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Gait and balance impairments in neurological disorders 

Stroke and Parkinson’s disease (PD) are two highly prevalent neurological 

disorders, with estimated prevalence rates in the Netherlands of 3,425 per 

100,000 for stroke [1] and 1,350 per 100,000 for PD [2]. These neurological 

disorders can lead to a great variety of motor and non-motor symptoms [3-5]. 

Gait and balance impairments are among the most serious motor consequences 

of these disorders, because they negatively influence the ability to walk and loss 

of this ability has a significant impact on the quality of life of these patients [6-

8]. In addition, fallers seem to experience greater impairments in walking 

ability compared to non-fallers [9-12]. A thorough insight into gait and balance 

impairments of patients is thus essential to provide the best treatment for 

regaining or maintaining their walking ability in order to reduce the risk of 

falling. 

The archetypal gait impairment after stroke is hemiparetic gait, which 

is characterized by temporal and/or spatial asymmetry [13,14]. In addition, 

gait impairments in stroke patients often result in slower walking speeds, 

smaller step lengths, increased step times, reduced cadences and wider steps 

than healthy controls [15-17]. In PD patients, a different gait pattern is seen. 

Parkinsonian gait is characterized by a shuffling gait with a stooped posture 

and reduced arm swing [18]. Compared to healthy controls, slower walking 

speeds, smaller step lengths and increased cadences have been found [18]. 

Additionally, PD patients may also suffer from episodic gait impairments, such 

as freezing of gait (FOG) [6]. The gait impairments listed above can be 

evaluated objectively using 3D gait analyses. The results of these analyses 

provide a good understanding of the disease-specific gait impairments and 

severity of the motor symptoms. 

In the clinic, extensive 3D gait analyses are often not performed, mainly 

due to the costs and time required to conduct the analysis. In contrast, 

subjectively-scored assessments examining disease-specific motor 

impairments are often administered. These include, for example, examinations 
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of isolated limb movements with the Fugl-Meyer Assessment in stroke patients 

or the comprehensive Movement Disorder Society version of the Unified 

Parkinson’s Disease Rating Scale in PD patients. Although these clinical tests 

provide useful information about the motor symptoms, they fail to reflect their 

influence on the walking ability of patients and are often time consuming. The 

most commonly used outcome measure of walking ability in the clinic is 

walking speed assessed over short distances, for example using the 10-meter 

walking test. It is a simple and cost effective outcome measure [19] and has 

been found to be associated with falls [20-25], hospitalization [23,24] and life 

expectancy [24,25] in older adults. Furthermore, generic gait and balance 

assessments examining functional mobility and balance outcomes, such as the 

Timed-Up-and-Go test and the Berg Balance Scale, are also frequently used 

clinical tests. 

Although valuable, quantitative 3D gait analyses and clinical tests do 

not account for the full repertoire of walking skills needed for safe walking in 

order to prevent falls [26]. There is thus a need for a more comprehensive 

assessment of walking ability that incorporates factors directly associated with 

walking-related fall risk. A more task-specific assessment of walking ability 

could help identify people at risk of falling as well as help personalize 

treatments by targeting the identified risk factors. 

 

The tripartite model of walking ability 

Walking ability is defined as the ability to walk independently and safely from 

one place to the other [27]. In order to determine what should be in a 

comprehensive assessment of walking ability, we need to consider what 

walking ability entails. The tripartite model [26] is quite instrumental in that 

regard. This model comprises three overlapping components that are required 

for independent and safe walking (Figure 1.1). The person needs to be able to 

1) generate effective stepping and 2) maintain balance while walking. These 

two components are often assessed with standard clinical tests, such as the 10-
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meter walking test and the Berg Balance Scale. However, people should not 

only be able to walk safely in fairly simple and predictable environments, but 

should also be able to modify and adapt walking to both expected and 

unexpected changes in the environment in order to walk safely in everyday life 

[28], as reflected in the third component of the tripartite model: walking 

adaptability. The tripartite model was substantiated by the neural control 

frameworks put forward by Forssberg [29] and Grillner & Wallen [30], since 

differential neural control systems underlie walking adaptability and steady-

state walking (for a review, see Balasubramanian et al. [26]). The three 

components of walking ability overlap (Figure 1.1) and the extent to which the 

various components are involved during walking depends upon the 

environmental and situational context, which is inherently variable and 

therefore imposes different demands on walking [27]. 

Walking adaptability is defined as the ability to modify walking to meet 

behavioral task goals and demands of the environment [26]. This component 

was previously described by Patla & Shumway-Cook [27], who proposed a 

theoretical framework where walking ability is not just the property of the 

individual to generate stepping and maintain balance, but reflects an 

interaction between the individual and the environment. Patla & Shumway-

Cook [27] defined eight environmental domains that describe the complexity of 

the situation. Balasubramanian et al. [26], in turn, proposed nine domains, 

changing some domains of Patla & Shumway-Cook [27] and introducing 

domains as abilities of the individual to handle these situations. The domains 

consisted of obstacle negotiation (e.g., stepping over a doorstep), temporal 

constraints (e.g., walking faster to cross a street), cognitive dual-tasking (e.g., 

talking while walking), terrain demands (e.g., walking in a forest), ambient 

demands (e.g., walking in the dark), postural transitions (e.g., turning), motor 

dual-tasking (e.g., walking while holding a glass), physical load (e.g., walking 

with a heavy backpack) and maneuvering in traffic (e.g., walking around people 

in a busy shopping street). The demand on a particular domain and the number 
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of domains involved may vary per environment, which clearly illustrates the 

challenge of assessing walking ability. 

 

 

Figure 1.1 Tripartite model of walking ability. 

 

Comprehensive assessment of walking ability 

When measuring walking ability in the clinic, there are several points to 

consider. First, we would like to address all components of the tripartite model 

to provide a completer picture of a person’s walking ability than currently 

obtained with standard clinical tests. Although good clinical tests assessing 

stepping and balance already exist, there is currently no good assessment of 

walking adaptability [26]. Walking-related falls often occur due to trips, slips or 

misplaced steps [31-35], suggesting that people have problems adapting 

walking. Walking adaptability therefore seems to be related to fall risk and 
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appears to be an important component of safe walking. Second, for an 

assessment to be useful in the clinic, there are certain practical requirements 

that need to be taken into account. Assessments should not take up too much 

time and should be cheap, easy to use and patient-friendly. Furthermore, while 

some clinical tests use subjectively scored assessments, objective examinations 

of motor function are preferred. Nevertheless, the most important point is that 

a comprehensive assessment provides valid and meaningful information about 

someone’s walking ability. Such an assessment may help physicians and 

physiotherapists to characterize a person’s walking ability, to select the best 

treatment for a specific person, and to monitor changes in walking ability over 

time or in response to the selected treatment. 

 

 

Figure 1.2 The Interactive Walkway with visual context projected onto the walkway. 

 

The Interactive Walkway 

The Interactive Walkway (IWW; Figure 1.2; [36]) is a system that may be used 

to address all components of walking ability and meets all practical 

requirements mentioned above. With the IWW, a quantitative gait assessment 

may be performed to gain more insight into gait impairments, which may 
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provide information about the stepping and balance components of walking 

ability. The IWW is an 8- or 10-meter walkway instrumented with an 

integrated multi-Kinect v2 set-up for markerless registration of 3D full-body 

kinematics during walking. This multi-Kinect v2 set-up may be a good 

alternative for other 3D motion registration systems, since it is patient-friendly, 

cost-efficient and easy to use. Besides performing quantitative gait 

assessments, the IWW may also be used to assess walking adaptability. The 

IWW is equipped with a projector to augment the entire walkway with (gait-

dependent) visual context, such as obstacles, sudden-stop-and-start cues and 

stepping targets. Using the real-time processed integrated Kinect data, 

obstacles can suddenly appear at the position one would step next, demanding 

a step adjustment under time pressure demands. The so-elicited gait-

environment interactions potentially allow for assessing various walking-

adaptability aspects and domains (e.g., the ability to avoid obstacles, suddenly 

stop or start, perform accurate goal-directed steps) in a safe manner. Taken 

together, the IWW has great potential to provide a comprehensive assessment 

of walking ability while fulfilling the practical assessment requirements of 

being efficient, unobtrusive, patient-friendly, low-cost and objective. 

 

Aims and outline of this thesis 

Although the IWW seems promising, it remains still unknown if 1) it can 

provide a valid assessment of walking ability and, if so, 2) what its clinical 

potential is for assessing walking ability and fall risk in stroke patients and PD 

patients. The aim of my thesis is to gain insight into these two aspects. 

 

Part 1: Can the IWW be used for a valid comprehensive assessment of 

walking ability? 

In the next three chapters, studies to validate the IWW are described. In 

Chapter 2, the validity of the IWW for quantitative gait assessments is 

evaluated in a group of 21 healthy subjects. The 10-meter walking test is 
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conducted at comfortable and maximum walking speed, while 3D full-body 

kinematics is concurrently recorded with the multi-Kinect v2 set-up of the IWW 

and a gold-standard motion-registration system. In Chapter 3 the between-

systems agreement and sensitivity to task and subject variations for various 

walking-adaptability assessments on the IWW is addressed. Under varying task 

constraints, 21 healthy subjects perform obstacle-avoidance, sudden-stops-

and-starts and goal-directed-stepping tasks. Outcome measures are 

concurrently determined with the IWW and a gold-standard motion-

registration system. Based on the insights obtained in these two studies, we 

performed another validation study, described in Chapter 4, with the aim to 

systematically evaluate the effects of distance to the sensor, body side and step 

length on estimates of foot placement locations calculated with Kinect’s ankle 

body points in a group of 12 healthy subjects. Estimates of foot placement 

locations are required to quantify spatial gait parameters and outcome 

measures of walking adaptability. The results of Chapters 2 to 4 were used to 

improve the IWW set-up before it was used to examine the clinical potential of 

the IWW for assessing walking ability and fall risk in stroke patients and PD 

patients (Chapters 5 to 7). 

 

Part 2: What is the clinical potential of the IWW for assessing walking 

ability and fall risk? 

Stroke and PD are two neurological disorders that are highly prevalent and that 

have a severe impact on the walking ability of patients. In Chapter 5, the 

potential of the IWW as a new technology for assessing walking ability in stroke 

patients is evaluated. In total, 30 stroke patients and 30 age- and sex-matched 

healthy controls perform clinical tests as well as quantitative 3D gait 

assessments and various walking-adaptability tasks using the IWW. The 

known-groups validity of the assessments is examined as well as the added 

value of assessing walking adaptability over standard clinical tests. A similar 

study evaluating the expected added value of IWW assessments in 30 PD 



Chapter 1 

16 

 

patients is described in Chapter 6. Again, the known-groups validity of all 

assessments is examined. Furthermore, the IWW outcome measures are related 

to commonly used clinical test scores to indicate their added value. Finally, the 

added value of IWW outcome measures over clinical tests scores for 

discriminating PD patients with and without FOG is examined. 

The final objective of this thesis is to gain insight into the potential 

merit of the IWW for assessing fall risk in these patient groups. As indicated 

above, walking adaptability seems to be an important risk factor for falls, so 

including it in an assessment would potentially allow for a better identification 

of (future) fallers. The aim of Chapter 7 is to evaluate the potential merit of the 

IWW to identify fallers and risk factors for future falls in a cohort with 30 

stroke patient, 30 PD patients and 30 healthy controls. This study comprises 

subject characteristics, clinical gait and balance tests, a quantitative gait 

assessment and a walking-adaptability assessment. The results will provide 

insight into the (relative) importance of stepping, balance and walking 

adaptability for independent and safe walking. In Chapter 8 a summary of the 

main conclusions, a general discussion of the results and suggestions for future 

research are outlined to further develop the IWW as a comprehensive 

assessment of walking ability to assess fall risk. 
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Walking ability is frequently assessed with the 10-meter walking test (10MWT), 

which may be instrumented with multiple Kinect v2 sensors to complement the 

typical stopwatch-based time to walk 10 meters with quantitative gait 

information derived from Kinect’s 3D body point’s time series. The current study 

aimed to evaluate a multi-Kinect v2 set-up for quantitative gait assessments 

during the 10MWT against a gold-standard motion-registration system by 

determining between-systems agreement for body point’s time series, 

spatiotemporal gait parameters and the time to walk 10 meters. To this end, the 

10MWT was conducted at comfortable and maximum walking speed, while 3D 

full-body kinematics was concurrently recorded with the multi-Kinect v2 set-up 

and the Optotrak motion-registration system (i.e., the gold standard). Between-

systems agreement for body point’s time series was assessed with the intraclass 

correlation coefficient (ICC). Between-systems agreement was similarly 

determined for the gait parameters walking speed, cadence, step length, stride 

length, step width, step time, stride time (all obtained for the intermediate 6 

meters) and the time to walk 10 meters, complemented by Bland-Altman’s bias 

and limits of agreement. Body point’s time series agreed well between the motion-

registration systems, particularly so for body points in motion. For both 

comfortable and maximum walking speeds, the between-systems agreement for 

the time to walk 10 meters and all gait parameters except step width was high 

(ICC ≥ 0.888), with negligible biases and narrow limits of agreement. Hence, body 

point’s time series and gait parameters obtained with a multi-Kinect v2 set-up 

match well with those derived with a gold standard in 3D measurement accuracy. 

Future studies are recommended to test the clinical utility of the multi-Kinect v2 

set-up to automate 10MWT assessments, thereby complementing the time to walk 

10 meters with reliable spatiotemporal gait parameters obtained objectively in a 

quick, unobtrusive and patient-friendly manner. 
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Introduction 

Walking speed is associated with falls [1-3], adverse events [4,5] and life 

expectancy [6] in older adults. A standardized clinical test often used to assess 

walking speed is the 10-meter walking test (10MWT). However, the 10MWT 

only provides a single performance measure (i.e., walking speed derived from 

the time to walk 10 meters), reflecting just one aspect of walking ability. To 

yield a more comprehensive evaluation of walking ability, quantitative gait 

assessments (e.g., step length, cadence and step width) may be conducted using 

high-end motion-registration systems. Yet, even the best motion-registration 

systems yield limitations when conducting quantitative gait assessments in 

clinical settings (e.g., costs, patient-preparation time, calibration procedures, 

marker occlusion, and delays in availability of results; [7]). 

A promising motion-registration system to instrument the 10MWT is 

the Microsoft Kinect sensor, a RGB-D camera that was launched in 2011 in 

combination with a Software Development Kit for 3D human-pose estimation, 

originating from the gaming industry [8]. The development of 3D human-pose 

estimation software, using a large and highly varied training dataset of paired 

depth images and ground truth body parts to train very deep decision forests 

for efficient and accurate body part recognition [8], was a major undertaking by 

Microsoft. It successfully eliminated the need for markers and calibration 

procedures, thereby enabling fast and patient-friendly 3D full-body motion 

registration (Figure 2.1). This motion-registration system has gained enormous 

interest from developers and scientists in the context of assessment and 

rehabilitation of balance, posture and gait (e.g., [9-18]), since it allows for 

motion registration in a quick and affordable manner. Recently, the second 

generation of the Kinect sensor has been introduced. Key differences with the 

previous Kinect v1 sensor are that the Kinect v2 sensor is a time-of-flight 

camera with an increased resolution of the depth image, a wider field of view 

and improved body point tracking [19], possibly leading to improved results. 
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Several studies have demonstrated that spatiotemporal gait 

parameters can be validly obtained using a single Kinect v1 sensor 

[9,11,13,14,17], and recently also for a single Kinect v2 sensor [15]. However, 

these studies only analyzed a few steps since accurate body point tracking with 

the Kinect sensor is only possible between 0.8 and 4.0 meters from the Kinect 

v1 sensor and between 0.5 and 4.5 meters from the Kinect v2 sensor due to the 

limited field of view and poorer depth-image quality at greater distances. One 

way to cover a larger volume, such as the walkway of the 10MWT, is to use 

multiple spatially and temporally integrated Kinect sensors. Hereby 

measurement volume may be increased, while preserving good quality depth 

images for accurate body point tracking. This supposedly allows for the 

parametrization of a large number of steps during walking from high quality 3D 

body point’s time series. In view of Kinect’s v2 higher resolution depth images, 

improved body point tracking and enlarged area for accurate body point 

tracking, the current study will explore the potential of a multi-Kinect v2 set-up 

for instrumenting the 10MWT. 

The objective of this study is to determine the usability of a multi-

Kinect v2 set-up to quantitatively assess gait during the 10MWT. Because the 

multi-Kinect v2 set-up has not yet been validated for 3D full-body motion 

registration, its performance will be compared to a gold standard in 3D 

measurement accuracy (i.e., the Optotrak active-marker 3D optical tracking 

system, Northern Digital Inc., Waterloo, Canada). The between-systems 

agreement will be examined for raw data (i.e., body point’s time series) and 

spatiotemporal gait parameters (e.g., step length, cadence and step width). In 

addition, the between-systems agreement for the performance measure of the 

10MWT (i.e., time to walk 10 meters) will be assessed between the multi-Kinect 

v2 set-up, the Optotrak motion-registration system (i.e., the gold-standard 

reference) and the stopwatch (i.e., the clinical standard). 
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 Figure 2.1 RGB image (A) and depth image (B) with the corresponding body points derived with 

the human-pose estimation software of Kinect v1. 

 

 

Figure 2.2 Overview of the multi-Kinect v2 set-up. 

 

Methods 

Subjects 

A heterogeneous group of 21 healthy subjects in terms of gender (11 males, 10 

females), age (mean [range]: 30.2 [19-63] years), height (176.1 [158-190] cm) 

and weight (70.5 [53-83] kg) took part in this experiment. Subjects did not have 

any medical condition that would influence walking. 
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Ethics statement 

The current study was approved by the ethics committee of the Department of 

Human Movement Sciences (VU University Amsterdam, Amsterdam). All 

subjects provided written informed consent prior to participation. The subjects 

in Figure 2.1 have given written informed consent, as outlined in the PLOS 

consent form, to publish this photograph. 

 

Experimental set-up and procedure 

Full-body kinematics was recorded with four spatially and temporally 

integrated Microsoft Kinect v2 sensors and the Optotrak system (Northern 

Digital Inc., Waterloo, Canada). The multi-Kinect v2 set-up is displayed in 

Figure 2.2. The four Kinect v2 sensors were positioned on tripods alongside a 

walkway of 10 by 0.5 meters at a height of 0.75 meters. The sensors were 

placed 0.5 meters from the left border of the walkway with an angle of 70 

degrees relative to the walkway direction. The first sensor was positioned at 4 

meters from the start of the walkway. The other three sensors were placed at 

inter-sensor distances of 2.5 meters. In addition, five Optotrak cameras (i.e., a 

combination of two Optotrak 3020 and three Optotrak Certus cameras, which 

are all compatible with each other) were positioned around the walkway to 

cover the same area as the multi-Kinect v2 set-up. The so-obtained Optotrak 

set-up ensured sub-millimeter accuracy throughout the 10-meter walkway. The 

coordinate systems of the multi-Kinect v2 set-up and the Optotrak system were 

aligned using a spatial calibration grid. 

The Kinect for Windows Software Development Kit (SDK 2.0, 

www.microsoft.com) provides, with a sampling rate of 30 Hz, the 3D positions 

of 25 body points (Figure 2.3B). These body points are: head, neck, spine 

shoulder, spine mid, spine base and left and right shoulder, elbow, wrist, hand, 

thumb, hand tip, hip, knee, ankle and foot. For motion registration with the 

Optotrak system (Northern Digital Inc., Waterloo, Canada, using First Principles 

data acquisition software with a sampling rate of 60 Hz), subjects were asked to 



Chapter 2 

28 

 

wear tight-fitting shorts and a t-shirt to limit clothing-related marker occlusion. 

Smart Marker Rigid Bodies (Northern Digital Inc., Waterloo, Canada) were 

attached to the head, upper arms, forearms, lower abdomen, upper legs, lower 

legs and feet (Figure 2.3A), allowing for 6 degrees of freedom tracking of body 

segments. In addition, 30 anatomical landmarks were digitized using a 3-

marker digitizing probe to define various body point positions (so-called virtual 

markers) on abovementioned body segments. Smart markers were also placed 

on the sternum, hands and feet. The body points represented by Optotrak’s 

virtual markers and/or smart markers were selected to closely match Kinect’s 

body points (see Supplement 2.1), although sometimes arbitrary positional 

differences between the body point’s time series of the two motion-registration 

systems could not be prevented because 1) the exact definitions of the body 

points given by the human-pose estimation algorithms of Kinect v2 are not 

known and 2) virtual markers and smart markers are by definition positioned 

at the contours of the body while Kinect v2 body points are typically estimated 

within the body. For example, the smart marker representing Kinect’s spine 

shoulder was placed on the sternum (see Supplement 2.1), which deviates in 

AP direction from the within-body spine shoulder given by the human-pose 

estimation algorithm of Kinect v2, thus resulting in a between-systems 

positional mismatch. Positions of the neck, spine mid, thumbs and hand tips 

body points were not tracked with the Optotrak system due to the limited 

number of available smart markers, rendering a total of 19 out of 

aforementioned 25 body points eligible for a between-systems agreement 

analysis (as specified in Supplement 2.1). 

Before conducting the experiment, the quality of the depth image of the 

subject was checked since some textiles are known to corrupt the infrared 

radiation emitted by the previous Kinect v1 sensor, making human-pose 

estimation less accurate [17]. No problems were encountered with clothing of 

the subjects, possibly owing to the improved properties of the Kinect v2 sensor. 

Subsequently, subjects performed the 10MWT at two different walking speeds, 
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namely comfortable walking speed (CWS) and maximum walking speed (MWS). 

Both conditions were performed three times in a fixed order (i.e., three times 

CWS followed by three times MWS). Subjects were instructed to start walking 

at the fourth, high-pitched beep of a standardized auditory start command (i.e., 

three low-pitched beeps followed by one high-pitched beep) and to continue 

walking until they had fully crossed the finish line. The standardized auditory 

start command was synchronized with the multi-Kinect v2 set-up. 

Synchronization between the two motion-registration systems was achieved by 

a synchronization movement (i.e., ab- and adduction of both arms) that 

participants performed prior the auditory start command of each trial. Motion 

registration started before the synchronization movement and ended well after 

the subject had passed the 10-meter line. Time to walk 10 meters (i.e., from 

final beep onset until the moment that the most forward ankle passed the 10-

meter line, according to the recommendations of Graham et al. [20]) was 

determined using a stopwatch. A video showing body point’s time series 

simultaneously for both measurement systems during the 10MWT is available 

in the supplementary material (see Supplement 2.2). This video also includes 

the synchronization movement and the standardized auditory start command. 

 

 

Figure 2.3 Body point determination with the Optotrak and Kinect v2 systems. (A) Subject with all 

markers of the Optotrak system; (B) Same subject with body points derived with the human-pose 

estimation algorithm of Kinect v2. 
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Data pre-processing 

The 3D positional data of body points were first pre-processed per Kinect 

sensor separately. Inferred body points (i.e., when a body point was not visible 

due to for example occlusion, Kinect’s human-pose estimation software 

inferred its position) were considered as missing values. Moreover, since the 

sampling frequency of the Kinect system is not constant (i.e., apart from 20 

outliers in inter-sample intervals for multiple subjects but confined to one 

Kinect sensor, the remaining inter-sample intervals ranged from 32 to 34 ms), 

the body point’s time series were linearly interpolated using Kinect’s 

timestamps to ensure a constant sampling frequency of 30 Hz, without filling in 

the parts with missing values. Data points not adhering to the requirements for 

valid human-pose estimation (e.g., minimum of 15 tracked body points out of 

the 25 body points, tracked data points for the head and at least one foot and no 

outliers in segment lengths) were removed from the time series. Subsequently, 

data of the four Kinect sensors were combined by taking for each sample the 3D 

positions of the body points of a validly estimated human pose. If, for a given 

sample, more than one sensor contained valid human-pose data, the associated 

body point’s 3D positions were averaged for that specific sample. Optotrak data 

were down-sampled to 30 Hz. Subsequently, the cross-covariance and time lag 

were determined for paired time series in the mediolateral (ML) and vertical 

(V) direction of the elbows, wrists and hands during the synchronization 

movement. These time series were first interpolated with a spline algorithm in 

case of missing data. The median of the time lags was used to temporally align 

the time series of the two motion-registration systems. Time-synchronized 3D 

body point’s time series of both systems are presented as supplementary 

material, starting from final beep onset until the moment that for both systems 

the most forward ankle passed the 10-meter line (see Supplement 2.3). Body 

point’s time series with more than 50 percent of missing values were excluded 

from further analyses. No time series were excluded for the multi-Kinect v2 set-

up, whereas 17 out of 2,394 time series were excluded for Optotrak, including 
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two time series of the ankles from which gait parameters were derived. The 

missing values of the remaining data were interpolated with a spline algorithm. 

The so-obtained time series were used for assessing the between-systems 

agreement in body point’s time series (see Data analysis) and for the 

quantification of several gait parameters, as specified in the next paragraph. 

Several gait parameters were calculated from the body point’s time 

series, separately for both measurement systems. The following spatiotemporal 

gait parameters were all determined for the intermediate 6 meters (i.e., from 

the 2-meter to the 8-meter line), reducing the effect of gait acceleration and 

deceleration on the gait parameters [21]. Walking speed (in cm/s) was defined 

as the distance travelled between the 2-meter and 8-meter line on the walkway 

divided by the time, using the data of the spine shoulder. For the other gait 

parameters, estimates of foot contact and foot off were required, stemming 

from respectively the maxima and minima of the anterior-posterior (AP) time 

series of the ankles relative to that of the spine base [22] (Figures 2.4A and 

2.4C). For spatial gait parameters, first left and right step locations were 

determined, defined as the median value of the left and right ankle position in 

the AP and ML direction during the respective single-support stance phases 

(i.e., between foot off and foot contact of the contralateral foot). Based on these 

AP and ML step locations, various spatial gait parameters were determined. 

Step length (in cm) was calculated as the AP difference of consecutive step 

locations (Figure 2.4D). Stride length (in cm) was calculated as the AP 

difference of consecutive ipsilateral step locations. Moreover, step width (in 

cm) was estimated by taking the absolute ML difference of consecutive step 

locations. Cadence (in steps/min) was calculated from the number of steps in 

the time interval between the first and last estimate of foot contact. Step time 

(in s) was calculated as the time interval between two consecutive instants of 

foot contact (Figure 2.4D). Consequently, stride time (in s) was calculated as the 

time interval between two consecutive ipsilateral instants of foot contact. For 

step length, stride length, step width, step time and stride time, median values 
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within the 6-meter window were used as outcome measures per trial since 

Baldewijns et al. [9] demonstrated superior agreement between registration 

systems on a per walk basis. 

The performance measure of the 10MWT, that is the time to walk 10 

meters (in s), was defined as the time from final beep onset until the moment 

that the most forward ankle passed the 10-meter line (Figure 2.4B). For 

comparison with the stopwatch score, serving as the clinical reference, the time 

to walk 10 meters was also determined from data of the multi-Kinect v2 set-up 

and the Optotrak system, the latter serving as the gold-standard reference. 

 

Data analysis 

First, the between-systems agreement was calculated for the body point’s time 

series from final beep onset until the moment that the most forward ankle 

passed the 10-meter line. For the AP direction, the trend was removed using a 

bidirectional, second-order Butterworth high-pass filter (cutoff frequency of 0.5 

Hz) to reduce the effect of a large within-subject variation (increasing from 0 to 

10 meter) on the agreement statistic, which would become arbitrarily high 

[23]. The agreement between the time series of the two motion-registration 

systems was calculated for each body point in the AP, ML and V direction by 

means of the intraclass correlation coefficient for consistency (ICC(C,1); [24]). 

We selected ICC(C,1) in view of abovementioned somewhat arbitrary between-

systems mismatches in body point’s time series (see Supplement 2.1). The 

average ICC(C,1) was constructed over all trials per system, body point and 

direction for each subject. From these values, the average ICC(C,1) over subjects 

was calculated for each system, body point and direction, including confidence 

intervals. 

Second, the between-systems agreement for spatiotemporal gait 

parameters was calculated. Spatiotemporal gait parameters were based on 

specific within-system time series’ features (e.g., minima or maxima, 

consecutive step locations) and hence less susceptible to arbitrary systematic 
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between-systems positional differences in body point’s time series. Therefore, 

the ICC for absolute agreement (ICC(A,1); [24]) was selected. The agreement in 

the time to walk 10 meters obtained with the multi-Kinect v2 set-up, the 

Optotrak system (gold standard) and a stopwatch (clinical standard) was also 

assessed using ICC(A,1). 

