for quantitative gait assessments [3-10]. These studies
collectively revealed that the Kinect v2 sensor is a promising tool for measuring
spatiotemporal gait parameters [3-10].

Spatial gait parameters, such as step length, are quantified from
estimates of foot placement locations, which are approximated from 3D
positional data of Kinect’'s ankle body points [3,6-9]. However, Kinect's
estimate of the ankle position seems to gradually change during the gait cycle in
the anterior-posterior direction when compared to a gold standard, a
phenomena that we observed in our own studies [6,7] as well as in other
studies [9,11]. The influence of this gradual change in the anterior-posterior
ankle position, as depicted in Figure 4.1A, on approximated foot placement
locations has never been systematically examined, which seems essential given
that yet unknown effects of distance from the Kinect v2 sensor, side and step
length may affect outcome measures of quantitative gait assessments.

The objective of this study is to systematically compare foot placement
locations, as approximated from ankle body point data, and associated
estimates of step length and stepping accuracy between the Kinect v2 sensor
and a gold-standard motion-registration system. To this end, the effect of
distance to the Kinect v2 sensor, left and right foot placement locations (side)

and imposed step lengths will be examined. We expect that foot placement



locations, step lengths, and stepping accuracies will agree well between

systems, without systematic between-systems effects of distance, side and

imposed step length.
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Figure 4.1 (A) Representative example of the right anterior-posterior ankle position for the Kinect
v2 sensor (dotted black line) and a gold-standard Optotrak system (solid gray line) during two right
stepping trials (at 2 m and 3 m distance from the sensor with the Kinect v2 sensor positioned at 0 m
and walking direction towards the sensor). The single-support phase is indicated by the black
boxes; (B) Schematic overview of the experimental set-up together with a right stepping trial at a 2
m distance from the sensor; (C) Schematic overview of the two imposed foot placement locations
distanced 2 m (top) and 3 m (bottom) from the Kinect v2 sensor for right stepping trials; and, (D)
Schematic overview of the different imposed step lengths for right stepping trials at a 2 m distance

from the sensor.



Methods

Subjects

A group of 12 healthy subjects (mean [range]: age 28 [21 43] years, height 177
[158 190] cm, weight 74 [56 95] kg, 6 males) participated in this experiment.
The Ethics Committee of the Department of Human Movement Sciences of the
Vrije Universiteit Amsterdam (Amsterdam, The Netherlands) approved the
study (ECB 2015-55). All of the subjects gave written informed consent prior to

participation.

Experimental set-up and procedure
Body points’ time series of the lower extremities were recorded with a Kinect
v2 sensor and a gold-standard Optotrak system (Northern Digital Inc.,
Waterloo, ON, Canada). For the current study, the orientation and position of
the Kinect sensor was in agreement with those of the Kinect sensors of a
validated multi-Kinect v2 set-up for gait assessments (i.e, an angle of 70
degrees relative to the movement direction and a perpendicular distance of
0.75 meters to the center of the area of interest; [6,7]; Figure 4.1B). Multiple
Kinect v2 sensors placed in a frontoparallel orientation (70 degrees) alongside
a walkway allows for a larger measurement volume for quantitative gait
assessments [6,7,9]. Two Optotrak cameras were needed to cover the same
area as the Kinect sensor (see Figure 4.1B for a schematic overview). A spatial
calibration grid was used to spatially align the coordinate systems of the two
motion-registration systems to a common coordinate system, as detailed in [7].
As in [6,7], the Kinect for Windows Software Development Kit (SDK 2.0,
www.microsoft.com) was used to obtain the 3D time series of 25 body points
by means of inbuilt and externally validated human-pose estimation algorithms
[3,6-9,12-14]. Kinect data were sampled at 30 Hz using custom-written
software utilizing the SDK 2.0. For the Optotrak system, Smart Marker Rigid
Bodies (Northern Digital Inc., Waterloo, ON, Canada) were attached to the body

segments of the lower extremities (lower abdomen, upper legs, and lower legs)



and virtual markers were assigned to these rigid bodies using a 3-marker
digitizing probe using First Principles data acquisition software (see
Supplement 4.1). The positions of the virtual markers were 14 anatomical
landmarks chosen to match the body points of the Optotrak system with the
body points of the lower body of the Kinect system (see Supplement 4.1). The
positions of these virtual markers were averaged in all directions for each
sample to obtain the positions of seven matched body points (see Supplement
4.1). Optotrak data were sampled at 60 Hz.

Subjects performed multiple stepping trials with foot placement
locations being guided by five shoe-size-matched stepping stones (Figure 4.1B)
presented using a projector (Vivitek D7180HD, ultra-short-throw Full HD
projector), which was spatially aligned to the common coordinate system of the
two motion-registration systems. The center of the middle stepping stone was
positioned at two different imposed foot placement locations, distanced at
either 2 m or 3 m from the Kinect sensor (Figure 4.1C). These distances ensure
a high resolution of the depth data [15], and thus minimize the influence of
depth resolution on the outcome measures. The middle stepping stone was
either projected for the left or right foot depending on its mediolateral position.
The position of the stepping stones indicating the starting and ending positions
were determined based on the imposed step lengths (50 cm, 60 cm, 70 cm, 80
cm, or 90 cm; Figure 4.1D). Step width was set at 20 cm to ensure that the
stepping stones did not overlap. Subjects were asked to stand as accurately as
possible in the stepping stones indicating the starting position and then step
with their left or right foot (depending on the imposed stepping pattern) in the
middle stepping stone and end with both feet in the stepping stones indicating
the ending position, thereby making a stepping movement. All of the trials were
performed twice, yielding a total of 40 trials (i.e., at 2 m and 3 m distances, with
the left and right side, at five imposed step lengths for two repetitions). Trials

were block-randomized for distance and side.



Data pre-processing and analysis

Data pre-processing followed established procedures [6,7] using Matlab
R2015a (The MathWorks Inc., Natick, MA, USA). Body points of the Kinect
system classified as inferred (i.e., when Kinect’s human-pose estimation
software can only indirectly derive the position of the body point due to partial
occlusion for instance) were removed from the time series. Body point’s time
series were linearly interpolated to ensure a constant sampling frequency of 30
Hz, without filling in the missing data points. Data points were removed from
the time series when they did not meet our criteria for valid human pose
estimation (e.g., a minimum of 15 out of the 25 possible body points should be
labeled as tracked, including the head and at least one foot and ankle, without
outliers in segment lengths). Optotrak body point’s time series were down-
sampled to 30 Hz. These data are available as supplementary material (see
Supplement 4.2). Body point’s time series of the spine base and left and right
ankle in the anterior-posterior direction were interpolated with a spline
algorithm and were used for the calculation of the outcome measures.
Percentages of missing data for these body points’ time series were on average
3.9% for the Kinect system and 0.6% for the Optotrak system, with maximum
percentages of missing data of 21.4% and 20.1%, respectively.

The outcome measures were foot placement location, step length, and
stepping accuracy. Foot placement locations were estimated from the anterior-
posterior ankle position during the single-support phase (i.e., between foot off
and foot contact of the contralateral foot; estimates of foot off and foot contact
were defined as the minima and maxima of the anterior-posterior time series of
the ankle relative to that of the spine base; [6,7,16]). Foot placement locations
were transformed to center of the foot, using the ankle positions of the feet
aligned with the stepping stones of the starting positions as a reference. To this
end, the average distance of the left and right ankle to the center of the stepping
stones was calculated over the episode of five samples before step initiation

with the lowest amount of variation for each trial. Subsequently, foot placement



locations were normalized to imposed foot placement locations (i.e., imposed
foot placement location was subtracted from the measured foot placement
location to correct for arbitrary effects in foot placement location as a function
of the two imposed distances from the sensor). Step length was defined as the
anterior-posterior distance between the starting position and the (non-
normalized) foot placement location (see arrows in Figure 4.1D). Stepping
accuracy was defined as the standard deviation over the signed normalized foot
placement locations over step lengths and repetitions and was calculated per

system, distance, and side.

Statistical analysis

One trial was accidentally not recorded with the Kinect system (experimenter
forgot to start the recording without noticing it), resulting in missing data for
foot placement location and step length for one participant (3 m distance, right
side, 80 cm and repetition #2). Since missing data in a repeated-measures
ANOVA will lead to the entire removal of that participant from the analysis, we
decided to use this single observation for this participant and to average over
the two repetitions for all other conditions and participants, yielding a single
value for each combination of system, distance, side, and imposed step length
for all of the participants. Two participants had to be excluded from further
analyses due to displaced cluster markers of the Optotrak system.

All outcome measures (foot placement location, step length, and
stepping accuracy) were compared between systems using repeated-measures
ANOVAs (IBM SPSS Statistics 24). For foot placement locations and step
lengths, a System (Kinect, Optotrak) by Distance (2 m, 3 m) by Side (left, right
foot placement locations) by Imposed step length (50 cm, 60 cm, 70 cm, 80 cm,
90 cm) repeated-measures ANOVA was conducted. For stepping accuracy, a
System by Distance by Side repeated-measures ANOVA was conducted. The
assumption of sphericity was verified according to Girden [17]. The Huynh-

Feldt correction was applied if the Greenhouse-Geisser’s epsilon exceeded 0.75;



otherwise, the Greenhouse-Geisser correction was used. The main effects were
examined with a Least Significant Difference post-hoc test for factors with two
levels and contrast analyses for factors with more than two levels. Paired-
samples t-tests were used for significant interactions involving the factor
System, focusing on between-systems comparisons. Effect sizes were quantified
with np2.

In addition to the ANOVAs testing between-systems differences, we
also performed agreement statistics to examine the agreement between the
systems. The between-systems agreement was determined using intraclass
correlation for absolute agreement (ICC(a1)) and consistency (ICCcq1); [18])
using Matlab R2015a, with values above 0.60 and 0.75, representing good and
excellent agreement, respectively [19]. Both types of ICCs were used in order to
determine the influence of a potential systematic between-systems bias in the
agreement. The ICCs were complemented by mean differences and precision
values obtained with a Bland-Altman analysis (i.e., the bias [Kinect-Optotrak]
and the limits of agreement [LoA], respectively; [20]).

In view of the low between-subject variation due to the imposed foot
placement locations and step lengths, which may hinder the reliability of the
ICCs [21], the outcome measures were also analyzed for between-systems
equivalence using two one-sided t-tests (TOST; utilizing the TOSTER module in
jamovi 0.7.3.2; [22]). For this analysis, the 90% confidence interval of the
between-systems difference should be within pre-determined equivalence
bounds for which the systems can be deemed equivalent. These bounds were
conservatively set based on the LoA intervals found in [7]. That is, for foot
placement locations and step lengths, the equivalence bounds were set at *
2.145 cm (i.e., the smallest LoA interval of the obstacle-avoidance margins,
which were similarly based on estimates of a single foot placement location;
[7]). For stepping accuracies, the smallest LoA interval was used of the stepping
accuracies obtained for precision-stepping trials to a sequence of regularly

spaced stepping stones with imposed step lengths of 50 cm, 60 cm, 70 cm, 80



cm, and 90 cm ([7]; same step lengths as in the current study), resulting in

equivalence bounds of + 0.685 cm.

Results

Table 4.1 shows the data of all outcome measures together with the agreement

statistics (bias, 95% LoA, ICCa,1) and ICC(c,1)) and TOST statistics.

Foot placement locations

A significant main effect of System (F(1,9) = 5.87, p = 0.038, 1,2 = 0.395) was
found on foot placement locations. Kinect estimated foot placement locations
0.76 cm posterior as compared to the Optotrak system. No other main or
interaction effects were found, although there was a trend towards significant
SystemxImposed step length (F(2.6,23.4) = 2.83, p = 0.067, 1% = 0.239) and
SystemxDistancexSide (F(1,9) = 4.66, p = 0.059, p? = 0.341) interactions. There
seemed to be a larger between-systems difference for the right foot placement
location at 2 m when compared to the other conditions (see top panels in
Figure 4.2). Regarding the equivalence tests, right foot placement locations at 2
m were found to be nonequivalent for 80 cm (p = 0.072) and 90 cm (p = 0.110),
while all other foot placement locations were found to be equivalent (p <
0.045). Note that in some cases the systems can be considered equivalent, as
their 90% confidence intervals do not cross the equivalence bounds (i.e., no
meaningful effect), and at the same time be statistically different in a t-test
because the confidence intervals of the between-systems differences do not
include zero (e.g, right foot placement locations at the 2 m distance for

imposed step lengths of 50 cm, 60 cm, and 70 cm; Table 4.1, Figure 4.2).
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Figure 4.2 Results of the two one-sided t-tests, showing the between-systems differences and the
90% confidence intervals of all conditions for foot placement location, step length, and stepping

accuracy.



Step length
A main effect of System was found on step length (F(1,9) = 12.24, p = 0.007, np?
= 0.576). On average, Kinect underestimated step length with 0.94 cm as
compared to the Optotrak system, a finding in line with abovementioned
between-systems difference in foot placement locations. There was also a very
strong effect of imposed step length on performed step length (F(2.8,25.0) =
8167.28, p < 0.001, np? = 0.999; with significant linear [F(1,9) = 23285.32, p <
0.001, ny? = 1.000] and quadratic [F(1,9) = 11.73, p = 0.008, 1ny? = 0.566]
contrasts); step lengths increased with increasing imposed step lengths.

Furthermore, significant SystemxDistance (F(1,9) = 13.12, p = 0.006,
np? = 0.593) and SystemxDistancexSide (F(1,9) = 12.26, p = 0.007, np2 = 0.577)
interactions were observed. The significant between-systems bias was only
found at the 2 m distance and more strongly so for right step lengths (Figure
4.3), indicated by the significantly larger between-systems difference for the
right step length at 2 m (¢(9) = 3.51, p = 0.007). In addition, DistancexImposed
step length (F(4,36) = 5.45, p = 0.002, np2 = 0.377; with significant linear by
linear [F(1,9) = 18.31, p = 0.002, np? = 0.670] and linear by fourth order [F(1,9)
= 13.35, p = 0.005, 1,2 = 0.597] contrasts) and SystemxDistancexImposed step
length (F(2.8,25.1) = 4.35, p = 0.015, 1?2 = 0.326) interactions were found;
significant between-systems differences were again only found at the 2 m
distance, with the smallest between-systems bias for 80 cm (Table 4.1, Figure
4.4).

Step lengths were generally found to be equivalent (most p < 0.030)
with some exceptions for the right step length at 2 m, in agreement with the
SystemxDistancexImposed step length interaction, and the left step length at 3

m due to a relatively large between-subject variation (Figure 4.2).
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Figure 4.3 Visual representation of the interaction effect of System, Distance, and Side. The

significant between-systems bias in step length was only found at the 2 m distance (indicated by

the asterisks) and more strongly so for right step lengths (indicated by the significantly larger

between-systems difference for the right step length).
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Stepping accuracy

For stepping accuracy, no significant main or interaction effects were found (all
p > 0.089, all 1,2 < 0.287). There was a trend towards significance for the
SystemxDistance (F(1,9) = 3.62, p = 0.089, n,?2 = 0.287) interaction. Kinect
seemed to slightly underestimate stepping accuracy at the 2 m distance, and to
slightly overestimate stepping accuracy at the 3 m distance (i.e., see the non-
significant positive and negative biases in Table 4.1, respectively).
Nevertheless, stepping accuracy was found to be equivalent between the

systems (p < 0.001; Figure 4.2).

Discussion

The objective of this study was to systematically compare foot placement
locations, as approximated from ankle body point data, and associated
estimates of step length and stepping accuracy between the Kinect v2 sensor
and a gold-standard Optotrak system. We expected that foot placement
locations, step lengths, and stepping accuracies all agreed well between
systems, without systematic between-systems effects of distance from the
sensor, side and imposed step length. However, our results revealed a small but
significant between-systems difference in foot placement locations and step
lengths; Kinect estimated foot placement locations on average 0.76 cm
posterior and consequently underestimated step length by 0.94 cm when
compared to the Optotrak system. Note that these biases were predominantly
found for the 2 m distance and were more pronounced for the right side.
Nevertheless, stepping accuracies and estimates of foot placement locations
and step lengths were generally statistically equivalent (i.e., no statistically
meaningful between-systems bias, as evidenced by a statistically significant
TOST), with a few nonequivalent exceptions in foot placement locations and
step lengths mostly for the right side at the 2 m distance (Table 4.1, Figure 4.2).
Two factors may have mediated the larger between-systems differences for the

right side at the 2 m distance: 1) depth occlusion and 2) body orientation



relative to the Kinect sensor. Since the Kinect sensor was positioned
frontoparallelly on the left side of the participant, the right leg could be
partially occluded by the swinging left leg during the stepping movement, and
more strongly so nearby the sensor, which may have affected the outcomes. In
the supplementary material (see Supplement 4.3) we describe an additional
analysis aimed at examining the role of occlusion (and associated interpolation
of the missing data) as a factor mediating the larger between-systems
differences found for the foot placement locations of the right side at the 2 m
distance. Based on the results we can conclude that depth occlusion did not
cause the larger between-systems bias.

Could the second factor, body orientation relative to the Kinect sensor,
then explain the between-systems differences for the right side at 2 m distance
from the sensor? As can be seen in Figure 4.5, the orientation relative to the
Kinect sensor changes with distance from the sensor and body side: from quite
frontally for the left side at the 3 m distance to a more frontoparallel
orientation for the right side at the 2 m distance. Orientation relative to the
sensor likely affects the depth image of shank and foot segments due to
orientation-based differences in self-occlusion of those body segments, which
might influence the estimation of the position of the ankles from the point
clouds by the machine-learning algorithm (cf. Figure 5B in [9]), and as such
estimates of foot placement locations. Indeed, Wang et al. [23] showed that the
positional error in body point estimates increases with deviations from a
frontal orientation relative to the Kinect v2 sensor, especially so for body points
of the body side that was turned away from the sensor. The turned-away body
side was the right side in the current study, with the greatest deviations from a
frontal orientation at the 2 m distance. This was also the condition with a
meaningful between-systems bias in estimated foot placement locations,
making body orientation relative to the sensor a very likely cause for the

observed between-systems differences.