In line with Cicchetti [25], we regard ICC values above 0.60 as good and 

ICC values above 0.75 as excellent. ICC(A,1) values were complemented by mean 

differences and precision values obtained with a Bland-Altman analysis (i.e., the 

bias and the limits of agreement, respectively; [26]). Since large differences 

were expected between CWS and MWS conditions for all gait parameters, 

leading to large within-subject variation that would arbitrarily inflate the 

between-systems agreement [23], the agreement for gait parameters and time 

to walk 10 meters was analyzed separately for both conditions. In line with 

Flansbjer et al. [27], the average time to walk 10 meters was constructed over 

the three trials per condition per subject. For the spatiotemporal gait 

parameters the average was hence also constructed over the three trials per 

condition per subject. For each condition, at least two trials had to be valid (i.e., 

less than 50 percent of missing values and, for the time to walk 10 meters, data 

around the 10-meter line and no error in pressing the stopwatch) in order to 

compute the average over the trials. This resulted in the exclusion of one 

subject for further analysis of the between-systems agreement for the time to 

walk 10 meters for the MWS condition. 

 

Results 

Agreement between body point’s time series 

The agreement (ICC(C,1)) between the body point’s time series of the multi-

Kinect v2 set-up and the gold-standard Optotrak motion-registration system 

for all 19 matched body points in AP (detrended), ML and V directions are 

listed in Table 2.1. Apart from the hips, there was a good to excellent agreement 

in body point’s time series between the two motion-registration systems in the 
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AP direction. Furthermore, all gait parameters were derived from time series 

with high (i.e., ML time series of the right ankle) or excellent levels of 

agreement (all other time series), as highlighted in Table 2.1 (bold values). 

Figure 2.5 shows an example of a part of the AP (detrended) and ML time series 

of the left and right ankle for the multi-Kinect v2 set-up and the Optotrak 

system during a CWS trial with corresponding ICC(C,1) values (as well as ICC(A,1) 

values to illustrate the effect of a systematic between-systems mismatch in 

body point’s time series on ICC values). 

 

Table 2.1 Between-systems agreement (ICC(C,1) with 95% CI) for body point’s time series in 

anterior-posterior (AP; detrended), mediolateral (ML) and vertical (V) directions. Bold values 

represent agreement for time series from which spatiotemporal gait parameters were derived. 

 AP ML V 

Head 0.736 (0.709-0.762) 0.753 (0.714-0.792) 0.832 (0.801-0.863) 

Spine shoulder 0.777 (0.747-0.808) 0.744 (0.709-0.780) 0.870 (0.850-0.890) 

Spine base 0.864 (0.852-0.877) 0.824 (0.797-0.850) 0.790 (0.752-0.828) 

Left shoulder 0.746 (0.671-0.821) 0.734 (0.658-0.810) 0.824 (0.740-0.908) 

Left elbow 0.917 (0.847-0.987) 0.764 (0.685-0.842) 0.567 (0.488-0.646) 

Left wrist 0.970 (0.961-0.980) 0.903 (0.884-0.922) 0.879 (0.853-0.906) 

Left hand 0.973 (0.966-0.980) 0.903 (0.882-0.923) 0.900 (0.880-0.921) 

Right shoulder 0.787 (0.761-0.813) 0.751 (0.712-0.790) 0.849 (0.813-0.885) 

Right elbow 0.936 (0.919-0.953) 0.794 (0.760-0.828) 0.628 (0.569-0.688) 

Right wrist 0.939 (0.908-0.971) 0.850 (0.787-0.914) 0.773 (0.711-0.834) 

Right hand 0.911 (0.868-0.953) 0.828 (0.763-0.893) 0.693 (0.622-0.763) 

Left hip 0.479 (0.418-0.540) 0.736 (0.693-0.779) 0.572 (0.506-0.637) 

Left knee 0.942 (0.922-0.963) 0.786 (0.739-0.833) 0.221 (0.152-0.289) 

Left ankle 0.970 (0.955-0.984) 0.871 (0.844-0.898) 0.392 (0.342-0.442) 

Left foot 0.923 (0.866-0.980) 0.842 (0.781-0.904) 0.443 (0.396-0.491) 

Right hip 0.386 (0.308-0.465) 0.749 (0.709-0.789) 0.616 (0.571-0.661) 

Right knee 0.847 (0.804-0.890) 0.587 (0.525-0.650) 0.163 (0.128-0.198) 

Right ankle 0.911 (0.891-0.932) 0.744 (0.708-0.781) 0.198 (0.133-0.262) 

Right foot 0.819 (0.786-0.852) 0.685 (0.641-0.729) 0.279 (0.234-0.325) 

Abbreviations: ICC(C,1) = intraclass correlation coefficient for consistency; CI = confidence interval. 
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Agreement of spatiotemporal gait parameters 

The agreement statistics of the spatiotemporal gait parameters are presented 

in Table 2.2. Apart from step width, the between-systems agreement for 

spatiotemporal gait parameters was excellent for CWS (ICC(A,1) ≥ 0.888) and 

MWS (ICC(A,1) ≥ 0.951) conditions. This was supported by relatively small biases 

and narrow limits of agreement (Table 2.2). Step width showed a good 

between-systems agreement (CWS: 0.646, MWS: 0.705) with proportionally 

higher biases and wider limits of agreement (Table 2.2). Bland-Altman plots for 

spatiotemporal gait parameters are available in the supplementary material 

(see Supplement 2.4). 

 

Table 2.2 Mean values, between-subjects standard deviations (SD) and agreement statistics (bias, 

limits of agreement [95% LoA] and intraclass correlation coefficient for absolute agreement 

[ICC(A,1)]) for spatiotemporal gait parameters of comfortable walking speed (CWS) and maximum 

walking speed (MWS) conditions. 

  Multi-Kinect v2 

set-up 

Optotrak system   

  mean ± SD mean ± SD Bias (95% LoA) ICC(A,1) 

Walking speed (cm/s) CWS 142.8 ± 11.7 143.9 ± 11.8 1.1 (0.1 2.1) 0.995 

 MWS 220.2 ± 32.2 220.8 ± 31.7 0.6 (-1.4 2.6) 0.999 

Cadence (steps/min) CWS 115.9 ± 6.2 115.0 ± 5.9 -0.9 (-3.0 1.2) 0.974 

   MWS 147.8 ± 21.9 145.7 ± 21.7 -2.1 (-7.4 3.3) 0.988 

Step length (cm) CWS 75.5 ± 5.7 75.4 ± 5.7 -0.1 (-1.4 1.2) 0.994 

 MWS 92.5 ± 8.0 92.5 ± 7.8 -0.1 (-2.1 2.0) 0.992 

Stride length (cm) CWS 151.0 ± 11.3 151.1 ± 11.2 0.1 (-0.7 0.9) 0.999 

 MWS 185.6 ± 15.7 185.4 ± 15.6 -0.1 (-1.6 1.4) 0.999 

Step width (cm) CWS 11.3 ± 2.1 10.0 ± 3.1 -1.3 (-5.2 2.6) 0.646 

 MWS 12.1 ± 2.4 10.6 ± 3.4 -1.5 (-5.2 2.2) 0.705 

Step time (s) CWS 0.52 ± 0.03 0.52 ± 0.03 0.01 (-0.02 0.03) 0.888 

 MWS 0.42 ± 0.05 0.42 ± 0.05 0.00 (-0.03 0.03) 0.951 

Stride time (s) CWS 1.04 ± 0.06 1.05 ± 0.06 0.01 (-0.02 0.04) 0.962 

 MWS 0.82 ± 0.09 0.84 ± 0.10 0.01 (-0.02 0.04) 0.979 
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Agreement of time to walk 10 meters 

Mean values of the time to walk 10 meters for CWS and MWS conditions are 

presented in Figure 2.6. There was a high level of agreement between the 

measurement systems according to the ICC(A,1) for both conditions. For the 

multi-Kinect v2 set-up and the Optotrak system, ICC(A,1) values were excellent 

for CWS (ICC(A,1) = 0.998) and MWS (ICC(A,1) = 0.999), with biases being smaller 

than one sample (CWS: -0.01 s, MWS: -0.01 s) and narrow limits of agreement 

(CWS: [-0.11 0.09] s, MWS: [-0.07 0.06] s). The comparison between the multi-

Kinect v2 set-up and the stopwatch also revealed excellent ICC(A,1) values (CWS: 

0.988, MWS: 0.989), but biases were greater (CWS: -0.09 s, MWS: -0.08 s) and 

limits of agreement wider (CWS: [-0.23 0.05] s, MWS: [-0.21 0.06] s). The same 

was true for the comparison between the Optotrak system and the stopwatch: 

excellent ICC(A,1) values (CWS: 0.987, MWS: 0.990) but biases were 

approximately two samples (CWS: -0.08 s, MWS: -0.07 s) and limits of 

agreement were again wider (CWS: [-0.26 0.11] s, MWS: [-0.21 0.07] s). 

 

 

Figure 2.6 Time to walk 10 meters for CWS and MWS conditions. Bars represent average time to 

walk 10 meters for the multi-Kinect v2 set-up (gray bars), the Optotrak motion-registration system 

as the gold-standard reference (black bars) and the stopwatch as the clinical standard (white bars). 

 

Discussion 

In the current study, we evaluated a multi-Kinect v2 set-up for quantitative gait 

assessment during the 10MWT by determining between-systems agreement for 

body point’s time series, for spatiotemporal gait parameters and for the time to 
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walk 10 meters. Performance of the multi-Kinect v2 set-up was compared to 

the Optotrak system (i.e., the gold-standard reference) to validate 3D full-body 

kinematical data of the just-released Kinect v2 sensor. We observed a good to 

excellent agreement between the two motion-registration systems for raw data 

(i.e., relevant body point’s time series), spatiotemporal gait parameters and the 

time to walk 10 meters. 

To the best of our knowledge, this study is the first to statistically 

compare unfiltered body point’s time series stemming from a multi-Kinect v2 

set-up to a gold-standard reference. Covering the entire measurement volume 

with a marker-based motion-registration system was quite difficult and 

required many cameras to avoid marker occlusion. In fact, the number of 

excluded body point’s time series due to excessive missing values was 

substantially larger for the marker-based gold standard in 3D measurement 

accuracy (17 excluded time series, average percentage of missing values was 

6.8%) than for the multiple-Kinect v2 set-up (no excluded time series, average 

percentage of missing values was 5.0%). For the remaining 2377 time series, 

ICC(C,1) values were generally exceeding 0.60 for all directions, indicating a good 

to excellent between-systems agreement. Nevertheless, some time series only 

demonstrated a poor to fair between-systems agreement, especially time series 

exhibiting a small range of motion. Note that the ICC is constructed using 

models that assume equal variance between two variables [24]. With a small 

range of motion (i.e., with low signal power and hence low true within-system 

variation), the noisier Kinect v2 data may have caused the error-variances of 

the two motion-registration systems to differ, with consequently a lower 

between-systems agreement. This is supported by results of a previous study 

[28], showing that larger movements of Parkinson’s disease patients were 

better tracked by a Kinect v1 sensor than smaller movements. Thus, as long as 

body points are moving (i.e., high signal power), the resultant time series of 

Kinect v2 match well with those stemming from a gold standard in 3D 
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measurement accuracy. Furthermore, low-pass filtering time series may also 

increase the between-systems agreement. 

In the current study, all spatiotemporal gait parameters were derived 

from body point’s time series with high (for the ML time series of the right 

ankle) or excellent levels of agreement (for all other time series; see Table 2.1, 

bold values). This resulted in excellent between-systems agreement (high 

ICC(A,1) values) of the from these time series derived spatiotemporal gait 

parameters walking speed, cadence, step length, stride length, step time and 

stride time. These spatiotemporal gait parameters can be accurately obtained 

with the multi-Kinect v2 set-up, as testified by negligible biases and narrow 

limits of agreement (Table 2.2). Step width was the only gait parameter that 

demonstrated good instead of excellent absolute agreement (Table 2.2). The 

deviant findings for step width may be due to systematic within-subject 

differences in ML ankle position time series between the two motion-

registration systems. An example of such a systematic positional difference is 

presented in Figure 2.5. The left ML ankle position obtained with the multi-

Kinect v2 set-up was about 3 to 4 centimeters more lateral compared to 

Optotrak’s left ML ankle position (Figure 2.5D) while the right ML ankle 

positions matched well between the two systems (Figure 2.5C), resulting in a 

substantial bias of 3.6 cm in step width for this specific subject. This systematic 

between-systems mismatch for the left ML ankle position was confirmed by a 

clear difference between ICC values for consistency and absolute agreement 

(ICC(C,1) = 0.830, ICC(A,1) = 0.405; Figure 2.5D), whereas for the right ML ankle 

positions the ICC values were similar (ICC(C,1) = 0.818, ICC(A,1) = 0.783; Figure 

2.5C). Note that this positional mismatch in ankle time series was not 

consistent among subjects in terms of its size, sign and side, which may explain 

the relatively larger between-subjects variation in the between-systems 

difference for step width (i.e., relatively wider limits of agreement in Table 2.2). 

Kitsunezaki et al. [29] also assessed the possibility of instrumenting the 

10MWT with multiple Kinect sensors. Specifically, they used two temporally 
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integrated Kinect v1 sensors that were positioned at the 2-meter and 8-meter 

lines of a 10-meter walkway to determine the walking time of the intermediate 

6 meters of the 10MWT. The mean difference in walking times obtained with 

the clinical standard (i.e., stopwatch) and the two Kinect v1 sensors was 0.15 

seconds, which led the authors to conclude that a Kinect-based assessment was 

acceptable for practical use [29]. In the current study we quantified the time to 

walk 10 meters with a multi-Kinect v2 set-up, a gold-standard motion-

registration system and a stopwatch. Despite examining walking time over a 

greater walking distance than Kitsunezaki et al. [29], we found smaller 

differences between the three measurement systems (≤ 0.09 s), especially 

between the multi-Kinect v2 set-up and the gold-standard motion-registration 

system (0.01 s). Noteworthy is that the agreement between these two motion-

registration systems –in terms of ICC(A,1), biases and limits of agreement– was 

better than the agreement of either one with the clinical standard (i.e., 

stopwatch). To put these findings in perspective, the between-systems 

differences in the time to walk 10 meters were about 30 to 300 times smaller 

than the within-system differences between CWS and MWS conditions. 

Moreover, the meaningful change in walking speed of 5 cm/s according to 

Perera et al. [30] is at least twice as large as the between-systems differences in 

walking speed observed in the current study (i.e., after transforming the time to 

walk 10 meters to walking speed, ≤ 2.5 cm/s). 

A multi-Kinect v2 set-up, such as the one described in the current 

study, may in practice be employed to automate the assessment of the 10MWT. 

An advantage of this set-up is that the 10MWT and quantitative gait assessment 

can be conducted simultaneously to reduce the time needed for a 

comprehensive assessment of walking ability. This could be beneficial for 

clinical applications, especially in view of our observation that the set-up can 

provide reliable estimates of the time to walk 10 meters and commonly used 

spatiotemporal gait parameters in a very quick, unobtrusive and patient-

friendly manner. Other advantages of the Kinect v2 sensor are that 3D 
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positional data of 25 body points (of up to six persons!) are tracked and 

available in real time, without markers, and not requiring time-consuming pre-

registration calibration and post-registration labeling/tracking. Considering 

these assets, one may consider a multi-Kinect v2 set-up as a serious alternative 

for quantitative gait assessments. 

A limitation of the multi-Kinect v2 set-up is the relatively low sampling 

frequency of 30 Hz. Although a good agreement between the multi-Kinect v2 

set-up and the Optotrak system was found for almost all outcome measures of 

the current study, other outcome measures of interest may require higher 

sampling rates (e.g., the analysis of stride-to-stride fluctuations in stride times; 

[31]). Another limitation of the study was that the between-systems agreement 

was only assessed for healthy subjects. Before implementing the multi-Kinect 

v2 walkway in the clinic, gait parameters for the patient groups of interest 

should be validated first. Moreover, one can imagine that in a clinical context an 

accompanying person such as a therapist wants to walk along with a patient for 

safety reasons. Because 3D positional data of body points of up to six persons 

can be tracked with a Kinect v2 sensor, each being allocated with a unique body 

identification number, it is important to ensure the correct allocation of data to 

a specific person when tracking multiple persons with multiple Kinects (e.g., 

using minimization of 3D positional data when moving from one camera’s field 

of view to another). Therefore, gait parameters need to be validated in various 

patient groups both with and without an accompanying person. As in healthy 

controls, good human-pose estimation is to be expected for patients. Clark et al. 

[32], for example, recently concluded that gait parameters of stroke patients 

derived from Kinect v1 data were highly reliable and could provide valuable 

additional information for gait analysis alongside the 10WMT. They stated that 

their findings provide support for implementing Kinect-based gait assessments 

in clinical settings [32]. With the development and validation of the multi-

Kinect v2 instrumented 10-meter walkway, the current study may help pave 

the way to fulfill that premise. 
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Conclusion 

Body point’s time series obtained with a multi-Kinect v2 set-up match well with 

those derived with a gold standard in 3D measurement accuracy, particularly 

so for body points in motion. The excellent absolute agreements with the gold 

standard observed for time to walk 10 meters, walking speed, cadence, step 

length, stride length, step time and stride time emphasize that those 

parameters can be reliably obtained with the multi-Kinect v2 set-up. Future 

studies are recommended to test the clinical utility of the multi-Kinect v2 set-up 

to automate 10MWT assessments, thereby complementing the time to walk 10 

meters with reliable spatiotemporal gait parameters obtained objectively in a 

quick, unobtrusive and patient-friendly manner. 
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Supplement 2.1 

 

Table S2.1 Overview of the body points obtained with the multi-Kinect v2 set-up and the Optotrak 

system. For the latter, anterior-posterior, mediolateral and vertical position time series were 

computed from virtual markers and/or smart markers. In case of a single virtual marker or smart 

marker, the time series of that specific marker were taken as the time series of the associated body 

point. In case of multiple virtual markers and/or smart markers, the associated marker positions 

were averaged in all three directions for each time sample. 

Kinect body point Smart Marker Rigid 

Body position 

Virtual marker 

position 

Smart marker 

position 

Head Head Nasion, inion and left 

and right ear 

- 

Neck - - - 

Spine shoulder - - Sternum 

Spine mid - - - 

Spine base Lower abdomen Left and right anterior 

superior and posterior 

superior iliac spine 

- 

Shoulders Upper arms Head of the humurus - 

Elbows Upper arms Medial and lateral 

epicondyles 

- 

Wrists Forearms Distal heads of the 

radius and ulna 

- 

Hands - - Back of the hand 

Hand tips - - - 

Thumbs - - - 

Hips Upper legs Trochantor major - 

Knees Upper legs Medial and lateral 

condyles 

- 

Ankles Lower legs Medial and lateral 

malleoli 

- 

Feet Feet Calcaneus Head of the distal 

phalanx of the hallux 
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Supplement 2.2 

Video of body point’s time series obtained with the multi-Kinect v2 set-up and 

the Optotrak system of a single representative trial during the comfortable 

walking speed condition of the 10-meter walking test. This video is available at 

https://doi.org/10.1371/journal.pone.0139913.s004. 
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Supplement 2.3 

Data of body point’s time series in the anterior-posterior, mediolateral and 

vertical direction for the multi-Kinect v2 set-up and the Optotrak system. This 

data is available at https://doi.org/10.1371/journal.pone.0139913.s001. 
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Supplement 2.4 

Bland-Altman plots for the spatiotemporal gait parameters for comfortable 

walking speed and maximum walking speed conditions. 

 

 

Figure S2.1 Bland-Altman plots for walking speed during the comfortable walking speed (CWS) 

and maximum walking speed (MWS) condition. Solid lines represent biases between the two 

motion registration systems. Dashed lines represent the 95% limits of agreement. 

 

 

Figure S2.2 Bland-Altman plots for cadence during the comfortable walking speed (CWS) and 

maximum walking speed (MWS) condition. Solid lines represent biases between the two motion 

registration systems. Dashed lines represent the 95% limits of agreement. 
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Figure S2.3 Bland-Altman plots for step length during the comfortable walking speed (CWS) and 

maximum walking speed (MWS) condition. Solid lines represent biases between the two motion 

registration systems. Dashed lines represent the 95% limits of agreement. 

 

 

Figure S2.4 Bland-Altman plots for stride length during the comfortable walking speed (CWS) and 

maximum walking speed (MWS) condition. Solid lines represent biases between the two motion 

registration systems. Dashed lines represent the 95% limits of agreement. 
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Figure S2.5 Bland-Altman plots for step width during the comfortable walking speed (CWS) and 

maximum walking speed (MWS) condition. Solid lines represent biases between the two motion 

registration systems. Dashed lines represent the 95% limits of agreement. 

 

 

Figure S2.6 Bland-Altman plots for step time during the comfortable walking speed (CWS) and 

maximum walking speed (MWS) condition. Solid lines represent biases between the two motion 

registration systems. Dashed lines represent the 95% limits of agreement. 
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Figure S2.7 Bland-Altman plots for stride time during the comfortable walking speed (CWS) and 

maximum walking speed (MWS) condition. Solid lines represent biases between the two motion 

registration systems. Dashed lines represent the 95% limits of agreement. 
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Walking-adaptability assessments with the 

Interactive Walkway: between-systems agreement 

and sensitivity to task and subject variations 
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The ability to adapt walking to environmental circumstances is an important 

aspect of walking, yet difficult to assess. The Interactive Walkway was developed 

to assess walking adaptability by augmenting a multi-Kinect-v2 10-meter 

walkway with gait-dependent visual context (stepping targets, obstacles) using 

real-time processed markerless full-body kinematics. In this study we determined 

Interactive Walkway’s usability for walking-adaptability assessments in terms of 

between-systems agreement and sensitivity to task and subject variations. Under 

varying task constraints, 21 healthy subjects performed obstacle-avoidance, 

sudden-stops-and-starts and goal-directed-stepping tasks. Various continuous 

walking-adaptability outcome measures were concurrently determined with the 

Interactive Walkway and a gold-standard motion-registration system: available 

response time, obstacle-avoidance and sudden-stop margins, step length, stepping 

accuracy and walking speed. The same holds for dichotomous classifications of 

success and failure for obstacle-avoidance and sudden-stops tasks and performed 

short-stride versus long-stride obstacle-avoidance strategies. Continuous walking-

adaptability outcome measures generally agreed well between systems (high 

intraclass correlation coefficients for absolute agreement, low biases and narrow 

limits of agreement) and were highly sensitive to task and subject variations. 

Success and failure ratings varied with available response times and obstacle 

types and agreed between systems for 85-96% of the trials while obstacle-

avoidance strategies were always classified correctly. We conclude that 

Interactive Walkway walking-adaptability outcome measures are reliable and 

sensitive to task and subject variations, even in high-functioning subjects. We 

therefore deem Interactive Walkway walking-adaptability assessments usable for 

obtaining an objective and more task-specific examination of one’s ability to walk, 

which may be feasible for both high-functioning and fragile populations since 

walking adaptability can be assessed at various levels of difficulty. 
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Introduction 

An important aspect of walking is one’s ability to adapt walking to 

environmental circumstances [1-3]. Walking adaptability includes the ability to 

avoid obstacles, make sudden stops and starts and accurately place the feet to 

environmental context [1]. Most walking-related falls result from inadequate 

interactions with environmental context, leading to balance loss due to a trip, 

slip or misplaced step [4-6]. Walking adaptability thus seems to be an 

important determinant of fall risk, yet a comprehensive well-tested objective 

assessment of walking adaptability is lacking [1]. 

We try to fill this lacuna with the Interactive Walkway (IWW), a 10-

meter walkway augmented with projected gait-dependent visual context, such 

as obstacles suddenly appearing at the position one would step next, 

demanding a step adjustment under time pressure. The basis of the IWW is an 

integrated multi-Kinect v2 set-up for markerless registration of 3D full-body 

kinematics during walking [7], which was recently validated over the entire 10-

meter walkway against a gold standard in 3D measurement accuracy for both 

kinematics and derived gait parameters [7,8]. We have now equipped this set-

up with a projector to augment the entire walkway with visual context, such as 

obstacles, sudden-stop-and-start cues and stepping targets, based on real-time 

processed integrated Kinect data. The so-elicited gait-environment interactions 

potentially allow for assessing various walking-adaptability aspects (e.g., the 

ability to avoid obstacles, suddenly stop or start, perform accurate goal-

directed steps) as well as subject-specific variations and adaptations affecting 

walking-adaptability performance (e.g., adopting a slower walking speed to 

enhance goal-directed stepping accuracy). 

The objective of this study is to determine the usability of the IWW for 

walking-adaptability assessments in a group of healthy adults in terms of 

between-systems agreement and sensitivity to task and subject variations. 

Walking-adaptability tasks and associated outcome measures are selected for 

their proven ability to distinguish between persons who vary in adaptive-
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walking limitations [2,3,9-12]. To determine the between-systems agreement, 

IWW-based walking-adaptability outcome measures are compared to those 

concurrently derived with a gold standard. The sensitivity to task variation is 

assessed by comparing walking-adaptability performance as a function of 

context variations, including different obstacle sizes and sequences of stepping 

targets. Sensitivity to subject variation is explored by quantifying speed-

performance trade-offs between self-selected walking speed and adaptive 

stepping performance (success rates, safety margins). We expect that walking-

adaptability outcomes agree well between systems and are sensitive to task 

and subject variations. 

 

Methods 

Subjects 

A heterogeneous group of 21 healthy subjects (mean [range]: age 30 [19-63] 

years, height 176 [158-190] cm, weight 70 [53-83] kg, 11 males) without 

severe visual deficits or any medical condition that would affect walking 

participated. The local ethics committee approved the study. All subjects gave 

written informed consent prior to participation. 

 

Experimental set-up and procedure 

Full-body kinematics for walking over the entire 10-meter walkway was 

obtained with the IWW using four spatially and temporally integrated Kinect v2 

sensors (Figure 3.1A) and the Optotrak system (Northern Digital Inc., Waterloo, 

Canada) for 19 matched body points as in [7; see also Supplement 3.1]. IWW 

and Optotrak data were sampled at 30 Hz (using custom-written software 

utilizing the Kinect-for-Windows Software Development Kit [SDK 2.0]) and 60 

Hz (using First Principles data acquisition software), respectively. The IWW 

was equipped with a projector (Vivitek D7180HD, ultra-short-throw Full HD 

projector) to augment the entire 10-meter walkway with visual context for 
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three sorts of walking-adaptability tasks: obstacle avoidance, sudden stops-

and-starts and goal-directed stepping (Figure 3.1). 

 

 
Figure 3.1 The set-up of the Interactive Walkway with visual context projected on the walkway (A). 

The four Kinect v2 sensors were positioned on tripods at a height of 0.75 meters alongside a 

walkway of 10 by 0.5 meters. The sensors were placed frontoparallel (i.e., with an angle of 70 

degrees relative to the walkway direction) with a distance of 0.5 meters from the left border of the 

walkway. The first sensor was positioned at 4 meters from the start of the walkway and the other 

sensors were placed at inter-sensor distances of 2.5 meters. Schematics of the walking-adaptability 

tasks: obstacle avoidance with gait-dependent (B) and position-dependent obstacles (C), sudden 

stops-and-starts (D) and goal-directed stepping with symmetric stepping stones (E), asymmetric 

stepping stones (F) and variable stepping stones (G). 
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The obstacle-avoidance task consisted of 25 trials with one or two obstacles (a 

projected red rectangle) per trial. In total, 40 obstacles were presented, 

including 20 gait-dependent obstacles (obstacle at predicted foot-placement 

position appearing two steps ahead; Figure 3.1B) and 20 position-dependent 

obstacles (obstacle at an unpredictable predefined position appearing when a 

subject’s ankle was within 1.5 meters from that obstacle; Figure 3.1C). Gait-

dependent obstacles were 0.5 (width of the walkway) by 0.3 meters. Position-

dependent obstacles were larger (0.5×0.5 meters) to increase the need for 

making step adjustments. Subjects were instructed to avoid suddenly 

appearing obstacles while walking at self-selected comfortable speeds. 

The sudden-stops-and-starts task (Figure 3.1D) consisted of 25 trials 

with in total 40 cues (i.e., one or two sudden-stop-and-start cues per trial) to 

assess one’s ability to suddenly stop and start walking. The cue was a big blue 

rectangle with a width of 0.5 meters that filled the walkway from an 

unpredictable predefined position till its end and appeared as soon as a 

subject’s ankle was within 1 meter from this position, triggering the subject to 

stop walking. After a random period between 5 and 10 seconds, the rectangle 

disappeared, triggering the subject to start walking again. Subjects were 

instructed to walk at self-selected comfortable speeds and to stop behind the 

cue and to start walking as soon as the cue disappeared. 

The goal-directed-stepping task consisted of symmetric-stepping-

stones (SSS; Figure 3.1E), asymmetric-stepping-stones (ASS; Figure 3.1F) and 

variable-stepping-stones (VSS; Figure 3.1G) conditions. Subjects were 

instructed to step as accurately as possible onto the white shoe-size-matched 

stepping targets at a self-selected comfortable walking speed. For SSS, seven 

different imposed step-length trials ranging from 30 to 90 cm in steps of 10 cm 

were performed, all with three repetitions, yielding a total of 21 trials. For ASS, 

stride length remained 90 centimeters while left (L) and right (R) imposed step 

lengths were varied in separate trials from 15 to 75 centimeters in steps of 15 

centimeters yielding five different imposed stepping asymmetries (L/R: 15/75, 
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30/60, 45/45, 60/30, 75/15), all with three repetitions, yielding 15 trials. For 

VSS, imposed step lengths varied within each trial on a step-to-step basis 

randomly between 30 and 90 centimeters. Ten different VSS trials were 

performed, consisting of 21 stepping stones each. 

The walking-adaptability tasks were block-randomized and preceded 

by a familiarization trial. Four ankle-to-shoe calibration trials, in which the 

subject was standing in two shoe-size-matched targets at different positions on 

the walkway, were also included to determine the average distance between 

shoe edges and the ankle for both systems. This calibration was needed to 

determine several walking-adaptability outcome measures (see below). 

 

Data pre-processing and analysis 

Data pre-processing followed established procedures [7]; details about the 

procedure and pre-processed data are presented as supplementary material 

(see Supplements 3.1 and 3.2). Due to excessive missing data, 62 out of 2,016 

trials were excluded from further analysis, mainly for the gold-standard 

motion-registration system (i.e., marker occlusion and/or orientation issues) 

and concerning one subject. 

The continuous walking-adaptability outcome measures were available 

response time (ART) and margins of the trailing and leading limb during 

obstacle crossing for the obstacle-avoidance task, ART and margin to the stop 

cue for the sudden-stops-and-starts task, step length, stepping accuracy and 

walking speed for SSS and VSS, and left and right step lengths, stepping 

accuracy and walking speed for ASS. These continuous outcome measures were 

calculated from specific body points’ time series, estimates of foot contact and 

foot off and step locations, as detailed in Table 3.1, for both measurement 

systems alike in an aligned coordinate system, including the coordinates of 

obstacles, sudden-stop cues and targets. For all continuous outcome measures, 

statistical analyses were performed over averages over trials. For dichotomous 

outcome measures, step locations were extrapolated to the actual shoe 



Walking-adaptability assessments with the Interactive Walkway 

63 

 

dimensions based on the ankle-to-shoe calibration to determine whether or not 

obstacle-avoidance and sudden-stop trials were successfully performed, from 

which success rates were deduced. Successful gait-dependent obstacle-

avoidance maneuvers were classified as short-stride or long-stride strategies 

[13]. 

 

Statistical analysis 

Between-systems agreement was determined for continuous outcome 

measures using intraclass correlation coefficients for absolute agreement 

(ICC(A,1); [14]), with values above 0.60 and 0.75 representing good and excellent 

agreement, respectively; [15]. This analysis of between-systems agreement was 

complemented by mean differences and precision values obtained with a 

Bland-Altman analysis (i.e., the bias and the limits of agreement, respectively; 

[16]). For dichotomous outcome measures we report the percentage of non-

matched ratings. 

Sensitivity to task variation was examined using repeated-measures 

ANOVAs on continuous outcome measures of obstacle-avoidance and goal-

directed-stepping tasks. For ART and obstacle-avoidance margins, a System 

(IWW, Optotrak) by Obstacle (gait-dependent, position-dependent) by Limb 

(trailing, leading) repeated-measures ANOVA was conducted. For step length, 

stepping accuracy and walking speed of SSS, a System by Imposed step length 

(30, 40, …, 90) repeated-measures ANOVA was conducted. For left and right 

step lengths, stepping accuracy and walking speed of ASS, a System by Imposed 

step-length asymmetry (L/R: 15/75, 30/60, 45/45, 60/30, 75/15) repeated-

measures ANOVA was conducted. For step length, stepping accuracy and 

walking speed of VSS, a System by Trial repeated-measures ANOVA was 

conducted. For the average stepping accuracy of the three goal-directed-

stepping conditions, a System by Condition (SSS, ASS, VSS) repeated-measures 

ANOVA was conducted. One subject was excluded from the analyses of the goal-

directed-stepping tasks due to multiple trials with excessive missing values. 
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The assumption of sphericity was checked according to Girden [18]. If 

Greenhouse-Geisser’s epsilon exceeded 0.75, the Huynh-Feldt correction was 

applied; otherwise the Greenhouse-Geisser correction was used. Main effects 

were examined with a Least Significant Difference post-hoc test for factors with 

three levels and contrast analyses for factors with more than three levels. 

Paired-samples t-tests were used for significant interactions. Effect sizes were 

quantified with ηp
2. 

Sensitivity to subject variation was examined by exploring speed-

performance trade-offs. We determined Pearson’s correlations between self-

selected walking speed and stepping accuracy for all goal-directed-stepping 

tasks and between the speed-dependent ART and margins for obstacle-

avoidance and sudden-stop tasks (i.e., significant positive correlations signal 

speed-performance trade-offs). We also assessed the influence of obstacle-

avoidance and sudden-stop ratings on ART using a System by Rating (success, 

failure) repeated-measures ANOVA. In addition, obstacle-avoidance success 

rates were compared with a System by Obstacle repeated-measures ANOVA. 

 

Results 

Between-systems agreement 

Excellent between-systems agreement was observed for ART and margins for 

obstacle-avoidance and sudden-stops-and-starts tasks, walking speed for all 

goal-directed-stepping conditions (SSS, ASS and VSS) and step length and 

stepping accuracy of VSS, supported by very high ICC(A,1) values, small biases 

and narrow limits of agreement (Table 3.2). The between-systems agreement 

for stepping accuracy of SSS and step lengths and stepping accuracy for ASS 

was overall good to excellent (Table 3.2). Between-systems statistics were 

ambiguous for step length of SSS (low ICC(A,1) values, negligible biases and very 

narrow limits of agreement; Table 3.2). Significant between-system biases, 

indicated in Table 3.2, all corresponded to significant System effects of 
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associated outcome measures in the ANOVAs for the analysis of sensitivity to 

task and subject variations. 

Success rates of gait-dependent and position-dependent obstacles were 

(mean ± SD) 94.7 ± 12.8% and 92.1 ± 15.6% for the IWW and 96.8 ± 6.5% and 

93.2±12.1% for the gold standard, respectively. The percentage of non-matched 

ratings was 3.7% for gait-dependent obstacles (3.0% false negatives) and 5.1% 

for position-dependent obstacles (3.1% false negatives). Given the uneven 

distribution of ratings over categories (~95% success vs. ~5% failure), we also 

determined the percentages of specific agreement [19] for obstacle-avoidance 

successes (97.7%) and failures (61.5%), suggesting that the agreement for 

failures was considerably lower. The systems matched perfectly for classified 

avoidance strategies (0% non-matched ratings), with an overall preference for 

the long-stride strategy in avoiding gait-dependent obstacles (80.5 ± 15.3%). 

Success rates for sudden stops were 58.1 ± 23.5% for the IWW and 49.5 ± 

22.0% for the gold standard, with 14.8% between-systems dis-matches (11.7% 

false positives). 

 

Sensitivity to task variation 

A significant Obstacle (F(1,20) = 7.98, p = 0.010, ηp
2 = 0.285) effect was found 

for ART, with longer ARTs for position-dependent obstacles (0.834 ± 0.016 s) 

than for gait-dependent obstacles (0.784 ± 0.011 s). Significant Obstacle 

(F(1,20) = 508.73, p < 0.001, ηp
2 = 0.962) and Limb (F(1,20) = 29.40, p < 0.001, 

ηp
2 = 0.595) effects were found for obstacle-avoidance margins, as well as a 

significant Obstacle×Limb interaction (F(1,20) = 99.95, p < 0.001, ηp
2 = 0.833). 

While margins were overall greater for gait-dependent obstacles and for the 

trailing limb, the interaction revealed that the difference between trailing and 

leading limbs was only evident for gait-dependent obstacles (27.7 ± 5.3 cm vs. 

12.2 ± 5.3 cm) and not for position-dependent obstacles (11.4 ± 2.9 cm vs. 9.4 ± 

4.9 cm). 
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Figure 3.2 Step length (A, B and C), stepping accuracy (D, E and F) and walking speed (G, H and I) 

for the symmetric-stepping-stones (SSS; A, D and G), the asymmetric-stepping-stones (ASS; B, E and 

H) and the variable-stepping-stones (VSS; C, F and I) of the goal-directed-stepping task. 
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Subjects were well able to adjust their foot placement to the presented 

goal-directed-stepping targets (Table 3.2 and Figure 3.2). This was confirmed 

by very strong effects of Imposed step lengths on performed step lengths for 

SSS (F(4.2,79.0) = 162327.08, p < 0.001, ηp
2 = 1.000; Figure 3.2A) and ASS (left: 

F(1.2,22.6) = 936.64, p < 0.001, ηp
2 = 0.980; right: F(1.2,22.7) = 913.62, p < 

0.001, ηp
2 = 0.980; Figure 3.2B). Stepping accuracy varied significantly with 

Imposed step-length asymmetry (F(2.4,45.7) = 20.63, p < 0.001, ηp
2 = 0.521), 

with significant quadratic (F(1,19) = 53.99, p < 0.001, ηp
2 = 0.740) and fourth-

order (F(1,19) = 18.83, p < 0.001, ηp
2 = 0.498) contrasts (Figure 3.2E); no 

significant main or interaction effects were found on stepping accuracy for SSS 

(Figure 3.2D) or VSS (Figure 3.2F). Walking speed varied with step-length 

manipulations for SSS (F(2.7,50.6) = 607.50, p < 0.001, ηp
2 = 0.970; with 

significant linear [F(1,19) = 1189.66, p < 0.001, ηp
2 = 0.984] and quadratic 

[F(1,19) = 9.29, p = 0.007, ηp
2 = 0.328] contrasts; Figure 3.2G) and ASS 

(F(2.7,50.6) = 4.72, p = 0.007, ηp
2 = 0.199; with a significant linear contrast 

[F(1,19) = 13.67, p = 0.002, ηp
2 = 0.418]; Figure 3.2H). Average stepping 

accuracy varied significantly over goal-directed-stepping conditions 

(F(1.5,28.3) = 36.80, p < 0.001, ηp
2 = 0.659); stepping accuracy improved from 

ASS (2.99 ± 0.21 cm) to VSS (2.57 ± 0.15 cm) to SSS (1.93 ± 0.08 cm), with 

significant differences between all conditions. 

 

Sensitivity to subject variation 

Self-selected walking speed affects the available response time for 

obstacle-avoidance and sudden-stop tasks on the IWW, and thereby the 

difficulty of these walking-adaptability tasks. For sudden stops the overall 

success rate was 53.8 ± 22.4%, with a clear influence of rating on ART (F(1,20) 

= 172.88, p < 0.001, ηp
2 = 0.896); ARTs were longer for successful stops 

(0.536±0.012 s) than for failed stops (0.416 ± 0.012 s). In Figure 3.3 sudden-

stop success and failure rates are depicted as a function of ART, showing a 

steady increase in stopping successes (and hence a decrease in stopping 
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failures) with longer ARTs. A speed-performance trade-off was also found on 

margins to the stopping cue, with longer ARTs being associated with larger 

margins, for both systems alike (IWW: r(20) = 0.597, p = 0.004; gold standard: 

r(20) = 0.698, p < 0.001). 

The influence of obstacle-avoidance ratings on ART could not be 

determined because of a ceiling effect; overall success rate was 94.2 ± 11.3%, 

with slightly higher success rates for gait-dependent obstacles (95.8 ± 2.1%) 

than for position-dependent obstacles (92.6 ± 2.9%; main Obstacle effect, 

F(1,20) = 7.05, p = 0.015, ηp
2 = 0.261). Obstacle-avoidance margins were not 

associated with ART (i.e., no speed-performance trade-off; r(20) = [-0.115 

0.211], p > 0.359). 

Clear speed-performance trade-offs were observed for goal-directed 

stepping, with faster walking speeds being associated with poorer stepping 

accuracy, as evidenced by significant positive correlations between self-

selected walking speed and stepping accuracy for SSS, ASS and VSS, for both 

systems alike (IWW: r(20) = 0.722, p < 0.001, r(20) = 0.715, p < 0.001 and r(20) 

= 0.637, p < 0.001, respectively; gold standard: r(20) = 0.523, p = 0.018, r(20) = 

0.668, p = 0.001 and r(20) = 0.569, p < 0.001, respectively). 

 

 

Figure 3.3 Sudden-stop success and failure rates for different available response times. 

 

Discussion 

We determined the usability of IWW walking-adaptability assessments in a 

group of healthy adults in terms of between-systems agreement and sensitivity 
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to task and subject variations. We expected that walking-adaptability outcome 

measures agreed well between systems and were sensitive to task and subject 

variations. The results were in line with our expectations, which led us to 

conclude that the IWW is usable for walking-adaptability assessments. 

First, the between-systems agreement for continuous walking-

adaptability outcomes proved to be good to excellent, with high ICC values, 

small biases and narrow limits of agreement (Table 3.2). For the SSS conditions 

of goal-directed stepping, however, ICC values for step length were 

considerably lower, suggesting a poor between-systems agreement, which 

stood in stark contrast with excellent Bland-Altman agreement statistics 

(negligible biases and narrow limits of agreement; Table 3.2). This discrepancy 

was likely due to a lack of subject heterogeneity in step lengths since these 

were experimentally imposed with stepping targets, yielding minimal between-

subject variance (see also Figure 3.2A) and hence arbitrarily low ICC values 

[20]. This discrepancy illustrates the importance of a complementary set of 

agreement statistics instead of relying solely on ICC as the measure for 

between-systems agreement [20]. The between-systems agreement for 

dichotomous walking-adaptability outcomes varied, ranging from 100% overall 

agreement for obstacle-avoidance strategies to 85.2% for successes and 

failures in sudden stops. The specific agreement for obstacle-avoidance failures 

was lower (~60%), yet based on a limited number of observations. Future 

research may exploit IWW’s possibility to vary task difficulty to achieve a 

similar distribution of obstacle-avoidance successes and failures to properly 

quantify their between-systems agreement. 

Second, continuous walking-adaptability outcomes were sensitive to 

task and subject variations. With goal-directed stepping, task variations led to 

different step lengths, stepping accuracies and walking speeds (Figure 3.2) 

while ARTs and margins of the trailing limb varied with obstacle type. This 

testifies to the power of projected visual context in modifying gait and in 

eliciting (sudden) step adjustments, in line with previous studies exploring the 
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same concept during treadmill walking [3,21-23], as well as to the sensitivity of 

continuous walking-adaptability outcomes. Success rates differed between 

obstacle types, although differences were very small in the vicinity of a ceiling 

effect. Future studies may increase obstacle-avoidance difficulty with the IWW 

by reducing ART, projecting larger obstacles, and/or adding attention-

demanding secondary tasks [24]. Varying task difficulty with ART 

manipulations seems particularly effective, since in the present study ART had 

a prominent effect on sudden-stop success rates (Figure 3.3) and in other 

studies on obstacle-avoidance success rates [12,25]. Sensitivity to subject 

variation was further demonstrated by speed-performance trade-offs in goal-

directed stepping (subjects who walked faster stepped less accurately onto 

targets) and sudden stops (subjects with shorter ARTs had smaller margins to 

the stop cue). Revealing such context-dependent interactions by objectively 

quantifying a complementary set of outcome measures can be considered one 

of the strengths of the IWW, which may prove useful in identifying fallers [26] 

and designing tailored interventions to reduce fall risk [1]. 

Taken together, our results confirmed that IWW walking-adaptability 

outcome measures are reliable (albeit that obstacle-avoidance failure rates 

have to be considered with caution) and sensitive to task and subject 

variations, even in high-functioning subjects. Sensitivity to task and subject 

variations is important for walking-adaptability assessments in relatively high-

functioning groups (such as community-dwelling older adults), where ceiling 

effects are a common concern in fall-risk assessments [27]. The same holds for 

floor effects in relatively fragile groups (such as fall-prone populations). The 

IWW potentially allows for walking-adaptability assessments that are feasible 

for both high-functioning and fragile populations since task difficulty can be 

varied. IWW assessments are also relatively safe (e.g., visual instead of physical 

obstacles), unobtrusive (markerless data) and hence time-efficient and patient-

friendly. The premise is that persons at risk of falling during walking may be 

better identified with task-specific assessments attuned to common causes and 
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circumstances of falls [4-6], such as IWW walking-adaptability tasks. Future 

studies are warranted to determine which walking-adaptability tasks and 

associated outcomes are good indicators of safe walking and accurate 

predictors of falls during walking.  
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Supplement 3.1 

Data pre-processing 

The Kinect for Windows Software Development Kit (SDK 2.0, 

www.microsoft.com) provides 3D time series of 25 body points using inbuilt 

and externally validated human-pose estimation algorithms [1-5]. These body 

points are: head, neck, spine shoulder, spine mid, spine base and left and right 

shoulder, elbow, wrist, hand, thumb, hand tip, hip, knee, ankle and foot (Figure 

S3.1B). For offline data analysis, the 3D positional data for these body points 

were first pre-processed per Kinect sensor separately. Body points labelled as 

inferred (i.e., Kinect’s human-pose estimation software infers positions when 

segments are partially occluded for example) were treated as missing values. 

The body point’s time series were linearly interpolated using Kinect’s time 

stamps to ensure a constant sampling frequency of 30 Hz, without filling in the 

parts with missing values. We removed data points from the time series when 

they did not meet our stringent requirements for valid human-pose estimation 

(e.g., a minimum of 15 out of the 25 possible body points should be labeled as 

tracked, including the head and at least one foot and ankle, without outliers in 

segment lengths). Subsequently, data of the four Kinect sensors were combined 

by taking for each sample the 3D positions of the body points of a validly 

estimated human pose. If, for a given sample, more than one sensor contained 

valid human pose data, the associated body point’s 3D positions were averaged 

for that specific sample. Note that the online integration process of multiple 

Kinect v2 data was similar to this offline integration process, except for the 

linear interpolation based on time stamps. 

For motion registration with the Optotrak system (Northern Digital 

Inc., Waterloo, Canada), Smart Marker Rigid Bodies (Northern Digital Inc., 

Waterloo, Canada) were attached to the head, upper arms, forearms, lower 

abdomen, upper legs, lower legs and feet, allowing for 6 degrees of freedom 

tracking of body segments (Figure S3.1A). In addition, 30 anatomical landmarks 

were digitized using a 3-marker digitizing probe to define various body point 
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positions (so-called virtual markers) on abovementioned body segments. Smart 

markers were also placed on the sternum, hands and feet. Body point’s time 

series of the Optotrak system were computed from the virtual markers and/or 

smart markers to resemble corresponding Interactive Walkway (IWW) body 

points (see Table S3.1). In case of a single virtual marker or smart marker, the 

time series of that specific marker was taken as the time series of the associated 

body point (e.g., sternum data representing the spine shoulder body point of 

the IWW). In case of multiple virtual markers and/or smart markers, the 

associated marker positions were averaged in all three directions for each time 

sample. Positions of the neck, spine mid, thumbs and hand tips body points 

were not tracked with the Optotrak system due to the limited number of 

available smart markers, rendering a total of 19 out of aforementioned 25 

matched body points. 

The coordinate systems of the IWW (3D body points and projector 

pixels) and the Optotrak system were spatially aligned to a common coordinate 

system using a spatial calibration grid. Optotrak data were down-sampled to 30 

Hz. Subsequently, the cross-covariance and time lag were determined for 

paired time series in the mediolateral and vertical direction of the elbows, 

wrists and hands during the synchronization movement (i.e., ab- and adduction 

of both arms). These time series were first interpolated with a spline algorithm 

in case of missing data. The median of the time lags was used to temporally 

align the time series of the two motion-registration systems. Body point’s time 

series with more than 50% of missing values were excluded from further 

analyses. The missing values of the remaining data were interpolated with a 

spline algorithm. The so-obtained time series were used for the calculation of 

the walking-adaptability outcome measures. In the current study, only the time 

series of the spine shoulder, spine base and left and right ankle in the anterior-

posterior direction were needed for the calculation of the walking-adaptability 

outcome measures (Figure S3.2). 
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Figure S3.1 Body point determination with the Optotrak system and the Interactive Walkway. (A) 

Subject with all markers of the Optotrak system; (B) Snapshot of available Interactive Walkway 

body points of the same subject (derived with established human-pose estimation algorithms of 

Kinect v2). 

 

 

Figure S3.2 Raw time series of the two systems for the body points of interest to the current study. 

Note the missing values in the ankle data for the Optotrak time series. 
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Table S3.1 Overview of Optotrak marker data for deriving body points resembling Interactive 

Walkway body points. 

Interactive Walkway 

body points 

Smart Marker Rigid 

Body position 

Virtual marker 

position 

Smart marker 

position 

Head Head Nasion, inion and left 

and right ear 

- 

Neck - - - 

Spine shoulder - - Sternum 

Spine mid - - - 

Spine base Lower abdomen Left and right anterior 

superior and posterior 

superior iliac spine 

- 

Shoulders Upper arms Head of the humurus - 

Elbows Upper arms Medial and lateral 

epicondyles 

- 

Wrists Forearms Distal head of the 

radius and ulna 

- 

Hands - - Back of the hand 

Hand tips - - - 

Thumbs - - - 

Hips Upper legs Trochantor major - 

Knees Upper legs Medial and lateral 

condyles 

- 

Ankles Lower legs Medial and lateral 

malleoli 

- 

Feet Feet Calcaneus Head of the distal 

phalanx of the hallux 
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Supplement 3.2 

Data of body point’s time series in the anterior-posterior, mediolateral and 

vertical direction for the Interactive Walkway and the Optotrak system. This 

data is available at: https://ars.els-cdn.com/content/image/ 

 1-s2.0-S0966636217300553-mmc2.zip 

 1-s2.0-S0966636217300553-mmc3.zip 

 1-s2.0-S0966636217300553-mmc4.zip 

 1-s2.0-S0966636217300553-mmc5.txt 
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The Kinect v2 sensor may be a cheap and easy to use sensor to quantify gait in 

clinical settings, especially when applied in set-ups integrating multiple Kinect 

sensors to increase the measurement volume. Reliable estimates of foot placement 

locations are required to quantify spatial gait parameters. This study aimed to 

systematically evaluate the effects of distance from the sensor, side and step 

length on estimates of foot placement locations based on Kinect’s ankle body 

points. Subjects (n = 12) performed stepping trials at imposed foot placement 

locations distanced 2 m or 3 m from the Kinect sensor (distance), for left and right 

foot placement locations (side), and for five imposed step lengths. Body points’ 

time series of the lower extremities were recorded with a Kinect v2 sensor, placed 

frontoparallelly on the left side, and a gold-standard motion-registration system. 

Foot placement locations, step lengths, and stepping accuracies were compared 

between systems using repeated-measures ANOVAs, agreement statistics and two 

one-sided t-tests to test equivalence. For the right side at the 2 m distance from 

the sensor we found significant between-systems differences in foot placement 

locations and step lengths, and evidence for nonequivalence. This distance by side 

effect was likely caused by differences in body orientation relative to the Kinect 

sensor. It can be reduced by using Kinect’s higher-dimensional depth data to 

estimate foot placement locations directly from the foot’s point cloud and/or by 

using smaller inter-sensor distances in case of a multi-Kinect v2 set-up to estimate 

foot placement locations at greater distances from the sensor. 
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Introduction 

Quantitative gait assessments are a major undertaking in clinical settings (e.g., 

calibration procedures, patient-preparation time) and are costly due to 

expensive equipment [1]. The Microsoft Kinect v2 sensor may be a cheaper and 

easier to use alternative. It entails a RGB-D camera to create a depth image of 

its surrounding. Using machine-learning algorithms, the high-dimensional 

depth data can be reduced to 25 lower-dimensional three-dimensional (3D) 

body points of up to six people simultaneously, thereby eliminating the need for 

markers and calibration procedures [2]. The Kinect v2 sensor, originally 

developed for the gaming industry [2], has increasingly been studied in terms 

of its usability for quantitative gait assessments [3–10]. These studies 

collectively revealed that the Kinect v2 sensor is a promising tool for measuring 

spatiotemporal gait parameters [3–10]. 

Spatial gait parameters, such as step length, are quantified from 

estimates of foot placement locations, which are approximated from 3D 

positional data of Kinect’s ankle body points [3,6–9]. However, Kinect’s 

estimate of the ankle position seems to gradually change during the gait cycle in 

the anterior-posterior direction when compared to a gold standard, a 

phenomena that we observed in our own studies [6,7] as well as in other 

studies [9,11]. The influence of this gradual change in the anterior-posterior 

ankle position, as depicted in Figure 4.1A, on approximated foot placement 

locations has never been systematically examined, which seems essential given 

that yet unknown effects of distance from the Kinect v2 sensor, side and step 

length may affect outcome measures of quantitative gait assessments. 

The objective of this study is to systematically compare foot placement 

locations, as approximated from ankle body point data, and associated 

estimates of step length and stepping accuracy between the Kinect v2 sensor 

and a gold-standard motion-registration system. To this end, the effect of 

distance to the Kinect v2 sensor, left and right foot placement locations (side) 

and imposed step lengths will be examined. We expect that foot placement 
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locations, step lengths, and stepping accuracies will agree well between 

systems, without systematic between-systems effects of distance, side and 

imposed step length. 

 

 

Figure 4.1 (A) Representative example of the right anterior-posterior ankle position for the Kinect 

v2 sensor (dotted black line) and a gold-standard Optotrak system (solid gray line) during two right 

stepping trials (at 2 m and 3 m distance from the sensor with the Kinect v2 sensor positioned at 0 m 

and walking direction towards the sensor). The single-support phase is indicated by the black 

boxes; (B) Schematic overview of the experimental set-up together with a right stepping trial at a 2 

m distance from the sensor; (C) Schematic overview of the two imposed foot placement locations 

distanced 2 m (top) and 3 m (bottom) from the Kinect v2 sensor for right stepping trials; and, (D) 

Schematic overview of the different imposed step lengths for right stepping trials at a 2 m distance 

from the sensor. 
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Methods 

Subjects 

A group of 12 healthy subjects (mean [range]: age 28 [21 43] years, height 177 

[158 190] cm, weight 74 [56 95] kg, 6 males) participated in this experiment. 

The Ethics Committee of the Department of Human Movement Sciences of the 

Vrije Universiteit Amsterdam (Amsterdam, The Netherlands) approved the 

study (ECB 2015-55). All of the subjects gave written informed consent prior to 

participation. 

 

Experimental set-up and procedure 

Body points’ time series of the lower extremities were recorded with a Kinect 

v2 sensor and a gold-standard Optotrak system (Northern Digital Inc., 

Waterloo, ON, Canada). For the current study, the orientation and position of 

the Kinect sensor was in agreement with those of the Kinect sensors of a 

validated multi-Kinect v2 set-up for gait assessments (i.e., an angle of 70 

degrees relative to the movement direction and a perpendicular distance of 

0.75 meters to the center of the area of interest; [6,7]; Figure 4.1B). Multiple 

Kinect v2 sensors placed in a frontoparallel orientation (70 degrees) alongside 

a walkway allows for a larger measurement volume for quantitative gait 

assessments [6,7,9]. Two Optotrak cameras were needed to cover the same 

area as the Kinect sensor (see Figure 4.1B for a schematic overview). A spatial 

calibration grid was used to spatially align the coordinate systems of the two 

motion-registration systems to a common coordinate system, as detailed in [7]. 

As in [6,7], the Kinect for Windows Software Development Kit (SDK 2.0, 

www.microsoft.com) was used to obtain the 3D time series of 25 body points 

by means of inbuilt and externally validated human-pose estimation algorithms 

[3,6–9,12–14]. Kinect data were sampled at 30 Hz using custom-written 

software utilizing the SDK 2.0. For the Optotrak system, Smart Marker Rigid 

Bodies (Northern Digital Inc., Waterloo, ON, Canada) were attached to the body 

segments of the lower extremities (lower abdomen, upper legs, and lower legs) 
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and virtual markers were assigned to these rigid bodies using a 3-marker 

digitizing probe using First Principles data acquisition software (see 

Supplement 4.1). The positions of the virtual markers were 14 anatomical 

landmarks chosen to match the body points of the Optotrak system with the 

body points of the lower body of the Kinect system (see Supplement 4.1). The 

positions of these virtual markers were averaged in all directions for each 

sample to obtain the positions of seven matched body points (see Supplement 

4.1). Optotrak data were sampled at 60 Hz. 

Subjects performed multiple stepping trials with foot placement 

locations being guided by five shoe-size-matched stepping stones (Figure 4.1B) 

presented using a projector (Vivitek D7180HD, ultra-short-throw Full HD 

projector), which was spatially aligned to the common coordinate system of the 

two motion-registration systems. The center of the middle stepping stone was 

positioned at two different imposed foot placement locations, distanced at 

either 2 m or 3 m from the Kinect sensor (Figure 4.1C). These distances ensure 

a high resolution of the depth data [15], and thus minimize the influence of 

depth resolution on the outcome measures. The middle stepping stone was 

either projected for the left or right foot depending on its mediolateral position. 