Knowing that body orientation relative to the sensor affects body point
estimation, we will now discuss ways to minimize orientation biases in (multi-)
Kinect set-ups for measuring gait with (a) sensor(s) placed alongside a
walkway. A first recommendation could be to use sensors on both sides of a
walkway in order to average out side-dependent orientation biases. Miiller et
al. [9] recently compared one-sided and two-sided multi-Kinect v2 set-ups to a
gold-standard motion-registration system. They found superior between-
systems agreement in step widths for the two-sided set-up, suggesting that
mediolateral orientation biases, which are opposite in direction for the two
sides, can indeed be successfully averaged out. Unfortunately, a two-sided set-
up will not help to solve anterior-posterior orientation biases because these
biases are similar in direction for both sides, with greater biases closer to the
sensor. A second recommendation could be to use Kinect’s higher-dimensional
depth data to estimate foot placement locations directly from the foot’s point
cloud instead of approximating it from the lower-dimensional ankle body
points’ time series. Point clouds are robust, richer in information, and are likely
less prone to orientation errors. Previous studies indeed found superior results
for outcome measures (i.e., stride durations, stride lengths, and step
asymmetries) derived from Kinect’s higher-dimensional point clouds than for
their counterparts derived from Kinect's lower-dimensional body points’ time
series [24-26]. As point clouds contain more information about the foot, they
may additionally allow for finer-grained foot-related gait parameters, which
seem particularly useful in clinical populations with gait deviations and foot
deformations. Although point clouds may thus be a very useful alternative for
determining foot placement locations, the higher dimensionality of the point
clouds place greater demands on data handling. This is not much of a concern
for post-processing, but will be a burden for real-time processing of gait data
from multiple Kinect sensors for gait-dependent event control (e.g., suddenly
projecting an obstacle at the location where one will step next; [7]). A more

parsimonious solution, therefore, seems to be to collect body point data at



greater distances from the sensor, for which we have shown that they are less
prone to orientation biases. In the case of a multi-Kinect v2 set-up, this implies
smaller inter-sensor distances to create more overlap between the
measurement volumes of the sensors. Consequently, body point data nearby
the sensor, which suffers from orientation biases, can be ignored because the
same body points are already detected by the more distant sensor whose data
is minimally affected by orientation biases.

A limitation of this study was that the effect of distance to the sensor
was assessed in a rather coarse-grained manner (i.e., 2 levels, at 2 m and 3 m
from the sensor). As a consequence, the precise cut-off for ignoring nearby data
to circumvent orientation biases remains unknown. Another limitation is that
two participants had to be excluded due to displaced cluster markers of the
Optotrak system during the experiment, resulting in a relatively small sample
size. The sample consisted of healthy adults without gait deviations, whose gait
may not be representative for the gait of various patient groups. Nevertheless,
there is no reason to expect inferior depth images or body point estimation of
the lower extremities for persons with gait deviations [4], so the same
recommendations apply for negating orientation biases when the Kinect v2

sensor is used for quantitative gait assessments in clinical populations.

Kinect v2
sensor

Imposed foot placement locations
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Figure 4.5 An overview of the influence of distance from the sensor and body side on body

orientation relative to the Kinect sensor.



Conclusions

There is a meaningful between-systems difference in foot placement locations,
albeit only nearby the sensor and exclusively for the body side turned away
from the sensor (in our study the right side at a 2 m distance). This distance by
side between-systems effect is not mediated by depth occlusion through the
contralateral swinging leg, but is likely caused by body orientation differences
relative to the sensor. Such orientation effects might be reduced by using the
higher-dimensional depth data to estimate foot placement locations directly
from the foot’s point cloud and/or by using smaller inter-sensor distances in
the case of a multi-Kinect v2 set-up, allowing for foot placement estimations at

greater distances from the sensor.
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Supplement 4.1

Marker set-up of the Optotrak system.

Smart Marker Rigid Bodies 3D positional data of the marker set-up of the
A Optotrak system
D
X
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Figure S4.1 (A) Smart Marker Rigid Bodies of the Optotrak system. (B) 3-marker digitizing probe
for assigning virtual markers to the Smart Marker Rigid Bodies. (C) Overview of the marker set-up
of the Optotrak system. (D) Schematic overview of the 3D positional data of the marker set-up of
the Optotrak system. Smart Marker Rigid Bodies (presented in blue) were attached to the body

segments of the lower abdomen, upper legs, and lower legs. Virtual markers (red crosses) were



assigned to these rigid bodies using a 3-marker digitizing probe. The positions of the virtual
markers were 14 anatomical landmarks chosen to match the body points of the Optotrak system
with the body points of the Kinect system (Table S4.1). The positions of these virtual markers were
averaged in all directions for each sample to obtain the positions of seven matched body points

(Table S4.1; black squares).

Table S4.1 Overview of Optotrak marker data for deriving body points resembling Kinect body

points.

Kinect body points Smart Marker Rigid Body position Virtual marker position

Spine base Lower abdomen Left and right anterior superior and
posterior superior iliac spine

Hips Upper legs Trochantor major

Knees Upper legs Medial and lateral condyles

Ankles Lower legs Medial and lateral malleoli




Supplement 4.2
Data of body points’ time series in the anterior-posterior, mediolateral and
vertical direction for the Kinect v2 sensor and the Optotrak system. Data is

available at https://www.mdpi.com/1424-8220/17/10/2301/s1.



Supplement 4.3

In this supplementary material we describe an additional analysis aimed at
examining the role occlusion (and the associated interpolation of missing data)
may have played in the larger between-systems differences observed for the
right side at the 2 m distance. First, we compared the amount of occlusion in
the Kinect v2 data between distances and sides during the single-support
phase. Second, we introduced occlusion (i.e., based on observed occlusion for
the right side) to the data of the typically unoccluded left side to examine its
effect on estimates of foot placement locations. If these foot placement locations
are systematically affected by the introduced occlusion at the 2 m distance only,
occlusion (and the associated interpolation of missing data) likely caused the
observed between-systems differences for the 2 m distance for right foot

placements.

Methods

Data analysis

The first step in the analysis was to compare the amount of occlusion (i.e.,
missing data) in the Kinect v2 data between distances and sides. Therefore, raw
Kinect v2 body point’s time series of the ankles without interpolation of the
missing data points were used. The amount of occlusion was determined during
the single-support phase (i.e, between foot off and foot contact of the
contralateral foot), since foot placement locations were estimated using the
anterior-posterior ankle position during this phase. Estimates of foot off and
foot contact were calculated as detailed in the main text. Within this single-
support phase, the samples representing missing data were identified and the
percentage occlusion during the single-support phase was calculated. The
distribution of occlusion over the single-support phase was visualized with a
histogram presenting the percentage of all trials with occlusion during a

specific part of the time-normalized single-support phase in bins of 5%.



The next step in the analysis was to introduce occlusion (i.e., based on
observed occlusion for the right side) to the data of the typically unoccluded left
side to examine the effect of occlusion (and the associated interpolation of
missing data) on estimates of foot placement locations. This was done by using
the observed occlusion during the right single-support phase of matched trials
(i.e., in terms of distance and imposed step length). Subsequently, the so-
obtained ‘occluded’ time series of the left ankle were interpolated with a spline
algorithm before calculating foot placement locations and determining

between-systems differences.

Statistical analysis
The amount of occlusion was assessed using a Distance (2 m, 3 m) by Side (left
foot placement location, right foot placement location) repeated-measures
ANOVA. The assumption of sphericity was checked according to Girden [1]. If
Greenhouse-Geisser’s epsilon exceeded 0.75, the Huynh-Feldt correction was
applied; otherwise the Greenhouse-Geisser correction was used. Main effects
were examined with a Least Significant Difference post hoc test. Paired-samples
t-tests were used in case of a significant interaction. Effect sizes were quantified
with 12

The between-systems differences for the foot placement locations of
the left stepping trials were compared between original and ‘occluded’ data
with a paired-samples t-test for each distance by imposed step length

combination.

Results

The amount of occlusion differed significantly between distances (2 m: 11.60 *
0.71%, 3 m: 9.60 = 0.71%; F(1,9) = 6.41, p = 0.032, 1,2 = 0.416) and sides (left:
0.07 + 0.07%, right: 21.13 = 1.16%; F(1,9) = 339.17, p < 0.001, ny? = 0.974).
Furthermore, there was a significant DistancexSide interaction (F(1,9) = 6.21, p

= 0.034, np? = 0.408), revealing that the significant difference between the two



distances was only evident for the right side with a significantly larger amount
of occlusion for the 2 m distance (2 m: 23.11 + 4.40%, 3 m: 19.15 + 4.48%; t(9)
= 2.51, p = 0.033). In Figure S4.2, the amount and distribution of occlusion
during the single-support phase in the left and right ankle data are depicted,
presented separately for the two distances. As can be appreciated from the
figure (right panel), occlusion in the single-support phase for the right ankle
occurred earlier for the 2 m distance than for the 3 m distance, which may have
contributed to the significant difference in the amount of occlusion between
these two distances.

The original and ‘occluded’ data of the left ankle during the single-
support phase are presented in Figure S4.3, separately for the 2 m and 3 m
distance. The introduced missing data has little to no effect on the presented
time series for both distances. This was confirmed by the results of the foot
placement locations presented in Table S4.2. The bias in the between-systems
differences of the foot placement locations calculated with the original and
‘occluded’ data were not present (i.e., identical values for the foot placement
locations calculated with the original data and the ‘occluded’ data) or negligible
(i.e., submillimeter biases with low amount of variation). These biases, if any,

were not significant for both distances.

Conclusion

Occlusion in the Kinect v2 data cannot explain the more pronounced between-
systems differences seen for foot placement locations and consequently step
lengths for the right side at the 2 m distance. Whereas the amount and timing of
occlusion during the right single-support phase slightly differed between the 2
m and 3 m distance, the foot placement locations calculated with the ‘occluded’
data of the left ankle demonstrated negligible biases compared to the foot

placement locations calculated with the original data, for both distances alike.
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Assessing walking adaptability in stroke patients
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Purpose. The ability to adapt walking is important for safe ambulation.
Assessments of impairments in walking adaptability with the Interactive
Walkway (IWW) may aid in the development of individualized therapy strategies
of stroke patients. The IWW is an overground walkway with Kinect v2 sensors for
a markerless registration of full-body kinematics which can be augmented with
(gait-dependent) visual context to assess walking adaptability. This study aims to
evaluate the potential of the IWW as a new technology for assessing walking
adaptability in stroke patients. Materials and methods. 30 stroke patients and 30
controls performed clinical tests, quantitative gait assessments and various
walking-adaptability tasks on the IWW. Outcome measures were compared
between stroke patients and controls to examine known-groups validity.
Pearson’s correlation coefficients were calculated to assess the relationship
between and within clinical test scores, spatiotemporal gait parameters and
walking-adaptability outcome measures. Results. Good known-groups validity for
walking-adaptability tasks was demonstrated. In addition, walking-adaptability
tasks complemented clinical tests and spatiotemporal gait parameters and
addressed different aspects of walking ability and walking adaptability.
Conclusion. The IWW allows for a quick, unobtrusive and comprehensive
quantitative assessment of walking adaptability with potential for monitoring

recovery after stroke and informing neurologic therapy strategies.



Introduction

Walking speed assessed over short distances (e.g., 10-meter walking test),
spatiotemporal gait parameters (e.g., step length) and clinical tests (e.g., Timed
Up-and-Go test) are frequently used outcome measures of walking ability in
stroke patients [1]. However, these outcome measures mainly reflect only two
of the three aspects of walking ability, that is, the abilities to generate repetitive
stepping and to maintain balance while walking. The third aspect of walking
ability, the ability to adjust steps to one’s surrounding, is largely left
unaddressed, which is unfortunate as it is essential for safe and independent
ambulation [2]. Walking adaptability is defined as the ability to adapt walking
to meet behavioral task goals and demands of the environment [2] and
includes, among others, the ability to avoid obstacles, make sudden stops, place
feet accurately in a cluttered environment and walk while performing a dual
task [2]. Laboratory studies showed that stroke patients generally have a
reduced ability to adapt walking to environmental circumstances [3-6]. This
reduced walking adaptability makes these patients more susceptible to
walking-related falls due to trips, slips or misplaced steps [7-9]. Assessing
walking adaptability thus seems essential to better understand and treat
walking limitations. Unfortunately, there is no comprehensive clinical test of
walking adaptability [2] and laboratory studies have thus far typically focused
on specific aspects of walking adaptability, mainly obstacle avoidance [3-
6,10,11]. As a consequence, we lack a thorough understanding of walking
adaptability after stroke.

The Interactive Walkway (IWW; Figure 5.1) may help fill this void. It is
an overground walkway equipped with multiple Kinect v2 sensors for
markerless 3D full-body motion registration [12]. The IWW is augmented with
(gait-dependent) visual context, such as suddenly appearing obstacles and stop
cues (based on real-time processed gait data), to assess walking adaptability

[13]. Furthermore, attention-demanding secondary tasks, such as serial-3



Assessing walking adaptability in stroke patients

subtractions [11] or an auditory Stroop task [4,10], can be added to assess dual-
task walking,

The aim of this study is to evaluate the potential of the IWW as a new
technology for assessing walking adaptability in stroke patients. To this end, we
will 1) evaluate the known-groups validity of IWW outcome measures by
comparing them between stroke patients and healthy controls, 2) relate these
outcome measures to clinical test scores and spatiotemporal gait parameters of
unconstrained walking, and 3) examine to what extent the various walking-

adaptability tasks address different aspects of walking adaptability.

Figure 5.1 The set-up of the Interactive Walkway with various walking adaptability tasks (insets).

Methods
Subjects

In total, 30 stroke patients and 30 age- and sex-matched healthy controls
(mean#std: 62.5 £ 10.1 vs. 62.9 = 10.3 years, respectively; 18 males and 12
females) were included in this study. Stroke patients were recruited from the

outpatient clinic of the Leiden University Medical Center and from a list of

123



patients who were discharged from the Rijnlands Rehabilitation Center.
Controls were recruited via advertisement. Subjects had to be 18 years or older
and should have command of the Dutch language. Stroke patients had to
experience residual motor dysfunction (Fugl-Meyer Assessment lower
extremity score < 34), but had to be able to stand unsupported for more than
20 seconds and walk independently. Stroke patients were permitted to use
walking aids, including quad canes (n = 3), canes (n = 4), ankle foot orthoses (n
= 11) and functional electrical stimulation (n = 1). Controls had to have
unimpaired gait, normal cognitive function (Montreal Cognitive Assessment
score = 23; [14]) and normal or corrected to normal vision. Exclusion criteria
were (additional) neurological diseases and/or other problems interfering with
gait function. Stroke patients were excluded if they were less than 12 weeks
post-stroke. Stroke patients were 7.9 + 7.3 years post-stroke, had a Fugl-Meyer
Assessment lower extremity score of 19.7 + 7.4 (possible range 0-34; higher
scores indicate better motor function) and a Montreal Cognitive Assessment
score of 24.4 + 4.1 (possible range 0-30; higher scores indicate better cognitive
abilities), which was not assessed in four stroke patients due to (severe)
aphasia. Healthy controls had a significantly higher Montreal Cognitive
Assessment score of 27.7 + 1.4 (p < 0.001). Data was collected within the
Technology in Motion project (protocol registered as NL54281.058.15;
www.toetsingonline.nl). All subjects gave written informed consent, and the

study was approved by the local medical ethics committee (P15.232).

Experimental set-up and procedure

Clinical gait and balance tests were administered. Two gait tests were included
to assess mobility: the Timed-Up-and-Go test [15,16] and the 10-meter walking
test at comfortable and maximum walking speed [15,17]. Longer completion
times indicate worse mobility. The Tinetti Balance Assessment [18,19] has two
sections that evaluate gait and balance performance, of which the combined

score was used in this study (possible range 0-28; higher scores indicate better



performance). Two balance tests were administered (with higher scores
indicating a better balance): the 7-item Berg Balance Scale [20], to measure
static and dynamic balance during specific movement tasks (possible range 0-
14), and the Functional Reach Test [21,22], to determine the maximal distance
one can reach forward from a standing position.

Unconstrained walking and walking adaptability were assessed on the
IWW using four spatially and temporally integrated Kinect v2 sensors to obtain
full-body kinematics. The IWW set-up was based on a validated IWW set-up
used in Geerse et al. [12,13], with improved inter-sensor distances following
recommendations of Geerse et al. [23] (Figure 5.1). The sensors were
positioned at a height of 0.95 m alongside a walkway of 8 by 0.75 m. The first
three sensors were placed frontoparallel (i.e, with an angle of 70 degrees
relative to the walkway direction) with a distance of 1.2 m from the left border
of the walkway. The last sensor was positioned frontally at the end of the
walkway, since this will minimize orientation-based biases [24]. The first
sensor was positioned at 3 m from the start of the walkway and the other
sensors were placed at inter-sensor distances of 2.1 m. The IWW was equipped
with a projector (EPSON EB-585W, ultra-short-throw 3LCD projector) to
augment the entire 8-meter walkway with visual context for the walking-
adaptability tasks. The coordinate systems of the sensors and projector were
spatially aligned to a common coordinate system using a spatial calibration
grid. IWW data were sampled at 30 Hz using custom-written software utilizing
the Kinect-for-Windows Software Development Kit (SDK 2.0).

Subjects performed unconstrained walking and various walking-
adaptability tasks on the IWW (Figure 5.2; see Table 5.1 for more details and
Supplement 5.1 for a video of the tasks). Unconstrained walking was assessed
with an 8-meter walking test. Walking adaptability was broadly assessed with
the following tasks: obstacle avoidance, sudden stops-and-starts, goal-directed
stepping (with symmetric and irregular stepping stones), narrow walkway,

speed adjustments (speeding up and slowing down), slalom, turning (half and



full turns in both directions) and dual-task walking (plain and augmented).
Dual-task walking was assessed by adding an auditory Stroop task [25] in
which the words high and low (in Dutch) were pronounced at a high or low
pitch (i.e, congruent and incongruent stimuli) to both the plain 8-meter
walking test and the augmented obstacle-avoidance task, respectively. The
subject had to respond with the pitch of the spoken word. The IWW assessment
comprises a total of 35 trials (Table 5.1). All tasks were performed at a self-
selected walking speed.

Half of the subjects started with the block of clinical tests, the other half
with the IWW assessment. With regard to the latter, subjects always started
with the 8-meter walking test, which enabled us to adjust the settings of the
walking-adaptability tasks to one’s own gait characteristics in an attempt to
obtain a similar level of difficulty for each subject (see Table 5.1). For example,
available response times for suddenly appearing obstacles were controlled by
self-selected walking speed during the 8-meter walking test and available
response distance (ARD in Figure 5.2). Subsequently, the 8-meter walking test
was performed with the dual task (i.e., plain dual-task walking), preceded by a
familiarization trial in which the auditory Stroop task was practiced while
sitting. The remaining IWW tasks were randomized in blocks (Table 5.1), with

rest breaks in between to prevent fatigue.

Data pre-processing and analysis

Data pre-processing followed Geerse et al. [12,13], as detailed in Supplement
5.2.In total, 91 trials (4.2% of all trials) were excluded since some subjects (i.e.,
five stroke patients) were not able to perform the tasks or the trials were not
recorded properly (i.e., incorrect recording or not all Kinect sensors were able
to track the subject). The outcome measures of the IWW tasks were calculated
from specific body points’ time series, estimates of foot contact and foot off and
step locations, as detailed in Table 5.1 and Supplement 5.2. The average over

trials per task per subject was calculated for all outcome measures.
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varied over subjects depending on their own gait characteristics.
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Statistical analysis
The known-groups validity of clinical test scores, spatiotemporal gait
parameters and IWW walking-adaptability outcome measures was evaluated

by comparing them between stroke patients and healthy controls using

independent-samples t-tests. We computed r (r = \/m) to quantify
the effect sizes, where values between 0.100-0.299 were regarded as small,
between 0.300-0.499 as medium and above 0.500 as large effect sizes [26].
Pearson’s correlation coefficients were determined only for stroke
patients and calculated between and within the various types of walking-ability
assessments (i.e., clinical tests, unconstrained walking and IWW walking
adaptability). Absolute correlations between 0-0.499, 0.500-0.699, 0.700-0.899
and 0.900-1.000 were regarded as low, moderate, high and very high,
respectively [27]. SPSS version 24 (IBM© SPSS®, Armonk, New York, United
States) was used to perform the statistical analyses. Alpha was set at 0.05. No
adjustment for multiple comparisons was made due to the exploratory nature

of this study.