The position of the stepping stones indicating the starting and ending positions 

were determined based on the imposed step lengths (50 cm, 60 cm, 70 cm, 80 

cm, or 90 cm; Figure 4.1D). Step width was set at 20 cm to ensure that the 

stepping stones did not overlap. Subjects were asked to stand as accurately as 

possible in the stepping stones indicating the starting position and then step 

with their left or right foot (depending on the imposed stepping pattern) in the 

middle stepping stone and end with both feet in the stepping stones indicating 

the ending position, thereby making a stepping movement. All of the trials were 

performed twice, yielding a total of 40 trials (i.e., at 2 m and 3 m distances, with 

the left and right side, at five imposed step lengths for two repetitions). Trials 

were block-randomized for distance and side. 
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Data pre-processing and analysis 

Data pre-processing followed established procedures [6,7] using Matlab 

R2015a (The MathWorks Inc., Natick, MA, USA). Body points of the Kinect 

system classified as inferred (i.e., when Kinect’s human-pose estimation 

software can only indirectly derive the position of the body point due to partial 

occlusion for instance) were removed from the time series. Body point’s time 

series were linearly interpolated to ensure a constant sampling frequency of 30 

Hz, without filling in the missing data points. Data points were removed from 

the time series when they did not meet our criteria for valid human pose 

estimation (e.g., a minimum of 15 out of the 25 possible body points should be 

labeled as tracked, including the head and at least one foot and ankle, without 

outliers in segment lengths). Optotrak body point’s time series were down-

sampled to 30 Hz. These data are available as supplementary material (see 

Supplement 4.2). Body point’s time series of the spine base and left and right 

ankle in the anterior-posterior direction were interpolated with a spline 

algorithm and were used for the calculation of the outcome measures. 

Percentages of missing data for these body points’ time series were on average 

3.9% for the Kinect system and 0.6% for the Optotrak system, with maximum 

percentages of missing data of 21.4% and 20.1%, respectively. 

The outcome measures were foot placement location, step length, and 

stepping accuracy. Foot placement locations were estimated from the anterior-

posterior ankle position during the single-support phase (i.e., between foot off 

and foot contact of the contralateral foot; estimates of foot off and foot contact 

were defined as the minima and maxima of the anterior-posterior time series of 

the ankle relative to that of the spine base; [6,7,16]). Foot placement locations 

were transformed to center of the foot, using the ankle positions of the feet 

aligned with the stepping stones of the starting positions as a reference. To this 

end, the average distance of the left and right ankle to the center of the stepping 

stones was calculated over the episode of five samples before step initiation 

with the lowest amount of variation for each trial. Subsequently, foot placement 
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locations were normalized to imposed foot placement locations (i.e., imposed 

foot placement location was subtracted from the measured foot placement 

location to correct for arbitrary effects in foot placement location as a function 

of the two imposed distances from the sensor). Step length was defined as the 

anterior-posterior distance between the starting position and the (non-

normalized) foot placement location (see arrows in Figure 4.1D). Stepping 

accuracy was defined as the standard deviation over the signed normalized foot 

placement locations over step lengths and repetitions and was calculated per 

system, distance, and side. 

 

Statistical analysis 

One trial was accidentally not recorded with the Kinect system (experimenter 

forgot to start the recording without noticing it), resulting in missing data for 

foot placement location and step length for one participant (3 m distance, right 

side, 80 cm and repetition #2). Since missing data in a repeated-measures 

ANOVA will lead to the entire removal of that participant from the analysis, we 

decided to use this single observation for this participant and to average over 

the two repetitions for all other conditions and participants, yielding a single 

value for each combination of system, distance, side, and imposed step length 

for all of the participants. Two participants had to be excluded from further 

analyses due to displaced cluster markers of the Optotrak system. 

All outcome measures (foot placement location, step length, and 

stepping accuracy) were compared between systems using repeated-measures 

ANOVAs (IBM SPSS Statistics 24). For foot placement locations and step 

lengths, a System (Kinect, Optotrak) by Distance (2 m, 3 m) by Side (left, right 

foot placement locations) by Imposed step length (50 cm, 60 cm, 70 cm, 80 cm, 

90 cm) repeated-measures ANOVA was conducted. For stepping accuracy, a 

System by Distance by Side repeated-measures ANOVA was conducted. The 

assumption of sphericity was verified according to Girden [17]. The Huynh-

Feldt correction was applied if the Greenhouse-Geisser’s epsilon exceeded 0.75; 
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otherwise, the Greenhouse-Geisser correction was used. The main effects were 

examined with a Least Significant Difference post-hoc test for factors with two 

levels and contrast analyses for factors with more than two levels. Paired-

samples t-tests were used for significant interactions involving the factor 

System, focusing on between-systems comparisons. Effect sizes were quantified 

with ηp
2. 

In addition to the ANOVAs testing between-systems differences, we 

also performed agreement statistics to examine the agreement between the 

systems. The between-systems agreement was determined using intraclass 

correlation for absolute agreement (ICC(A,1)) and consistency (ICC(C,1); [18]) 

using Matlab R2015a, with values above 0.60 and 0.75, representing good and 

excellent agreement, respectively [19]. Both types of ICCs were used in order to 

determine the influence of a potential systematic between-systems bias in the 

agreement. The ICCs were complemented by mean differences and precision 

values obtained with a Bland–Altman analysis (i.e., the bias [Kinect-Optotrak] 

and the limits of agreement [LoA], respectively; [20]). 

In view of the low between-subject variation due to the imposed foot 

placement locations and step lengths, which may hinder the reliability of the 

ICCs [21], the outcome measures were also analyzed for between-systems 

equivalence using two one-sided t-tests (TOST; utilizing the TOSTER module in 

jamovi 0.7.3.2; [22]). For this analysis, the 90% confidence interval of the 

between-systems difference should be within pre-determined equivalence 

bounds for which the systems can be deemed equivalent. These bounds were 

conservatively set based on the LoA intervals found in [7]. That is, for foot 

placement locations and step lengths, the equivalence bounds were set at ± 

2.145 cm (i.e., the smallest LoA interval of the obstacle-avoidance margins, 

which were similarly based on estimates of a single foot placement location; 

[7]). For stepping accuracies, the smallest LoA interval was used of the stepping 

accuracies obtained for precision-stepping trials to a sequence of regularly 

spaced stepping stones with imposed step lengths of 50 cm, 60 cm, 70 cm, 80 
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cm, and 90 cm ([7]; same step lengths as in the current study), resulting in 

equivalence bounds of ± 0.685 cm. 

 

Results 

Table 4.1 shows the data of all outcome measures together with the agreement 

statistics (bias, 95% LoA, ICC(A,1) and ICC(C,1)) and TOST statistics. 

 

Foot placement locations 

A significant main effect of System (F(1,9) = 5.87, p = 0.038, ηp
2 = 0.395) was 

found on foot placement locations. Kinect estimated foot placement locations 

0.76 cm posterior as compared to the Optotrak system. No other main or 

interaction effects were found, although there was a trend towards significant 

System×Imposed step length (F(2.6,23.4) = 2.83, p = 0.067, ηp
2 = 0.239) and 

System×Distance×Side (F(1,9) = 4.66, p = 0.059, ηp
2 = 0.341) interactions. There 

seemed to be a larger between-systems difference for the right foot placement 

location at 2 m when compared to the other conditions (see top panels in 

Figure 4.2). Regarding the equivalence tests, right foot placement locations at 2 

m were found to be nonequivalent for 80 cm (p = 0.072) and 90 cm (p = 0.110), 

while all other foot placement locations were found to be equivalent (p < 

0.045). Note that in some cases the systems can be considered equivalent, as 

their 90% confidence intervals do not cross the equivalence bounds (i.e., no 

meaningful effect), and at the same time be statistically different in a t-test 

because the confidence intervals of the between-systems differences do not 

include zero (e.g., right foot placement locations at the 2 m distance for 

imposed step lengths of 50 cm, 60 cm, and 70 cm; Table 4.1, Figure 4.2). 
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Figure 4.2 Results of the two one-sided t-tests, showing the between-systems differences and the 

90% confidence intervals of all conditions for foot placement location, step length, and stepping 

accuracy. 
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Step length 

A main effect of System was found on step length (F(1,9) = 12.24, p = 0.007, ηp
2 

= 0.576). On average, Kinect underestimated step length with 0.94 cm as 

compared to the Optotrak system, a finding in line with abovementioned 

between-systems difference in foot placement locations. There was also a very 

strong effect of imposed step length on performed step length (F(2.8,25.0) = 

8167.28, p < 0.001, ηp
2 = 0.999; with significant linear [F(1,9) = 23285.32, p < 

0.001, ηp
2 = 1.000] and quadratic [F(1,9) = 11.73, p = 0.008, ηp

2 = 0.566] 

contrasts); step lengths increased with increasing imposed step lengths. 

Furthermore, significant System×Distance (F(1,9) = 13.12, p = 0.006, 

ηp
2 = 0.593) and System×Distance×Side (F(1,9) = 12.26, p = 0.007, ηp

2 = 0.577) 

interactions were observed. The significant between-systems bias was only 

found at the 2 m distance and more strongly so for right step lengths (Figure 

4.3), indicated by the significantly larger between-systems difference for the 

right step length at 2 m (t(9) = 3.51, p = 0.007). In addition, Distance×Imposed 

step length (F(4,36) = 5.45, p = 0.002, ηp
2 = 0.377; with significant linear by 

linear [F(1,9) = 18.31, p = 0.002, ηp
2 = 0.670] and linear by fourth order [F(1,9) 

= 13.35, p = 0.005, ηp
2 = 0.597] contrasts) and System×Distance×Imposed step 

length (F(2.8,25.1) = 4.35, p = 0.015, ηp
2 = 0.326) interactions were found; 

significant between-systems differences were again only found at the 2 m 

distance, with the smallest between-systems bias for 80 cm (Table 4.1, Figure 

4.4). 

Step lengths were generally found to be equivalent (most p < 0.030) 

with some exceptions for the right step length at 2 m, in agreement with the 

System×Distance×Imposed step length interaction, and the left step length at 3 

m due to a relatively large between-subject variation (Figure 4.2). 
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Figure 4.3 Visual representation of the interaction effect of System, Distance, and Side. The 

significant between-systems bias in step length was only found at the 2 m distance (indicated by 

the asterisks) and more strongly so for right step lengths (indicated by the significantly larger 

between-systems difference for the right step length). 

 

 

Figure 4.4 Visual representation of the interaction effect of System, Distance and Imposed step 

length. Significant between-systems differences in step length were only found at 2 m, with larger 

biases for larger imposed step lengths. 
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Stepping accuracy 

For stepping accuracy, no significant main or interaction effects were found (all 

p > 0.089, all ηp
2 < 0.287). There was a trend towards significance for the 

System×Distance (F(1,9) = 3.62, p = 0.089, ηp
2 = 0.287) interaction. Kinect 

seemed to slightly underestimate stepping accuracy at the 2 m distance, and to 

slightly overestimate stepping accuracy at the 3 m distance (i.e., see the non-

significant positive and negative biases in Table 4.1, respectively). 

Nevertheless, stepping accuracy was found to be equivalent between the 

systems (p < 0.001; Figure 4.2). 

 

Discussion 

The objective of this study was to systematically compare foot placement 

locations, as approximated from ankle body point data, and associated 

estimates of step length and stepping accuracy between the Kinect v2 sensor 

and a gold-standard Optotrak system. We expected that foot placement 

locations, step lengths, and stepping accuracies all agreed well between 

systems, without systematic between-systems effects of distance from the 

sensor, side and imposed step length. However, our results revealed a small but 

significant between-systems difference in foot placement locations and step 

lengths; Kinect estimated foot placement locations on average 0.76 cm 

posterior and consequently underestimated step length by 0.94 cm when 

compared to the Optotrak system. Note that these biases were predominantly 

found for the 2 m distance and were more pronounced for the right side. 

Nevertheless, stepping accuracies and estimates of foot placement locations 

and step lengths were generally statistically equivalent (i.e., no statistically 

meaningful between-systems bias, as evidenced by a statistically significant 

TOST), with a few nonequivalent exceptions in foot placement locations and 

step lengths mostly for the right side at the 2 m distance (Table 4.1, Figure 4.2). 

Two factors may have mediated the larger between-systems differences for the 

right side at the 2 m distance: 1) depth occlusion and 2) body orientation 
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relative to the Kinect sensor. Since the Kinect sensor was positioned 

frontoparallelly on the left side of the participant, the right leg could be 

partially occluded by the swinging left leg during the stepping movement, and 

more strongly so nearby the sensor, which may have affected the outcomes. In 

the supplementary material (see Supplement 4.3) we describe an additional 

analysis aimed at examining the role of occlusion (and associated interpolation 

of the missing data) as a factor mediating the larger between-systems 

differences found for the foot placement locations of the right side at the 2 m 

distance. Based on the results we can conclude that depth occlusion did not 

cause the larger between-systems bias. 

Could the second factor, body orientation relative to the Kinect sensor, 

then explain the between-systems differences for the right side at 2 m distance 

from the sensor? As can be seen in Figure 4.5, the orientation relative to the 

Kinect sensor changes with distance from the sensor and body side: from quite 

frontally for the left side at the 3 m distance to a more frontoparallel 

orientation for the right side at the 2 m distance. Orientation relative to the 

sensor likely affects the depth image of shank and foot segments due to 

orientation-based differences in self-occlusion of those body segments, which 

might influence the estimation of the position of the ankles from the point 

clouds by the machine-learning algorithm (cf. Figure 5B in [9]), and as such 

estimates of foot placement locations. Indeed, Wang et al. [23] showed that the 

positional error in body point estimates increases with deviations from a 

frontal orientation relative to the Kinect v2 sensor, especially so for body points 

of the body side that was turned away from the sensor. The turned-away body 

side was the right side in the current study, with the greatest deviations from a 

frontal orientation at the 2 m distance. This was also the condition with a 

meaningful between-systems bias in estimated foot placement locations, 

making body orientation relative to the sensor a very likely cause for the 

observed between-systems differences. 
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Knowing that body orientation relative to the sensor affects body point 

estimation, we will now discuss ways to minimize orientation biases in (multi-) 

Kinect set-ups for measuring gait with (a) sensor(s) placed alongside a 

walkway. A first recommendation could be to use sensors on both sides of a 

walkway in order to average out side-dependent orientation biases. Müller et 

al. [9] recently compared one-sided and two-sided multi-Kinect v2 set-ups to a 

gold-standard motion-registration system. They found superior between-

systems agreement in step widths for the two-sided set-up, suggesting that 

mediolateral orientation biases, which are opposite in direction for the two 

sides, can indeed be successfully averaged out. Unfortunately, a two-sided set-

up will not help to solve anterior-posterior orientation biases because these 

biases are similar in direction for both sides, with greater biases closer to the 

sensor. A second recommendation could be to use Kinect’s higher-dimensional 

depth data to estimate foot placement locations directly from the foot’s point 

cloud instead of approximating it from the lower-dimensional ankle body 

points’ time series. Point clouds are robust, richer in information, and are likely 

less prone to orientation errors. Previous studies indeed found superior results 

for outcome measures (i.e., stride durations, stride lengths, and step 

asymmetries) derived from Kinect’s higher-dimensional point clouds than for 

their counterparts derived from Kinect’s lower-dimensional body points’ time 

series [24-26]. As point clouds contain more information about the foot, they 

may additionally allow for finer-grained foot-related gait parameters, which 

seem particularly useful in clinical populations with gait deviations and foot 

deformations. Although point clouds may thus be a very useful alternative for 

determining foot placement locations, the higher dimensionality of the point 

clouds place greater demands on data handling. This is not much of a concern 

for post-processing, but will be a burden for real-time processing of gait data 

from multiple Kinect sensors for gait-dependent event control (e.g., suddenly 

projecting an obstacle at the location where one will step next; [7]). A more 

parsimonious solution, therefore, seems to be to collect body point data at 
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greater distances from the sensor, for which we have shown that they are less 

prone to orientation biases. In the case of a multi-Kinect v2 set-up, this implies 

smaller inter-sensor distances to create more overlap between the 

measurement volumes of the sensors. Consequently, body point data nearby 

the sensor, which suffers from orientation biases, can be ignored because the 

same body points are already detected by the more distant sensor whose data 

is minimally affected by orientation biases. 

A limitation of this study was that the effect of distance to the sensor 

was assessed in a rather coarse-grained manner (i.e., 2 levels, at 2 m and 3 m 

from the sensor). As a consequence, the precise cut-off for ignoring nearby data 

to circumvent orientation biases remains unknown. Another limitation is that 

two participants had to be excluded due to displaced cluster markers of the 

Optotrak system during the experiment, resulting in a relatively small sample 

size. The sample consisted of healthy adults without gait deviations, whose gait 

may not be representative for the gait of various patient groups. Nevertheless, 

there is no reason to expect inferior depth images or body point estimation of 

the lower extremities for persons with gait deviations [4], so the same 

recommendations apply for negating orientation biases when the Kinect v2 

sensor is used for quantitative gait assessments in clinical populations. 

 

 

Figure 4.5 An overview of the influence of distance from the sensor and body side on body 

orientation relative to the Kinect sensor. 
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Conclusions 

There is a meaningful between-systems difference in foot placement locations, 

albeit only nearby the sensor and exclusively for the body side turned away 

from the sensor (in our study the right side at a 2 m distance). This distance by 

side between-systems effect is not mediated by depth occlusion through the 

contralateral swinging leg, but is likely caused by body orientation differences 

relative to the sensor. Such orientation effects might be reduced by using the 

higher-dimensional depth data to estimate foot placement locations directly 

from the foot’s point cloud and/or by using smaller inter-sensor distances in 

the case of a multi-Kinect v2 set-up, allowing for foot placement estimations at 

greater distances from the sensor. 
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Supplement 4.1 

Marker set-up of the Optotrak system. 

 

Figure S4.1 (A) Smart Marker Rigid Bodies of the Optotrak system. (B) 3-marker digitizing probe 

for assigning virtual markers to the Smart Marker Rigid Bodies. (C) Overview of the marker set-up 

of the Optotrak system. (D) Schematic overview of the 3D positional data of the marker set-up of 

the Optotrak system. Smart Marker Rigid Bodies (presented in blue) were attached to the body 

segments of the lower abdomen, upper legs, and lower legs. Virtual markers (red crosses) were 
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assigned to these rigid bodies using a 3-marker digitizing probe. The positions of the virtual 

markers were 14 anatomical landmarks chosen to match the body points of the Optotrak system 

with the body points of the Kinect system (Table S4.1). The positions of these virtual markers were 

averaged in all directions for each sample to obtain the positions of seven matched body points 

(Table S4.1; black squares). 

 

Table S4.1 Overview of Optotrak marker data for deriving body points resembling Kinect body 

points. 

Kinect body points Smart Marker Rigid Body position Virtual marker position 

Spine base Lower abdomen Left and right anterior superior and 

posterior superior iliac spine 

Hips Upper legs Trochantor major 

Knees Upper legs Medial and lateral condyles 

Ankles Lower legs Medial and lateral malleoli 
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Supplement 4.2 

Data of body points’ time series in the anterior-posterior, mediolateral and 

vertical direction for the Kinect v2 sensor and the Optotrak system. Data is 

available at https://www.mdpi.com/1424-8220/17/10/2301/s1. 
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Supplement 4.3 

In this supplementary material we describe an additional analysis aimed at 

examining the role occlusion (and the associated interpolation of missing data) 

may have played in the larger between-systems differences observed for the 

right side at the 2 m distance. First, we compared the amount of occlusion in 

the Kinect v2 data between distances and sides during the single-support 

phase. Second, we introduced occlusion (i.e., based on observed occlusion for 

the right side) to the data of the typically unoccluded left side to examine its 

effect on estimates of foot placement locations. If these foot placement locations 

are systematically affected by the introduced occlusion at the 2 m distance only, 

occlusion (and the associated interpolation of missing data) likely caused the 

observed between-systems differences for the 2 m distance for right foot 

placements. 

 

Methods 

Data analysis 

The first step in the analysis was to compare the amount of occlusion (i.e., 

missing data) in the Kinect v2 data between distances and sides. Therefore, raw 

Kinect v2 body point’s time series of the ankles without interpolation of the 

missing data points were used. The amount of occlusion was determined during 

the single-support phase (i.e., between foot off and foot contact of the 

contralateral foot), since foot placement locations were estimated using the 

anterior-posterior ankle position during this phase. Estimates of foot off and 

foot contact were calculated as detailed in the main text. Within this single-

support phase, the samples representing missing data were identified and the 

percentage occlusion during the single-support phase was calculated. The 

distribution of occlusion over the single-support phase was visualized with a 

histogram presenting the percentage of all trials with occlusion during a 

specific part of the time-normalized single-support phase in bins of 5%. 
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 The next step in the analysis was to introduce occlusion (i.e., based on 

observed occlusion for the right side) to the data of the typically unoccluded left 

side to examine the effect of occlusion (and the associated interpolation of 

missing data) on estimates of foot placement locations. This was done by using 

the observed occlusion during the right single-support phase of matched trials 

(i.e., in terms of distance and imposed step length). Subsequently, the so-

obtained ‘occluded’ time series of the left ankle were interpolated with a spline 

algorithm before calculating foot placement locations and determining 

between-systems differences. 

 

Statistical analysis 

The amount of occlusion was assessed using a Distance (2 m, 3 m) by Side (left 

foot placement location, right foot placement location) repeated-measures 

ANOVA. The assumption of sphericity was checked according to Girden [1]. If 

Greenhouse–Geisser’s epsilon exceeded 0.75, the Huynh–Feldt correction was 

applied; otherwise the Greenhouse–Geisser correction was used. Main effects 

were examined with a Least Significant Difference post hoc test. Paired-samples 

t-tests were used in case of a significant interaction. Effect sizes were quantified 

with ƞp
2. 

The between-systems differences for the foot placement locations of 

the left stepping trials were compared between original and ‘occluded’ data 

with a paired-samples t-test for each distance by imposed step length 

combination. 

 

Results 

The amount of occlusion differed significantly between distances (2 m: 11.60 ± 

0.71%, 3 m: 9.60 ± 0.71%; F(1,9) = 6.41, p = 0.032, ƞp
2 = 0.416) and sides (left: 

0.07 ± 0.07%, right: 21.13 ± 1.16%; F(1,9) = 339.17, p < 0.001, ƞp
2 = 0.974). 

Furthermore, there was a significant Distance×Side interaction (F(1,9) = 6.21, p 

= 0.034, ƞp
2 = 0.408), revealing that the significant difference between the two 
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distances was only evident for the right side with a significantly larger amount 

of occlusion for the 2 m distance (2 m: 23.11 ± 4.40%, 3 m: 19.15 ± 4.48%; t(9) 

= 2.51, p = 0.033). In Figure S4.2, the amount and distribution of occlusion 

during the single-support phase in the left and right ankle data are depicted, 

presented separately for the two distances. As can be appreciated from the 

figure (right panel), occlusion in the single-support phase for the right ankle 

occurred earlier for the 2 m distance than for the 3 m distance, which may have 

contributed to the significant difference in the amount of occlusion between 

these two distances. 

 The original and ‘occluded’ data of the left ankle during the single-

support phase are presented in Figure S4.3, separately for the 2 m and 3 m 

distance. The introduced missing data has little to no effect on the presented 

time series for both distances. This was confirmed by the results of the foot 

placement locations presented in Table S4.2. The bias in the between-systems 

differences of the foot placement locations calculated with the original and 

‘occluded’ data were not present (i.e., identical values for the foot placement 

locations calculated with the original data and the ‘occluded’ data) or negligible 

(i.e., submillimeter biases with low amount of variation). These biases, if any, 

were not significant for both distances. 

 

Conclusion 

Occlusion in the Kinect v2 data cannot explain the more pronounced between-

systems differences seen for foot placement locations and consequently step 

lengths for the right side at the 2 m distance. Whereas the amount and timing of 

occlusion during the right single-support phase slightly differed between the 2 

m and 3 m distance, the foot placement locations calculated with the ‘occluded’ 

data of the left ankle demonstrated negligible biases compared to the foot 

placement locations calculated with the original data, for both distances alike. 
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Figure S4.2 The amount and distribution of occlusion over the single-support phase, presented as 

the percentage of all trials with occlusion during a specific part of the time-normalized single-

support phase in bins of 5%, for the left and right ankle (left and right panel, respectively), 

presented separately for the 2 m (gray) and 3 m (blue) distance. 

 

 

Figure S4.3 The original (gray) and ‘occluded’ (blue) time series of the left ankle in the anterior-

posterior direction during the single-support phase, presented for the 2 m and 3 m distance (left 

and right panel, respectively). 
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Purpose. The ability to adapt walking is important for safe ambulation. 

Assessments of impairments in walking adaptability with the Interactive 

Walkway (IWW) may aid in the development of individualized therapy strategies 

of stroke patients. The IWW is an overground walkway with Kinect v2 sensors for 

a markerless registration of full-body kinematics which can be augmented with 

(gait-dependent) visual context to assess walking adaptability. This study aims to 

evaluate the potential of the IWW as a new technology for assessing walking 

adaptability in stroke patients. Materials and methods. 30 stroke patients and 30 

controls performed clinical tests, quantitative gait assessments and various 

walking-adaptability tasks on the IWW. Outcome measures were compared 

between stroke patients and controls to examine known-groups validity. 

Pearson’s correlation coefficients were calculated to assess the relationship 

between and within clinical test scores, spatiotemporal gait parameters and 

walking-adaptability outcome measures. Results. Good known-groups validity for 

walking-adaptability tasks was demonstrated. In addition, walking-adaptability 

tasks complemented clinical tests and spatiotemporal gait parameters and 

addressed different aspects of walking ability and walking adaptability. 

Conclusion. The IWW allows for a quick, unobtrusive and comprehensive 

quantitative assessment of walking adaptability with potential for monitoring 

recovery after stroke and informing neurologic therapy strategies.  
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Introduction 

Walking speed assessed over short distances (e.g., 10-meter walking test), 

spatiotemporal gait parameters (e.g., step length) and clinical tests (e.g., Timed 

Up-and-Go test) are frequently used outcome measures of walking ability in 

stroke patients [1]. However, these outcome measures mainly reflect only two 

of the three aspects of walking ability, that is, the abilities to generate repetitive 

stepping and to maintain balance while walking. The third aspect of walking 

ability, the ability to adjust steps to one’s surrounding, is largely left 

unaddressed, which is unfortunate as it is essential for safe and independent 

ambulation [2]. Walking adaptability is defined as the ability to adapt walking 

to meet behavioral task goals and demands of the environment [2] and 

includes, among others, the ability to avoid obstacles, make sudden stops, place 

feet accurately in a cluttered environment and walk while performing a dual 

task [2]. Laboratory studies showed that stroke patients generally have a 

reduced ability to adapt walking to environmental circumstances [3-6]. This 

reduced walking adaptability makes these patients more susceptible to 

walking-related falls due to trips, slips or misplaced steps [7-9]. Assessing 

walking adaptability thus seems essential to better understand and treat 

walking limitations. Unfortunately, there is no comprehensive clinical test of 

walking adaptability [2] and laboratory studies have thus far typically focused 

on specific aspects of walking adaptability, mainly obstacle avoidance [3-

6,10,11]. As a consequence, we lack a thorough understanding of walking 

adaptability after stroke. 

The Interactive Walkway (IWW; Figure 5.1) may help fill this void. It is 

an overground walkway equipped with multiple Kinect v2 sensors for 

markerless 3D full-body motion registration [12]. The IWW is augmented with 

(gait-dependent) visual context, such as suddenly appearing obstacles and stop 

cues (based on real-time processed gait data), to assess walking adaptability 

[13]. Furthermore, attention-demanding secondary tasks, such as serial-3 
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subtractions [11] or an auditory Stroop task [4,10], can be added to assess dual-

task walking. 

The aim of this study is to evaluate the potential of the IWW as a new 

technology for assessing walking adaptability in stroke patients. To this end, we 

will 1) evaluate the known-groups validity of IWW outcome measures by 

comparing them between stroke patients and healthy controls, 2) relate these 

outcome measures to clinical test scores and spatiotemporal gait parameters of 

unconstrained walking, and 3) examine to what extent the various walking-

adaptability tasks address different aspects of walking adaptability. 

 

 

Figure 5.1 The set-up of the Interactive Walkway with various walking adaptability tasks (insets). 

 

Methods 

Subjects 

In total, 30 stroke patients and 30 age- and sex-matched healthy controls 

(mean±std: 62.5 ± 10.1 vs. 62.9 ± 10.3 years, respectively; 18 males and 12 

females) were included in this study. Stroke patients were recruited from the 

outpatient clinic of the Leiden University Medical Center and from a list of 
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patients who were discharged from the Rijnlands Rehabilitation Center. 

Controls were recruited via advertisement. Subjects had to be 18 years or older 

and should have command of the Dutch language. Stroke patients had to 

experience residual motor dysfunction (Fugl-Meyer Assessment lower 

extremity score < 34), but had to be able to stand unsupported for more than 

20 seconds and walk independently. Stroke patients were permitted to use 

walking aids, including quad canes (n = 3), canes (n = 4), ankle foot orthoses (n 

= 11) and functional electrical stimulation (n = 1). Controls had to have 

unimpaired gait, normal cognitive function (Montreal Cognitive Assessment 

score ≥ 23; [14]) and normal or corrected to normal vision. Exclusion criteria 

were (additional) neurological diseases and/or other problems interfering with 

gait function. Stroke patients were excluded if they were less than 12 weeks 

post-stroke. Stroke patients were 7.9 ± 7.3 years post-stroke, had a Fugl-Meyer 

Assessment lower extremity score of 19.7 ± 7.4 (possible range 0-34; higher 

scores indicate better motor function) and a Montreal Cognitive Assessment 

score of 24.4 ± 4.1 (possible range 0-30; higher scores indicate better cognitive 

abilities), which was not assessed in four stroke patients due to (severe) 

aphasia. Healthy controls had a significantly higher Montreal Cognitive 

Assessment score of 27.7 ± 1.4 (p < 0.001). Data was collected within the 

Technology in Motion project (protocol registered as NL54281.058.15; 

www.toetsingonline.nl). All subjects gave written informed consent, and the 

study was approved by the local medical ethics committee (P15.232). 

 

Experimental set-up and procedure 

Clinical gait and balance tests were administered. Two gait tests were included 

to assess mobility: the Timed-Up-and-Go test [15,16] and the 10-meter walking 

test at comfortable and maximum walking speed [15,17]. Longer completion 

times indicate worse mobility. The Tinetti Balance Assessment [18,19] has two 

sections that evaluate gait and balance performance, of which the combined 

score was used in this study (possible range 0-28; higher scores indicate better 
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performance). Two balance tests were administered (with higher scores 

indicating a better balance): the 7-item Berg Balance Scale [20], to measure 

static and dynamic balance during specific movement tasks (possible range 0-

14), and the Functional Reach Test [21,22], to determine the maximal distance 

one can reach forward from a standing position. 

Unconstrained walking and walking adaptability were assessed on the 

IWW using four spatially and temporally integrated Kinect v2 sensors to obtain 

full-body kinematics. The IWW set-up was based on a validated IWW set-up 

used in Geerse et al. [12,13], with improved inter-sensor distances following 

recommendations of Geerse et al. [23] (Figure 5.1). The sensors were 

positioned at a height of 0.95 m alongside a walkway of 8 by 0.75 m. The first 

three sensors were placed frontoparallel (i.e., with an angle of 70 degrees 

relative to the walkway direction) with a distance of 1.2 m from the left border 

of the walkway. The last sensor was positioned frontally at the end of the 

walkway, since this will minimize orientation-based biases [24]. The first 

sensor was positioned at 3 m from the start of the walkway and the other 

sensors were placed at inter-sensor distances of 2.1 m. The IWW was equipped 

with a projector (EPSON EB-585W, ultra-short-throw 3LCD projector) to 

augment the entire 8-meter walkway with visual context for the walking-

adaptability tasks. The coordinate systems of the sensors and projector were 

spatially aligned to a common coordinate system using a spatial calibration 

grid. IWW data were sampled at 30 Hz using custom-written software utilizing 

the Kinect-for-Windows Software Development Kit (SDK 2.0). 

Subjects performed unconstrained walking and various walking-

adaptability tasks on the IWW (Figure 5.2; see Table 5.1 for more details and 

Supplement 5.1 for a video of the tasks). Unconstrained walking was assessed 

with an 8-meter walking test. Walking adaptability was broadly assessed with 

the following tasks: obstacle avoidance, sudden stops-and-starts, goal-directed 

stepping (with symmetric and irregular stepping stones), narrow walkway, 

speed adjustments (speeding up and slowing down), slalom, turning (half and 
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full turns in both directions) and dual-task walking (plain and augmented). 

Dual-task walking was assessed by adding an auditory Stroop task [25] in 

which the words high and low (in Dutch) were pronounced at a high or low 

pitch (i.e., congruent and incongruent stimuli) to both the plain 8-meter 

walking test and the augmented obstacle-avoidance task, respectively. The 

subject had to respond with the pitch of the spoken word. The IWW assessment 

comprises a total of 35 trials (Table 5.1). All tasks were performed at a self-

selected walking speed. 

Half of the subjects started with the block of clinical tests, the other half 

with the IWW assessment. With regard to the latter, subjects always started 

with the 8-meter walking test, which enabled us to adjust the settings of the 

walking-adaptability tasks to one’s own gait characteristics in an attempt to 

obtain a similar level of difficulty for each subject (see Table 5.1). For example, 

available response times for suddenly appearing obstacles were controlled by 

self-selected walking speed during the 8-meter walking test and available 

response distance (ARD in Figure 5.2). Subsequently, the 8-meter walking test 

was performed with the dual task (i.e., plain dual-task walking), preceded by a 

familiarization trial in which the auditory Stroop task was practiced while 

sitting. The remaining IWW tasks were randomized in blocks (Table 5.1), with 

rest breaks in between to prevent fatigue. 

 

Data pre-processing and analysis 

Data pre-processing followed Geerse et al. [12,13], as detailed in Supplement 

5.2. In total, 91 trials (4.2% of all trials) were excluded since some subjects (i.e., 

five stroke patients) were not able to perform the tasks or the trials were not 

recorded properly (i.e., incorrect recording or not all Kinect sensors were able 

to track the subject). The outcome measures of the IWW tasks were calculated 

from specific body points’ time series, estimates of foot contact and foot off and 

step locations, as detailed in Table 5.1 and Supplement 5.2. The average over 

trials per task per subject was calculated for all outcome measures. 
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Figure 5.2 Schematics of unconstrained walking and walking-adaptability tasks on the Interactive 

Walkway. The available response distance (ARD) of the suddenly appearing obstacles and cues 

varied over subjects depending on their own gait characteristics. 
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Statistical analysis 

The known-groups validity of clinical test scores, spatiotemporal gait 

parameters and IWW walking-adaptability outcome measures was evaluated 

by comparing them between stroke patients and healthy controls using 

independent-samples t-tests. We computed r (𝑟 =  √𝑡2/(𝑡2 + 𝑑𝑓)) to quantify 

the effect sizes, where values between 0.100-0.299 were regarded as small, 

between 0.300-0.499 as medium and above 0.500 as large effect sizes [26]. 

Pearson’s correlation coefficients were determined only for stroke 

patients and calculated between and within the various types of walking-ability 

assessments (i.e., clinical tests, unconstrained walking and IWW walking 

adaptability). Absolute correlations between 0-0.499, 0.500-0.699, 0.700-0.899 

and 0.900-1.000 were regarded as low, moderate, high and very high, 

respectively [27]. SPSS version 24 (IBM© SPSS©, Armonk, New York, United 

States) was used to perform the statistical analyses. Alpha was set at 0.05. No 

adjustment for multiple comparisons was made due to the exploratory nature 

of this study. 

 

Results 

Known-groups validity 

Stroke patients performed significantly worse on all clinical tests compared to 

healthy controls (p ≤ 0.001; Table 5.2). This was also seen for the 

spatiotemporal gait parameters: all outcome measures showed values 

associated with lower walking speeds, wider step widths and less symmetric 

steps for stroke patients (p < 0.001; Table 5.2). Furthermore, stroke patients 

performed significantly worse than healthy controls on all IWW walking-

adaptability outcome measures, except stepping accuracy on irregular stepping 

stones, normalized walking speed of speeding up trials, turning time of half 

turns and normalized success rate during augmented dual-task walking (Table 

5.2). 
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Relations between the three types of walking-ability assessments 

First, correlation coefficients were determined between clinical tests scores 

and spatiotemporal gait parameters (second block in top row in Figure 5.3). Of 

the 54 possible correlations, 45 (83.3%) were significant, out of which 28 

(51.9%) were high, 13 (24.1%) were moderate and 4 (7.4%) were low. Next, 

correlation coefficients were determined between clinical test scores and IWW 

walking-adaptability outcome measures (third block in top row in Figure 5.3). 

Of the 156 possible correlations, 56 (35.9%) were significant, out of which 2 

(1.3%) were very high, 4 (2.6%) were high, 31 (19.9%) were moderate and 19 

(12.2%) were low. Lastly, correlation coefficients were determined between 

spatiotemporal gait parameters and IWW walking-adaptability outcome 

measures (third block of center row in Figure 5.3). Of the 234 possible 

correlations, 70 (29.9%) were significant, out of which 15 (6.4%) were high, 32 

(13.7%) were moderate and 23 (9.8%) were low. 

 

Relations within each type of walking-ability assessments 

Considerable redundancy was found for the clinical tests in stroke patients (top 

left block in Figure 5.3). All 15 possible correlations were significant (100.0%), 

out of which 3 (20.0%) were very high, 6 (40.0%) were high, 2 (13.3%) were 

moderate and 4 (26.7%) were low. The spatiotemporal gait parameters were 

also highly correlated (second block along the diagonal in Figure 5.3). Of the 36 

possible correlations, 34 (94.4%) were significant, out of which 7 (19.4%) were 

very high, 8 (22.2%) were high, 10 (27.8%) were moderate and 9 (25.0%) were 

low. For IWW walking-adaptability outcome measures, a lower percentage of 

significant correlations was found (bottom right block in Figure 5.3). Of the 325 

possible correlations, only 57 (17.5%) were significant, out of which 1 (0.3%) 

was very high, 6 (1.8%) were high, 19 (5.8%) were moderate and 31 (9.5%) 

were low. 
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Discussion 

A stroke may result in impaired walking adaptability and affect the ability to 

negotiate environmental challenges, thus potentially contributing to the high 

fall risk seen in this population [9]. Assessments of walking adaptability may 

guide gait rehabilitation programs or contribute to the design of future targeted 

and individualized interventions directed at improving safe community 

ambulation after stroke. However, currently available assessments of walking 

ability after stroke hardly take walking adaptability into account [2]. We 

therefore evaluated the potential of the IWW as a new technology for a quick, 

unobtrusive and comprehensive quantitative assessment of walking 

adaptability in stroke patients. 

As a first step, we evaluated its known-group validity. As expected, for 

almost all outcome measures stroke patients performed significantly worse 

than healthy controls (Table 5.2). Group differences for spatiotemporal gait 

parameters measured with the IWW were as expected [28-30] and in line with 

the results of an earlier study showing that the Kinect v2 sensor can measure 

spatiotemporal gait parameters with considerable accuracy in stroke patients 

[31]. Also in accordance with the findings of previous studies, IWW outcome 

measures of the various walking-adaptability tasks revealed that stroke 

patients have problems avoiding obstacles [3,5,6], making sudden step 

adjustments [32,33], making full turns [34] and combining walking with 

secondary tasks [10,30]. Besides, normalized walking speeds were significantly 

lower for stroke patients, indicating that they adjusted their walking speed 

more than controls when walking in complex environments. These results 

emphasize the importance of assessing walking adaptability in an overground 

setting, which allows stroke patients to lower their walking speed depending 

on their ability to meet environmental demands [11]. In the current study, only 

stepping accuracy of the irregular stepping stones, normalized walking speed of 

speeding up trials, turning time of half turns and normalized success rate of 

augmented dual-task walking did not exhibit significant group differences. 
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Nonetheless, medium and large effect sizes were found for all other IWW 

outcome measures with differences occurring in the expected direction. 

Therefore, the results of this study suggest good known-groups validity for 

IWW walking-adaptability tasks, similar to that of clinical tests and 

spatiotemporal gait parameters. 

Previous studies have indicated that there is a need for a more 

comprehensive clinical evaluation of walking ability, addressing all of its three 

key aspects (i.e., abilities to generate repetitive stepping, maintain balance 

while walking and adapt walking to environmental demands; [1,2]). Interesting 

in that regard is our observation of high to very high correlations between 

clinical tests and spatiotemporal gait parameters, which both mainly seem to 

address stepping and balance aspects of walking ability. IWW walking-

adaptability tasks appeared to complement these tests, as evidenced by the 

relatively few significant correlations between walking-adaptability outcome 

measures and those pertaining to clinical tests and unconstrained walking 

(Figure 5.3). Moreover, the significant correlations were mostly low or 

moderate in magnitude, suggesting that the walking-adaptability tasks had 

added value by focusing especially on the third walking-ability aspect, that is, 

the ability to adjust walking to environmental circumstances [2]. 

We assessed walking adaptability quite broadly with, as it turned out, 

some redundancy in the outcome measures. Hence, not all of the assessed tasks 

need to be included for a comprehensive assessment of walking adaptability. 

That is, IWW tasks whose outcome measures do not exhibit group differences 

or are highly correlated with currently used tests can be excluded because they 

add little information. In this study this concerned sudden starts, speed 

adjustments, full turns and augmented dual-task walking tasks. 

For a comprehensive assessment of walking ability, we recommend to 

include unconstrained walking (to identify gait impairments during steady-

state walking) and some complementary IWW walking-adaptability tasks. With 

regard to unconstrained walking, assessing it with the IWW provides more 
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detailed information than clinical test scores. In addition, the outcome 

measures may be more sensitive to changes over time as was suggested by 

Vernon et al. [35] for outcome measures of the Kinect-instrumented Timed Up-

and-Go test. With regard to complementary IWW walking-adaptability tasks, 

various candidate tasks seem capable to address different aspects of walking 

adaptability. This was evidenced by the few significant correlations among 

outcomes of the various walking-adaptability tasks (bottom right block in 

Figure 5.3), in contrast to outcomes pertaining to clinical tests and 

unconstrained walking, which were highly interrelated and hence somewhat 

redundant with one another. Performing multiple clinical tests is therefore not 

only time-consuming, but also does not provide more insight into a patient’s 

walking ability, in contrast to the addition of some complementary and 

discriminative IWW walking-adaptability tasks, such as obstacle avoidance, 

goal-directed stepping, narrow walkway and plain dual-task walking. 

One of the limitations of this study was that clinical tests, 

unconstrained walking and walking adaptability were only assessed in a single 

session. Future studies should examine their test-retest reliability to estimate 

minimal detectable change scores that are essential for monitoring progress in 

gait rehabilitation. We further noticed that the available response times were 

significantly lower for stroke patients on some walking-adaptability tasks, 

which were caused by a higher self-selected walking speed in those tasks than 

in the preceding unconstrained walking task. This could have negatively 

influenced the outcome measures on these tasks and as such have amplified 

group differences. In future studies the available response times should 

therefore be based on a real-time indication of walking speed, which is quite 

feasible with the IWW. Another limitation could be that the IWW currently only 

uses 2D projections to evoke step responses, which do not actually pose a 

physical risk for the patient. This was clearly demonstrated in the study of 

Timmermans et al. [36]. Cognitive-motor interference did not differ between 

walking over physical or projected obstacles in stroke patients, although motor 
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performance was prioritized more when walking over physical obstacles. 

Nevertheless, walking-adaptability tasks with 2D projections appeared 

effective, since outcome measures did demonstrate differences between groups 

with overall medium to large effect sizes. 

 

Conclusions 

The benefit of a broad assessment of walking adaptability is that it may reveal 

the specific aspects of walking adaptability that are most severely impaired, 

which could then be targeted in individualized training programs [37]. Van 

Swigchem et al. [5] found that even in mildly affected stroke patients walking 

adaptability may be reduced, possibly increasing their risk of falling. Training of 

walking adaptability, overground or on a treadmill, has shown to be effective in 

improving walking ability in stroke patients [4,9,38,39] and in reducing risk of 

falling [9]. The IWW assessment may thus contribute to a more optimized and 

individualized gait training program to improve safe community ambulation 

and reduce the risk of walking-related falls by adjusting the training content 

and difficulty level to the specific needs and competences of the patient. 
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Supplement 5.1 

Video of Interactive Walkway tasks of unconstrained walking and walking 

adaptability in a patient with stroke. This video is available at 

https://youtu.be/nV9tGvlPogs. 
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Supplement 5.2 

Data pre-processing 

The Kinect for Windows Software Development Kit (SDK 2.0, 

www.microsoft.com) provides 3D time series of 25 body points using inbuilt 

and externally validated human-pose estimation algorithms [1-5]. These body 

points are: head, neck, spine shoulder, spine mid, spine base and left and right 

shoulder, elbow, wrist, hand, thumb, hand tip, hip, knee, ankle and foot. For 

offline data analysis, the 3D positional data for these body points were first pre-

processed per Kinect sensor separately. Body points labelled as inferred (i.e., 

Kinect’s human-pose estimation software infers positions when segments are 

partially occluded for example) were treated as missing values. The body 

point’s time series were linearly interpolated using Kinect’s time stamps to 

ensure a constant sampling frequency of 30 Hz, without filling in the parts with 

missing values. We removed data points from the time series when they did not 

meet our stringent requirements for valid human-pose estimation (e.g., a 

minimum of 15 out of the 25 possible body points should be labeled as tracked, 

including the head and at least one foot and ankle, without outliers in segment 

lengths). In addition, a manual check of the data was added to remove errors of 

the algorithm due to depth occlusion of the right leg by the left leg. 

Subsequently, data of the four Kinect sensors were combined by taking for each 

sample the 3D positions of the body points of a validly estimated human pose. 

If, for a given sample, more than one sensor contained valid human pose data, 

the associated body point’s 3D positions were averaged for that specific sample. 

Body point’s time series with more than 50% of missing values were 

excluded from further analyses. However, percentages of missing data for both 

groups did not exceed 23.1% with an average of 4.7 ± 2.2% for the body points’ 

time series of interest (i.e., ankles, spine base and spine shoulder). The missing 

values were interpolated with a spline algorithm. The so-obtained time series 

were used for the calculation of the Interactive Walkway outcome measures of 

unconstrained walking and walking adaptability. 
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The outcome measures of the Interactive Walkway assessment were 

calculated from specific body points’ time series, estimates of foot contact and 

foot off and step locations, as detailed in Table 5.1. Estimates of foot contact and 

foot off were defined as the maxima and minima of the anterior–posterior time 

series of the ankles relative to that of the spine base [3,6,7]. Step locations were 

determined as the median anterior–posterior and mediolateral position of the 

ankle joint during the single-support phase (i.e., between foot off and foot 

contact of the contralateral foot; [3,6]). Shoe edges and center of the foot were 

also needed to calculate several outcome measures. Ankle-to-shoe calibration 

trials, in which the subject was standing in two shoe-size-matched targets at a 

position on the walkway in front of the last Kinect, were included to determine 

the average distance between shoe edges and the ankle. 
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Introduction. In patients with Parkinson’s disease (PD) many aspects of walking 

ability deteriorate with advancing disease. Clinical tests typically evaluate single 

aspects of walking and to a lesser extent assess more complex walking tasks 

involving a combination of the three key aspects of walking ability (i.e., 

generating stepping, maintaining postural equilibrium, adapting walking). The 

Interactive Walkway allows for assessing more complex walking tasks to address 

features that are relevant for daily life walking of patients, including adaptive 

walking and dual-task walking. Methods. To evaluate the expected added value of 

Interactive Walkway assessments in PD patients, we first evaluated its known-

groups validity for outcome measures of unconstrained walking, adaptive 

walking and dual-task walking. Subsequently, these outcome measures were 

related to commonly used clinical test scores. Finally, we evaluated the expected 

added value of these outcomes over clinical tests scores in discriminating PD 

patients with and without freezing of gait. Results. Interactive Walkway outcome 

measures showed significant differences between freezers, non-freezers and 

healthy controls, in expected directions. Most Interactive Walkway outcome 

measures were not or at best moderately correlated with clinical test scores. 

Finally, Interactive Walkway outcome measures of adaptive walking slightly 

better discriminated freezers from non-freezers than clinical tests scores. 

Conclusion. We confirmed the added value of Interactive Walkway assessments, 

which provides a comprehensive evaluation of walking ability incorporating 

features of its three key aspects. Future studies are warranted to examine the 

potential of the Interactive Walkway for the assessment of fall risk and informing 

on tailored falls prevention programs in PD patients and in other populations 

with impaired walking ability. 
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Introduction 

Walking ability is a multifaceted construct which includes the ability to 

generate stepping, to maintain postural equilibrium, and to adjust walking to 

meet behavioral goals and environmental demands [1]. In Parkinson’s disease 

(PD) these walking ability aspects all deteriorate to some extent with advancing 

disease. This is evidenced by an inability to generate effective stepping (e.g., 

freezing of gait [FOG]), a reduced ability to adapt walking to environmental 

circumstances, and a limited ability to combine walking with secondary tasks 

[2-5]. Such impairments in walking ability may contribute to an increased fall 

risk. This is clearly demonstrated in PD, where most falls are due to FOG, 

impaired adaptive walking resulting in trips, and limitations in dual-task 

walking [6,7]. Clinical tests to evaluate gait and balance disturbances in PD 

typically evaluate single aspects of walking ability (i.e., the ability to generate 

stepping or to maintain postural equilibrium) and to a lesser extent assess 

more complex walking tasks (i.e., adaptive walking and dual-task walking) 

involving a combination of the three key aspects of walking (stepping, 

equilibrium and adaptation). The Interactive Walkway (IWW; Figure 6.1) 

allows for assessing more complex walking tasks to address features that are 

relevant for daily life walking of patients, which could guide the management of 

clinical care. 

This study aimed to evaluate the expected added value of IWW 

assessments in PD patients, which includes an assessment of more complex 

walking tasks. The IWW utilizes multiple external sensors for a validated quick 

markerless 3D full-body motion registration of unconstrained walking [8]. 

Moreover, the IWW can be used to assess adaptive walking by augmenting the 

walkway with visual context, such as suddenly appearing obstacles [9], whose 

location and timing can be controlled based on real-time processed full-body 

kinematics. Finally, the IWW may be used to assess the ability to combine 

walking tasks with a secondary task by quantifying dual-task costs of walking 

and adaptive walking [10]. In this study, we first examined the known-groups 
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validity of IWW outcome measures of unconstrained walking, adaptive walking 

and dual-task walking to detect differences between PD patients with FOG, PD 

patients without FOG and healthy controls. Secondly, we compared IWW 

outcome measures to commonly used clinical tests of gait and balance 

impairment to identify redundancy and complementarity between tests. 

Thirdly, we examined the expected added value of the IWW over clinical tests 

in discriminating PD patients with and without FOG. 

 

 

Figure 6.1 Set-up of the Interactive Walkway with visual context projected on the walkway. 

 

Methods 

Subjects 

Walking ability was assessed in 30 PD patients and 30 age- and sex-matched 

healthy controls (Table 6.1). PD patients and controls were recruited from the 

outpatient clinic of the Leiden University Medical Center and via advertisement, 

respectively. PD patients had to meet the UK Parkinson’s Disease Society Brain 

Bank clinical diagnostic criteria [11] and have a Hoehn and Yahr stage of 1-4 

[12]. In addition, subjects had to be 18 years or older, have command of the 

Dutch language, be able to stand unsupported for more than 20 seconds and 
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walk independently. PD patients were evaluated using the Movement Disorder 

Society version of the Unified Parkinson’s Disease Rating Scale motor score 

[13]. The New Freezing of Gait Questionnaire [14] was used to classify PD 

patients with and without FOG (i.e., based on a score greater than or equal to 

zero, respectively), leading to the classification of 14 freezers and 16 non-

freezers. The Scales for Outcomes in Parkinson’s disease – Cognition [15] was 

administered to assess cognitive abilities, since this scale is sensitive to PD-

specific cognitive deficits. PD patients were measured in the ON state. Controls 

did not suffer from neurological or orthopedic diseases interfering with gait, 

had normal cognitive function (Montreal Cognitive Assessment score ≥ 23; 

[16]) and (corrected to) normal vision. All subjects gave written informed 

consent, and the study was approved by the local medical ethics committee 

(P15.232). 

 

Experimental set-up and procedure 

We used clinical tests of gait and balance impairment that have previously been 

suggested or recommended for use in PD patients [17]. Two tests assessed 

mobility: the Timed-Up-and-Go test and the 10-meter walking test at 

comfortable and maximum walking speed. Longer completion times indicate 

poorer mobility. The Tinetti Balance Assessment has two sections that evaluate 

gait and balance performance of which the combined score was used in this 

study (higher scores indicate a better performance). Two other balance tests 

were administered: the 7-item Berg Balance Scale, to measure static and 

dynamic balance, and the Functional Reach Test, to determine the maximal 

reaching distance (higher scores indicating a better balance). The order of these 

clinical tests was randomized. 
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The IWW was used to assess unconstrained walking, adaptive walking 

and dual-task walking (cf. Figure 6.2; see Supplement 6.1 and Table 6.2 for 

more details). Full-body kinematics was obtained using four spatially and 

temporally integrated Kinect v2 sensors, which allows for a quick markerless 
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assessment of walking. The sensor set-up was based on a validated IWW set-up 

[8,9], with improved inter-sensor distances following recommendations of 

Geerse et al. [18] (Figure 6.1). The sensors were positioned at a height of 0.95 

m alongside a walkway of 8 by 0.75 m. The first three sensors were placed 

frontoparallel (i.e., with an angle of 70⁰ relative to the walkway direction) with 

a distance of 1.2 m from the left border of the walkway. The last sensor was 

positioned frontally at the end of the walkway, since this will minimize 

orientation-based biases. The first sensor was positioned at 3 m from the start 

and the other sensors were placed at inter-sensor distances of 2.1 m (Figure 

6.1). The IWW was equipped with a projector (EPSON EB-585W, ultra-short-

throw 3LCD projector) to augment the entire walkway with visual context. The 

coordinate systems of the sensors and the projector were spatially aligned 

using a spatial calibration grid. IWW data were sampled at 30 Hz using custom-

written software utilizing the Kinect-for-Windows Software Development Kit 

(SDK 2.0). Unconstrained walking was assessed with an 8-meter walking test. 

Adaptive walking was assessed with obstacle avoidance, sudden stops-and-

starts, goal-directed stepping (symmetric and irregular stepping stones), 

narrow walkway (entire walkway and sudden narrowing), speed adjustments 

(speeding up and slowing down), slalom and turning (half and full turns). Dual-

task walking was assessed in plain and augmented walking environments by 

adding an auditory Stroop task in which the words high and low were 

pronounced at a high or low pitch (i.e., congruent and incongruent stimuli) to 

the 8-meter walking test and obstacle-avoidance task, respectively. Subjects 

had to respond with the pitch of the spoken word. The IWW assessment 

contained 36 trials (Table 6.2). Subjects were instructed to complete each trial 

at a self-selected walking speed, while also responding to the Stroop stimuli in 

case of dual-task walking. Figure 6.2 presents a schematic representation of the 

IWW assessment. 
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Figure 6.2 Schematic representation of the Interactive Walkway assessment, including 

unconstrained walking, adaptive walking and dual-task walking. The available response distance 

(ARD) of the suddenly appearing obstacles and cues was patient-tailored to yield a similar response 

time. 
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Half of the subjects started with the block of clinical tests, the other half 

with the IWW assessment. With regard to the latter, subjects always started 

with the 8-meter walking test, allowing us to adjust the settings of the adaptive 

walking tasks to one’s own gait characteristics in an attempt to obtain a similar 

level of difficulty for each subject (see Table 6.2). For example, available 

response times for suddenly appearing obstacles were controlled by self-

selected walking speed during the 8-meter walking test and available response 

distance (ARD in Figure 6.2). Subsequently, plain dual-task walking was 

performed, preceded by a familiarization trial in which the dual task was 

practiced while sitting. The remaining IWW tasks were randomized in blocks 

(Table 6.2). 

 

Data pre-processing and analysis 

Data pre-processing followed Geerse et al. [8,9], as detailed in Supplement 6.2. 

In total, 12 trials (1.1% of all trials) were excluded since subjects were not able 

to perform the tasks or trials were not recorded properly (i.e., incorrect 

recording or not all sensors were able to track the subject). These trials only 

concerned PD patients. The IWW outcome measures of unconstrained walking, 

adaptive walking and dual-task walking were calculated from specific body 

points’ time series, estimates of foot contact and foot off, and step locations, as 

detailed in Table 6.2 and Supplement 6.2. The average over trials per IWW task 

per subject was calculated for all outcome measures (Table 6.2). 

 

Statistical analysis 

IBM SPSS Statistics for Windows, version 24 (IBM Corp., Armonk, N.Y., USA) 

was used to perform the statistical analyses. With regard to the known-groups 

validity we examined the effect of group (i.e., freezer, non-freezer or control) on 

clinical test scores and IWW outcome measures of unconstrained walking, 

adaptive walking and dual-task walking using one-way ANOVAs or the Kruskal-

Wallis test if the assumption of normality was violated (i.e., significant Shapiro-
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Wilk test). For one-way ANOVAs, the assumption of homogeneity of variance 

was checked using the Levene’s test. If significant, the Welch test was used and 

main effects were examined using Games-Howell post hoc tests. Otherwise, 

main effects were examined with Least Significant Difference post hoc tests. For 

the Kruskal-Wallis test, main effects were examined using multiple Mann-

Whitney tests. Effect sizes were quantified with omega squared (ω2) for one-

way ANOVAs and eta squared (ƞ2) for Kurskal-Wallis tests. There was no 

correction for multiple comparisons due to the explorative character of the 

study and given the dependency between the outcome measures. 