Results

Known-groups validity

Stroke patients performed significantly worse on all clinical tests compared to
healthy controls (p < 0.001; Table 5.2). This was also seen for the
spatiotemporal gait parameters: all outcome measures showed values
associated with lower walking speeds, wider step widths and less symmetric
steps for stroke patients (p < 0.001; Table 5.2). Furthermore, stroke patients
performed significantly worse than healthy controls on all IWW walking-
adaptability outcome measures, except stepping accuracy on irregular stepping
stones, normalized walking speed of speeding up trials, turning time of half
turns and normalized success rate during augmented dual-task walking (Table

5.2).



Relations between the three types of walking-ability assessments

First, correlation coefficients were determined between clinical tests scores
and spatiotemporal gait parameters (second block in top row in Figure 5.3). Of
the 54 possible correlations, 45 (83.3%) were significant, out of which 28
(51.9%) were high, 13 (24.1%) were moderate and 4 (7.4%) were low. Next,
correlation coefficients were determined between clinical test scores and [WW
walking-adaptability outcome measures (third block in top row in Figure 5.3).
Of the 156 possible correlations, 56 (35.9%) were significant, out of which 2
(1.3%) were very high, 4 (2.6%) were high, 31 (19.9%) were moderate and 19
(12.2%) were low. Lastly, correlation coefficients were determined between
spatiotemporal gait parameters and [IWW walking-adaptability outcome
measures (third block of center row in Figure 5.3). Of the 234 possible
correlations, 70 (29.9%) were significant, out of which 15 (6.4%) were high, 32

(13.7%) were moderate and 23 (9.8%) were low.

Relations within each type of walking-ability assessments

Considerable redundancy was found for the clinical tests in stroke patients (top
left block in Figure 5.3). All 15 possible correlations were significant (100.0%),
out of which 3 (20.0%) were very high, 6 (40.0%) were high, 2 (13.3%) were
moderate and 4 (26.7%) were low. The spatiotemporal gait parameters were
also highly correlated (second block along the diagonal in Figure 5.3). Of the 36
possible correlations, 34 (94.4%) were significant, out of which 7 (19.4%) were
very high, 8 (22.2%) were high, 10 (27.8%) were moderate and 9 (25.0%) were
low. For IWW walking-adaptability outcome measures, a lower percentage of
significant correlations was found (bottom right block in Figure 5.3). Of the 325
possible correlations, only 57 (17.5%) were significant, out of which 1 (0.3%)
was very high, 6 (1.8%) were high, 19 (5.8%) were moderate and 31 (9.5%)

were low.
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Discussion

A stroke may result in impaired walking adaptability and affect the ability to
negotiate environmental challenges, thus potentially contributing to the high
fall risk seen in this population [9]. Assessments of walking adaptability may
guide gait rehabilitation programs or contribute to the design of future targeted
and individualized interventions directed at improving safe community
ambulation after stroke. However, currently available assessments of walking
ability after stroke hardly take walking adaptability into account [2]. We
therefore evaluated the potential of the IWW as a new technology for a quick,
unobtrusive and comprehensive quantitative assessment of walking
adaptability in stroke patients.

As a first step, we evaluated its known-group validity. As expected, for
almost all outcome measures stroke patients performed significantly worse
than healthy controls (Table 5.2). Group differences for spatiotemporal gait
parameters measured with the IWW were as expected [28-30] and in line with
the results of an earlier study showing that the Kinect v2 sensor can measure
spatiotemporal gait parameters with considerable accuracy in stroke patients
[31]. Also in accordance with the findings of previous studies, IWW outcome
measures of the various walking-adaptability tasks revealed that stroke
patients have problems avoiding obstacles [3,5,6], making sudden step
adjustments [32,33], making full turns [34] and combining walking with
secondary tasks [10,30]. Besides, normalized walking speeds were significantly
lower for stroke patients, indicating that they adjusted their walking speed
more than controls when walking in complex environments. These results
emphasize the importance of assessing walking adaptability in an overground
setting, which allows stroke patients to lower their walking speed depending
on their ability to meet environmental demands [11]. In the current study, only
stepping accuracy of the irregular stepping stones, normalized walking speed of
speeding up trials, turning time of half turns and normalized success rate of

augmented dual-task walking did not exhibit significant group differences.



Nonetheless, medium and large effect sizes were found for all other IWW
outcome measures with differences occurring in the expected direction.
Therefore, the results of this study suggest good known-groups validity for
IWW walking-adaptability tasks, similar to that of clinical tests and
spatiotemporal gait parameters.

Previous studies have indicated that there is a need for a more
comprehensive clinical evaluation of walking ability, addressing all of its three
key aspects (i.e., abilities to generate repetitive stepping, maintain balance
while walking and adapt walking to environmental demands; [1,2]). Interesting
in that regard is our observation of high to very high correlations between
clinical tests and spatiotemporal gait parameters, which both mainly seem to
address stepping and balance aspects of walking ability. IWW walking-
adaptability tasks appeared to complement these tests, as evidenced by the
relatively few significant correlations between walking-adaptability outcome
measures and those pertaining to clinical tests and unconstrained walking
(Figure 5.3). Moreover, the significant correlations were mostly low or
moderate in magnitude, suggesting that the walking-adaptability tasks had
added value by focusing especially on the third walking-ability aspect, that is,
the ability to adjust walking to environmental circumstances [2].

We assessed walking adaptability quite broadly with, as it turned out,
some redundancy in the outcome measures. Hence, not all of the assessed tasks
need to be included for a comprehensive assessment of walking adaptability.
That is, IWW tasks whose outcome measures do not exhibit group differences
or are highly correlated with currently used tests can be excluded because they
add little information. In this study this concerned sudden starts, speed
adjustments, full turns and augmented dual-task walking tasks.

For a comprehensive assessment of walking ability, we recommend to
include unconstrained walking (to identify gait impairments during steady-
state walking) and some complementary IWW walking-adaptability tasks. With

regard to unconstrained walking, assessing it with the IWW provides more



detailed information than clinical test scores. In addition, the outcome
measures may be more sensitive to changes over time as was suggested by
Vernon et al. [35] for outcome measures of the Kinect-instrumented Timed Up-
and-Go test. With regard to complementary IWW walking-adaptability tasks,
various candidate tasks seem capable to address different aspects of walking
adaptability. This was evidenced by the few significant correlations among
outcomes of the various walking-adaptability tasks (bottom right block in
Figure 5.3), in contrast to outcomes pertaining to clinical tests and
unconstrained walking, which were highly interrelated and hence somewhat
redundant with one another. Performing multiple clinical tests is therefore not
only time-consuming, but also does not provide more insight into a patient’s
walking ability, in contrast to the addition of some complementary and
discriminative IWW walking-adaptability tasks, such as obstacle avoidance,
goal-directed stepping, narrow walkway and plain dual-task walking.

One of the limitations of this study was that clinical tests,
unconstrained walking and walking adaptability were only assessed in a single
session. Future studies should examine their test-retest reliability to estimate
minimal detectable change scores that are essential for monitoring progress in
gait rehabilitation. We further noticed that the available response times were
significantly lower for stroke patients on some walking-adaptability tasks,
which were caused by a higher self-selected walking speed in those tasks than
in the preceding unconstrained walking task. This could have negatively
influenced the outcome measures on these tasks and as such have amplified
group differences. In future studies the available response times should
therefore be based on a real-time indication of walking speed, which is quite
feasible with the IWW. Another limitation could be that the IWW currently only
uses 2D projections to evoke step responses, which do not actually pose a
physical risk for the patient. This was clearly demonstrated in the study of
Timmermans et al. [36]. Cognitive-motor interference did not differ between

walking over physical or projected obstacles in stroke patients, although motor



performance was prioritized more when walking over physical obstacles.
Nevertheless, walking-adaptability tasks with 2D projections appeared
effective, since outcome measures did demonstrate differences between groups

with overall medium to large effect sizes.

Conclusions

The benefit of a broad assessment of walking adaptability is that it may reveal
the specific aspects of walking adaptability that are most severely impaired,
which could then be targeted in individualized training programs [37]. Van
Swigchem et al. [5] found that even in mildly affected stroke patients walking
adaptability may be reduced, possibly increasing their risk of falling. Training of
walking adaptability, overground or on a treadmill, has shown to be effective in
improving walking ability in stroke patients [4,9,38,39] and in reducing risk of
falling [9]. The IWW assessment may thus contribute to a more optimized and
individualized gait training program to improve safe community ambulation
and reduce the risk of walking-related falls by adjusting the training content

and difficulty level to the specific needs and competences of the patient.
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Supplement 5.1
Video of Interactive Walkway tasks of unconstrained walking and walking
adaptability in a patient with stroke. This video is available at

https://youtu.be/nV9tGvlPogs.



Supplement 5.2
Data pre-processing
The Kinect for Windows Software Development Kit (SDK 2.0,
www.microsoft.com) provides 3D time series of 25 body points using inbuilt
and externally validated human-pose estimation algorithms [1-5]. These body
points are: head, neck, spine shoulder, spine mid, spine base and left and right
shoulder, elbow, wrist, hand, thumb, hand tip, hip, knee, ankle and foot. For
offline data analysis, the 3D positional data for these body points were first pre-
processed per Kinect sensor separately. Body points labelled as inferred (i.e.,
Kinect’s human-pose estimation software infers positions when segments are
partially occluded for example) were treated as missing values. The body
point’s time series were linearly interpolated using Kinect’s time stamps to
ensure a constant sampling frequency of 30 Hz, without filling in the parts with
missing values. We removed data points from the time series when they did not
meet our stringent requirements for valid human-pose estimation (e.g., a
minimum of 15 out of the 25 possible body points should be labeled as tracked,
including the head and at least one foot and ankle, without outliers in segment
lengths). In addition, a manual check of the data was added to remove errors of
the algorithm due to depth occlusion of the right leg by the left leg.
Subsequently, data of the four Kinect sensors were combined by taking for each
sample the 3D positions of the body points of a validly estimated human pose.
If, for a given sample, more than one sensor contained valid human pose data,
the associated body point’s 3D positions were averaged for that specific sample.
Body point’s time series with more than 50% of missing values were
excluded from further analyses. However, percentages of missing data for both
groups did not exceed 23.1% with an average of 4.7 + 2.2% for the body points’
time series of interest (i.e., ankles, spine base and spine shoulder). The missing
values were interpolated with a spline algorithm. The so-obtained time series
were used for the calculation of the Interactive Walkway outcome measures of

unconstrained walking and walking adaptability.



The outcome measures of the Interactive Walkway assessment were
calculated from specific body points’ time series, estimates of foot contact and
foot off and step locations, as detailed in Table 5.1. Estimates of foot contact and
foot off were defined as the maxima and minima of the anterior-posterior time
series of the ankles relative to that of the spine base [3,6,7]. Step locations were
determined as the median anterior-posterior and mediolateral position of the
ankle joint during the single-support phase (i.e., between foot off and foot
contact of the contralateral foot; [3,6]). Shoe edges and center of the foot were
also needed to calculate several outcome measures. Ankle-to-shoe calibration
trials, in which the subject was standing in two shoe-size-matched targets at a
position on the walkway in front of the last Kinect, were included to determine

the average distance between shoe edges and the ankle.
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Introduction. In patients with Parkinson’s disease (PD) many aspects of walking
ability deteriorate with advancing disease. Clinical tests typically evaluate single
aspects of walking and to a lesser extent assess more complex walking tasks
involving a combination of the three key aspects of walking ability (ie.,
generating stepping, maintaining postural equilibrium, adapting walking). The
Interactive Walkway allows for assessing more complex walking tasks to address
features that are relevant for daily life walking of patients, including adaptive
walking and dual-task walking. Methods. To evaluate the expected added value of
Interactive Walkway assessments in PD patients, we first evaluated its known-
groups validity for outcome measures of unconstrained walking, adaptive
walking and dual-task walking. Subsequently, these outcome measures were
related to commonly used clinical test scores. Finally, we evaluated the expected
added value of these outcomes over clinical tests scores in discriminating PD
patients with and without freezing of gait. Results. Interactive Walkway outcome
measures showed significant differences between freezers, non-freezers and
healthy controls, in expected directions. Most Interactive Walkway outcome
measures were not or at best moderately correlated with clinical test scores.
Finally, Interactive Walkway outcome measures of adaptive walking slightly
better discriminated freezers from non-freezers than clinical tests scores.
Conclusion. We confirmed the added value of Interactive Walkway assessments,
which provides a comprehensive evaluation of walking ability incorporating
features of its three key aspects. Future studies are warranted to examine the
potential of the Interactive Walkway for the assessment of fall risk and informing
on tailored falls prevention programs in PD patients and in other populations

with impaired walking ability.



Introduction

Walking ability is a multifaceted construct which includes the ability to
generate stepping, to maintain postural equilibrium, and to adjust walking to
meet behavioral goals and environmental demands [1]. In Parkinson’s disease
(PD) these walking ability aspects all deteriorate to some extent with advancing
disease. This is evidenced by an inability to generate effective stepping (e.g.,
freezing of gait [FOG]), a reduced ability to adapt walking to environmental
circumstances, and a limited ability to combine walking with secondary tasks
[2-5]. Such impairments in walking ability may contribute to an increased fall
risk. This is clearly demonstrated in PD, where most falls are due to FOG,
impaired adaptive walking resulting in trips, and limitations in dual-task
walking [6,7]. Clinical tests to evaluate gait and balance disturbances in PD
typically evaluate single aspects of walking ability (i.e., the ability to generate
stepping or to maintain postural equilibrium) and to a lesser extent assess
more complex walking tasks (i.e., adaptive walking and dual-task walking)
involving a combination of the three key aspects of walking (stepping,
equilibrium and adaptation). The Interactive Walkway (IWW; Figure 6.1)
allows for assessing more complex walking tasks to address features that are
relevant for daily life walking of patients, which could guide the management of
clinical care.

This study aimed to evaluate the expected added value of IWW
assessments in PD patients, which includes an assessment of more complex
walking tasks. The IWW utilizes multiple external sensors for a validated quick
markerless 3D full-body motion registration of unconstrained walking [8].
Moreover, the IWW can be used to assess adaptive walking by augmenting the
walkway with visual context, such as suddenly appearing obstacles [9], whose
location and timing can be controlled based on real-time processed full-body
kinematics. Finally, the IWW may be used to assess the ability to combine
walking tasks with a secondary task by quantifying dual-task costs of walking

and adaptive walking [10]. In this study, we first examined the known-groups



validity of IWW outcome measures of unconstrained walking, adaptive walking
and dual-task walking to detect differences between PD patients with FOG, PD
patients without FOG and healthy controls. Secondly, we compared IWW
outcome measures to commonly used clinical tests of gait and balance
impairment to identify redundancy and complementarity between tests.
Thirdly, we examined the expected added value of the IWW over clinical tests

in discriminating PD patients with and without FOG.

Figure 6.1 Set-up of the Interactive Walkway with visual context projected on the walkway.

Methods

Subjects

Walking ability was assessed in 30 PD patients and 30 age- and sex-matched
healthy controls (Table 6.1). PD patients and controls were recruited from the
outpatient clinic of the Leiden University Medical Center and via advertisement,
respectively. PD patients had to meet the UK Parkinson’s Disease Society Brain
Bank clinical diagnostic criteria [11] and have a Hoehn and Yahr stage of 1-4
[12]. In addition, subjects had to be 18 years or older, have command of the

Dutch language, be able to stand unsupported for more than 20 seconds and



walk independently. PD patients were evaluated using the Movement Disorder
Society version of the Unified Parkinson’s Disease Rating Scale motor score
[13]. The New Freezing of Gait Questionnaire [14] was used to classify PD
patients with and without FOG (i.e., based on a score greater than or equal to
zero, respectively), leading to the classification of 14 freezers and 16 non-
freezers. The Scales for Outcomes in Parkinson’s disease - Cognition [15] was
administered to assess cognitive abilities, since this scale is sensitive to PD-
specific cognitive deficits. PD patients were measured in the ON state. Controls
did not suffer from neurological or orthopedic diseases interfering with gait,
had normal cognitive function (Montreal Cognitive Assessment score = 23;
[16]) and (corrected to) normal vision. All subjects gave written informed
consent, and the study was approved by the local medical ethics committee
(P15.232).

Experimental set-up and procedure

We used clinical tests of gait and balance impairment that have previously been
suggested or recommended for use in PD patients [17]. Two tests assessed
mobility: the Timed-Up-and-Go test and the 10-meter walking test at
comfortable and maximum walking speed. Longer completion times indicate
poorer mobility. The Tinetti Balance Assessment has two sections that evaluate
gait and balance performance of which the combined score was used in this
study (higher scores indicate a better performance). Two other balance tests
were administered: the 7-item Berg Balance Scale, to measure static and
dynamic balance, and the Functional Reach Test, to determine the maximal
reaching distance (higher scores indicating a better balance). The order of these

clinical tests was randomized.
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The IWW was used to assess unconstrained walking, adaptive walking

and dual-task walking (cf. Figure 6.2; see Supplement 6.1 and Table 6.2 for

more details). Full-body kinematics was obtained using four spatially and

temporally integrated Kinect v2 sensors, which allows for a quick markerless



assessment of walking. The sensor set-up was based on a validated IWW set-up
[8,9], with improved inter-sensor distances following recommendations of
Geerse et al. [18] (Figure 6.1). The sensors were positioned at a height of 0.95
m alongside a walkway of 8 by 0.75 m. The first three sensors were placed
frontoparallel (i.e., with an angle of 70° relative to the walkway direction) with
a distance of 1.2 m from the left border of the walkway. The last sensor was
positioned frontally at the end of the walkway, since this will minimize
orientation-based biases. The first sensor was positioned at 3 m from the start
and the other sensors were placed at inter-sensor distances of 2.1 m (Figure
6.1). The IWW was equipped with a projector (EPSON EB-585W, ultra-short-
throw 3LCD projector) to augment the entire walkway with visual context. The
coordinate systems of the sensors and the projector were spatially aligned
using a spatial calibration grid. IWW data were sampled at 30 Hz using custom-
written software utilizing the Kinect-for-Windows Software Development Kit
(SDK 2.0). Unconstrained walking was assessed with an 8-meter walking test.
Adaptive walking was assessed with obstacle avoidance, sudden stops-and-
starts, goal-directed stepping (symmetric and irregular stepping stones),
narrow walkway (entire walkway and sudden narrowing), speed adjustments
(speeding up and slowing down), slalom and turning (half and full turns). Dual-
task walking was assessed in plain and augmented walking environments by
adding an auditory Stroop task in which the words high and low were
pronounced at a high or low pitch (i.e., congruent and incongruent stimuli) to
the 8-meter walking test and obstacle-avoidance task, respectively. Subjects
had to respond with the pitch of the spoken word. The IWW assessment
contained 36 trials (Table 6.2). Subjects were instructed to complete each trial
at a self-selected walking speed, while also responding to the Stroop stimuli in
case of dual-task walking. Figure 6.2 presents a schematic representation of the

IWW assessment.
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Figure 6.2 Schematic representation of the Interactive Walkway assessment, including
unconstrained walking, adaptive walking and dual-task walking. The available response distance
(ARD) of the suddenly appearing obstacles and cues was patient-tailored to yield a similar response

time.