Pearson’s correlation coefficients were determined between clinical 

test scores and IWW outcome measures for PD patients only. Absolute 

correlations between 0-0.499, 0.500-0.699, 0.700-0.899 and 0.900-1.000 were 

regarded as low, moderate, high and very high correlations, respectively [19]. 

Stepwise discriminant analyses were conducted to determine the 

added value of IWW outcome measures over clinical test scores in 

discriminating freezers from non-freezers, using Wilks’ lambda method (entry 

= 3.84 and removal = 2.71) in four different models. Predictor variables were 

clinical test scores (model 1), IWW gait characteristics of unconstrained 

walking (model 2), IWW outcome measures of adaptive walking (model 3) and 

IWW outcome measures of dual-task walking (model 4; Table 6.2). Subjects 

were only included if they had values for all possible predictor variables. Three 

not highly correlated predictor variables with the highest effect sizes for the 

comparison between freezers and non-freezers were selected per model. All 

models were cross-validated using the leave-one-out method (i.e., each subject 

is classified by a discriminant function which is based on all subjects except 

itself; [20]). The accuracy (i.e., proportion of correctly classified freezers and 

non-freezers) of discriminant models and cross-validated discriminant models 

was determined. Furthermore, exact McNemar's tests were performed to 

establish if one model significantly outperformed the others. 
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Results 

Known-groups validity 

As expected, freezers performed significantly worst, non-freezers performed 

in-between, and matched controls performed best on almost all assessments 

(i.e., clinical tests, unconstrained walking and adaptive walking; Table 6.3). 

There was one exception; freezers had significantly better stepping accuracies 

than non-freezers on the goal-directed stepping task with symmetric stepping 

stones. No significant group differences were found for IWW outcome 

measures of dual-task walking. 

 

 

Figure 6.3 Pearson’s correlation coefficients between clinical test scores (x-axis; i.e., Timed-Up-

and-Go test [TUG], 10-meter walking test at comfortable and maximum walking speed [10MWT-

CWS, 10MWT-MWS], Tinetti Balance Assessment [TBA], 7-item Berg Balance Scale [BBS] and 
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Functional Reach Test [FRT]) and Interactive Walkway outcome measures (y-axis; i.e., gait 

characteristics of unconstrained walking [UW1-7], outcome measure of adaptive walking [OA1-3, 

SSS1-3, GDS1-4, NWW1-3, SA1-4, S1-2, T1-3], and outcome measures of dual-task walking [DT1-4]) 

in patients with Parkinson’s disease. The order of the outcome measures on the x-axes is in 

agreement with Table 6.3. The dotted black lines separate the three types of Interactive Walkway 

tasks (i.e., unconstrained walking, adaptive walking and dual-task walking). The colorbar provides 

a visualization of the strength and direction of the correlation. 

 

Correlations between outcome measures 

Of the 42 possible correlations between clinical test scores and IWW gait 

characteristics, 18 (42.9%) were significant, out of which 17 (40.5%) were high 

and 1 (2.4%) was moderate (Figure 6.3). Significant correlations were only 

found for walking speed, step length and stride length. For IWW outcome 

measures of adaptive walking, 88 (61.1%) of the possible 144 correlations 

were significant. Nevertheless, only 9 (6.3%) were high, while 45 (31.3%) were 

moderate and 34 (23.6%) were low (Figure 6.3). High correlations were mainly 

found for turning time of full turns. For IWW outcome measures of dual-task 

walking, 11 (45.8%) out of the possible 24 correlations were significant, out of 

which 1 (4.2%) was high, 7 (29.2%) were moderate and 3 (12.5%) were low 

(Figure 6.3). 

 

Discriminant analyses of freezers and non-freezers 

For model 1 (clinical tests), group membership (i.e., freezer or non-freezer) was 

predicted using only the 10-meter walking test at comfortable walking speed (p 

= 0.025, Wilks’ lambda = 0.791, Canonical correlation = 0.457), the sole 

predictor variable contributing significantly to the model. 5 of 10 freezers 

(50.0%) and 13 of 14 non-freezers (92.9%) were correctly classified. The 

accuracy of model 1 and its cross validation were both 75.0%. For model 2 

(IWW gait characteristics), none of the predictor variables contributed 

significantly to the model. For model 3 (IWW outcome measures of adaptive 

walking), group membership was predicted using stepping accuracy on 

symmetric stepping stones of the goal-directed stepping task and turning time 
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of full turns (p = 0.005, Wilks’ lambda = 0.598, Canonical correlation = 0.634) 

such that 7 of 10 freezers (70.0%) and 12 of 14 non-freezers (85.7%) were 

correctly classified, with an accuracy of 79.2%. The accuracy of the cross-

validated model was 70.8%. For model 4 (IWW outcome measures of dual-task 

walking), none of the predictor variables contributed significantly to the model. 

The results of an exact McNemar's test demonstrated that there was no 

statistical significant difference in the proportion of freezers and non-freezers 

identified with models 1 and 3 (p = 0.688). 

 

Discussion 

This study aimed to examine the expected added value of IWW assessments in 

PD patients, focusing on known-groups validity, relations with clinical test 

scores and discriminating freezers from non-freezers. 

On all clinical tests, freezers scored worst, non-freezers scored in-

between and controls scored best (Table 6.3). These known-groups differences 

were also found for IWW gait characteristics (Table 6.3); freezers had 

significantly lower walking speeds and smaller step and stride lengths than 

controls, which is in agreement with findings of others using marker-based 

motion registration systems or the Kinect v2 sensor [21,22]. Significant group 

differences in expected directions were also observed for IWW outcome 

measures of adaptive walking (Table 6.3). As in Caetano et al. [3], both freezers 

and non-freezers had more difficulty adapting walking to suddenly appearing 

obstacles than controls as reflected by lower obstacle-avoidance success rates. 

In line with other studies [23,24], margins of the leading limb were smaller in 

freezers and non-freezers, which probably increases their risk of tripping in 

real life. Furthermore, group differences were found for the goal-directed 

stepping, speed adjustments and full turns tasks. In general, freezers scored 

worst, non-freezers in between, and controls best. An interesting exception was 

stepping accuracy on symmetric stepping stones, where freezers had 

significantly better stepping accuracies than non-freezers. Irregular stepping 
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stones showed the same trend, although this did not reach significance possibly 

due to the larger within-groups variations for this task (Table 6.3). It is well 

known that visual cues may lead to considerable improvement in walking of 

freezers [25]. This is likely mediated by a better visual exploration of freezers 

than non-freezers in terms of gaze fixations to task-relevant information [26], 

which is known to result in a better stepping performance [27]. No significant 

group differences were found for the sudden stops-and-starts, narrow walkway 

and slalom tasks. Reasons for the null effect for the narrow walkway tasks 

could be that step width and tandem gait are typically preserved in PD patients 

[28], which was corroborated by an absence of between-groups differences in 

step width in our study. For the other tasks, the cueing effect of the visual 

context may have confounded potential group differences. Hence, one could 

consider removing these tasks from adaptive walking assessments in PD 

patients. For dual-task walking, also no significant group differences were 

found. An explanation could be that task prioritization varied among subjects, 

leading to large within-groups variations for the outcome measures of dual-

task walking which reduced the likelihood of finding significant between-

groups differences. Note that other studies have also demonstrated that there 

were no differences in dual-task interference for gait characteristics and 

cognitive tasks between PD patients and controls [29]. The added value of dual-

task walking in a walking ability assessment in PD is therefore questionable 

(see also Gaßner et al. [30] and Smulders et al. [10]). Our study not only 

confirmed these results, but also showed that quantifiable differences between 

groups are particularly evident for other aspects of adaptive walking (e.g., 

obstacle avoidance and goal-directed stepping). 

The group differences found for the IWW tasks of unconstrained 

walking, obstacle avoidance, goal-directed stepping, speed adjustments and full 

turns imply that these tasks could be used in a comprehensive walking ability 

assessment with the IWW, incorporating the three key aspects of walking 

ability. Usually, a combination of the three key walking-ability aspects (i.e., 
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stepping, equilibrium and adaptation) is needed for a successful task 

performance. Indeed, for most IWW tasks a combination was required strongly 

tapping into the aspect of walking adaptability, while adaptation was not or 

only moderately targeted by commonly-used clinical tests that mainly measure 

steady-state gait and static balance as evidenced by the low correlations 

(Figure 6.3). While high correlations between tests suggest redundancy in 

information content, low or no correlations suggest that tests contain 

complementary information. IWW gait characteristics and turning time of full 

turns correlated highly with clinical tests, addressing mainly aspects of 

stepping and equilibrium. PD patients seem to experience problems when 

having to deviate from their normal gait pattern [3], which requires dynamic 

balance control. Balance problems in PD patients and especially freezers are 

evident in the current study, demonstrated by large effect sizes for balance 

tests and full turns. Clinicians mainly focus on gait impairments [31], although 

dynamic balance control is also of great importance during challenging walking 

tasks. Therefore, in order to obtain a more comprehensive characterization of a 

subject’s walking ability, both unconstrained and adaptive walking should be 

assessed, for example with obstacle-avoidance and goal-directed stepping. 

This study also aimed to determine the expected added value of the 

IWW over clinical tests in discriminating freezers from non-freezers. We indeed 

found that IWW adaptive walking tasks discriminated better than clinical tests, 

although the added value was somewhat limited and the proportion of freezers 

and non-freezers identified with model 3 did not differ significantly from model 

1. Clinical tests performed slightly worse compared to adaptive walking tasks 

with regard to the percentage of freezers correctly classified (50.0% vs. 70.0%, 

respectively). The percentage of non-freezers correctly classified was high for 

both models (92.9% and 85.7%, respectively). IWW gait characteristics and 

IWW outcome measures of dual-task walking did not contribute significantly to 

the discriminant analysis. Although we could discriminate freezers from non-

freezers, the freezing phenomenon itself was rarely observed. IWW tasks 
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elicited FOG episodes in only 12 out of 466 (2.6%) trials, concerning five 

freezers and mostly during tasks that included turning (in agreement with 

literature; [32]). Explanations for the limited amount of FOG episodes could be 

the focused attention due to the specific instructions of the IWW tasks, cueing 

effects of visual content and the fact that we assessed PD patients during the ON 

state, while the occurrence of FOG episodes increases during the OFF state. 

The latter is also a limitation of this study, since medication may 

improve gait impairments and could therefore lead to smaller group 

differences in walking ability. However, we still found significant between-

groups differences, which may indicate that the IWW is a sensitive evaluation 

tool of walking ability. Another limitation is the relatively small sample size of 

the discriminant analyses (i.e., 10 freezers and 14 non-freezers). We therefore 

needed to pre-select predictor variables for the models to prevent overfitting, 

since the smallest group needs to exceed the number of predictor variables. 

Finally, the significant difference between freezers and non-freezers in disease 

severity (i.e., Hoehn and Yahr stage; Table 6.1) might have influenced the 

results of this study by increasing the group differences of walking-ability 

outcome measures. 

In conclusion, the IWW assessment exhibited expected differences 

between freezers, non-freezers and healthy controls, with most IWW outcome 

measures reflecting combinations of stepping, equilibrium and adaptation; key 

aspects of walking that are addressed separately in most clinical tests. IWW 

adaptive walking tasks also contributed to a slightly better discrimination of 

freezers from non-freezers. Hence, it seems fair to conclude that the IWW is of 

added value in PD patients when assessing walking ability. The IWW tasks of 

adaptive walking evaluate more complex gait in comparison with clinical tests, 

which fits an assessment of walking ability in the early stages of PD where 

ceiling effects can occur. Future studies should examine the responsiveness of 

the IWW outcome measures on an individual level and in response to levodopa 

treatment (i.e., by examining differences in walking ability between the ON and 
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OFF state). In addition, since the impairments in walking ability evaluated with 

the IWW are linked to walking-related falls, future studies are warranted to 

examine the clinical potential of the IWW for assessing fall risk and informing 

on tailored falls prevention programs in PD patients or other populations prone 

to declines in walking ability (e.g., elderly, stroke). Note that the current study 

is helpful in that regard, by informing on the subtasks and associated outcome 

measures providing complementary information with a decent between-groups 

contrast. 
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Supplement 6.1 

Video of Interactive Walkway tasks of unconstrained walking, adaptive walking 

and dual-task walking in a person with Parkinson’s disease with dyskinesia. 

The subject had consented to the making of the video for publication purposes. 

This video is available at https://youtu.be/p1a07lL9veM. 
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Supplement 6.2 

Data pre-processing 

The Kinect for Windows Software Development Kit (SDK 2.0, 

www.microsoft.com) provides 3D time series of 25 body points using inbuilt 

and externally validated human-pose estimation algorithms [1-5]. These body 

points are: head, neck, spine shoulder, spine mid, spine base and left and right 

shoulder, elbow, wrist, hand, thumb, hand tip, hip, knee, ankle and foot. For 

offline data analysis, the 3D positional data for these body points were first pre-

processed per Kinect sensor separately. Body points labelled as inferred (i.e., 

Kinect’s human-pose estimation software infers positions when segments are 

partially occluded for example) were treated as missing values. The body 

point’s time series were linearly interpolated using Kinect’s time stamps to 

ensure a constant sampling frequency of 30 Hz, without filling in the parts with 

missing values. We removed data points from the time series when they did not 

meet our stringent requirements for valid human-pose estimation (e.g., a 

minimum of 15 out of the 25 possible body points should be labeled as tracked, 

including the head and at least one foot and ankle, without outliers in segment 

lengths). In addition, a manual check of the data was added to remove errors of 

the algorithm due to occlusion of the right leg by the left leg. Subsequently, data 

of the four Kinect sensors were combined by taking for each sample the 3D 

positions of the body points of a validly estimated human pose. If, for a given 

sample, more than one sensor contained valid human pose data, the associated 

body point’s 3D positions were averaged for that specific sample. 

Body point’s time series with more than 50% of missing values were 

excluded from further analyses. However, percentages of missing data for both 

groups did not exceed 27.2% with an average of 5.3 ± 1.6% for the body points’ 

time series of interest (i.e., ankles, spine base and spine shoulder). The missing 

values were interpolated with a spline algorithm. The so-obtained time series 

were used for the calculation of the Interactive Walkway (IWW) outcome 

measures of unconstrained walking, adaptive walking and dual-task walking. 



Assessing walking adaptability in Parkinson’s disease 

183 

 

The outcome measures of the IWW assessments were calculated from 

specific body points’ time series, estimates of foot contact and foot off and step 

locations, as detailed in Table 6.2. Estimates of foot contact and foot off were 

defined as the maxima and minima of the anterior–posterior time series of the 

ankles relative to that of the spine base [3,6,7]. Step locations were determined 

as the median anterior–posterior and mediolateral position of the ankle joint 

during the single-support phase (i.e., between foot off and foot contact of the 

contralateral foot; [3,6]). Shoe edges and center of the foot were also needed to 

calculate several outcome measures. Ankle-to-shoe calibration trials, in which 

the subject was standing in two shoe-size-matched targets at a position on the 

walkway in front of the last Kinect, were included to determine the average 

distance between shoe edges and the ankle. 
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Background. Most falls occur during walking and are due to trips, slips or 

misplaced steps, which suggests a reduced walking adaptability. The objective of 

this study was to evaluate the potential merit of a walking-adaptability 

assessment for identifying prospective fallers and risk factors for future falls in a 

cohort of stroke patients, Parkinson’s disease patients, and controls (n = 30 for 

each group). Research question. Does an assessment of walking-adaptability 

improve the identification of fallers compared to generic fall-risk factors alone? 

Methods. This study comprised an evaluation of subject characteristics, clinical 

gait and balance tests, a quantitative gait assessment and a walking-adaptability 

assessment with the Interactive Walkway. Subjects’ falls were registered 

prospectively with falls calendars during a 6-month follow-up period. Generic and 

walking-related fall-risk factors were compared between prospective fallers and 

non-fallers. Binary logistic regression and Chi-square Automatic Interaction 

Detector analyses were performed to identify fallers and predictor variables for 

future falls. Results. In addition to fall history, obstacle-avoidance success rate 

and normalized walking speed during goal-directed stepping correctly classified 

prospective fallers and were predictors of future falls. Compared to the use of 

generic fall-risk factors only, the inclusion of walking-related fall-risk factors 

improved the identification of prospective fallers. Significance. If cross-validated 

in future studies with larger samples, these fall-risk factors may serve as quick 

entry tests for falls prevention programs. In addition, the identification of these 

walking-related fall-risk factors may help in developing falls prevention 

strategies. 
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Introduction 

The incidence of falls increases with age, but is particularly high in patients 

with neurological disorders, such as stroke and Parkinson’s disease (PD) [1,2]. 

Falls can occur as a result of both intrinsic factors (i.e., subject characteristics 

and gait impairments) and extrinsic factors (e.g., slippery floor, uneven walking 

surface) [3]. For the latter, it is important to be able to adapt walking to the 

environment, an aspect of walking that is difficult to assess with clinical tests 

[4]. Most falls occur during walking and are due to trips, slips or misplaced 

steps [5-7], suggesting a reduced walking adaptability. An evaluation of walking 

adaptability could potentially improve the identification of fallers and may help 

in developing falls prevention strategies [8]. The Interactive Walkway (IWW; 

Figure 7.1) can be used to perform quick and unobtrusive quantitative gait 

assessments [9] and to quantify various aspects of walking adaptability [10]. 

The aim of this study is to evaluate the potential merit of the IWW for 

identifying prospective fallers and risk factors for future falls in a composite 

cohort with stroke patients, PD patients and controls. First, we will examine 

differences in walking ability between fallers and non-fallers. Second, two 

methods will be used to identify fallers and risk factors for future falls; one 

extensive method and one easily interpretable method fit for use in the clinic. 

We expect that walking-adaptability assessments improve the classification of 

prospective fallers compared to generic fall-risk factors alone (i.e., subject 

characteristics, clinical gait and balance tests, quantitative gait assessments) 

and that a poor walking adaptability is a risk factor for future falls. 

 

Methods 

Subjects 

30 stroke patients, 30 PD patients and 30 controls participated in this study 

(Table 7.1). Groups were age- and sex-matched. Patients were recruited from 

the outpatient clinics of neurology and rehabilitation medicine of the Leiden 

University Medical Center and from a list of patients who were discharged from 



Walking adaptability for targeted fall-risk assessments 

189 

 

the Rijnlands Rehabilitation Center. Controls were recruited via advertisement. 

Subjects were 18 years or older and had command of the Dutch language. 

Patients had to be able to stand unsupported for more than 20 seconds and 

walk independently. Stroke patients had to be more than 12 weeks post stroke. 

PD patients had to fulfill clinical diagnostic criteria according to the UK 

Parkinson’s Disease Society Brain Bank [11] and could have a Hoehn and Yahr 

stage of 1-4 [12]. PD patients were measured in the ON state. Controls had to 

have unimpaired gait, normal cognitive function (Montreal Cognitive 

Assessment score ≥ 23; [13]) and normal or corrected to normal vision. 

Exclusion criteria were (additional) neurological diseases and/or problems 

interfering with gait function. All subjects gave written informed consent, and 

the study was approved by the local medical ethics committee (P15.232). 

 

 

Figure 7.1 The Interactive Walkway for an assessment of walking adaptability, which may unveil 

potential fall-risk factors. 
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Table 7.1 Group characteristics of stroke patients, Parkinson’s disease patients and controls. 

  Stroke Parkinson’s 

disease 

Control 

Age (years) mean ± SD 62.5 ± 10.1 63.1 ± 10.0 62.9 ± 10.3 

Sex male/female 18/12 18/12 18/12 

MOCA [0-30]* mean ± SD 22.5 ± 6.3 - 27.7 ± 1.4 

FMA lower extremity [0-34]* mean ± SD 19.7 ± 7.4 - - 

Bamford classification PACS/TACS/ 
POCS/LACS/unk 

16/2/2/8/1 - - 

SCOPA-COG [0-43]* mean ± SD - 30.4 ± 7.1 - 

MDS-UPDRS motor score [0-132]** mean ± SD - 36.9 ± 18.0 - 

Hoehn and Yahr stage [1-5]** mean ± SD - 2.3 ± 0.7 - 

Abbreviations: MOCA = Montreal Cognitive Assessment; FMA = Fugl-Meyer Assessment; PACS = 

partial anterior circulation stroke; TACS = total anterior circulation stroke; POCS = posterior 

circulation syndrome; LACS = lacunar syndrome; unk = unknown; SCOPA-COG = Scales for 

Outcomes in Parkinson’s Disease – Cognition; MDS-UPDRS = Movement Disorder Society version of 

the Unified Rating Scale for Parkinson’s disease. 

* Higher scores represent better outcomes. 

** Higher scores represent worse outcomes. 

 

Experimental set-up and procedure 

Before performing the experimental tasks, the Montreal Cognitive Assessment 

[14] and Scales for Outcomes in Parkinson’s Disease – Cognition [15] were 

administered to assess cognitive abilities. In stroke patients, sensorimotor 

impairment was assessed using the Fugl-Meyer Assessment - lower extremity 

[16]. Higher scores on these clinical tests reflect better outcomes (Table 7.1). In 

PD patients, the Movement Disorder Society version of the Unified Rating Scale 

for Parkinson’s disease [17] and Hoehn and Yahr stage [12] were administered 

to assess disease severity, with higher scores reflecting worse outcomes (Table 

7.1). All subjects completed the Falls Efficacy Scale - International [18] to assess 

fear of falling, the Modified Survey of Activities of Fear of Falling in the Elderly 

Scale [19] to assess activity avoidance due to fear of falling (higher scores 

indicate more fear of falling) and were asked about their fall history in the year 

prior to the experiment. 
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Commonly-used clinical gait and balance tests included the Timed-Up-

and-Go test and the 10-meter walking test at comfortable and maximum 

walking speed to assess mobility (longer completion times indicate worse 

mobility), the Tinetti Balance Assessment for an evaluation of gait and balance 

performance of which the combined score of the two sections was used in this 

study (higher scores indicate better performance), the 7-item Berg Balance 

Scale to measure static and dynamic balance during specific movement tasks 

(lower outcome indicates worse balance) and the Functional Reach Test to 

determine the maximal distance one can reach forward from a standing 

position (smaller distance indicates worse balance). The order of these 

commonly-used clinical tests was randomized. 

The validated IWW [9,10,20] was used for quantitative gait and 

walking-adaptability assessments. The IWW set-up, using multiple Kinect 

sensors for markerless 3D motion registration, is described in detail in 

Supplement 7.1. The quantitative gait assessment was performed using an 8-

meter walking test. In addition, subjects performed various walking-

adaptability tasks under varying levels of difficulty: obstacle avoidance, sudden 

stops-and-starts, goal-directed stepping (symmetric and irregular stepping 

stones), narrow walkway (entire walkway and sudden narrowing), speed 

adjustments (speeding up and slowing down), slalom, turning (half and full 

turns) and dual-task walking (plain and augmented), yielding a total of 36 trials 

(Figure 7.2; see Supplement 7.1 for more details and Supplement 7.2 for a 

video). Dual-task walking was assessed using an auditory Stroop task in which 

the words high and low were pronounced at a high or low pitch (i.e., congruent 

and incongruent stimuli) simultaneously with the 8-meter walking test (plain 

dual-task walking) and obstacle-avoidance task (augmented dual-task walking), 

respectively. Subjects had to respond with the pitch of the spoken word, which 

was different from the spoken word in case of an incongruent stimulus. Stimuli 

were presented with a fixed interval of 2 s. Subjects were instructed to 
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complete each trial at a self-selected walking speed, while also responding to 

the Stroop stimuli in case of dual-task walking. 

Half of the subjects in each group started with the clinical tests, the 

other half with the IWW assessment. With regard to the latter, subjects always 

started with the 8-meter walking test, which enabled us to adjust the settings of 

the walking-adaptability tasks to one’s own gait characteristics in an attempt to 

obtain a similar level of difficulty for each subject (see Supplement 7.1). For 

example, available response times for suddenly appearing obstacles were 

controlled by self-selected walking speed during the 8-meter walking test and 

available response distance (ARD in Figure 7.2). Subsequently, the 8-meter 

walking test was performed with the dual task (i.e., plain dual-task walking), 

preceded by a familiarization trial in which the auditory Stroop task was 

practiced while sitting. The remaining IWW tasks (as specified in Table 7.2) 

were randomized in blocks. 

After the experiment, subjects were asked to register falls during a 6-

month follow-up period using a falls calendar. Subjects had to report every day 

whether they had fallen. A fall was defined as an unexpected event in which the 

subject comes to rest on the ground, floor, or lower level [21]. Subjects were 

asked to send back their falls calendar every month and were contacted on a 

monthly basis to ask about the falls that occurred. 

 

Data pre-processing and analysis 

Data pre-processing followed Geerse et al. [9,10], as reproduced in more detail 

in Supplement 7.1. 111 trials (3.4% of all trials) were excluded since subjects 

did not perform the tasks or trials were not recorded properly (i.e., incorrect 

recording or inability of sensors of the IWW to track the subject). These 

excluded trials only concerned stroke and PD patients. IWW outcome measures 

were calculated from specific body points’ time series, estimates of foot contact 

and foot off and step locations, as detailed in Table 7.2 and Supplement 7.1. 

Outcome measures of dual-task performance were success rate, response time 
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and a composite score that represents the trade-off between these two 

outcome measures (Table 7.3; [22-24]). The average over trials per IWW task 

per subject was calculated for all outcome measures. 

Falls calendars were used to classify subjects as prospective faller (i.e., 

those reporting at least one fall during the follow-up period) or non-faller. In 

the literature, fallers are classified using both retrospective and prospective 

falls. Therefore, non-fallers were defined as subjects that did not report a fall in 

the follow-up period or in the year prior to the experiment. Only walking- or 

balance-related falls were taken into account. A total of 88 subjects completed 

the entire 6-month follow-up period. One PD patient stopped prematurely with 

the falls calendar as it took too much time, but was not excluded from the 

analyses since this patient was already identified as a prospective faller based 

on the received falls calendars. One stroke patient who did not fill in a single 

falls calendar was excluded. In total, 33 (37.1%; 37.9% of stroke patients, 

50.0% of PD patients and 23.3% of controls) subjects reported at least one fall 

in the follow-up period (i.e., prospective fallers), of which 24 (72.7% of 

prospective fallers; 27.0% of total) also had a history of falling. In the sample of 

56 (62.9%) subjects without a prospective fall, 47 (83.9%; 52.8% of total) were 

actual non-fallers according to our definition; consequently, 9 (16.1%; 10.1% of 

total) subjects were excluded since they had a history of falling without 

prospective falls. 

 

Statistical analysis 

Outcome measures of prospective fallers (n = 33) and non-fallers (n = 47) were 

compared using chi-squared tests for categorical data and independent-

samples t-tests for continuous variables to examine differences in walking 

ability. We computed r to quantify the effect sizes of continuous variables [25], 

where values between 0.10-0.29 were regarded as small, between 0.30-0.49 as 

medium and above 0.50 as large effect sizes [25]. 
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Binary logistic regression analyses (forward method, Wald test) were 

performed on four models (Table 7.3) to identify prospective fallers and 

predictor variables for future falls. Model 1 included only subject 

characteristics (e.g., age, fall history, group) as potential predictor variables. For 

model 2, clinical test scores were added to subject characteristics. Model 3 

consisted of subject characteristics, clinical test scores and spatiotemporal gait 

parameters. For model 4, also IWW walking-adaptability outcome measures 

were added. We calculated the sensitivity (i.e., percentage correctly classified 

prospective fallers), specificity (i.e., percentage correctly classified non-fallers) 

and overall accuracy (i.e., percentage of correctly classified prospective fallers 

and non-fallers) for each prediction model. We also inspected the sign and size 

of the coefficients (i.e., describing the relationship between predictor variable 

and outcome) to determine the direction of the association with falls and the 

relevance of a predictor variable. Receiver operating characteristic curve 

analyses were used to assess the predictive accuracy of each model by 

estimating the area under the curve (AUC). AUCs of more than 0.70, 0.80 and 

0.90 are considered acceptable, excellent and outstanding, respectively [26]. 

Multiple imputation was performed to handle missing data (1.4%, 69 complete 

cases) in 23 out of 48 potential predictor variables. Five imputations were 

performed using chained equations including all potential predictor variables 

of model 4 and the outcome variable (i.e., prospective faller or non-faller). 

We also used the Chi-square Automatic Interaction Detector (CHAID) 

analysis to identify significant predictors for inclusion in a prediction model 

based on a decision tree. Potential predictor variables included in our model 

were subject characteristics, clinical test scores, spatiotemporal gait 

parameters and IWW walking-adaptability outcome measures. In our model, 

we imposed a minimum of one subject per node, a significance level of 0.05 

(with a Bonferroni correction) and a division on a maximum of two levels to 

keep the decision tree as simple as possible. Sensitivity, specificity and overall 

accuracy were calculated. 