Half of the subjects started with the block of clinical tests, the other half
with the IWW assessment. With regard to the latter, subjects always started
with the 8-meter walking test, allowing us to adjust the settings of the adaptive
walking tasks to one’s own gait characteristics in an attempt to obtain a similar
level of difficulty for each subject (see Table 6.2). For example, available
response times for suddenly appearing obstacles were controlled by self-
selected walking speed during the 8-meter walking test and available response
distance (ARD in Figure 6.2). Subsequently, plain dual-task walking was
performed, preceded by a familiarization trial in which the dual task was
practiced while sitting. The remaining IWW tasks were randomized in blocks

(Table 6.2).

Data pre-processing and analysis

Data pre-processing followed Geerse et al. [8,9], as detailed in Supplement 6.2.
In total, 12 trials (1.1% of all trials) were excluded since subjects were not able
to perform the tasks or trials were not recorded properly (i.e., incorrect
recording or not all sensors were able to track the subject). These trials only
concerned PD patients. The IWW outcome measures of unconstrained walking,
adaptive walking and dual-task walking were calculated from specific body
points’ time series, estimates of foot contact and foot off, and step locations, as
detailed in Table 6.2 and Supplement 6.2. The average over trials per IWW task

per subject was calculated for all outcome measures (Table 6.2).

Statistical analysis

IBM SPSS Statistics for Windows, version 24 (IBM Corp., Armonk, N.Y., USA)
was used to perform the statistical analyses. With regard to the known-groups
validity we examined the effect of group (i.e., freezer, non-freezer or control) on
clinical test scores and IWW outcome measures of unconstrained walking,
adaptive walking and dual-task walking using one-way ANOVAs or the Kruskal-

Wallis test if the assumption of normality was violated (i.e., significant Shapiro-



Wilk test). For one-way ANOVAs, the assumption of homogeneity of variance
was checked using the Levene’s test. If significant, the Welch test was used and
main effects were examined using Games-Howell post hoc tests. Otherwise,
main effects were examined with Least Significant Difference post hoc tests. For
the Kruskal-Wallis test, main effects were examined using multiple Mann-
Whitney tests. Effect sizes were quantified with omega squared (w?) for one-
way ANOVAs and eta squared (n?) for Kurskal-Wallis tests. There was no
correction for multiple comparisons due to the explorative character of the
study and given the dependency between the outcome measures.

Pearson’s correlation coefficients were determined between clinical
test scores and IWW outcome measures for PD patients only. Absolute
correlations between 0-0.499, 0.500-0.699, 0.700-0.899 and 0.900-1.000 were
regarded as low, moderate, high and very high correlations, respectively [19].

Stepwise discriminant analyses were conducted to determine the
added value of IWW outcome measures over clinical test scores in
discriminating freezers from non-freezers, using Wilks’ lambda method (entry
= 3.84 and removal = 2.71) in four different models. Predictor variables were
clinical test scores (model 1), IWW gait characteristics of unconstrained
walking (model 2), IWW outcome measures of adaptive walking (model 3) and
IWW outcome measures of dual-task walking (model 4; Table 6.2). Subjects
were only included if they had values for all possible predictor variables. Three
not highly correlated predictor variables with the highest effect sizes for the
comparison between freezers and non-freezers were selected per model. All
models were cross-validated using the leave-one-out method (i.e., each subject
is classified by a discriminant function which is based on all subjects except
itself; [20]). The accuracy (i.e.,, proportion of correctly classified freezers and
non-freezers) of discriminant models and cross-validated discriminant models
was determined. Furthermore, exact McNemar's tests were performed to

establish if one model significantly outperformed the others.
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Results

Known-groups validity

As expected, freezers performed significantly worst, non-freezers performed
in-between, and matched controls performed best on almost all assessments
(i.e., clinical tests, unconstrained walking and adaptive walking; Table 6.3).
There was one exception; freezers had significantly better stepping accuracies
than non-freezers on the goal-directed stepping task with symmetric stepping
stones. No significant group differences were found for IWW outcome

measures of dual-task walking.
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Figure 6.3 Pearson’s correlation coefficients between clinical test scores (x-axis; i.e., Timed-Up-
and-Go test [TUG], 10-meter walking test at comfortable and maximum walking speed [1IOMWT-
CWS, 10MWT-MWS], Tinetti Balance Assessment [TBA], 7-item Berg Balance Scale [BBS] and



Functional Reach Test [FRT]) and Interactive Walkway outcome measures (y-axis; i.e., gait
characteristics of unconstrained walking [UW1-7], outcome measure of adaptive walking [0A1-3,
SSS1-3, GDS1-4, NWW1-3, SA1-4, S1-2, T1-3], and outcome measures of dual-task walking [DT1-4])
in patients with Parkinson’s disease. The order of the outcome measures on the x-axes is in
agreement with Table 6.3. The dotted black lines separate the three types of Interactive Walkway
tasks (i.e., unconstrained walking, adaptive walking and dual-task walking). The colorbar provides

a visualization of the strength and direction of the correlation.

Correlations between outcome measures

Of the 42 possible correlations between clinical test scores and IWW gait
characteristics, 18 (42.9%) were significant, out of which 17 (40.5%) were high
and 1 (2.4%) was moderate (Figure 6.3). Significant correlations were only
found for walking speed, step length and stride length. For IWW outcome
measures of adaptive walking, 88 (61.1%) of the possible 144 correlations
were significant. Nevertheless, only 9 (6.3%) were high, while 45 (31.3%) were
moderate and 34 (23.6%) were low (Figure 6.3). High correlations were mainly
found for turning time of full turns. For IWW outcome measures of dual-task
walking, 11 (45.8%) out of the possible 24 correlations were significant, out of
which 1 (4.2%) was high, 7 (29.2%) were moderate and 3 (12.5%) were low
(Figure 6.3).

Discriminant analyses of freezers and non-freezers

For model 1 (clinical tests), group membership (i.e., freezer or non-freezer) was
predicted using only the 10-meter walking test at comfortable walking speed (p
= 0.025, Wilks’ lambda = 0.791, Canonical correlation = 0.457), the sole
predictor variable contributing significantly to the model. 5 of 10 freezers
(50.0%) and 13 of 14 non-freezers (92.9%) were correctly classified. The
accuracy of model 1 and its cross validation were both 75.0%. For model 2
(IWW gait characteristics), none of the predictor variables contributed
significantly to the model. For model 3 (IWW outcome measures of adaptive
walking), group membership was predicted using stepping accuracy on

symmetric stepping stones of the goal-directed stepping task and turning time



of full turns (p = 0.005, Wilks’ lambda = 0.598, Canonical correlation = 0.634)
such that 7 of 10 freezers (70.0%) and 12 of 14 non-freezers (85.7%) were
correctly classified, with an accuracy of 79.2%. The accuracy of the cross-
validated model was 70.8%. For model 4 (IWW outcome measures of dual-task
walking), none of the predictor variables contributed significantly to the model.
The results of an exact McNemar's test demonstrated that there was no
statistical significant difference in the proportion of freezers and non-freezers

identified with models 1 and 3 (p = 0.688).

Discussion

This study aimed to examine the expected added value of IWW assessments in
PD patients, focusing on known-groups validity, relations with clinical test
scores and discriminating freezers from non-freezers.

On all clinical tests, freezers scored worst, non-freezers scored in-
between and controls scored best (Table 6.3). These known-groups differences
were also found for IWW gait characteristics (Table 6.3); freezers had
significantly lower walking speeds and smaller step and stride lengths than
controls, which is in agreement with findings of others using marker-based
motion registration systems or the Kinect v2 sensor [21,22]. Significant group
differences in expected directions were also observed for IWW outcome
measures of adaptive walking (Table 6.3). As in Caetano et al. [3], both freezers
and non-freezers had more difficulty adapting walking to suddenly appearing
obstacles than controls as reflected by lower obstacle-avoidance success rates.
In line with other studies [23,24], margins of the leading limb were smaller in
freezers and non-freezers, which probably increases their risk of tripping in
real life. Furthermore, group differences were found for the goal-directed
stepping, speed adjustments and full turns tasks. In general, freezers scored
worst, non-freezers in between, and controls best. An interesting exception was
stepping accuracy on symmetric stepping stones, where freezers had

significantly better stepping accuracies than non-freezers. Irregular stepping



stones showed the same trend, although this did not reach significance possibly
due to the larger within-groups variations for this task (Table 6.3). It is well
known that visual cues may lead to considerable improvement in walking of
freezers [25]. This is likely mediated by a better visual exploration of freezers
than non-freezers in terms of gaze fixations to task-relevant information [26],
which is known to result in a better stepping performance [27]. No significant
group differences were found for the sudden stops-and-starts, narrow walkway
and slalom tasks. Reasons for the null effect for the narrow walkway tasks
could be that step width and tandem gait are typically preserved in PD patients
[28], which was corroborated by an absence of between-groups differences in
step width in our study. For the other tasks, the cueing effect of the visual
context may have confounded potential group differences. Hence, one could
consider removing these tasks from adaptive walking assessments in PD
patients. For dual-task walking, also no significant group differences were
found. An explanation could be that task prioritization varied among subjects,
leading to large within-groups variations for the outcome measures of dual-
task walking which reduced the likelihood of finding significant between-
groups differences. Note that other studies have also demonstrated that there
were no differences in dual-task interference for gait characteristics and
cognitive tasks between PD patients and controls [29]. The added value of dual-
task walking in a walking ability assessment in PD is therefore questionable
(see also Gafdner et al. [30] and Smulders et al. [10]). Our study not only
confirmed these results, but also showed that quantifiable differences between
groups are particularly evident for other aspects of adaptive walking (e.g.,
obstacle avoidance and goal-directed stepping).

The group differences found for the IWW tasks of unconstrained
walking, obstacle avoidance, goal-directed stepping, speed adjustments and full
turns imply that these tasks could be used in a comprehensive walking ability
assessment with the IWW, incorporating the three key aspects of walking

ability. Usually, a combination of the three key walking-ability aspects (i.e.,



stepping, equilibrium and adaptation) is needed for a successful task
performance. Indeed, for most IWW tasks a combination was required strongly
tapping into the aspect of walking adaptability, while adaptation was not or
only moderately targeted by commonly-used clinical tests that mainly measure
steady-state gait and static balance as evidenced by the low correlations
(Figure 6.3). While high correlations between tests suggest redundancy in
information content, low or no correlations suggest that tests contain
complementary information. IWW gait characteristics and turning time of full
turns correlated highly with clinical tests, addressing mainly aspects of
stepping and equilibrium. PD patients seem to experience problems when
having to deviate from their normal gait pattern [3], which requires dynamic
balance control. Balance problems in PD patients and especially freezers are
evident in the current study, demonstrated by large effect sizes for balance
tests and full turns. Clinicians mainly focus on gait impairments [31], although
dynamic balance control is also of great importance during challenging walking
tasks. Therefore, in order to obtain a more comprehensive characterization of a
subject’s walking ability, both unconstrained and adaptive walking should be
assessed, for example with obstacle-avoidance and goal-directed stepping.

This study also aimed to determine the expected added value of the
IWW over clinical tests in discriminating freezers from non-freezers. We indeed
found that IWW adaptive walking tasks discriminated better than clinical tests,
although the added value was somewhat limited and the proportion of freezers
and non-freezers identified with model 3 did not differ significantly from model
1. Clinical tests performed slightly worse compared to adaptive walking tasks
with regard to the percentage of freezers correctly classified (50.0% vs. 70.0%,
respectively). The percentage of non-freezers correctly classified was high for
both models (92.9% and 85.7%, respectively). IWW gait characteristics and
IWW outcome measures of dual-task walking did not contribute significantly to
the discriminant analysis. Although we could discriminate freezers from non-

freezers, the freezing phenomenon itself was rarely observed. IWW tasks



elicited FOG episodes in only 12 out of 466 (2.6%) trials, concerning five
freezers and mostly during tasks that included turning (in agreement with
literature; [32]). Explanations for the limited amount of FOG episodes could be
the focused attention due to the specific instructions of the IWW tasks, cueing
effects of visual content and the fact that we assessed PD patients during the ON
state, while the occurrence of FOG episodes increases during the OFF state.

The latter is also a limitation of this study, since medication may
improve gait impairments and could therefore lead to smaller group
differences in walking ability. However, we still found significant between-
groups differences, which may indicate that the IWW is a sensitive evaluation
tool of walking ability. Another limitation is the relatively small sample size of
the discriminant analyses (i.e., 10 freezers and 14 non-freezers). We therefore
needed to pre-select predictor variables for the models to prevent overfitting,
since the smallest group needs to exceed the number of predictor variables.
Finally, the significant difference between freezers and non-freezers in disease
severity (i.e, Hoehn and Yahr stage; Table 6.1) might have influenced the
results of this study by increasing the group differences of walking-ability
outcome measures.

In conclusion, the IWW assessment exhibited expected differences
between freezers, non-freezers and healthy controls, with most IWW outcome
measures reflecting combinations of stepping, equilibrium and adaptation; key
aspects of walking that are addressed separately in most clinical tests. IWW
adaptive walking tasks also contributed to a slightly better discrimination of
freezers from non-freezers. Hence, it seems fair to conclude that the IWW is of
added value in PD patients when assessing walking ability. The IWW tasks of
adaptive walking evaluate more complex gait in comparison with clinical tests,
which fits an assessment of walking ability in the early stages of PD where
ceiling effects can occur. Future studies should examine the responsiveness of
the IWW outcome measures on an individual level and in response to levodopa

treatment (i.e., by examining differences in walking ability between the ON and



OFF state). In addition, since the impairments in walking ability evaluated with
the IWW are linked to walking-related falls, future studies are warranted to
examine the clinical potential of the IWW for assessing fall risk and informing
on tailored falls prevention programs in PD patients or other populations prone
to declines in walking ability (e.g., elderly, stroke). Note that the current study
is helpful in that regard, by informing on the subtasks and associated outcome
measures providing complementary information with a decent between-groups

contrast.
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Supplement 6.1

Video of Interactive Walkway tasks of unconstrained walking, adaptive walking
and dual-task walking in a person with Parkinson’s disease with dyskinesia.
The subject had consented to the making of the video for publication purposes.

This video is available at https://youtu.be/p1a071L9veM.



Supplement 6.2

Data pre-processing

The Kinect for Windows Software Development Kit (SDK 2.0,
www.microsoft.com) provides 3D time series of 25 body points using inbuilt
and externally validated human-pose estimation algorithms [1-5]. These body
points are: head, neck, spine shoulder, spine mid, spine base and left and right
shoulder, elbow, wrist, hand, thumb, hand tip, hip, knee, ankle and foot. For
offline data analysis, the 3D positional data for these body points were first pre-
processed per Kinect sensor separately. Body points labelled as inferred (i.e.,
Kinect’s human-pose estimation software infers positions when segments are
partially occluded for example) were treated as missing values. The body
point’s time series were linearly interpolated using Kinect’s time stamps to
ensure a constant sampling frequency of 30 Hz, without filling in the parts with
missing values. We removed data points from the time series when they did not
meet our stringent requirements for valid human-pose estimation (e.g., a
minimum of 15 out of the 25 possible body points should be labeled as tracked,
including the head and at least one foot and ankle, without outliers in segment
lengths). In addition, a manual check of the data was added to remove errors of
the algorithm due to occlusion of the right leg by the left leg. Subsequently, data
of the four Kinect sensors were combined by taking for each sample the 3D
positions of the body points of a validly estimated human pose. If, for a given
sample, more than one sensor contained valid human pose data, the associated
body point’s 3D positions were averaged for that specific sample.

Body point’s time series with more than 50% of missing values were
excluded from further analyses. However, percentages of missing data for both
groups did not exceed 27.2% with an average of 5.3 + 1.6% for the body points’
time series of interest (i.e., ankles, spine base and spine shoulder). The missing
values were interpolated with a spline algorithm. The so-obtained time series
were used for the calculation of the Interactive Walkway (IWW) outcome

measures of unconstrained walking, adaptive walking and dual-task walking.



The outcome measures of the IWW assessments were calculated from
specific body points’ time series, estimates of foot contact and foot off and step
locations, as detailed in Table 6.2. Estimates of foot contact and foot off were
defined as the maxima and minima of the anterior-posterior time series of the
ankles relative to that of the spine base [3,6,7]. Step locations were determined
as the median anterior-posterior and mediolateral position of the ankle joint
during the single-support phase (i.e.,, between foot off and foot contact of the
contralateral foot; [3,6]). Shoe edges and center of the foot were also needed to
calculate several outcome measures. Ankle-to-shoe calibration trials, in which
the subject was standing in two shoe-size-matched targets at a position on the
walkway in front of the last Kinect, were included to determine the average

distance between shoe edges and the ankle.
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Background. Most falls occur during walking and are due to trips, slips or
misplaced steps, which suggests a reduced walking adaptability. The objective of
this study was to evaluate the potential merit of a walking-adaptability
assessment for identifying prospective fallers and risk factors for future falls in a
cohort of stroke patients, Parkinson’s disease patients, and controls (n = 30 for
each group). Research question. Does an assessment of walking-adaptability
improve the identification of fallers compared to generic fall-risk factors alone?
Methods. This study comprised an evaluation of subject characteristics, clinical
gait and balance tests, a quantitative gait assessment and a walking-adaptability
assessment with the Interactive Walkway. Subjects’ falls were registered
prospectively with falls calendars during a 6-month follow-up period. Generic and
walking-related fall-risk factors were compared between prospective fallers and
non-fallers. Binary logistic regression and Chi-square Automatic Interaction
Detector analyses were performed to identify fallers and predictor variables for
future falls. Results. In addition to fall history, obstacle-avoidance success rate
and normalized walking speed during goal-directed stepping correctly classified
prospective fallers and were predictors of future falls. Compared to the use of
generic fall-risk factors only, the inclusion of walking-related fall-risk factors
improved the identification of prospective fallers. Significance. If cross-validated
in future studies with larger samples, these fall-risk factors may serve as quick
entry tests for falls prevention programs. In addition, the identification of these
walking-related fall-risk factors may help in developing falls prevention

strategies.



Introduction

The incidence of falls increases with age, but is particularly high in patients
with neurological disorders, such as stroke and Parkinson’s disease (PD) [1,2].
Falls can occur as a result of both intrinsic factors (i.e., subject characteristics
and gait impairments) and extrinsic factors (e.g., slippery floor, uneven walking
surface) [3]. For the latter, it is important to be able to adapt walking to the
environment, an aspect of walking that is difficult to assess with clinical tests
[4]. Most falls occur during walking and are due to trips, slips or misplaced
steps [5-7], suggesting a reduced walking adaptability. An evaluation of walking
adaptability could potentially improve the identification of fallers and may help
in developing falls prevention strategies [8]. The Interactive Walkway (IWW;
Figure 7.1) can be used to perform quick and unobtrusive quantitative gait
assessments [9] and to quantify various aspects of walking adaptability [10].
The aim of this study is to evaluate the potential merit of the IWW for
identifying prospective fallers and risk factors for future falls in a composite
cohort with stroke patients, PD patients and controls. First, we will examine
differences in walking ability between fallers and non-fallers. Second, two
methods will be used to identify fallers and risk factors for future falls; one
extensive method and one easily interpretable method fit for use in the clinic.
We expect that walking-adaptability assessments improve the classification of
prospective fallers compared to generic fall-risk factors alone (i.e., subject
characteristics, clinical gait and balance tests, quantitative gait assessments)

and that a poor walking adaptability is a risk factor for future falls.

Methods

Subjects

30 stroke patients, 30 PD patients and 30 controls participated in this study
(Table 7.1). Groups were age- and sex-matched. Patients were recruited from
the outpatient clinics of neurology and rehabilitation medicine of the Leiden

University Medical Center and from a list of patients who were discharged from



Walking adaptability for targeted fall-risk assessments

the Rijnlands Rehabilitation Center. Controls were recruited via advertisement.
Subjects were 18 years or older and had command of the Dutch language.
Patients had to be able to stand unsupported for more than 20 seconds and
walk independently. Stroke patients had to be more than 12 weeks post stroke.
PD patients had to fulfill clinical diagnostic criteria according to the UK
Parkinson’s Disease Society Brain Bank [11] and could have a Hoehn and Yahr
stage of 1-4 [12]. PD patients were measured in the ON state. Controls had to
have unimpaired gait, normal cognitive function (Montreal Cognitive
Assessment score = 23; [13]) and normal or corrected to normal vision.
Exclusion criteria were (additional) neurological diseases and/or problems
interfering with gait function. All subjects gave written informed consent, and

the study was approved by the local medical ethics committee (P15.232).

Figure 7.1 The Interactive Walkway for an assessment of walking adaptability, which may unveil

potential fall-risk factors.
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Table 7.1 Group characteristics of stroke patients, Parkinson’s disease patients and controls.

Stroke Parkinson’s  Control

disease
Age (years) mean % SD 62.5+10.1 63.1+10.0 629+10.3
Sex male/female 18/12 18/12 18/12
MOCA [0-30]* mean * SD 22.5+6.3 - 27.7+14
FMA lower extremity [0-34]* mean % SD 19.7+7.4 - -
Bamford classification PACS/TACS/ 16/2/2/8/1 - -
POCS/LACS/unk

SCOPA-COG [0-43]* mean * SD - 30471 -
MDS-UPDRS motor score [0-132]** mean % SD - 369 +18.0 -
Hoehn and Yahr stage [1-5]** mean % SD - 2307 -

Abbreviations: MOCA = Montreal Cognitive Assessment; FMA = Fugl-Meyer Assessment; PACS =
partial anterior circulation stroke; TACS = total anterior circulation stroke; POCS = posterior
circulation syndrome; LACS = lacunar syndrome; unk = unknown; SCOPA-COG = Scales for
Outcomes in Parkinson’s Disease - Cognition; MDS-UPDRS = Movement Disorder Society version of
the Unified Rating Scale for Parkinson’s disease.

* Higher scores represent better outcomes.

** Higher scores represent worse outcomes.

Experimental set-up and procedure

Before performing the experimental tasks, the Montreal Cognitive Assessment
[14] and Scales for Outcomes in Parkinson’s Disease - Cognition [15] were
administered to assess cognitive abilities. In stroke patients, sensorimotor
impairment was assessed using the Fugl-Meyer Assessment - lower extremity
[16]. Higher scores on these clinical tests reflect better outcomes (Table 7.1). In
PD patients, the Movement Disorder Society version of the Unified Rating Scale
for Parkinson’s disease [17] and Hoehn and Yahr stage [12] were administered
to assess disease severity, with higher scores reflecting worse outcomes (Table
7.1). All subjects completed the Falls Efficacy Scale - International [18] to assess
fear of falling, the Modified Survey of Activities of Fear of Falling in the Elderly
Scale [19] to assess activity avoidance due to fear of falling (higher scores
indicate more fear of falling) and were asked about their fall history in the year

prior to the experiment.



Commonly-used clinical gait and balance tests included the Timed-Up-
and-Go test and the 10-meter walking test at comfortable and maximum
walking speed to assess mobility (longer completion times indicate worse
mobility), the Tinetti Balance Assessment for an evaluation of gait and balance
performance of which the combined score of the two sections was used in this
study (higher scores indicate better performance), the 7-item Berg Balance
Scale to measure static and dynamic balance during specific movement tasks
(lower outcome indicates worse balance) and the Functional Reach Test to
determine the maximal distance one can reach forward from a standing
position (smaller distance indicates worse balance). The order of these
commonly-used clinical tests was randomized.

The validated IWW [9,10,20] was used for quantitative gait and
walking-adaptability assessments. The IWW set-up, using multiple Kinect
sensors for markerless 3D motion registration, is described in detail in
Supplement 7.1. The quantitative gait assessment was performed using an 8-
meter walking test. In addition, subjects performed various walking-
adaptability tasks under varying levels of difficulty: obstacle avoidance, sudden
stops-and-starts, goal-directed stepping (symmetric and irregular stepping
stones), narrow walkway (entire walkway and sudden narrowing), speed
adjustments (speeding up and slowing down), slalom, turning (half and full
turns) and dual-task walking (plain and augmented), yielding a total of 36 trials
(Figure 7.2; see Supplement 7.1 for more details and Supplement 7.2 for a
video). Dual-task walking was assessed using an auditory Stroop task in which
the words high and low were pronounced at a high or low pitch (i.e., congruent
and incongruent stimuli) simultaneously with the 8-meter walking test (plain
dual-task walking) and obstacle-avoidance task (augmented dual-task walking),
respectively. Subjects had to respond with the pitch of the spoken word, which
was different from the spoken word in case of an incongruent stimulus. Stimuli

were presented with a fixed interval of 2 s. Subjects were instructed to



complete each trial at a self-selected walking speed, while also responding to
the Stroop stimuli in case of dual-task walking.

Half of the subjects in each group started with the clinical tests, the
other half with the IWW assessment. With regard to the latter, subjects always
started with the 8-meter walking test, which enabled us to adjust the settings of
the walking-adaptability tasks to one’s own gait characteristics in an attempt to
obtain a similar level of difficulty for each subject (see Supplement 7.1). For
example, available response times for suddenly appearing obstacles were
controlled by self-selected walking speed during the 8-meter walking test and
available response distance (ARD in Figure 7.2). Subsequently, the 8-meter
walking test was performed with the dual task (i.e., plain dual-task walking),
preceded by a familiarization trial in which the auditory Stroop task was
practiced while sitting. The remaining IWW tasks (as specified in Table 7.2)
were randomized in blocks.

After the experiment, subjects were asked to register falls during a 6-
month follow-up period using a falls calendar. Subjects had to report every day
whether they had fallen. A fall was defined as an unexpected event in which the
subject comes to rest on the ground, floor, or lower level [21]. Subjects were
asked to send back their falls calendar every month and were contacted on a

monthly basis to ask about the falls that occurred.

Data pre-processing and analysis

Data pre-processing followed Geerse et al. [9,10], as reproduced in more detail
in Supplement 7.1. 111 trials (3.4% of all trials) were excluded since subjects
did not perform the tasks or trials were not recorded properly (i.e., incorrect
recording or inability of sensors of the IWW to track the subject). These
excluded trials only concerned stroke and PD patients. IWW outcome measures
were calculated from specific body points’ time series, estimates of foot contact
and foot off and step locations, as detailed in Table 7.2 and Supplement 7.1.

Outcome measures of dual-task performance were success rate, response time



and a composite score that represents the trade-off between these two
outcome measures (Table 7.3; [22-24]). The average over trials per IWW task
per subject was calculated for all outcome measures.

Falls calendars were used to classify subjects as prospective faller (i.e.,
those reporting at least one fall during the follow-up period) or non-faller. In
the literature, fallers are classified using both retrospective and prospective
falls. Therefore, non-fallers were defined as subjects that did not report a fall in
the follow-up period or in the year prior to the experiment. Only walking- or
balance-related falls were taken into account. A total of 88 subjects completed
the entire 6-month follow-up period. One PD patient stopped prematurely with
the falls calendar as it took too much time, but was not excluded from the
analyses since this patient was already identified as a prospective faller based
on the received falls calendars. One stroke patient who did not fill in a single
falls calendar was excluded. In total, 33 (37.1%; 37.9% of stroke patients,
50.0% of PD patients and 23.3% of controls) subjects reported at least one fall
in the follow-up period (i.e., prospective fallers), of which 24 (72.7% of
prospective fallers; 27.0% of total) also had a history of falling. In the sample of
56 (62.9%) subjects without a prospective fall, 47 (83.9%; 52.8% of total) were
actual non-fallers according to our definition; consequently, 9 (16.1%; 10.1% of
total) subjects were excluded since they had a history of falling without

prospective falls.

Statistical analysis

Outcome measures of prospective fallers (n = 33) and non-fallers (n = 47) were
compared using chi-squared tests for categorical data and independent-
samples t-tests for continuous variables to examine differences in walking
ability. We computed r to quantify the effect sizes of continuous variables [25],
where values between 0.10-0.29 were regarded as small, between 0.30-0.49 as

medium and above 0.50 as large effect sizes [25].



Binary logistic regression analyses (forward method, Wald test) were
performed on four models (Table 7.3) to identify prospective fallers and
predictor variables for future falls. Model 1 included only subject
characteristics (e.g., age, fall history, group) as potential predictor variables. For
model 2, clinical test scores were added to subject characteristics. Model 3
consisted of subject characteristics, clinical test scores and spatiotemporal gait
parameters. For model 4, also IWW walking-adaptability outcome measures
were added. We calculated the sensitivity (i.e., percentage correctly classified
prospective fallers), specificity (i.e., percentage correctly classified non-fallers)
and overall accuracy (i.e., percentage of correctly classified prospective fallers
and non-fallers) for each prediction model. We also inspected the sign and size
of the coefficients (i.e., describing the relationship between predictor variable
and outcome) to determine the direction of the association with falls and the
relevance of a predictor variable. Receiver operating characteristic curve
analyses were used to assess the predictive accuracy of each model by
estimating the area under the curve (AUC). AUCs of more than 0.70, 0.80 and
0.90 are considered acceptable, excellent and outstanding, respectively [26].
Multiple imputation was performed to handle missing data (1.4%, 69 complete
cases) in 23 out of 48 potential predictor variables. Five imputations were
performed using chained equations including all potential predictor variables
of model 4 and the outcome variable (i.e., prospective faller or non-faller).

We also used the Chi-square Automatic Interaction Detector (CHAID)
analysis to identify significant predictors for inclusion in a prediction model
based on a decision tree. Potential predictor variables included in our model
were subject characteristics, clinical test scores, spatiotemporal gait
parameters and IWW walking-adaptability outcome measures. In our model,
we imposed a minimum of one subject per node, a significance level of 0.05
(with a Bonferroni correction) and a division on a maximum of two levels to
keep the decision tree as simple as possible. Sensitivity, specificity and overall

accuracy were calculated.
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Figure 7.2 Schematic of the quantitative gait assessment and walking-adaptability tasks on the

Interactive Walkway, as detailed in the main text.
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Results

Prospective fallers had significantly more fear of falling (i.e., higher score on the
Falls Efficacy Scale) and more often avoided activities due to fear of falling (i.e.,
higher score on the Modified Survey of Activities of Fear of Falling in the Elderly
Scale; Table 7.3) than non-fallers. In addition, prospective fallers performed
overall worse on clinical tests (significantly for the Timed-Up-and-Go test,
Tinetti Balance Assessment and 7-item Berg Balance Scale) and IWW tasks
(significantly for the obstacle-avoidance, sudden-stops-and-starts, goal-
directed-stepping and turning tasks) and walked slower and with smaller steps

than non-fallers (Table 7.3).

Binary logistic regression models

Model 1 included fall history (B = 23.11) and age (B = 0.08) as best predictor
variables for prospective falls, models 2 and 3 also only included fall history
and age, while model 4 included fall history (B = 24.16), obstacle-avoidance
success rate (B =-0.07) and reaching distance on the Functional Reach Test (B =
0.20). Sensitivity increased from 72.7% (models 1-3) to 78.8% (model 4),
specificity increased from 97.9% to 100.0% and overall accuracy increased
from 87.5% to 91.3%. AUC increased from 0.926 (95% CI = [0.858 0.995];
models 1-3) to 0.943 (95% CI = [0.886 1.000]; model 4).

CHAID analysis

The CHAID analysis identified three significant predictors for prospective falls
(Figure 7.3). Subjects were initially dichotomized by fall history, with
retrospective falls classifying 24 of 80 subjects as prospective faller of which all
were actual prospective fallers. The remaining 56 subjects without a fall history
(i.e., falls-naive cohort, including 9 prospective fallers) were split by obstacle-
avoidance success rate (> 77.8% and < 77.8%). 35 subjects with a success rate
> 77.8% were classified as non-fallers, of which 33 subjects were non-fallers.

The remaining 21 subjects with an obstacle-avoidance success rate < 77.8%



were finally split by normalized walking speed during goal-directed stepping
on symmetric stepping stones (> 91.9% and < 91.9% or missing). The 6
subjects with a normalized walking speed > 91.9% were classified as
prospective fallers, of which 5 subjects were prospective fallers. The sensitivity
of this model was 87.9% (29 out of 33 prospective fallers correctly identified),
while the specificity was 97.9% (46 out of 47 non-fallers correctly identified),

with an overall accuracy of 93.8%.

Classification |_ Category % n
Prospective faller ® Prospective faller 41.2 33
Non-faller Non-faller 58.8 47
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Figure 7.3 Decision tree of the CHAID analysis.
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Discussion

This study evaluated the potential merit of the IWW for identifying fallers and
risk factors for future falls in a composite cohort with stroke patients, PD
patients and controls. Prospective fallers experienced more fear of falling, a
well-known fall-risk factor [8,21,27]. Fallers also more often reported fear-
induced activity avoidance than non-fallers. In addition, prospective fallers
walked slower and with smaller steps, and had a poorer performance on
clinical gait and balance tests. As anticipated, prospective fallers performed
worse on various walking-adaptability tasks, including the obstacle-avoidance,
sudden-stops, goal-directed-stepping and full-turn tasks. Since tripping is
considered one of the most common causes of falls in everyday life [5-7],
smaller margins of the leading limb during obstacle avoidance were expected.
Overall, the ability to make step adjustments, either under time pressure
demands or during goal-directed stepping, was impaired in prospective fallers
and was associated with falls in [28,29]. This may point at specific underlying
gait impairments that can be targeted in falls prevention strategies to reduce
fall risk. No differences were found between prospective fallers and non-fallers
for dual-task walking, except for response time during plain dual-task walking
(Table 7.3). An explanation for this might be between-subject variation in task
prioritization in both groups. In the study of Timmermans et al. [30] the
amount of cognitive-motor interference did not differ between obstacle
avoidance over physical obstacles compared to projected obstacles, while task
prioritization did. In Timmermans et al. [30] and in the current study, subjects
were instructed to perform both tasks as well as possible, affording differences
in task prioritization. This likely increased between-subject variation in the
performance of the walking task and the cognitive task, which might explain the
lack of a clear effect of the dual task (Table 7.3). Note that response time during
augmented dual-task walking and the composite scores showed trends towards

poorer dual-task performance in fallers.



We performed two different analyses to identify prospective fallers and
predictor variables for future falls, namely the binary logistic regression and
CHAID analysis, which both performed very well in terms of overall accuracy.
The results of the CHAID analysis are easier to interpret and implement in daily
practice [31]. On the other hand, binary logistic regression models are more
informative on the relevance of a predictor variable (i.e., size of coefficient).
Both analyses identified fall history and obstacle-avoidance success rate as
predictor variables. The CHAID analysis additionally identified normalized
walking speed during goal-directed stepping on symmetric stepping stones as
predictor variable, whereas age and reaching distance on the Functional Reach
Test both significantly increased fall risk (i.e., positive coefficients) in the binary
logistic regression models. Group (i.e., stroke, Parkinson’s disease, control) was
not identified as a significant predictor variable for prospective falls. This
suggests that the presence of a neurological disorder does not automatically
increase fall risk, a finding in line with another study on fall-risk assessments
[32]. Notably, controls without specific disorders also experienced falls
(23.3%). A decreased walking ability in older adults compared to younger
adults has been demonstrated [33], both in steady-state walking and walking
adaptability. Assessing limitations in walking ability, regardless of their cause
(e.g., neurological disorders, ageing), thus likely provides a better indication of
someone’s fall risk. In accordance with previous studies, fall history was the
best sole predictor of future falls in our study [27,34]. All subjects classified as
prospective faller in models 1-3 had a history of falling and the coefficients for
fall history in the models were high. The addition of obstacle-avoidance success
rate and reaching distance led to the correct classification of two more fallers
and one non-faller. Using the CHAID analysis, we subsequently evaluated risk
factors of first falls in the falls-naive cohort. It appeared that subjects who
poorly performed the obstacle-avoidance task and who did not substantially
lower their walking speed during goal-directed stepping are most at risk of

falling (i.e, 5 out of 9 fallers correctly classified). Reminiscent of a speed-



accuracy trade-off, subjects seem to maintain their normal walking speed (i.e.,
no significant group difference in normalized walking speed), at the expense of
stepping accuracy (i.e, significantly less accurate in prospective fallers).
However, the latter seems more important when walking in the community.
There thus appears to be a discrepancy between their perceived and actual
walking ability, which may be a factor contributing to falls [35]. The amount of
misjudgment has been emphasized to be useful to include in fall-risk
assessments [36] and allows for better personalized interventions [35]. This
was confirmed by the study of Butler et al. [37]; subjects that took higher risks
than their physical ability allowed were more likely to experience a fall in the
upcoming year. Assessing walking adaptability in addition to asking about falls
in the previous year thus seems of added value when assessing fall risk.
Besides, identification of these walking-related fall-risk factors may lead to
more targeted, personalized and possibly more effective falls prevention
programs.