Walking adaptability for targeted fall-risk assessments 

195 

 

 

Figure 7.2 Schematic of the quantitative gait assessment and walking-adaptability tasks on the 

Interactive Walkway, as detailed in the main text. 
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Results 

Prospective fallers had significantly more fear of falling (i.e., higher score on the 

Falls Efficacy Scale) and more often avoided activities due to fear of falling (i.e., 

higher score on the Modified Survey of Activities of Fear of Falling in the Elderly 

Scale; Table 7.3) than non-fallers. In addition, prospective fallers performed 

overall worse on clinical tests (significantly for the Timed-Up-and-Go test, 

Tinetti Balance Assessment and 7-item Berg Balance Scale) and IWW tasks 

(significantly for the obstacle-avoidance, sudden-stops-and-starts, goal-

directed-stepping and turning tasks) and walked slower and with smaller steps 

than non-fallers (Table 7.3). 

 

Binary logistic regression models 

Model 1 included fall history (B = 23.11) and age (B = 0.08) as best predictor 

variables for prospective falls, models 2 and 3 also only included fall history 

and age, while model 4 included fall history (B = 24.16), obstacle-avoidance 

success rate (B = -0.07) and reaching distance on the Functional Reach Test (B = 

0.20). Sensitivity increased from 72.7% (models 1-3) to 78.8% (model 4), 

specificity increased from 97.9% to 100.0% and overall accuracy increased 

from 87.5% to 91.3%. AUC increased from 0.926 (95% CI = [0.858 0.995]; 

models 1-3) to 0.943 (95% CI = [0.886 1.000]; model 4). 

 

CHAID analysis 

The CHAID analysis identified three significant predictors for prospective falls 

(Figure 7.3). Subjects were initially dichotomized by fall history, with 

retrospective falls classifying 24 of 80 subjects as prospective faller of which all 

were actual prospective fallers. The remaining 56 subjects without a fall history 

(i.e., falls-naïve cohort, including 9 prospective fallers) were split by obstacle-

avoidance success rate (> 77.8% and ≤ 77.8%). 35 subjects with a success rate 

> 77.8% were classified as non-fallers, of which 33 subjects were non-fallers. 

The remaining 21 subjects with an obstacle-avoidance success rate ≤ 77.8% 
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were finally split by normalized walking speed during goal-directed stepping 

on symmetric stepping stones (> 91.9% and ≤ 91.9% or missing). The 6 

subjects with a normalized walking speed > 91.9% were classified as 

prospective fallers, of which 5 subjects were prospective fallers. The sensitivity 

of this model was 87.9% (29 out of 33 prospective fallers correctly identified), 

while the specificity was 97.9% (46 out of 47 non-fallers correctly identified), 

with an overall accuracy of 93.8%. 

 

 

Figure 7.3 Decision tree of the CHAID analysis. 
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Discussion 

This study evaluated the potential merit of the IWW for identifying fallers and 

risk factors for future falls in a composite cohort with stroke patients, PD 

patients and controls. Prospective fallers experienced more fear of falling, a 

well-known fall-risk factor [8,21,27]. Fallers also more often reported fear-

induced activity avoidance than non-fallers. In addition, prospective fallers 

walked slower and with smaller steps, and had a poorer performance on 

clinical gait and balance tests. As anticipated, prospective fallers performed 

worse on various walking-adaptability tasks, including the obstacle-avoidance, 

sudden-stops, goal-directed-stepping and full-turn tasks. Since tripping is 

considered one of the most common causes of falls in everyday life [5-7], 

smaller margins of the leading limb during obstacle avoidance were expected. 

Overall, the ability to make step adjustments, either under time pressure 

demands or during goal-directed stepping, was impaired in prospective fallers 

and was associated with falls in [28,29]. This may point at specific underlying 

gait impairments that can be targeted in falls prevention strategies to reduce 

fall risk. No differences were found between prospective fallers and non-fallers 

for dual-task walking, except for response time during plain dual-task walking 

(Table 7.3). An explanation for this might be between-subject variation in task 

prioritization in both groups. In the study of Timmermans et al. [30] the 

amount of cognitive-motor interference did not differ between obstacle 

avoidance over physical obstacles compared to projected obstacles, while task 

prioritization did. In Timmermans et al. [30] and in the current study, subjects 

were instructed to perform both tasks as well as possible, affording differences 

in task prioritization. This likely increased between-subject variation in the 

performance of the walking task and the cognitive task, which might explain the 

lack of a clear effect of the dual task (Table 7.3). Note that response time during 

augmented dual-task walking and the composite scores showed trends towards 

poorer dual-task performance in fallers. 
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We performed two different analyses to identify prospective fallers and 

predictor variables for future falls, namely the binary logistic regression and 

CHAID analysis, which both performed very well in terms of overall accuracy. 

The results of the CHAID analysis are easier to interpret and implement in daily 

practice [31]. On the other hand, binary logistic regression models are more 

informative on the relevance of a predictor variable (i.e., size of coefficient). 

Both analyses identified fall history and obstacle-avoidance success rate as 

predictor variables. The CHAID analysis additionally identified normalized 

walking speed during goal-directed stepping on symmetric stepping stones as 

predictor variable, whereas age and reaching distance on the Functional Reach 

Test both significantly increased fall risk (i.e., positive coefficients) in the binary 

logistic regression models. Group (i.e., stroke, Parkinson’s disease, control) was 

not identified as a significant predictor variable for prospective falls. This 

suggests that the presence of a neurological disorder does not automatically 

increase fall risk, a finding in line with another study on fall-risk assessments 

[32]. Notably, controls without specific disorders also experienced falls 

(23.3%). A decreased walking ability in older adults compared to younger 

adults has been demonstrated [33], both in steady-state walking and walking 

adaptability. Assessing limitations in walking ability, regardless of their cause 

(e.g., neurological disorders, ageing), thus likely provides a better indication of 

someone’s fall risk. In accordance with previous studies, fall history was the 

best sole predictor of future falls in our study [27,34]. All subjects classified as 

prospective faller in models 1-3 had a history of falling and the coefficients for 

fall history in the models were high. The addition of obstacle-avoidance success 

rate and reaching distance led to the correct classification of two more fallers 

and one non-faller. Using the CHAID analysis, we subsequently evaluated risk 

factors of first falls in the falls-naïve cohort. It appeared that subjects who 

poorly performed the obstacle-avoidance task and who did not substantially 

lower their walking speed during goal-directed stepping are most at risk of 

falling (i.e., 5 out of 9 fallers correctly classified). Reminiscent of a speed-
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accuracy trade-off, subjects seem to maintain their normal walking speed (i.e., 

no significant group difference in normalized walking speed), at the expense of 

stepping accuracy (i.e., significantly less accurate in prospective fallers). 

However, the latter seems more important when walking in the community. 

There thus appears to be a discrepancy between their perceived and actual 

walking ability, which may be a factor contributing to falls [35]. The amount of 

misjudgment has been emphasized to be useful to include in fall-risk 

assessments [36] and allows for better personalized interventions [35]. This 

was confirmed by the study of Butler et al. [37]; subjects that took higher risks 

than their physical ability allowed were more likely to experience a fall in the 

upcoming year. Assessing walking adaptability in addition to asking about falls 

in the previous year thus seems of added value when assessing fall risk. 

Besides, identification of these walking-related fall-risk factors may lead to 

more targeted, personalized and possibly more effective falls prevention 

programs. 

A limitation of this study was the sample size. Although 90 subjects 

were included and followed prospectively for falls, this was still relatively small 

when the distribution of fallers and non-fallers and the type of analysis are 

taken into account. This limits cross-validation of the models and the risk of 

overfitting must be considered. This study should therefore be regarded as a 

first step in evaluating the proposed comprehensive fall-risk assessment 

including generic and walking-related factors. The results, when confirmed by a 

larger sample, provide indications for a strategy to identify subjects that are at 

a high risk of falling. First, subjects should be asked about their fall history and 

subjects with a history of walking-related falls may be advised to follow a falls 

prevention program, aimed at improving balance, walking and walking 

adaptability. Second, subjects that are falls-naïve should perform an assessment 

of about five minutes, including the obstacle-avoidance and goal-directed 

stepping tasks and a baseline walk (to determine normalized walking speed) to 

identify potential fallers. Subjects with poor walking adaptability who do not 
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reduce their walking speed accordingly, may also be advised to follow a falls 

prevention program. Given these walking-related predictor variables, such a 

program should be geared towards improving (sudden) step adjustments and 

creating awareness about a subject’s ability to adapt walking in order to reduce 

their walking-related fall risk. 
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Supplement 7.1 

Experimental set-up and procedure 

The quantitative gait assessment and walking-adaptability assessment were 

performed on the Interactive Walkway (IWW; Figure S7.1) using four spatially 

and temporally integrated Kinect v2 sensors to obtain full-body kinematics. The 

IWW set-up was based on a validated IWW set-up used in Geerse et al. [1,2], 

with improved inter-sensor distances following recommendations of Geerse et 

al. [3]. The sensors were positioned at a height of 0.95 m alongside a walkway 

of 8 by 0.75 m. The first three sensors were placed frontoparallel (i.e., with an 

angle of 70 degrees relative to the walkway direction) with a distance of 1.2 m 

from the left border of the walkway. The last sensor was positioned frontally at 

the end of the walkway, since this will minimize orientation-based biases [4]. 

The first sensor was positioned at 3 m from the start of the walkway and the 

other sensors were placed at inter-sensor distances of 2.1 m. The IWW was 

equipped with a projector (EPSON EB-585W, ultra-short-throw 3LCD 

projector) to augment the entire 8-meter walkway with visual context for the 

walking-adaptability tasks. The coordinate systems of the sensors and 

projector were spatially aligned to a common coordinate system using a spatial 

calibration grid. IWW data were sampled at 30 Hz using custom-written 

software utilizing the Kinect-for-Windows Software Development Kit (SDK 2.0). 

Details about the experimental tasks performed on the IWW can be found in 

Table S7.1. 

 

Data pre-processing and analysis 

The Kinect for Windows Software Development Kit (SDK 2.0, 

www.microsoft.com) provides 3D time series of 25 body points using inbuilt 

and externally validated human-pose estimation algorithms [1,5-8]. These body 

points are: head, neck, spine shoulder, spine mid, spine base and left and right 

shoulder, elbow, wrist, hand, thumb, hand tip, hip, knee, ankle and foot. For 

offline data analysis, the 3D positional data for these body points were first pre-
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processed per Kinect sensor separately. Body points labelled as inferred (i.e., 

Kinect’s human-pose estimation software infers positions when segments are 

partially occluded for example) were treated as missing values. The body 

point’s time series were linearly interpolated using Kinect’s time stamps to 

ensure a constant sampling frequency of 30 Hz, without filling in the parts with 

missing values. We removed data points from the time series when they did not 

meet our stringent requirements for valid human-pose estimation (e.g., a 

minimum of 15 out of the 25 possible body points should be labeled as tracked, 

including the head and at least one foot and ankle, without outliers in segment 

lengths). In addition, a manual check of the data was added to remove errors of 

the algorithm due to depth occlusion of the right leg by the left leg. 

Subsequently, data of the four Kinect sensors were combined by taking for each 

sample the 3D positions of the body points of a validly estimated human pose. 

If, for a given sample, more than one sensor contained valid human pose data, 

the associated body point’s 3D positions were averaged for that specific sample. 

Body point’s time series with more than 50% of missing values were 

excluded from further analyses. However, percentages of missing data for all 

three groups did not exceed 27.3% with an average of 5.0 ± 2.1% for the body 

points’ time series of interest (i.e., ankles, spine base and spine shoulder). The 

missing values of the remaining data were interpolated with a spline algorithm. 

The so-obtained time series were used for the calculation of the spatiotemporal 

gait parameters and walking-adaptability outcome measures. 

The outcome measures of the IWW assessment were calculated from 

specific body points’ time series, estimates of foot contact and foot off and step 

locations, as detailed in Table 7.2. Estimates of foot contact and foot off were 

defined as the maxima and minima of the anterior–posterior time series of the 

ankles relative to that of the spine base [1,2,9]. Step locations were determined 

as the median anterior–posterior and mediolateral position of the ankle joint 

during the single-support phase (i.e., between foot off and foot contact of the 

contralateral foot; [1,2]). Shoe edges and center of the foot were also needed to 
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calculate several outcome measures. Ankle-to-shoe calibration trials, in which 

the subject was standing in two shoe-size-matched targets at a position on the 

walkway in front of the last Kinect, were included to determine the average 

distance between shoe edges and the ankle. 

 

 Figure S7.1 Set-up of the Interactive Walkway with visual context projected on the walkway. 
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Supplement 7.2 

Video of assessments on the Interactive Walkway in a patient with stroke. This 

video is available at https://youtu.be/k7O2kc5R-K8.  
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Summary 

Neurological disorders may impair various aspects of walking ability that are 

needed for safe and independent walking (cf. Balasubramanian et al. [1]), 

therefore requiring different rehabilitation strategies. A comprehensive 

assessment addressing the key components of walking ability may help to tailor 

management strategies to the individual needs of each patient. The Interactive 

Walkway (IWW) is a promising, unobtrusive and low-cost assessment tool of 

walking ability in daily practice. Nevertheless, it is unclear if 1) this approach 

can provide a valid assessment of walking ability and, if so, 2) if it has clinical 

potential in the assessment of walking ability and fall risk in patients with 

stroke and Parkinson’s Disease (PD). The aim of this thesis was to gain insight 

into these two aspects. 

 

Part 1: Can the IWW be used for a valid comprehensive assessment of 

walking ability? 

The most commonly used outcome measure of walking ability is walking speed 

assessed over short distances, for example using the 10-meter walking test. 

Using the IWW, this 10-meter walking test can be expanded with quantitative 

gait assessments, performed in a quick, unobtrusive and patient-friendly 

manner. In doing so, standard clinical tests are complemented with additional 

information about gait and balance impairments derived from 3D kinematics 

during walking. The study described in Chapter 2 aimed to validate the IWW 

for markerless quantitative gait assessments in terms of 3D full-body 

kinematics and associated spatiotemporal gait parameters against a gold-

standard marker-based motion-registration system in a group of 21 healthy 

subjects. The 10-meter walking test was conducted at comfortable and 

maximum walking speed, while 3D full-body kinematics was concurrently 

recorded with the IWW and the Optotrak system (i.e., the gold standard). The 

results demonstrated that 3D kinematics agreed well between the motion-

registration systems, particularly so for body points in motion. Moreover, 
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spatiotemporal gait parameters also matched well between systems. The 

results of Chapter 2 thus indicated that quantitative gait assessments can 

reliably be performed with the IWW. 

In addition to measuring steady-state walking, the IWW also allows for 

assessing walking adaptability by projecting interactive visual context onto the 

walkway in the form of, for example, stepping targets and obstacles. In Chapter 

3, the between-systems agreement and sensitivity to task and subject 

variations for various walking-adaptability assessments on the IWW was 

addressed. Under varying task constraints, 21 healthy subjects performed 

obstacle-avoidance, sudden-stops-and-starts and goal-directed-stepping tasks. 

The results demonstrated that walking-adaptability outcome measures, such as 

obstacle-avoidance margins, generally agreed well between the IWW and 

Optotrak system. Second, walking-adaptability outcomes were sensitive to task 

and subject variations. With goal-directed stepping, task variations led to 

different step lengths, stepping accuracies and walking speeds while available 

response times and obstacle-avoidance margins varied with obstacle type. This 

testifies to the power of projected visual context to modify gait and to elicit 

(sudden) step adjustments, in line with previous studies exploring the same 

concept during treadmill walking [2-5]. Sensitivity to task and subject 

variations is important for walking-adaptability assessments in relatively high-

functioning groups (such as community-dwelling older adults), where ceiling 

effects are a common concern [6]. The same holds for floor effects in relatively 

fragile patient groups. The IWW potentially allows for walking-adaptability 

assessments that are feasible for both high-functioning and fragile populations 

since task difficulty can be varied. In addition, IWW assessments are also 

relatively safe (e.g., visual instead of physical obstacles), unobtrusive 

(markerless data) and hence time-efficient and patient-friendly. The IWW 

walking-adaptability assessments were therefore deemed usable for obtaining 

an objective and more task-specific examination of one’s ability to walk, which 

warrants studies on its clinical potential as discussed in Chapters 5 to 7. 
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Based on the insights obtained in these two validation studies, another 

validation study of the Kinect v2 sensor of the IWW was performed. The study 

described in Chapter 4 aimed to systematically evaluate the effects of distance 

to the sensor, body side (i.e., left or right) and step length on estimates of foot 

placement locations calculated using Kinect’s ankle body points. Estimates of 

foot placement locations are required to quantify spatial gait parameters and 

outcome measures of walking adaptability. In total, 12 healthy subjects 

performed stepping trials with imposed foot placement locations at various 

distances from the Kinect sensor, for the left and right body side, and for 

multiple imposed step lengths, concurrently recorded with a Kinect v2 sensor 

and the Optotrak system. The results revealed a small but significant between-

systems difference in foot placement locations and step lengths. These were 

likely caused by differences in body orientation relative to the Kinect sensor, 

whereby the ankle was estimated more posteriorly. This effect can be reduced 

by using smaller inter-sensor distances in the IWW set-up to estimate foot 

placement locations at greater distances from the sensor. 

Taken together, it can be concluded that the IWW can be used to validly 

assess both steady-state walking (Chapter 2) and walking adaptability (Chapter 

3) in a group of healthy adults. In doing so, it yields a more comprehensive 

assessment, addressing important components of the tripartite model of 

walking ability (i.e., the ability to generate stepping, to maintain postural 

equilibrium and to adapt walking to environmental demands). The results of 

Chapters 2 to 4 also led us to improve the IWW set-up by reducing inter-sensor 

distances. Subsequently, we set out to evaluate the clinical potential of the IWW 

as a tool for assessing walking ability and fall risk in patient groups, as will be 

discussed next. 
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Part 2: What is the clinical potential of the IWW for assessing walking 

ability and fall risk? 

The aim of the study presented in Chapter 5 was to evaluate the potential of 

the IWW as a new technology for assessing walking ability in stroke patients. 

Assessments of impairments in walking ability may aid in the development of 

individualized rehabilitation strategies. 30 stroke patients and 30 age- and sex-

matched healthy controls performed clinical tests as well as quantitative 3D 

gait assessments and various walking-adaptability tasks using the IWW. The 

results of this study suggested good known-groups validity for IWW walking-

adaptability tasks, similar to that of clinical tests and quantitative gait 

assessments. In addition, walking-adaptability tasks appeared to complement 

these assessments, as evidenced by the mainly low to moderate correlations 

between outcome measures of walking adaptability and those obtained from 

clinical tests and quantitative gait assessments. Our findings therefore 

suggested that using the IWW to evaluate steady-state walking and walking 

adaptability with obstacle avoidance and goal-directed stepping may provide a 

quick, unobtrusive and comprehensive quantitative assessment of walking 

ability with potential for monitoring recovery after stroke and informing 

rehabilitation strategies. 

In Chapter 6 steady-state walking (i.e., quantitative gait assessments), 

adaptive walking and dual-task walking were evaluated with the IWW in 14 PD 

patients with freezing of gait (FOG), 16 PD patients without FOG and 30 healthy 

controls. Similar to the results of the clinical tests, freezers scored worst, non-

freezers scored in-between and controls scored best on most IWW tasks, 

suggesting good known-groups validity. PD patients especially experienced 

problems when having to deviate from their steady-state gait pattern, which 

requires dynamic balance control. Therefore, in order to obtain a more 

comprehensive characterization of a subject’s walking ability, both steady-state 

and adaptive walking should be assessed, for example with obstacle avoidance 

and goal-directed stepping. It was demonstrated that these IWW tasks also 
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provide additional information compared to clinical tests given the low to 

moderate correlations between these two types of assessment. Moreover, IWW 

outcome measures of adaptive walking slightly better discriminated freezers 

from non-freezers than clinical test scores. The IWW thus shows potential as a 

more comprehensive walking-ability assessment in PD, incorporating all its key 

aspects of which many may be linked to falls. The latter premise was explored 

in more detail in Chapter 7, as discussed next. 

In Chapter 7, the potential merit of the IWW to identify prospective 

fallers and risk factors for future falls was evaluated in a composite cohort of 

stroke patients, PD patients and healthy controls. This study comprised an 

evaluation of subject characteristics, clinical gait and balance tests, and a 

quantitative gait assessment and walking-adaptability assessment on the IWW. 

Subjects’ falls were registered with monthly falls calendars during a 6-month 

follow-up period to identify subjects as prospective fallers (i.e., experiencing at 

least one walking-related fall during the follow-up period) or non-fallers. 

Prospective fallers experienced more fear of falling and more fear-of-falling-

related activity avoidance at baseline than non-fallers. In addition, prospective 

fallers walked slower and with smaller steps, and had a poorer performance on 

clinical gait and balance tests. As anticipated, prospective fallers also performed 

worse on various walking-adaptability tasks. In addition to fall history, 

obstacle-avoidance success rate and normalized walking speed during goal-

directed stepping were identified as predictor variables for falls and these fall-

risk factors improved the identification of fallers. It appears that subjects who 

performed worse on the obstacle-avoidance task without substantially 

lowering their walking speed during goal-directed stepping are most at risk of 

falling. Identification of these task-specific fall-risk factors may lead to more 

targeted, personalized and, possibly, more effective falls prevention programs. 

If validated in larger samples in future studies these measures hold promise as 

future entry tests for falls prevention programs. 
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Collectively, our findings show that the IWW contributes to the 

evaluation of walking ability in patients with stroke (Chapter 5) and PD 

(Chapter 6). Additionally, limitations in walking adaptability proved to be a risk 

factor for falls, which resulted in a better identification of prospective fallers 

(Chapter 7). The IWW thus seems to be a valuable option for a comprehensive 

assessment of walking ability and fall risk in stroke patients and PD patients. 

 

General discussion 

The overarching goal of this thesis was to examine if the IWW could provide a 

valid and comprehensive assessment of walking ability in various patient 

groups under the premise that this improves the identification of prospective 

fallers. The results showed that the IWW indeed allows for a valid and 

comprehensive assessment of walking ability, including the aspect of walking 

adaptability. Moreover, the IWW adds value to the evaluation of walking ability 

in stroke patients and PD patients, also uncovering limitations in walking 

adaptability that resulted in a better identification of prospective fallers. In the 

following sections, steps towards a more comprehensive fall-risk assessment 

are outlined by means of a roadmap (Figure 8.1). Furthermore, the broader 

implication of the insights obtained in this thesis are discussed for the IWW and 

beyond. 

 

 

Figure 8.1 Roadmap of the steps towards a more comprehensive fall-risk assessment. 
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Towards a more comprehensive assessment of walking ability 

Walking speed assessed over short distances, for example using the 10-meter 

walking test (stage I of the roadmap; Figure 8.1), is the most commonly used 

outcome measure of walking ability in the clinic. Furthermore, generic gait and 

balance assessments examining functional mobility and balance outcomes, such 

as the Timed-Up-and-Go test and the Berg Balance Scale, are also frequently 

used clinical tests (stage I of the roadmap; Figure 8.1). These clinical tests only 

give a single value as outcome of walking ability. More detailed insight into gait 

and balance impairments can be obtained using quantitative gait assessments 

(stage II of the roadmap; Figure 8.1). These clinical tests and assessments, 

however, do not account for the full repertoire of walking skills needed for safe 

walking. That is, they mainly address steady-state gait as seen on a ‘red carpet’ 

(stage II of the roadmap; Figure 8.1), which does not mimic the typically 

encountered real-life walking environments. 

As mentioned in the General Introduction, walking ability is defined as 

the ability to walk independently and safely from one place (A) to the other (B) 

[7]. The environmental and situational context between A and B is inherently 

variable, placing different demands on walking [7]. With regard to the former, 

one can envision obstacles like doorsteps or other people. With regard to the 

latter, one may, for example, be distracted or in a hurry. The three components 

of the tripartite model of walking ability [1] comprehensively address such 

demands, comprising one’s ability to 1) generate effective stepping, 2) maintain 

balance while walking and 3) adapt walking to environmental or situational 

context. Currently, the latter component of walking adaptability is typically not 

assessed in the clinic. One domain of walking adaptability, namely obstacle 

negotiation [1], has been examined using 3D kinematics when crossing real 

obstacles (stage II of the roadmap; Figure 8.1; [8-12]) and an impaired 

obstacle-avoidance performance was found in stroke patients and PD patients 

[8,11-15]. However, real obstacles are potential trip hazards and hence such 
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assessments are relatively unsafe. Moreover, obstacle-avoidance tasks evaluate 

just a single domain of walking adaptability. 

With the IWW, multiple domains of walking adaptability can be 

assessed (stage III in the roadmap; Figure 8.1). A projector is used to augment 

the walkway with (gait-dependent) visual context which allows for an 

assessment of various walking-adaptability domains (e.g., obstacle negotiation, 

postural transitions, maneuvering in traffic; [1]) in a safe manner. While 

quantitative gait assessments performed with the IWW predominantly address 

the stepping and balance components of the tripartite model, given the high 

correlations with clinical test scores in stroke patients (Chapter 5) and PD 

patients (Chapter 6), IWW tasks seemingly assess a complementary aspect of 

walking ability, namely the walking-adaptability aspect. Taken together, the 

IWW thus holds promise as a more comprehensive assessment of walking 

ability by addressing all key aspects of this motor function. 

 

Walking ability and falls: moving to a task-specific assessment 

Since most falls occur during walking [16-18], it seems useful to consider 

limitations in walking ability as potential risk factors for future falls. A 

comprehensive assessment of walking ability may therefore inform about 

factors that increase walking-related fall risk. Such assessments should be task-

specific, meaning that they focus on functional tasks rather than impairments 

[19]. Examples of functional tasks are steady-state walking (stages I, II and III of 

the roadmap; Figure 8.1), specific movement tasks to test static and dynamic 

balance (i.e., Berg Balance Scale; stage I of the roadmap; Figure 8.1) and 

walking-adaptability tasks on the IWW (stage III of the roadmap; Figure 8.1). A 

task-specific assessment could help identify why people fall during walking and 

can help personalize treatments by targeting specific risk factors. Task-specific 

training, relearning a task by practicing that specific task, has been shown 

effective in gait rehabilitation [20,21]. In this thesis, important steps have been 

taken towards a task-specific assessment of fall risk. The IWW assessment 
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presented in Chapters 5 to 7 included various walking-related tasks (i.e., 

steady-state walking and walking-adaptability tasks) to assess walking ability. 

As demonstrated in these chapters, some of these tasks usefully contribute to a 

comprehensive assessment of walking ability and fall risk, whereas others 

don’t, which is helpful in shortening the assessment protocols (as described 

below). 

The obstacle-avoidance and goal-directed stepping outcome measures 

were significantly different between stroke patients and controls (Chapter 5), 

between PD patients and controls (Chapter 6) and fallers and non-fallers 

(Chapter 7), in line with other studies [8,11-15,22,23]. In addition, goal-

directed stepping differed between freezers and non-freezers, with better 

stepping accuracies for freezers. One earlier study [3], in which the C-Mill was 

used to assess walking adaptability in a group of amputees, showed the 

importance of obstacle-avoidance and goal-directed stepping tasks as 

informative tasks of walking ability. The C-Mill is a treadmill embedded with a 

force plate onto which gait-dependent visual context, such as obstacles and 

stepping targets, can be presented. The results demonstrated that obstacle 

avoidance and goal-directed stepping were unique, complementary aspects of 

walking ability given the low to moderate correlations with clinical tests. We 

confirmed and elaborated the findings of Houdijk et al. [3] to patients with 

stroke (Chapter 5) and PD (Chapter 6). Together, these results support the 

assumption that walking adaptability is not covered in clinical assessments of 

walking ability. Notably, obstacle-avoidance success rate and normalized 

walking speed during goal-directed stepping improved the identification of 

prospective fallers (Chapter 7). Poor obstacle avoidance or stepping 

performance has previously already been found to be associated with falls [22-

25], emphasizing the merit of assessing walking adaptability for fall risk 

assessments. 

Altogether, it is thus important to add task-specific factors associated 

with walking-related falls to an assessment of walking ability and fall risk, 
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which can be done with the IWW. Since the obstacle-avoidance and goal-

directed stepping tasks provide a valid assessment of walking adaptability and 

improve the identification of fallers, these tasks are advised to be included in a 

task-specific assessment of walking ability aimed at assessing fall risk. 