A limitation of this study was the sample size. Although 90 subjects
were included and followed prospectively for falls, this was still relatively small
when the distribution of fallers and non-fallers and the type of analysis are
taken into account. This limits cross-validation of the models and the risk of
overfitting must be considered. This study should therefore be regarded as a
first step in evaluating the proposed comprehensive fall-risk assessment
including generic and walking-related factors. The results, when confirmed by a
larger sample, provide indications for a strategy to identify subjects that are at
a high risk of falling. First, subjects should be asked about their fall history and
subjects with a history of walking-related falls may be advised to follow a falls
prevention program, aimed at improving balance, walking and walking
adaptability. Second, subjects that are falls-naive should perform an assessment
of about five minutes, including the obstacle-avoidance and goal-directed
stepping tasks and a baseline walk (to determine normalized walking speed) to

identify potential fallers. Subjects with poor walking adaptability who do not



reduce their walking speed accordingly, may also be advised to follow a falls
prevention program. Given these walking-related predictor variables, such a
program should be geared towards improving (sudden) step adjustments and
creating awareness about a subject’s ability to adapt walking in order to reduce

their walking-related fall risk.
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Supplement 7.1

Experimental set-up and procedure

The quantitative gait assessment and walking-adaptability assessment were
performed on the Interactive Walkway (IWW; Figure S7.1) using four spatially
and temporally integrated Kinect v2 sensors to obtain full-body kinematics. The
IWW set-up was based on a validated IWW set-up used in Geerse et al. [1,2],
with improved inter-sensor distances following recommendations of Geerse et
al. [3]. The sensors were positioned at a height of 0.95 m alongside a walkway
of 8 by 0.75 m. The first three sensors were placed frontoparallel (i.e., with an
angle of 70 degrees relative to the walkway direction) with a distance of 1.2 m
from the left border of the walkway. The last sensor was positioned frontally at
the end of the walkway, since this will minimize orientation-based biases [4].
The first sensor was positioned at 3 m from the start of the walkway and the
other sensors were placed at inter-sensor distances of 2.1 m. The IWW was
equipped with a projector (EPSON EB-585W, ultra-short-throw 3LCD
projector) to augment the entire 8-meter walkway with visual context for the
walking-adaptability tasks. The coordinate systems of the sensors and
projector were spatially aligned to a common coordinate system using a spatial
calibration grid. IWW data were sampled at 30 Hz using custom-written
software utilizing the Kinect-for-Windows Software Development Kit (SDK 2.0).
Details about the experimental tasks performed on the IWW can be found in

Table S7.1.

Data pre-processing and analysis

The Kinect for Windows Software Development Kit (SDK 2.0,
www.microsoft.com) provides 3D time series of 25 body points using inbuilt
and externally validated human-pose estimation algorithms [1,5-8]. These body
points are: head, neck, spine shoulder, spine mid, spine base and left and right
shoulder, elbow, wrist, hand, thumb, hand tip, hip, knee, ankle and foot. For

offline data analysis, the 3D positional data for these body points were first pre-



processed per Kinect sensor separately. Body points labelled as inferred (i.e.,
Kinect’s human-pose estimation software infers positions when segments are
partially occluded for example) were treated as missing values. The body
point’s time series were linearly interpolated using Kinect’s time stamps to
ensure a constant sampling frequency of 30 Hz, without filling in the parts with
missing values. We removed data points from the time series when they did not
meet our stringent requirements for valid human-pose estimation (e.g., a
minimum of 15 out of the 25 possible body points should be labeled as tracked,
including the head and at least one foot and ankle, without outliers in segment
lengths). In addition, a manual check of the data was added to remove errors of
the algorithm due to depth occlusion of the right leg by the left leg.
Subsequently, data of the four Kinect sensors were combined by taking for each
sample the 3D positions of the body points of a validly estimated human pose.
If, for a given sample, more than one sensor contained valid human pose data,
the associated body point’s 3D positions were averaged for that specific sample.

Body point’s time series with more than 50% of missing values were
excluded from further analyses. However, percentages of missing data for all
three groups did not exceed 27.3% with an average of 5.0 = 2.1% for the body
points’ time series of interest (i.e., ankles, spine base and spine shoulder). The
missing values of the remaining data were interpolated with a spline algorithm.
The so-obtained time series were used for the calculation of the spatiotemporal
gait parameters and walking-adaptability outcome measures.

The outcome measures of the IWW assessment were calculated from
specific body points’ time series, estimates of foot contact and foot off and step
locations, as detailed in Table 7.2. Estimates of foot contact and foot off were
defined as the maxima and minima of the anterior-posterior time series of the
ankles relative to that of the spine base [1,2,9]. Step locations were determined
as the median anterior-posterior and mediolateral position of the ankle joint
during the single-support phase (i.e., between foot off and foot contact of the

contralateral foot; [1,2]). Shoe edges and center of the foot were also needed to



calculate several outcome measures. Ankle-to-shoe calibration trials, in which
the subject was standing in two shoe-size-matched targets at a position on the

walkway in front of the last Kinect, were included to determine the average

distance between shoe edges and the ankle.

Figure S7.1 Set-up of the Interactive Walkway with visual context projected on the walkway.
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Supplement 7.2

Video of assessments on the Interactive Walkway in a patient with stroke. This

video is available at https://youtu.be/k702kc5R-K8.






Chapter 8
Summary, general discussion and future

perspectives






Summary

Neurological disorders may impair various aspects of walking ability that are
needed for safe and independent walking (cf. Balasubramanian et al. [1]),
therefore requiring different rehabilitation strategies. A comprehensive
assessment addressing the key components of walking ability may help to tailor
management strategies to the individual needs of each patient. The Interactive
Walkway (IWW) is a promising, unobtrusive and low-cost assessment tool of
walking ability in daily practice. Nevertheless, it is unclear if 1) this approach
can provide a valid assessment of walking ability and, if so, 2) if it has clinical
potential in the assessment of walking ability and fall risk in patients with
stroke and Parkinson’s Disease (PD). The aim of this thesis was to gain insight

into these two aspects.

Part 1: Can the IWW be used for a valid comprehensive assessment of
walking ability?

The most commonly used outcome measure of walking ability is walking speed
assessed over short distances, for example using the 10-meter walking test.
Using the IWW, this 10-meter walking test can be expanded with quantitative
gait assessments, performed in a quick, unobtrusive and patient-friendly
manner. In doing so, standard clinical tests are complemented with additional
information about gait and balance impairments derived from 3D kinematics
during walking. The study described in Chapter 2 aimed to validate the IWW
for markerless quantitative gait assessments in terms of 3D full-body
kinematics and associated spatiotemporal gait parameters against a gold-
standard marker-based motion-registration system in a group of 21 healthy
subjects. The 10-meter walking test was conducted at comfortable and
maximum walking speed, while 3D full-body kinematics was concurrently
recorded with the IWW and the Optotrak system (i.e., the gold standard). The
results demonstrated that 3D kinematics agreed well between the motion-

registration systems, particularly so for body points in motion. Moreover,



spatiotemporal gait parameters also matched well between systems. The
results of Chapter 2 thus indicated that quantitative gait assessments can
reliably be performed with the IWW.

In addition to measuring steady-state walking, the IWW also allows for
assessing walking adaptability by projecting interactive visual context onto the
walkway in the form of, for example, stepping targets and obstacles. In Chapter
3, the between-systems agreement and sensitivity to task and subject
variations for various walking-adaptability assessments on the IWW was
addressed. Under varying task constraints, 21 healthy subjects performed
obstacle-avoidance, sudden-stops-and-starts and goal-directed-stepping tasks.
The results demonstrated that walking-adaptability outcome measures, such as
obstacle-avoidance margins, generally agreed well between the IWW and
Optotrak system. Second, walking-adaptability outcomes were sensitive to task
and subject variations. With goal-directed stepping, task variations led to
different step lengths, stepping accuracies and walking speeds while available
response times and obstacle-avoidance margins varied with obstacle type. This
testifies to the power of projected visual context to modify gait and to elicit
(sudden) step adjustments, in line with previous studies exploring the same
concept during treadmill walking [2-5]. Sensitivity to task and subject
variations is important for walking-adaptability assessments in relatively high-
functioning groups (such as community-dwelling older adults), where ceiling
effects are a common concern [6]. The same holds for floor effects in relatively
fragile patient groups. The IWW potentially allows for walking-adaptability
assessments that are feasible for both high-functioning and fragile populations
since task difficulty can be varied. In addition, IWW assessments are also
relatively safe (e.g., visual instead of physical obstacles), unobtrusive
(markerless data) and hence time-efficient and patient-friendly. The IWW
walking-adaptability assessments were therefore deemed usable for obtaining
an objective and more task-specific examination of one’s ability to walk, which

warrants studies on its clinical potential as discussed in Chapters 5 to 7.



Based on the insights obtained in these two validation studies, another
validation study of the Kinect v2 sensor of the IWW was performed. The study
described in Chapter 4 aimed to systematically evaluate the effects of distance
to the sensor, body side (i.e., left or right) and step length on estimates of foot
placement locations calculated using Kinect’s ankle body points. Estimates of
foot placement locations are required to quantify spatial gait parameters and
outcome measures of walking adaptability. In total, 12 healthy subjects
performed stepping trials with imposed foot placement locations at various
distances from the Kinect sensor, for the left and right body side, and for
multiple imposed step lengths, concurrently recorded with a Kinect v2 sensor
and the Optotrak system. The results revealed a small but significant between-
systems difference in foot placement locations and step lengths. These were
likely caused by differences in body orientation relative to the Kinect sensor,
whereby the ankle was estimated more posteriorly. This effect can be reduced
by using smaller inter-sensor distances in the IWW set-up to estimate foot
placement locations at greater distances from the sensor.

Taken together, it can be concluded that the IWW can be used to validly
assess both steady-state walking (Chapter 2) and walking adaptability (Chapter
3) in a group of healthy adults. In doing so, it yields a more comprehensive
assessment, addressing important components of the tripartite model of
walking ability (i.e, the ability to generate stepping, to maintain postural
equilibrium and to adapt walking to environmental demands). The results of
Chapters 2 to 4 also led us to improve the IWW set-up by reducing inter-sensor
distances. Subsequently, we set out to evaluate the clinical potential of the IWW
as a tool for assessing walking ability and fall risk in patient groups, as will be

discussed next.



Part 2: What is the clinical potential of the IWW for assessing walking
ability and fall risk?

The aim of the study presented in Chapter 5 was to evaluate the potential of
the IWW as a new technology for assessing walking ability in stroke patients.
Assessments of impairments in walking ability may aid in the development of
individualized rehabilitation strategies. 30 stroke patients and 30 age- and sex-
matched healthy controls performed clinical tests as well as quantitative 3D
gait assessments and various walking-adaptability tasks using the IWW. The
results of this study suggested good known-groups validity for IWW walking-
adaptability tasks, similar to that of clinical tests and quantitative gait
assessments. In addition, walking-adaptability tasks appeared to complement
these assessments, as evidenced by the mainly low to moderate correlations
between outcome measures of walking adaptability and those obtained from
clinical tests and quantitative gait assessments. Our findings therefore
suggested that using the IWW to evaluate steady-state walking and walking
adaptability with obstacle avoidance and goal-directed stepping may provide a
quick, unobtrusive and comprehensive quantitative assessment of walking
ability with potential for monitoring recovery after stroke and informing
rehabilitation strategies.

In Chapter 6 steady-state walking (i.e., quantitative gait assessments),
adaptive walking and dual-task walking were evaluated with the IWW in 14 PD
patients with freezing of gait (FOG), 16 PD patients without FOG and 30 healthy
controls. Similar to the results of the clinical tests, freezers scored worst, non-
freezers scored in-between and controls scored best on most IWW tasks,
suggesting good known-groups validity. PD patients especially experienced
problems when having to deviate from their steady-state gait pattern, which
requires dynamic balance control. Therefore, in order to obtain a more
comprehensive characterization of a subject’s walking ability, both steady-state
and adaptive walking should be assessed, for example with obstacle avoidance

and goal-directed stepping. It was demonstrated that these IWW tasks also



provide additional information compared to clinical tests given the low to
moderate correlations between these two types of assessment. Moreover, [IWW
outcome measures of adaptive walking slightly better discriminated freezers
from non-freezers than clinical test scores. The IWW thus shows potential as a
more comprehensive walking-ability assessment in PD, incorporating all its key
aspects of which many may be linked to falls. The latter premise was explored
in more detail in Chapter 7, as discussed next.

In Chapter 7, the potential merit of the IWW to identify prospective
fallers and risk factors for future falls was evaluated in a composite cohort of
stroke patients, PD patients and healthy controls. This study comprised an
evaluation of subject characteristics, clinical gait and balance tests, and a
quantitative gait assessment and walking-adaptability assessment on the IWW.
Subjects’ falls were registered with monthly falls calendars during a 6-month
follow-up period to identify subjects as prospective fallers (i.e., experiencing at
least one walking-related fall during the follow-up period) or non-fallers.
Prospective fallers experienced more fear of falling and more fear-of-falling-
related activity avoidance at baseline than non-fallers. In addition, prospective
fallers walked slower and with smaller steps, and had a poorer performance on
clinical gait and balance tests. As anticipated, prospective fallers also performed
worse on various walking-adaptability tasks. In addition to fall history,
obstacle-avoidance success rate and normalized walking speed during goal-
directed stepping were identified as predictor variables for falls and these fall-
risk factors improved the identification of fallers. It appears that subjects who
performed worse on the obstacle-avoidance task without substantially
lowering their walking speed during goal-directed stepping are most at risk of
falling. Identification of these task-specific fall-risk factors may lead to more
targeted, personalized and, possibly, more effective falls prevention programs.
If validated in larger samples in future studies these measures hold promise as

future entry tests for falls prevention programs.



Collectively, our findings show that the IWW contributes to the
evaluation of walking ability in patients with stroke (Chapter 5) and PD
(Chapter 6). Additionally, limitations in walking adaptability proved to be a risk
factor for falls, which resulted in a better identification of prospective fallers
(Chapter 7). The IWW thus seems to be a valuable option for a comprehensive

assessment of walking ability and fall risk in stroke patients and PD patients.

General discussion

The overarching goal of this thesis was to examine if the IWW could provide a
valid and comprehensive assessment of walking ability in various patient
groups under the premise that this improves the identification of prospective
fallers. The results showed that the IWW indeed allows for a valid and
comprehensive assessment of walking ability, including the aspect of walking
adaptability. Moreover, the IWW adds value to the evaluation of walking ability
in stroke patients and PD patients, also uncovering limitations in walking
adaptability that resulted in a better identification of prospective fallers. In the
following sections, steps towards a more comprehensive fall-risk assessment
are outlined by means of a roadmap (Figure 8.1). Furthermore, the broader

implication of the insights obtained in this thesis are discussed for the IWW and

beyond.
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Towards a more comprehensive assessment of walking ability
Walking speed assessed over short distances, for example using the 10-meter
walking test (stage I of the roadmap; Figure 8.1), is the most commonly used
outcome measure of walking ability in the clinic. Furthermore, generic gait and
balance assessments examining functional mobility and balance outcomes, such
as the Timed-Up-and-Go test and the Berg Balance Scale, are also frequently
used clinical tests (stage I of the roadmap; Figure 8.1). These clinical tests only
give a single value as outcome of walking ability. More detailed insight into gait
and balance impairments can be obtained using quantitative gait assessments
(stage II of the roadmap; Figure 8.1). These clinical tests and assessments,
however, do not account for the full repertoire of walking skills needed for safe
walking. That is, they mainly address steady-state gait as seen on a ‘red carpet’
(stage II of the roadmap; Figure 8.1), which does not mimic the typically
encountered real-life walking environments.

As mentioned in the General Introduction, walking ability is defined as
the ability to walk independently and safely from one place (A) to the other (B)
[7]- The environmental and situational context between A and B is inherently
variable, placing different demands on walking [7]. With regard to the former,
one can envision obstacles like doorsteps or other people. With regard to the
latter, one may, for example, be distracted or in a hurry. The three components
of the tripartite model of walking ability [1] comprehensively address such
demands, comprising one’s ability to 1) generate effective stepping, 2) maintain
balance while walking and 3) adapt walking to environmental or situational
context. Currently, the latter component of walking adaptability is typically not
assessed in the clinic. One domain of walking adaptability, namely obstacle
negotiation [1], has been examined using 3D kinematics when crossing real
obstacles (stage II of the roadmap; Figure 8.1; [8-12]) and an impaired
obstacle-avoidance performance was found in stroke patients and PD patients

[8,11-15]. However, real obstacles are potential trip hazards and hence such



assessments are relatively unsafe. Moreover, obstacle-avoidance tasks evaluate
just a single domain of walking adaptability.

With the IWW, multiple domains of walking adaptability can be
assessed (stage III in the roadmap; Figure 8.1). A projector is used to augment
the walkway with (gait-dependent) visual context which allows for an
assessment of various walking-adaptability domains (e.g., obstacle negotiation,
postural transitions, maneuvering in traffic; [1]) in a safe manner. While
quantitative gait assessments performed with the IWW predominantly address
the stepping and balance components of the tripartite model, given the high
correlations with clinical test scores in stroke patients (Chapter 5) and PD
patients (Chapter 6), IWW tasks seemingly assess a complementary aspect of
walking ability, namely the walking-adaptability aspect. Taken together, the
IWW thus holds promise as a more comprehensive assessment of walking

ability by addressing all key aspects of this motor function.

Walking ability and falls: moving to a task-specific assessment

Since most falls occur during walking [16-18], it seems useful to consider
limitations in walking ability as potential risk factors for future falls. A
comprehensive assessment of walking ability may therefore inform about
factors that increase walking-related fall risk. Such assessments should be task-
specific, meaning that they focus on functional tasks rather than impairments
[19]. Examples of functional tasks are steady-state walking (stages I, Il and III of
the roadmap; Figure 8.1), specific movement tasks to test static and dynamic
balance (i.e., Berg Balance Scale; stage I of the roadmap; Figure 8.1) and
walking-adaptability tasks on the IWW (stage III of the roadmap; Figure 8.1). A
task-specific assessment could help identify why people fall during walking and
can help personalize treatments by targeting specific risk factors. Task-specific
training, relearning a task by practicing that specific task, has been shown
effective in gait rehabilitation [20,21]. In this thesis, important steps have been

taken towards a task-specific assessment of fall risk. The IWW assessment



presented in Chapters 5 to 7 included various walking-related tasks (i.e.,
steady-state walking and walking-adaptability tasks) to assess walking ability.
As demonstrated in these chapters, some of these tasks usefully contribute to a
comprehensive assessment of walking ability and fall risk, whereas others
don’t, which is helpful in shortening the assessment protocols (as described
below).

The obstacle-avoidance and goal-directed stepping outcome measures
were significantly different between stroke patients and controls (Chapter 5),
between PD patients and controls (Chapter 6) and fallers and non-fallers
(Chapter 7), in line with other studies [8,11-15,22,23]. In addition, goal-
directed stepping differed between freezers and non-freezers, with better
stepping accuracies for freezers. One earlier study [3], in which the C-Mill was
used to assess walking adaptability in a group of amputees, showed the
importance of obstacle-avoidance and goal-directed stepping tasks as
informative tasks of walking ability. The C-Mill is a treadmill embedded with a
force plate onto which gait-dependent visual context, such as obstacles and
stepping targets, can be presented. The results demonstrated that obstacle
avoidance and goal-directed stepping were unique, complementary aspects of
walking ability given the low to moderate correlations with clinical tests. We
confirmed and elaborated the findings of Houdijk et al. [3] to patients with
stroke (Chapter 5) and PD (Chapter 6). Together, these results support the
assumption that walking adaptability is not covered in clinical assessments of
walking ability. Notably, obstacle-avoidance success rate and normalized
walking speed during goal-directed stepping improved the identification of
prospective fallers (Chapter 7). Poor obstacle avoidance or stepping
performance has previously already been found to be associated with falls [22-
25], emphasizing the merit of assessing walking adaptability for fall risk
assessments.

Altogether, it is thus important to add task-specific factors associated

with walking-related falls to an assessment of walking ability and fall risk,



which can be done with the IWW. Since the obstacle-avoidance and goal-
directed stepping tasks provide a valid assessment of walking adaptability and
improve the identification of fallers, these tasks are advised to be included in a

task-specific assessment of walking ability aimed at assessing fall risk.

Walking ability and falls: moving to a generic assessment

It is known that in most neurological disorders, fall incidence is higher than in
the healthy population [26,27], which may be due to underlying gait and
balance impairments. In fact, gait and balance disturbances significantly
correlated with falls in patients with neurological disorders and were identified
as risk factors for falls [26,27]. In addition, most fallers in this group of patients
reported that they tripped over an obstacle [27], suggesting a reduced walking
adaptability. A task-specific assessment of walking ability and fall risk focusses
on limitations in walking of patients instead of on impairments associated with
a particular disease or disorder itself. This task-specific approach therefore
allows for a more generic fall-risk assessment, which could apply to various
diseases and disorders. In this thesis, we have mainly focused on task-specific
fall-risk factors (Chapter 7). Group (i.e., stroke, PD, control) was also included
in the models of Chapter 7; as expected, group was not identified as a
significant predictor variable for prospective falls. However, the sample size
and the distribution of fallers and non-fallers across groups may have been too
small to detect group differences. Nevertheless, in both groups, approximately
half of the patients fell in the year prior to the assessment (Chapter 7). In
addition, not all prospective fallers of the falls-naive cohort in Chapter 7
belonged to the same group (i.e., three stroke patients, two PD patients and
four healthy controls) and these fallers were classified by specific limitations in
walking ability (i.e, suboptimal obstacle-avoidance success rates in
combination with a maladaptive walking speed during precision stepping). As
can be noticed, healthy controls without specific disorders also experienced

falls. A decreased walking ability in older adults compared to younger adults



has been demonstrated, both in steady-state walking and walking adaptability
[28]. Age was also positively associated with the number of falls in patients
with neurological disorders [26,27]. In Chapter 7, age did not differ significantly
between prospective fallers and non-fallers, but was identified as a predictor
variable for falls in the prediction models that did not include walking-
adaptability outcome measures. Limitations in walking ability, regardless of
their cause (e.g., neurological disorders, ageing), thus likely give a better
indication of someone’s fall risk, calling for a generic and task-specific fall-risk

assessment.

Walking ability and falls: minimizing assessment time

As discussed in the previous two sections, it seems useful to assess fall risk in a
task-specific and generic manner. From a more practical point of view, fall-risk
assessments should also be concise. In an outpatient clinic a physician generally
obtains a momentary impression of a patient’s walking ability and fall risk.
However, administering multiple clinical tests may imply redundancy, since
several tests were highly interrelated, as demonstrated in Chapter 5, and thus
only increase the burden for the patient. This is also the case when combining
clinical tests with quantitative gait assessments. Given the high correlation
between IWW quantitative gait assessments and clinical tests, a possibility
could be to combine the IWW quantitative gait and walking-adaptability
assessment to obtain the sought-after quick and comprehensive assessment of
fall risk.

Previous studies have indicated that steady-state gait characteristics
are associated with falls [27,29], while this is often not the case for clinical test
scores due to potential ceiling effects [6]. This was however not confirmed by
the results presented in Chapter 7. Nevertheless, significant differences were
found between fallers and non-fallers for walking speed and step length,
suggesting that a quantitative gait assessment might be informative in a fall risk

assessment. Since gait parameters were highly correlated with conventional



clinical test scores of gait and balance (Chapters 5 and 6), performing
quantitative gait assessments with the IWW instead of clinical tests could
therefore be a good option for a quick and comprehensive fall-risk assessment.
A quantitative gait assessment with the IWW requires about the same time as
the 10-meter walking test. The latter test only provides walking speed, while a
quantitative gait assessment with the IWW provides more information, based
on 3D kinematics of the whole body. A quantitative gait assessment and some
complementary walking-adaptability tasks (i.e., obstacle-avoidance and goal-
directed stepping as suggested above) on the IWW thus seems to be a good
option for assessing walking ability in a quick (5-10 minutes) and
comprehensive manner. However, removing clinical tests from the binary
logistic regression models in Chapter 7 did not lead to the inclusion of
spatiotemporal gait parameters as predictor variables and slightly worsened
the classification of prospective fallers and non-fallers. Therefore, more
research is needed to explore the feasibility of the IWW as a tool to quickly

estimate fall risk.

The Interactive Walkway for a more comprehensive fall-risk assessment?

Though the task-specific and generic fall-risk assessment of the IWW seems
promising, more research is needed to confirm its potential merit as a
comprehensive fall-risk assessment. First of all, the fall prediction models
presented in this thesis have to be cross-validated with an independent
composite cohort of stroke patients, PD patients and healthy controls. Second,
the responsiveness of IWW outcome measures to subtle changes over time has
to be examined. In all studies of this thesis, assessments of walking ability were
performed once. This will only provide the momentary status of a person. It is
however important that IWW assessments can be used to validly monitor the
effect of a disease or treatment on the walking ability and thus potentially also
fall risk of a patient. Third, I have focused on assessing walking ability in two

highly prevalent neurological disorders, namely stroke and PD. It is not yet



known if the IWW can be used to asses walking ability validly in other patient
populations. This is partly due to the fact that the Kinect v2 sensor best
recognizes persons from a frontal view and occasionally fails to detect persons
with an abnormal body posture. This could potentially be a problem in
disorders like dystonia and cerebral palsy where body posture is severely
affected. Future studies should therefore focus on a greater variety of patient

groups to be able to determine for which disorders the IWW is best suited for

fall-risk assessments.
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Figure 8.2 Schematic of the SWOT analysis of the Interactive Walkway intended for use as a fall-

risk assessment in the clinic.



SWOT analysis of the Interactive Walkway intended for use as a fall-risk
assessment in the clinic

Currently, the IWW is still mostly a scientific tool and there are several steps to
be made before it can be implemented into the clinic. A strengths, weaknesses,
opportunities and threats (SWOT) analysis may help to determine where future
research should focus on in order to implement the IWW as a fall-risk
assessment tool in the clinic (Figure 8.2). The SWOT analysis has two main
categories, namely internal and external factors. Internal factors are inherent to
the product and dictate its strengths and weaknesses. External factors are the
opportunities and threats presented by the environment external to the
product. Below, these four SWOT categories are discussed for the ITWW

intended for use as a fall-risk assessment in the clinic.

Strengths

The studies presented in this thesis have emphasized several benefits of the
IWW that are relevant for its intended use as a fall-risk assessment in the clinic.
First of all, 3D full-body kinematics is obtained without markers by using the
Kinect v2 sensor. Normally, full-body kinematics can be obtained using
expensive, high-end, marker-based motion-registration systems. The Kinect
sensor is a cheap and easy-to-use alternative. Using the Kinect sensor for
motion registration also significantly reduces preparation time, which is more
convenient for the patient. In addition, the movements of the patients are not
restricted by markers and are therefore expected to be more natural. Another
advantage of the Kinect sensor is that the data are available immediately and
can be processed online. This makes the system usable for movement-
dependent event control [30]. Walking adaptability has so far mostly been
assessed with fixed obstacles or targets in laboratory studies [8,11,12] or with
specific clinical tests (e.g., Dynamic Gait Index; [31]). On the IWW, movements
of the subject may trigger the presentation of the visual context, therefore

requiring adjustments under controllable time pressure demands. The IWW



can thus assess walking adaptability to both expected (e.g., slalom, goal-
directed stepping) and unexpected (e.g., sudden obstacle avoidance, sudden
stops-and-starts) challenges in the environment.

The additional benefit of using projections instead of real obstacles is
that it makes the assessment of walking adaptability safer since patients cannot
physically trip as could be the case when trying to avoid real obstacles.
Furthermore, interacting directly with meaningful visual context in an
overground walking environment may also be seen as a strength. An
assessment with projected visual context has previously been performed on the
C-Mill, demonstrating that this is an effective and safe way of assessing walking
adaptability [32-35]. However, natural responses, such as slowing down in a
complex environment, cannot be assessed on a fixed-speed treadmill.
Furthermore, tasks such as stopping and turning cannot be performed. These
tasks are all well possible with the IWW, since it entails an overground
assessment. However, a potential problem might be task prioritization. In a
study of Timmermans et al. [36], cognitive-motor interference and task
prioritization was assessed for obstacle avoidance, contrasting avoidance of
real physical obstacles and projected visual obstacles. Although the amount of
cognitive-motor interference did not differ between tasks, task prioritization
did. Motor performance was prioritized in an environment characterized by
physical context as compared to an environment with projected context. In the
study of Timmermans et al. [36] and in the studies presented in Chapters 5 to 7,
subjects were instructed to perform both the dual task and the obstacle
avoidance task as well as possible. Task prioritization could therefore explain
the lack of a clear effect of the dual task on obstacle-avoidance performance in
Chapters 6 and 7.

Another strength of the IWW is that tasks can be individually tailored,
meaning that the difficulty of the walking-adaptability tasks can be adjusted to
the ability of the individual (e.g, amount of variation, available response

distance) making it suitable for both healthy controls and various patient



groups. A final strength of the IWW for use as a fall-risk assessment is that it
comprised both steady-state walking and walking adaptability, providing a
comprehensive assessment of walking ability. This yields information
complementary to standard clinical assessments (Chapters 5 to 7), mainly
information about a patient’s walking adaptability. Considering these strengths,
is seems fair to conclude that the IWW seems promising for use as a fall-risk

assessment.

Weaknesses
Despite the benefits of a fall-risk assessment with the IWW, there is still room
for improvement. Currently, the IWW only uses 2D projections to evoke step
responses. In real life, obstacles or other objects we need to interact with are
not always flat. In many studies, foot clearance during obstacle crossing
[8,11,12,37-39] was found to be an important factor for successful obstacle-
avoidance behavior to avoid falls. Moreover, age-related changes in obstacle-
crossing strategies were found to depend on the specific characteristics of the
obstacle, such as obstacle height [40]. Simply adding real 3D obstacles to the
IWW is possible but not preferable, considering that it increases the risk of falls
during a fall-risk assessment and it then becomes impossible to assess sudden
step adjustments. Using 3D holographic obstacles may be a solution to address
this weakness (see also future perspectives) and could potentially also improve
the ability of the IWW to elicit FOG in PD patients, which was not possible with
2D visual context as was found in Chapter 6. Nevertheless, the obstacle-
avoidance task with 2D projections appeared effective, since obstacle-
avoidance success rate did demonstrate differences between groups and
improved the identification of prospective fallers (Chapters 5 to 7).

Another weakness of the IWW for use as a fall risk assessment is that it
is bound to a specific assessment space, comparable to other motion
registration systems. This does however not need to be a big space, because the

IWW has been optimized for use in a corridor. An additional instrumental



weakness of the IWW set-up used in this thesis is that it is bound to measuring
walking in one direction. The Kinect v2 sensor is trained to recognize persons
from a frontal view. This means that the patient has to walk twice the distance,
making the assessment twice as long. This can however be solved by using
Kinect sensors on both sides. Another weakness of the IWW for use as a fall-
risk assessment is that the Kinect sensor sometimes has difficulty recognizing
patients (i.e., considering the 3.4% of removed trials in Chapter 7). It seems that
this was caused by certain body postures, such as a body posture turned away
from the sensor (e.g., as a result of a hemiplegic gait in stroke on the side
opposite to the sensor placement) or a very stooped posture (e.g, in severely
affected PD patients). This may reduce the quality of the 3D full-body kinematic
data.

Opportunities

Instead of only being used to screen who is at risk of falling, IWW assessments
of walking ability may provide specific entry points for fall prevention
programs to target task-specific risk factors for reducing fall risk and improving
walking ability. In Weerdesteyn et al. [25], a decrease in fall risk was associated
with an improved obstacle-avoidance performance. Poor obstacle-avoidance
success rate was also a risk factor for falls in Chapter 7. It thus seems
imperative to train obstacle-avoidance in generic falls prevention programs.
Furthermore, assessments of walking ability may be used to provide a more
personalized falls prevention program. A personalized approach might increase
adherence to the falls prevention program (i.e., by being challenging, but
feasible for the patient) and foster lasting change (i.e., by targeting the right
limitations in walking ability; [41,42]). The potential of the IWW to guide
personalized therapy still needs to be examined, since the outcomes of the
studies in Chapters 5 to 7 have only focused on comparing groups (i.e., patients
vs. controls and prospective fallers vs. non-fallers) instead of looking into

individual traits that increase fall risk. High-end machine learning techniques



permit the individualization of fall-risk assessments [43]. These techniques
require a large dataset that can be collected relatively easily with the IWW. In
order to provide personalized therapy to patients, future studies should thus
focus on IWW fall-risk assessments in a large group of patients with various

disorders.

Threats

Finally, there are some threats that may jeopardize the use of the IWW for use
as a fall-risk assessment. The biggest threat is the competitive field in which
several fall-risk assessments are available. Further, many of these assessments
have already been cross-validated in much larger patient groups [44,45].
Although our studies suggest that walking adaptability has additive value in a
fall-risk assessment, more evidence is needed before the IWW assessment will
be adopted in the clinic.

It is relevant to note that Microsoft has decided to discontinue the
production of the Kinect v2 sensor. Although this is an unfortunate event, the
principle of the IWW (i.e, using real-time processed markerless 3D data to
interactively present visual context to evoke step responses and assess walking
adaptability) remains. Other sensors may serve as input for the IWW (e.g,
Orbec, SIMI), and Microsoft will soon release the Kinect v4 sensor, which can be
regarded as an upgrade of the Kinect v2 sensor given the better specifications
(e.g., increased depth resolution). These sensors may be examined for their
potential to replace the Kinect v2 sensor, which would require new validation

studies comparable to those presented in Chapters 2 to 4.

Future perspectives

In the SWOT analysis of the IWW as a fall-risk assessment tool for use in the
clinic, some directions for future research were already mentioned. We have
now reached the finish of the roadmap, as presented in Figure 8.1. This does

not mean however that the development of the IWW ends here. I propose three



future paths for the IWW: 1) moving from assessment to training, 2) moving
from 2D to 3D context, and 3) moving from a location-bound to a mobile set-up

(see crossroads in Figure 8.1), as will be discussed next.

The Interactive Walkway for training walking adaptability

The IWW can also potentially be used to train walking adaptability in a falls
prevention program. Walking adaptability has already been trained on a
treadmill using projected visual context (i.e., the C-Mill; [32-35]). Results of
these studies demonstrated that walking ability improved after task-specific
training with visual context [32-35]. In contrast to the C-Mill, the IWW allows
for training of walking adaptability in an overground setting. This leaves room
for natural responses to environmental context, such as slowing down or even
stopping before crossing an obstacle, which is not possible on a fixed-speed
treadmill. This makes training of walking adaptability with the IWW especially
useful in fragile populations, who often slow down in complex environments
[36]. In Chapter 5, it was shown that stroke patients lowered their walking
speed relatively more in complex situations compared to healthy controls. In
addition, overestimation of someone’s walking ability (i.e., not substantially
lowering walking speed when walking adaptability is limited) increases the risk
of falling as demonstrated in Chapter 7. Training people to adopt a safer
strategy when walking in a complex environment might therefore be useful.
This is all well possible with the IWW, confirming its potential as a training tool

in addition to an assessment tool of walking ability and fall risk.

The Interactive Walkway with 3D holograms

As already mentioned, the IWW uses 2D projections for an assessment of
walking adaptability, which could be considered a weakness of the system
although promising results of such an assessment have been obtained in this
thesis and beyond (e.g., C-Mill studies; [32-35]). However, there are new

techniques available that can be used to present 3D holographic context for an



assessment or training of walking adaptability. The HoloLens (Figure 8.3) is a
mixed-reality headset which uses multiple Kinect v3 sensors to scan the
environment in order to present holograms at a fixed position in the real world.
This could potentially be used in combination with the IWW in order to give an
extra dimension to the presented visual context. In the study of Binaee & Diaz
[46], illusionary 3D augmented reality obstacles produced realistic obstacle-
avoidance behavior in terms of foot placement and foot clearance. In an
unpublished pilot study conducted at the Department of Human Movement
Sciences of the Vrije Universiteit Amsterdam using the HoloLens for 3D
obstacle avoidance, it was demonstrated that scaling the obstacle height indeed
also leads to scaling of the foot clearance of the leading limb during obstacle
crossing. The holographic context presented with the HoloLens thus seems
suitable for evoking step adjustments in 3D. Nevertheless, although people
seem to step over the obstacle quite well with their leading limb, this is not
always the case for their trailing limb (Figure 8.3). The limited field of view is
often reported by participants as a drawback of the current version of the
HoloLens. Hence, the presented obstacle is not entirely visible when a person
steps over it, unless the person looks directly down. The field of view is
supposed to increase with the newer version of the HoloLens, which could
potentially improve the ecological validity of 3D holographic obstacle
avoidance. Besides, it needs to be determined whether certain additions, such
as providing (direct) feedback on performance, can improve the obstacle-
avoidance performance and as such the potential of the HoloLens for use in fall-
risk assessments and for training walking adaptability in falls prevention

programs.

The mobile Interactive Walkway
Technology is always moving and develops fast. Within the time period of my
PhD project, the Kinect sensor progressed from the v1 sensor with relatively

poor depth resolution to the v2 sensor as used in this thesis to a mobile v3



sensor embedded in the HoloLens and soon a v4 sensor will be launched with
even better technical specifications and extra options. The development of
these new techniques (i.e., Kinect sensor, HoloLens) yields new possibilities for
the assessment of walking ability and fall risk and for training of walking
adaptability.

The IWW was developed and tested within the ‘Technology in Motion’
project (timlumc.nl). In this NWO-funded project, new emerging low-cost
techniques, such as the Kinect v2 sensor, were used to quantify motor disorders
in an unobtrusive and patient-friendly manner. The multi-Kinect based IWW
fitted well within the aims of this project, as does the HoloLens. The HoloLens
has the potential to be used as an extension of the IWW to move from 2D to 3D
context as described above, but might potentially also be used as a stand-alone
system to assess and train walking adaptability. The HoloLens is able to scan
the environment in order to present holograms at a fixed position. In addition,
this information can be used by the HoloLens to determine where someone is in
that environment in order to present holograms in a movement-dependent
manner. This would allow for a safe assessment of walking adaptability with 3D
holograms, without being bound to a specific location as is the case for the
IWW. Furthermore, head position data can be measured to calculate
spatiotemporal gait parameters. Preliminary data demonstrated good
agreement between the IWW and HoloLens for step length (absolute between-
systems difference < 0.87 cm), walking speed (absolute between-systems
difference < 1.72 c¢cm/s) and cadence (absolute between-systems difference <
2.02 steps/min). However, walking-adaptability outcome measures, such as
obstacle-avoidance margins, require more detailed kinematics stemming from
an external motion-registration system (such as a location bound IWW).
Nevertheless, with the arrival of the Kinect v4 sensor for the HoloLens, it might
be used as the desired motion registration system when worn by the
assessor(s) looking at the patient. This could yield a more flexible way of

performing quantitative gait assessments and walking-adaptability



assessments in the clinic, without being bound to a particular location. Linking
the HoloLenses of the patient and the assessor(s) further enables that they both
can see the holograms. The envisioned mobile IWW, based on coupled
HoloLenses, thus seems promising for assessment and training of walking

ability and fall risk and is definitely a path worth exploring.

Figure 8.3 The HoloLens (A) and obstacle avoidance over a holographic obstacle presented with

the HoloLens with the leading (B) and trailing (C) limb.
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Abbreviations






2D Two-dimensional

3D Three-dimensional

S8MWT 8-meter walking test

10MWT 10-meter walking test

ADT Augmented dual-task walking (obstacle avoidance with dual
task)

AP Anterior-posterior

ARD Available response distance

ART Available response time

ASS Asymmetric stepping stones

C Control

CI Confidence interval

CWS Comfortable walking speed

EW Entire walkway

FMA Fugl-Meyer Assessment

FOG Freezing of gait

FT Full turns

FW Foot width

HT Half turns



ICCa1

ICC(c)

ISS

IWw

MDS-UPDRS

ML

MOCA

mSAFFE

MWS

NFOGQ

PD

PDT

SCOPA-COG

SD

SL

Intraclass correlation coefficient for absolute agreement
Intraclass correlation coefficient for consistency
Irregular stepping stones

Interactive Walkway

Left

Movement Disorder Society version of the Unified Rating Scale

for Parkinson’s disease
Mediolateral
Montreal Cognitive Assessment

Modified Survey of Activities of Fear of Falling in the Elderly

Scale

Maximum walking speed

New Freezing of Gait Questionnaire

Parkinson’s disease (patient)

Plain dual-task walking (8-meter walking test with dual task)
Right

Stroke patient

Scales for Outcomes in Parkinson’s Disease - Cognition
Slowing down

Step length



SN

SSS

SSWS

SU

SwW

SWOT

VSS

Sudden narrowing

Symmetric stepping stones

Self-selected walking speed of unconstrained walking
Speeding up

Step width

Strengths, weaknesses, opportunities and threats
Vertical

Variable stepping stones

Walkway width






Videos






Overview of the videos that were published with this thesis.

Chapter 2 (Supplement 2.2)

Video of body point’s time series obtained with the multi-Kinect v2 set-up and
the Optotrak system of a single representative trial during the comfortable
walking speed condition of the 10-meter walking test. This video is available at

https://doi.org/10.1371/journal.pone.0139913.s004.

Chapter 5 (Supplement 5.1)
Video of Interactive Walkway tasks of unconstrained walking and walking
adaptability in a patient with stroke. This video is available at

https://youtu.be/nVotGvlPogs.

Chapter 6 (Supplement 6.1)

Video of Interactive Walkway tasks of unconstrained walking, adaptive walking
and dual-task walking in a person with Parkinson’s disease with dyskinesia.
The subject had consented to the making of the video for publication purposes.

This video is available at https://youtu.be/p1a071L9veM.

Chapter 7 (Supplement 7.2)
Video of assessments on the Interactive Walkway in a patient with stroke. This

video is available at https://youtu.be/k702kc5R-K8.
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Neurologische aandoeningen kunnen een negatief effect hebben op
verschillende aspecten van loopvaardigheid die nodig zijn om veilig en
zelfstandig te  kunnen lopen. Dit vraagt om  uiteenlopende
revalidatiestrategieén. Een uitgebreide en volledige beoordeling van de
belangrijkste aspecten van loopvaardigheid zou kunnen helpen om deze
strategieén beter af te stemmen op de individuele behoeften van de patiént. De
Interactive Walkway (figuur N1.1) lijkt een veelbelovend, patiéntvriendelijk en
goedkoop meetinstrument voor loopvaardigheid in de dagelijkse praktijk. De
Interactive Walkway bestaat uit meerdere Kinect v2-sensoren, waarmee het
volledige gangbeeld -zonder markers op het lichaam- in 3D gemeten kan
worden. De Interactive Walkway kan, naast het meten van het gangbeeld,
mogelijk ook het zogenoemde loopspecifieke aanpassingsvermogen op een
veilige manier in kaart brengen door het (plotseling) presenteren van visuele
projecties op het looppad in de vorm van staptegels of obstakels (figuur N1.1).
Dit lijkt waardevol omdat het lopen in het dagelijks leven vaak aangepast moet
worden, bijvoorbeeld bij het oversteken van een straat of bij het ontwijken van
scheefliggende stoeptegels. Een slecht aanpassingsvermogen wordt bovendien
in verband gebracht met een hoger valrisico. Dit aspect van loopvaardigheid
wordt doorgaans echter niet in klinische testen beoordeeld. De Interactive
Walkway biedt nu de mogelijkheid om loopvaardigheid vollediger te meten
door naast het gangbeeld ook het loopspecifieke aanpassingsvermogen in kaart
te brengen. Het is alleen onduidelijk of 1) de Interactive Walkway
loopvaardigheid valide kan meten en, zo ja, 2) of de Interactive Walkway nuttig
is voor het bepalen van loopvaardigheid en valrisico in de kliniek bij patiénten
met een beroerte en patiénten met de ziekte van Parkinson. Het doel van dit

proefschrift was om inzicht te krijgen in deze twee aspecten.



Figuur N1.1 De Interactive Walkway met visuele projecties op het looppad.

Deel 1: Kan loopvaardigheid valide en volledig gemeten worden met de
Interactive Walkway?

De meest gebruikte uitkomstmaat van loopvaardigheid is loopsnelheid over
korte afstanden, bepaald met bijvoorbeeld de 10-meter looptest. Met de
Interactive Walkway kan deze 10-meter looptest worden uitgebreid met een
snelle, niet-invasieve en patiéntvriendelijke kwantitatieve gangbeeldanalyse.
De 3D-kinematica geeft aanvullende informatie over loop- en balansproblemen,
wat niet mogelijk is met standaard klinische testen. De studie beschreven in
Hoofdstuk 2 was gericht op het valideren van een kwantitatieve
gangbeeldanalyse met de Interactive Walkway in een groep van 21 gezonde
personen. De 10-meter looptest werd uitgevoerd op comfortabele en maximale
loopsnelheid, terwijl 3D-kinematica van het hele lichaam gelijktijdig werd
gemeten met zowel de Interactive Walkway als het Optotrak systeem (d.w.z. de
gouden standaard). De resultaten lieten zien dat 3D-kinematica goed
overeenkwam tussen deze bewegingsregistratiesystemen, vooral bij grote
bewegingsuitslagen. Hetzelfde gold voor spatiotemporele gangparameters die

uit 3D-kinematica kunnen worden afgeleid. De resultaten van Hoofdstuk 2



lieten dus zien dat een kwantitatieve gangbeeldanalyse valide uitgevoerd kan
worden met de Interactive Walkway.

De Interactive Walkway kan, naast het meten van het gangbeeld,
mogelijk ook het loopspecifieke aanpassingsvermogen in kaart brengen.
Hiertoe worden visuele projecties (plotseling) op het looppad gepresenteerd in
de vorm van staptegels of obstakels. In Hoofdstuk 3 werd gekeken naar de
overeenkomst tussen de Interactive Walkway en het Optotrak systeem, en de
gevoeligheid voor taak- en tussenpersoonsvariatie van verschillende taken op
de Interactive Walkway ter bepaling van het aanpassingsvermogen. In totaal
voerden 21 gezonde personen meerdere Interactive Walkway-taken uit met
verschillende moeilijkheidsgraden: obstakels ontwijken, plotseling stoppen en
starten, en doelgerichte stappen. De resultaten lieten zien dat uitkomstmaten
van het aanpassingsvermogen, zoals obstakel-ontwijkmarges, over het
algemeen goed overeenkwamen. Daarnaast waren deze uitkomstmaten
gevoelig voor taak- en tussenpersoonsvariatie. Variatie in doelgericht stappen
resulteerde in verschillende staplengten, stapnauwkeurigheden en
loopsnelheden, terwijl reactietijden en obstakel-ontwijkmarges verschilden per
obstakeltype. Dit betekent dat het gebruik van de visuele projecties
mogelijkheden biedt om het lopen te manipuleren en (plotselinge)
stapaanpassingen uit te lokken, in overeenstemming met eerdere onderzoeken
die eenzelfde concept onderzochten tijdens lopen op een loopband.
Gevoeligheid voor taak- en tussenpersoonsvariatie is belangrijk ter bepaling
van het aanpassingsvermogen van relatief goed functionerende groepen (zoals
thuiswonende ouderen), waar plafondeffecten een veelvoorkomend probleem
zijn. Hetzelfde geldt voor bodemeffecten bij relatief kwetsbare patiéntgroepen.
De Interactive Walkway maakt een kwantitatieve bepaling van het
aanpassingsvermogen mogelijk en is haalbaar voor zowel goed functionerende
als kwetsbare populaties, aangezien de moeilijkheidsgraad van de taak kan
worden aangepast. Bovendien is het vaststellen van het aanpassingsvermogen

met de Interactive Walkway relatief veilig (visuele in plaats van fysieke



obstakels), niet belastend (meten zonder markers op het lichaam), en daardoor
tijldbesparend en patiéntvriendelijk. De Interactive Walkway-taken lijken
daardoor bruikbaar voor het verkrijgen van objectieve en meer taakspecifieke
informatie van iemands loopvaardigheid. Dit rechtvaardigt studies naar de
klinische potentie, zoals is beschreven in de Hoofdstukken 5 tot en met 7.

De inzichten verkregen in de twee validatiestudies gaven aanleiding
voor nog een derde validatiestudie. De studie beschreven in Hoofdstuk 4 had
als doel het systematisch onderzoeken van het effect van afstand van het
lichaam tot de sensor, lichaamszijde (d.w.z. links of rechts) en staplengte op de
voetplaatsingslocaties bepaald aan de hand van de geschatte enkelposities door
de Kinect v2-sensor van de Interactive Walkway. De voetplaatsingslocaties zijn
nodig voor het kwantificeren van spatiéle gangparameters en verschillende
uitkomstmaten van het aanpassingsvermogen. In totaal hebben 12 gezonde
personen staptaken met opgelegde voetplaatsingslocaties op verschillende
afstanden van de Kinect sensor uitgevoerd, voor zowel de linker- als de
rechtervoet en met verschillende opgelegde staplengten. Deze staptaken
werden gelijktijdig vastgelegd met de Kinect v2-sensor en het Optotrak
systeem. Kleine maar significante verschillen tussen de systemen werden
gevonden voor voetplaatsingslocaties en staplengte. Deze werden
waarschijnlijk veroorzaakt door verschillen in lichaamsoriéntatie ten opzichte
van de Kinect sensor, waardoor de enkelposities meer naar achteren werden
geschat. Dit effect kan eenvoudig verminderd worden door de afstanden tussen
de sensoren van de Interactive Walkway-opstelling te verkleinen, om zo
voetplaatsingslocaties op grotere afstanden van de sensor te kunnen bepalen.

Uit deze drie validatiestudies kan worden geconcludeerd dat de
Interactive Walkway gebruikt kan worden om zowel het gangbeeld (Hoofdstuk
2) als het loopspecifieke aanpassingsvermogen (Hoofdstuk 3) valide in kaart te
brengen bij gezonde personen. Het biedt tevens de mogelijkheid voor een
volledig(er) looponderzoek, waarbij alle onderdelen van het drieledig model

van loopvaardigheid worden meegenomen, te weten het vermogen om 1)



stappen te genereren, 2) de balans te bewaren en 3) het lopen aan te passen
aan de omgeving. De resultaten van Hoofdstukken 2 tot en met 4 hebben ook
tot een verbetering van de Interactive Walkway-opstelling geleid door het
verkleinen van de afstand tussen de sensoren. De volgende stap was het
bestuderen van de klinische potentie van de Interactive Walkway ter bepaling
van loopvaardigheid en valrisico bij verschillende patiéntgroepen, zoals hierna

zal worden besproken.

Deel 2: Is de Interactive Walkway nuttig voor het bepalen van
loopvaardigheid en valrisico in de kliniek?

Het doel van de studie beschreven in Hoofdstuk 5 was om te onderzoeken of
de Interactive Walkway gebruikt kan worden ter bepaling van loopvaardigheid
bij patiénten met een beroerte. Het in kaart brengen van beperkingen in
loopvaardigheid kan helpen bij het ontwikkelen van geindividualiseerde
revalidatiestrategieén. Bij 30 patiénten met een beroerte en 30 gezonde
controlepersonen van gelijke leeftijd en gelijk geslacht werden verschillende
klinische testen afgenomen, evenals kwantitatieve 3D-gangbeeldanalyses en
verschillende Interactive Walkway-taken. De resultaten van deze studie
suggereren een goede known-groups validiteit voor Interactive Walkway-
uitkomstmaten van het aanpassingsvermogen, vergelijkbaar met die van
klinische testen en kwantitatieve gangbeeldanalyses. Bovendien bleken
Interactive Walkway-taken aanvullende informatie te geven, gezien de
overwegend lage tot middelmatig sterke correlaties tussen de uitkomstmaten
van het aanpassingsvermogen, en die van klinische testen en kwantitatieve
gangbeeldanalyses. Deze bevindingen suggereerden daarom dat het bepalen
van het gangbeeld en het loopspecifieke aanpassingsvermogen, door middel
van obstakels ontwijken en doelgericht stappen, met de Interactive Walkway
een snel, niet-invasief en volledig kwantitatief beeld geeft van loopvaardigheid.
Dit biedt mogelijkheden voor het monitoren van herstel na een beroerte en

voor het individualiseren van revalidatiestrategieén.



In Hoofdstuk 6 werden het gangbeeld (d.w.z. kwantitatieve
gangbeeldanalyse), adaptief lopen en dubbeltaaklopen onderzocht met de
Interactive Walkway bij 14 patiénten met de ziekte van Parkinson met freezing
of gait, 16 patiénten met de ziekte van Parkinson zonder freezing of gait en 30
gezonde controlepersonen. Patiénten met freezing of gait scoorden het slechtst,
patiénten zonder freezing of gait scoorden gemiddeld en controlepersonen
scoorden het best op de meeste Interactive Walkway-taken, in
overeenstemming met de resultaten van de klinische testen. Dit suggereert een
goede known-groups validiteit voor de Interactive Walkway-taken. Patiénten
met de ziekte van Parkinson ondervonden vooral problemen wanneer zij
moesten afwijken van hun eigen looppatroon, waarbij een beroep moest
worden gedaan op de dynamische balanscontrole. Om een goed beeld te krijgen
van iemands loopvaardigheid moet daarom zowel het gangbeeld als het
adaptief lopen worden onderzocht, bijvoorbeeld door middel van obstakels
ontwijken en doelgericht stappen. In deze studie werd aangetoond dat deze
Interactive Walkway-taken ook aanvullende informatie geven ten opzichte van
klinische testen, gezien de lage tot middelmatig sterke correlaties tussen deze
twee typen testen. Bovendien bleek classificatie van patiénten mét en zénder
freezing of gait aan de hand van Interactive Walkway-uitkomstmaten van
adaptief lopen iets beter dan classificatie op grond van klinische testscores. De
Interactive Walkway heeft dus potentie om loopvaardigheid bij de ziekte van
Parkinson volledig(er) te bepalen. Het maakt het mogelijke om belangrijke
aspecten die mogelijk een verband hebben met valincidenten in kaart te
brengen, zoals is onderzocht in Hoofdstuk 7.

In Hoofdstuk 7 werd onderzocht of de Interactive Walkway gebruikt
kan worden om toekomstige vallers en risicofactoren voor toekomstige
valincidenten te identificeren in een gemengd cohort van patiénten met een
beroerte, patiénten met de ziekte van Parkinson en gezonde personen. In deze
studie werd gekeken naar persoonskarakteristieken, klinische loop- en

balanstesten, een kwantitatieve gangbeeldanalyse en Interactive Walkway-



taken. Valkalenders werden gebruikt om gedurende zes maanden prospectief
alle valincidenten te registeren. Zodoende konden personen als vallers (d.w.z.
tenminste een loopgerelateerde val gedurende de vervolgperiode) of niet-
vallers worden geidentificeerd. Bij aanvang van de vervolgperiode hadden
vallers meer angst om te vallen en vermeden ze meer activiteiten uit angst om
te vallen dan niet-vallers. Daarnaast liepen vallers langzamer en met kleinere
stappen en presteerden ze slechter op klinische loop- en balanstesten. Zoals
verwacht presteerden vallers ook slechter op verschillende Interactive
Walkway-taken. Naast valgeschiedenis werden het percentage succesvol
ontweken obstakels en de genormaliseerde loopsnelheid tijdens doelgericht
stappen geidentificeerd als voorspellende variabelen van valincidenten, en
toevoeging van deze risicofactoren verbeterde de identificatie van vallers.
Personen die slecht scoorden op de obstakel-ontwijktaak en die hun
loopsnelheid niet aanzienlijk verlaagden tijdens doelgericht stappen liepen het
grootste risico om te vallen. Het identificeren van deze taakspecifieke
valrisicofactoren kan leiden tot meer gerichte, gepersonaliseerde en mogelijke
effectievere valpreventieprogramma’s. Deze taken lijken, mits geverifieerd in
een grotere groep, dus veelbelovende aangrijpingspunten voor toekomstige
valpreventieprogramma’s.

Gezamenlijk laten deze bevindingen zien dat de loopvaardigheid van
patiénten met een beroerte (Hoofdstuk 5) en patiénten met de ziekte van
Parkinson (Hoofdstuk 6) valide en volledig gemeten kan worden met de
Interactive  Walkway.  Bovendien  bleken  beperkingen in  het
aanpassingsvermogen risicofactoren voor valincidenten, variabelen die ook bij
kunnen dragen aan een betere identificatie van vallers (Hoofdstuk 7). De
Interactive Walkway heeft dus potentie om de loopvaardigheid bij patiénten
met een beroerte en patiénten met de ziekte van Parkinson valide en volledig in
kaart te brengen, en is daarmee veelbelovend voor het inschatten van het

valrisico.
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