 

Walking ability and falls: moving to a generic assessment 

It is known that in most neurological disorders, fall incidence is higher than in 

the healthy population [26,27], which may be due to underlying gait and 

balance impairments. In fact, gait and balance disturbances significantly 

correlated with falls in patients with neurological disorders and were identified 

as risk factors for falls [26,27]. In addition, most fallers in this group of patients 

reported that they tripped over an obstacle [27], suggesting a reduced walking 

adaptability. A task-specific assessment of walking ability and fall risk focusses 

on limitations in walking of patients instead of on impairments associated with 

a particular disease or disorder itself. This task-specific approach therefore 

allows for a more generic fall-risk assessment, which could apply to various 

diseases and disorders. In this thesis, we have mainly focused on task-specific 

fall-risk factors (Chapter 7). Group (i.e., stroke, PD, control) was also included 

in the models of Chapter 7; as expected, group was not identified as a 

significant predictor variable for prospective falls. However, the sample size 

and the distribution of fallers and non-fallers across groups may have been too 

small to detect group differences. Nevertheless, in both groups, approximately 

half of the patients fell in the year prior to the assessment (Chapter 7). In 

addition, not all prospective fallers of the falls-naïve cohort in Chapter 7 

belonged to the same group (i.e., three stroke patients, two PD patients and 

four healthy controls) and these fallers were classified by specific limitations in 

walking ability (i.e., suboptimal obstacle-avoidance success rates in 

combination with a maladaptive walking speed during precision stepping). As 

can be noticed, healthy controls without specific disorders also experienced 

falls. A decreased walking ability in older adults compared to younger adults 
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has been demonstrated, both in steady-state walking and walking adaptability 

[28]. Age was also positively associated with the number of falls in patients 

with neurological disorders [26,27]. In Chapter 7, age did not differ significantly 

between prospective fallers and non-fallers, but was identified as a predictor 

variable for falls in the prediction models that did not include walking-

adaptability outcome measures. Limitations in walking ability, regardless of 

their cause (e.g., neurological disorders, ageing), thus likely give a better 

indication of someone’s fall risk, calling for a generic and task-specific fall-risk 

assessment. 

 

Walking ability and falls: minimizing assessment time 

As discussed in the previous two sections, it seems useful to assess fall risk in a 

task-specific and generic manner. From a more practical point of view, fall-risk 

assessments should also be concise. In an outpatient clinic a physician generally 

obtains a momentary impression of a patient’s walking ability and fall risk. 

However, administering multiple clinical tests may imply redundancy, since 

several tests were highly interrelated, as demonstrated in Chapter 5, and thus 

only increase the burden for the patient. This is also the case when combining 

clinical tests with quantitative gait assessments. Given the high correlation 

between IWW quantitative gait assessments and clinical tests, a possibility 

could be to combine the IWW quantitative gait and walking-adaptability 

assessment to obtain the sought-after quick and comprehensive assessment of 

fall risk. 

Previous studies have indicated that steady-state gait characteristics 

are associated with falls [27,29], while this is often not the case for clinical test 

scores due to potential ceiling effects [6]. This was however not confirmed by 

the results presented in Chapter 7. Nevertheless, significant differences were 

found between fallers and non-fallers for walking speed and step length, 

suggesting that a quantitative gait assessment might be informative in a fall risk 

assessment. Since gait parameters were highly correlated with conventional 
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clinical test scores of gait and balance (Chapters 5 and 6), performing 

quantitative gait assessments with the IWW instead of clinical tests could 

therefore be a good option for a quick and comprehensive fall-risk assessment. 

A quantitative gait assessment with the IWW requires about the same time as 

the 10-meter walking test. The latter test only provides walking speed, while a 

quantitative gait assessment with the IWW provides more information, based 

on 3D kinematics of the whole body. A quantitative gait assessment and some 

complementary walking-adaptability tasks (i.e., obstacle-avoidance and goal-

directed stepping as suggested above) on the IWW thus seems to be a good 

option for assessing walking ability in a quick (5-10 minutes) and 

comprehensive manner. However, removing clinical tests from the binary 

logistic regression models in Chapter 7 did not lead to the inclusion of 

spatiotemporal gait parameters as predictor variables and slightly worsened 

the classification of prospective fallers and non-fallers. Therefore, more 

research is needed to explore the feasibility of the IWW as a tool to quickly 

estimate fall risk. 

 

The Interactive Walkway for a more comprehensive fall-risk assessment? 

Though the task-specific and generic fall-risk assessment of the IWW seems 

promising, more research is needed to confirm its potential merit as a 

comprehensive fall-risk assessment. First of all, the fall prediction models 

presented in this thesis have to be cross-validated with an independent 

composite cohort of stroke patients, PD patients and healthy controls. Second, 

the responsiveness of IWW outcome measures to subtle changes over time has 

to be examined. In all studies of this thesis, assessments of walking ability were 

performed once. This will only provide the momentary status of a person. It is 

however important that IWW assessments can be used to validly monitor the 

effect of a disease or treatment on the walking ability and thus potentially also 

fall risk of a patient. Third, I have focused on assessing walking ability in two 

highly prevalent neurological disorders, namely stroke and PD. It is not yet 
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known if the IWW can be used to asses walking ability validly in other patient 

populations. This is partly due to the fact that the Kinect v2 sensor best 

recognizes persons from a frontal view and occasionally fails to detect persons 

with an abnormal body posture. This could potentially be a problem in 

disorders like dystonia and cerebral palsy where body posture is severely 

affected. Future studies should therefore focus on a greater variety of patient 

groups to be able to determine for which disorders the IWW is best suited for 

fall-risk assessments. 

 

 

Figure 8.2 Schematic of the SWOT analysis of the Interactive Walkway intended for use as a fall-

risk assessment in the clinic. 
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SWOT analysis of the Interactive Walkway intended for use as a fall-risk 

assessment in the clinic 

Currently, the IWW is still mostly a scientific tool and there are several steps to 

be made before it can be implemented into the clinic. A strengths, weaknesses, 

opportunities and threats (SWOT) analysis may help to determine where future 

research should focus on in order to implement the IWW as a fall-risk 

assessment tool in the clinic (Figure 8.2). The SWOT analysis has two main 

categories, namely internal and external factors. Internal factors are inherent to 

the product and dictate its strengths and weaknesses. External factors are the 

opportunities and threats presented by the environment external to the 

product. Below, these four SWOT categories are discussed for the IWW 

intended for use as a fall-risk assessment in the clinic. 

 

Strengths 

The studies presented in this thesis have emphasized several benefits of the 

IWW that are relevant for its intended use as a fall-risk assessment in the clinic. 

First of all, 3D full-body kinematics is obtained without markers by using the 

Kinect v2 sensor. Normally, full-body kinematics can be obtained using 

expensive, high-end, marker-based motion-registration systems. The Kinect 

sensor is a cheap and easy-to-use alternative. Using the Kinect sensor for 

motion registration also significantly reduces preparation time, which is more 

convenient for the patient. In addition, the movements of the patients are not 

restricted by markers and are therefore expected to be more natural. Another 

advantage of the Kinect sensor is that the data are available immediately and 

can be processed online. This makes the system usable for movement-

dependent event control [30]. Walking adaptability has so far mostly been 

assessed with fixed obstacles or targets in laboratory studies [8,11,12] or with 

specific clinical tests (e.g., Dynamic Gait Index; [31]). On the IWW, movements 

of the subject may trigger the presentation of the visual context, therefore 

requiring adjustments under controllable time pressure demands. The IWW 



Summary, general discussion and future perspectives 

235 

 

can thus assess walking adaptability to both expected (e.g., slalom, goal-

directed stepping) and unexpected (e.g., sudden obstacle avoidance, sudden 

stops-and-starts) challenges in the environment. 

The additional benefit of using projections instead of real obstacles is 

that it makes the assessment of walking adaptability safer since patients cannot 

physically trip as could be the case when trying to avoid real obstacles. 

Furthermore, interacting directly with meaningful visual context in an 

overground walking environment may also be seen as a strength. An 

assessment with projected visual context has previously been performed on the 

C-Mill, demonstrating that this is an effective and safe way of assessing walking 

adaptability [32-35]. However, natural responses, such as slowing down in a 

complex environment, cannot be assessed on a fixed-speed treadmill. 

Furthermore, tasks such as stopping and turning cannot be performed. These 

tasks are all well possible with the IWW, since it entails an overground 

assessment. However, a potential problem might be task prioritization. In a 

study of Timmermans et al. [36], cognitive-motor interference and task 

prioritization was assessed for obstacle avoidance, contrasting avoidance of 

real physical obstacles and projected visual obstacles. Although the amount of 

cognitive-motor interference did not differ between tasks, task prioritization 

did. Motor performance was prioritized in an environment characterized by 

physical context as compared to an environment with projected context. In the 

study of Timmermans et al. [36] and in the studies presented in Chapters 5 to 7, 

subjects were instructed to perform both the dual task and the obstacle 

avoidance task as well as possible. Task prioritization could therefore explain 

the lack of a clear effect of the dual task on obstacle-avoidance performance in 

Chapters 6 and 7. 

Another strength of the IWW is that tasks can be individually tailored, 

meaning that the difficulty of the walking-adaptability tasks can be adjusted to 

the ability of the individual (e.g., amount of variation, available response 

distance) making it suitable for both healthy controls and various patient 
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groups. A final strength of the IWW for use as a fall-risk assessment is that it 

comprised both steady-state walking and walking adaptability, providing a 

comprehensive assessment of walking ability. This yields information 

complementary to standard clinical assessments (Chapters 5 to 7), mainly 

information about a patient’s walking adaptability. Considering these strengths, 

is seems fair to conclude that the IWW seems promising for use as a fall-risk 

assessment. 

 

Weaknesses 

Despite the benefits of a fall-risk assessment with the IWW, there is still room 

for improvement. Currently, the IWW only uses 2D projections to evoke step 

responses. In real life, obstacles or other objects we need to interact with are 

not always flat. In many studies, foot clearance during obstacle crossing 

[8,11,12,37-39] was found to be an important factor for successful obstacle-

avoidance behavior to avoid falls. Moreover, age-related changes in obstacle-

crossing strategies were found to depend on the specific characteristics of the 

obstacle, such as obstacle height [40]. Simply adding real 3D obstacles to the 

IWW is possible but not preferable, considering that it increases the risk of falls 

during a fall-risk assessment and it then becomes impossible to assess sudden 

step adjustments. Using 3D holographic obstacles may be a solution to address 

this weakness (see also future perspectives) and could potentially also improve 

the ability of the IWW to elicit FOG in PD patients, which was not possible with 

2D visual context as was found in Chapter 6. Nevertheless, the obstacle-

avoidance task with 2D projections appeared effective, since obstacle-

avoidance success rate did demonstrate differences between groups and 

improved the identification of prospective fallers (Chapters 5 to 7). 

 Another weakness of the IWW for use as a fall risk assessment is that it 

is bound to a specific assessment space, comparable to other motion 

registration systems. This does however not need to be a big space, because the 

IWW has been optimized for use in a corridor. An additional instrumental 
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weakness of the IWW set-up used in this thesis is that it is bound to measuring 

walking in one direction. The Kinect v2 sensor is trained to recognize persons 

from a frontal view. This means that the patient has to walk twice the distance, 

making the assessment twice as long. This can however be solved by using 

Kinect sensors on both sides. Another weakness of the IWW for use as a fall-

risk assessment is that the Kinect sensor sometimes has difficulty recognizing 

patients (i.e., considering the 3.4% of removed trials in Chapter 7). It seems that 

this was caused by certain body postures, such as a body posture turned away 

from the sensor (e.g., as a result of a hemiplegic gait in stroke on the side 

opposite to the sensor placement) or a very stooped posture (e.g., in severely 

affected PD patients). This may reduce the quality of the 3D full-body kinematic 

data. 

 

Opportunities 

Instead of only being used to screen who is at risk of falling, IWW assessments 

of walking ability may provide specific entry points for fall prevention 

programs to target task-specific risk factors for reducing fall risk and improving 

walking ability. In Weerdesteyn et al. [25], a decrease in fall risk was associated 

with an improved obstacle-avoidance performance. Poor obstacle-avoidance 

success rate was also a risk factor for falls in Chapter 7. It thus seems 

imperative to train obstacle-avoidance in generic falls prevention programs. 

Furthermore, assessments of walking ability may be used to provide a more 

personalized falls prevention program. A personalized approach might increase 

adherence to the falls prevention program (i.e., by being challenging, but 

feasible for the patient) and foster lasting change (i.e., by targeting the right 

limitations in walking ability; [41,42]). The potential of the IWW to guide 

personalized therapy still needs to be examined, since the outcomes of the 

studies in Chapters 5 to 7 have only focused on comparing groups (i.e., patients 

vs. controls and prospective fallers vs. non-fallers) instead of looking into 

individual traits that increase fall risk. High-end machine learning techniques 
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permit the individualization of fall-risk assessments [43]. These techniques 

require a large dataset that can be collected relatively easily with the IWW. In 

order to provide personalized therapy to patients, future studies should thus 

focus on IWW fall-risk assessments in a large group of patients with various 

disorders. 

 

Threats 

Finally, there are some threats that may jeopardize the use of the IWW for use 

as a fall-risk assessment. The biggest threat is the competitive field in which 

several fall-risk assessments are available. Further, many of these assessments 

have already been cross-validated in much larger patient groups [44,45]. 

Although our studies suggest that walking adaptability has additive value in a 

fall-risk assessment, more evidence is needed before the IWW assessment will 

be adopted in the clinic. 

It is relevant to note that Microsoft has decided to discontinue the 

production of the Kinect v2 sensor. Although this is an unfortunate event, the 

principle of the IWW (i.e., using real-time processed markerless 3D data to 

interactively present visual context to evoke step responses and assess walking 

adaptability) remains. Other sensors may serve as input for the IWW (e.g., 

Orbec, SIMI), and Microsoft will soon release the Kinect v4 sensor, which can be 

regarded as an upgrade of the Kinect v2 sensor given the better specifications 

(e.g., increased depth resolution). These sensors may be examined for their 

potential to replace the Kinect v2 sensor, which would require new validation 

studies comparable to those presented in Chapters 2 to 4. 

 

Future perspectives 

In the SWOT analysis of the IWW as a fall-risk assessment tool for use in the 

clinic, some directions for future research were already mentioned. We have 

now reached the finish of the roadmap, as presented in Figure 8.1. This does 

not mean however that the development of the IWW ends here. I propose three 
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future paths for the IWW: 1) moving from assessment to training, 2) moving 

from 2D to 3D context, and 3) moving from a location-bound to a mobile set-up 

(see crossroads in Figure 8.1), as will be discussed next. 

 

The Interactive Walkway for training walking adaptability 

The IWW can also potentially be used to train walking adaptability in a falls 

prevention program. Walking adaptability has already been trained on a 

treadmill using projected visual context (i.e., the C-Mill; [32-35]). Results of 

these studies demonstrated that walking ability improved after task-specific 

training with visual context [32-35]. In contrast to the C-Mill, the IWW allows 

for training of walking adaptability in an overground setting. This leaves room 

for natural responses to environmental context, such as slowing down or even 

stopping before crossing an obstacle, which is not possible on a fixed-speed 

treadmill. This makes training of walking adaptability with the IWW especially 

useful in fragile populations, who often slow down in complex environments 

[36]. In Chapter 5, it was shown that stroke patients lowered their walking 

speed relatively more in complex situations compared to healthy controls. In 

addition, overestimation of someone’s walking ability (i.e., not substantially 

lowering walking speed when walking adaptability is limited) increases the risk 

of falling as demonstrated in Chapter 7. Training people to adopt a safer 

strategy when walking in a complex environment might therefore be useful. 

This is all well possible with the IWW, confirming its potential as a training tool 

in addition to an assessment tool of walking ability and fall risk. 

 

The Interactive Walkway with 3D holograms 

As already mentioned, the IWW uses 2D projections for an assessment of 

walking adaptability, which could be considered a weakness of the system 

although promising results of such an assessment have been obtained in this 

thesis and beyond (e.g., C-Mill studies; [32-35]). However, there are new 

techniques available that can be used to present 3D holographic context for an 
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assessment or training of walking adaptability. The HoloLens (Figure 8.3) is a 

mixed-reality headset which uses multiple Kinect v3 sensors to scan the 

environment in order to present holograms at a fixed position in the real world. 

This could potentially be used in combination with the IWW in order to give an 

extra dimension to the presented visual context. In the study of Binaee & Diaz 

[46], illusionary 3D augmented reality obstacles produced realistic obstacle-

avoidance behavior in terms of foot placement and foot clearance. In an 

unpublished pilot study conducted at the Department of Human Movement 

Sciences of the Vrije Universiteit Amsterdam using the HoloLens for 3D 

obstacle avoidance, it was demonstrated that scaling the obstacle height indeed 

also leads to scaling of the foot clearance of the leading limb during obstacle 

crossing. The holographic context presented with the HoloLens thus seems 

suitable for evoking step adjustments in 3D. Nevertheless, although people 

seem to step over the obstacle quite well with their leading limb, this is not 

always the case for their trailing limb (Figure 8.3). The limited field of view is 

often reported by participants as a drawback of the current version of the 

HoloLens. Hence, the presented obstacle is not entirely visible when a person 

steps over it, unless the person looks directly down. The field of view is 

supposed to increase with the newer version of the HoloLens, which could 

potentially improve the ecological validity of 3D holographic obstacle 

avoidance. Besides, it needs to be determined whether certain additions, such 

as providing (direct) feedback on performance, can improve the obstacle-

avoidance performance and as such the potential of the HoloLens for use in fall-

risk assessments and for training walking adaptability in falls prevention 

programs. 

 

The mobile Interactive Walkway 

Technology is always moving and develops fast. Within the time period of my 

PhD project, the Kinect sensor progressed from the v1 sensor with relatively 

poor depth resolution to the v2 sensor as used in this thesis to a mobile v3 
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sensor embedded in the HoloLens and soon a v4 sensor will be launched with 

even better technical specifications and extra options. The development of 

these new techniques (i.e., Kinect sensor, HoloLens) yields new possibilities for 

the assessment of walking ability and fall risk and for training of walking 

adaptability. 

The IWW was developed and tested within the ‘Technology in Motion’ 

project (tim.lumc.nl). In this NWO-funded project, new emerging low-cost 

techniques, such as the Kinect v2 sensor, were used to quantify motor disorders 

in an unobtrusive and patient-friendly manner. The multi-Kinect based IWW 

fitted well within the aims of this project, as does the HoloLens. The HoloLens 

has the potential to be used as an extension of the IWW to move from 2D to 3D 

context as described above, but might potentially also be used as a stand-alone 

system to assess and train walking adaptability. The HoloLens is able to scan 

the environment in order to present holograms at a fixed position. In addition, 

this information can be used by the HoloLens to determine where someone is in 

that environment in order to present holograms in a movement-dependent 

manner. This would allow for a safe assessment of walking adaptability with 3D 

holograms, without being bound to a specific location as is the case for the 

IWW. Furthermore, head position data can be measured to calculate 

spatiotemporal gait parameters. Preliminary data demonstrated good 

agreement between the IWW and HoloLens for step length (absolute between-

systems difference ≤ 0.87 cm), walking speed (absolute between-systems 

difference ≤ 1.72 cm/s) and cadence (absolute between-systems difference ≤ 

2.02 steps/min). However, walking-adaptability outcome measures, such as 

obstacle-avoidance margins, require more detailed kinematics stemming from 

an external motion-registration system (such as a location bound IWW). 

Nevertheless, with the arrival of the Kinect v4 sensor for the HoloLens, it might 

be used as the desired motion registration system when worn by the 

assessor(s) looking at the patient. This could yield a more flexible way of 

performing quantitative gait assessments and walking-adaptability 
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assessments in the clinic, without being bound to a particular location. Linking 

the HoloLenses of the patient and the assessor(s) further enables that they both 

can see the holograms. The envisioned mobile IWW, based on coupled 

HoloLenses, thus seems promising for assessment and training of walking 

ability and fall risk and is definitely a path worth exploring. 

 

 

Figure 8.3 The HoloLens (A) and obstacle avoidance over a holographic obstacle presented with 

the HoloLens with the leading (B) and trailing (C) limb. 
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2D Two-dimensional 

3D Three-dimensional 

8MWT 8-meter walking test 

10MWT 10-meter walking test 

ADT Augmented dual-task walking (obstacle avoidance with dual 

task) 

AP Anterior-posterior 

ARD Available response distance 

ART Available response time 

ASS Asymmetric stepping stones 

C Control 

CI Confidence interval 

CWS Comfortable walking speed 

EW Entire walkway 

FMA Fugl-Meyer Assessment 

FOG Freezing of gait 

FT Full turns 

FW Foot width 

HT Half turns 
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ICC(A,1) Intraclass correlation coefficient for absolute agreement 

ICC(C,1) Intraclass correlation coefficient for consistency 

ISS Irregular stepping stones 

IWW Interactive Walkway 

L Left 

MDS-UPDRS Movement Disorder Society version of the Unified Rating Scale 

for Parkinson’s disease 

ML Mediolateral 

MOCA Montreal Cognitive Assessment 

mSAFFE Modified Survey of Activities of Fear of Falling in the Elderly 

Scale 

MWS Maximum walking speed 

NFOGQ New Freezing of Gait Questionnaire 

PD Parkinson’s disease (patient) 

PDT Plain dual-task walking (8-meter walking test with dual task) 

R Right 

S Stroke patient 

SCOPA-COG Scales for Outcomes in Parkinson’s Disease – Cognition 

SD Slowing down 

SL Step length 
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SN Sudden narrowing 

SSS Symmetric stepping stones 

SSWS Self-selected walking speed of unconstrained walking 

SU Speeding up 

SW Step width 

SWOT Strengths, weaknesses, opportunities and threats 

V Vertical 

VSS Variable stepping stones 

WW Walkway width 
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Overview of the videos that were published with this thesis. 

 

Chapter 2 (Supplement 2.2) 

Video of body point’s time series obtained with the multi-Kinect v2 set-up and 

the Optotrak system of a single representative trial during the comfortable 

walking speed condition of the 10-meter walking test. This video is available at 

https://doi.org/10.1371/journal.pone.0139913.s004. 

 

Chapter 5 (Supplement 5.1) 

Video of Interactive Walkway tasks of unconstrained walking and walking 

adaptability in a patient with stroke. This video is available at 

https://youtu.be/nV9tGvlPogs. 

 

Chapter 6 (Supplement 6.1) 

Video of Interactive Walkway tasks of unconstrained walking, adaptive walking 

and dual-task walking in a person with Parkinson’s disease with dyskinesia. 

The subject had consented to the making of the video for publication purposes. 

This video is available at https://youtu.be/p1a07lL9veM. 

 

Chapter 7 (Supplement 7.2) 

Video of assessments on the Interactive Walkway in a patient with stroke. This 

video is available at https://youtu.be/k7O2kc5R-K8. 
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Neurologische aandoeningen kunnen een negatief effect hebben op 

verschillende aspecten van loopvaardigheid die nodig zijn om veilig en 

zelfstandig te kunnen lopen. Dit vraagt om uiteenlopende 

revalidatiestrategieën. Een uitgebreide en volledige beoordeling van de 

belangrijkste aspecten van loopvaardigheid zou kunnen helpen om deze 

strategieën beter af te stemmen op de individuele behoeften van de patiënt. De 

Interactive Walkway (figuur N1.1) lijkt een veelbelovend, patiëntvriendelijk en 

goedkoop meetinstrument voor loopvaardigheid in de dagelijkse praktijk. De 

Interactive Walkway bestaat uit meerdere Kinect v2-sensoren, waarmee het 

volledige gangbeeld -zonder markers op het lichaam- in 3D gemeten kan 

worden. De Interactive Walkway kan, naast het meten van het gangbeeld, 

mogelijk ook het zogenoemde loopspecifieke aanpassingsvermogen op een 

veilige manier in kaart brengen door het (plotseling) presenteren van visuele 

projecties op het looppad in de vorm van staptegels of obstakels (figuur N1.1). 

Dit lijkt waardevol omdat het lopen in het dagelijks leven vaak aangepast moet 

worden, bijvoorbeeld bij het oversteken van een straat of bij het ontwijken van 

scheefliggende stoeptegels. Een slecht aanpassingsvermogen wordt bovendien 

in verband gebracht met een hoger valrisico. Dit aspect van loopvaardigheid 

wordt doorgaans echter niet in klinische testen beoordeeld. De Interactive 

Walkway biedt nu de mogelijkheid om loopvaardigheid vollediger te meten 

door naast het gangbeeld ook het loopspecifieke aanpassingsvermogen in kaart 

te brengen. Het is alleen onduidelijk of 1) de Interactive Walkway 

loopvaardigheid valide kan meten en, zo ja, 2) of de Interactive Walkway nuttig 

is voor het bepalen van loopvaardigheid en valrisico in de kliniek bij patiënten 

met een beroerte en patiënten met de ziekte van Parkinson. Het doel van dit 

proefschrift was om inzicht te krijgen in deze twee aspecten. 
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Figuur N1.1 De Interactive Walkway met visuele projecties op het looppad. 

 

Deel 1: Kan loopvaardigheid valide en volledig gemeten worden met de 

Interactive Walkway? 

De meest gebruikte uitkomstmaat van loopvaardigheid is loopsnelheid over 

korte afstanden, bepaald met bijvoorbeeld de 10-meter looptest. Met de 

Interactive Walkway kan deze 10-meter looptest worden uitgebreid met een 

snelle, niet-invasieve en patiëntvriendelijke kwantitatieve gangbeeldanalyse. 

De 3D-kinematica geeft aanvullende informatie over loop- en balansproblemen, 

wat niet mogelijk is met standaard klinische testen. De studie beschreven in 

Hoofdstuk 2 was gericht op het valideren van een kwantitatieve 

gangbeeldanalyse met de Interactive Walkway in een groep van 21 gezonde 

personen. De 10-meter looptest werd uitgevoerd op comfortabele en maximale 

loopsnelheid, terwijl 3D-kinematica van het hele lichaam gelijktijdig werd 

gemeten met zowel de Interactive Walkway als het Optotrak systeem (d.w.z. de 

gouden standaard). De resultaten lieten zien dat 3D-kinematica goed 

overeenkwam tussen deze bewegingsregistratiesystemen, vooral bij grote 

bewegingsuitslagen. Hetzelfde gold voor spatiotemporele gangparameters die 

uit 3D-kinematica kunnen worden afgeleid. De resultaten van Hoofdstuk 2 
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lieten dus zien dat een kwantitatieve gangbeeldanalyse valide uitgevoerd kan 

worden met de Interactive Walkway. 

 De Interactive Walkway kan, naast het meten van het gangbeeld, 

mogelijk ook het loopspecifieke aanpassingsvermogen in kaart brengen. 

Hiertoe worden visuele projecties (plotseling) op het looppad gepresenteerd in 

de vorm van staptegels of obstakels. In Hoofdstuk 3 werd gekeken naar de 

overeenkomst tussen de Interactive Walkway en het Optotrak systeem, en de 

gevoeligheid voor taak- en tussenpersoonsvariatie van verschillende taken op 

de Interactive Walkway ter bepaling van het aanpassingsvermogen. In totaal 

voerden 21 gezonde personen meerdere Interactive Walkway-taken uit met 

verschillende moeilijkheidsgraden: obstakels ontwijken, plotseling stoppen en 

starten, en doelgerichte stappen. De resultaten lieten zien dat uitkomstmaten 

van het aanpassingsvermogen, zoals obstakel-ontwijkmarges, over het 

algemeen goed overeenkwamen. Daarnaast waren deze uitkomstmaten 

gevoelig voor taak- en tussenpersoonsvariatie. Variatie in doelgericht stappen 

resulteerde in verschillende staplengten, stapnauwkeurigheden en 

loopsnelheden, terwijl reactietijden en obstakel-ontwijkmarges verschilden per 

obstakeltype. Dit betekent dat het gebruik van de visuele projecties 

mogelijkheden biedt om het lopen te manipuleren en (plotselinge) 

stapaanpassingen uit te lokken, in overeenstemming met eerdere onderzoeken 

die eenzelfde concept onderzochten tijdens lopen op een loopband. 

Gevoeligheid voor taak- en tussenpersoonsvariatie is belangrijk ter bepaling 

van het aanpassingsvermogen van relatief goed functionerende groepen (zoals 

thuiswonende ouderen), waar plafondeffecten een veelvoorkomend probleem 

zijn. Hetzelfde geldt voor bodemeffecten bij relatief kwetsbare patiëntgroepen. 

De Interactive Walkway maakt een kwantitatieve bepaling van het 

aanpassingsvermogen mogelijk en is haalbaar voor zowel goed functionerende 

als kwetsbare populaties, aangezien de moeilijkheidsgraad van de taak kan 

worden aangepast. Bovendien is het vaststellen van het aanpassingsvermogen 

met de Interactive Walkway relatief veilig (visuele in plaats van fysieke 
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obstakels), niet belastend (meten zonder markers op het lichaam), en daardoor 

tijdbesparend en patiëntvriendelijk. De Interactive Walkway-taken lijken 

daardoor bruikbaar voor het verkrijgen van objectieve en meer taakspecifieke 

informatie van iemands loopvaardigheid. Dit rechtvaardigt studies naar de 

klinische potentie, zoals is beschreven in de Hoofdstukken 5 tot en met 7. 

 De inzichten verkregen in de twee validatiestudies gaven aanleiding 

voor nog een derde validatiestudie. De studie beschreven in Hoofdstuk 4 had 

als doel het systematisch onderzoeken van het effect van afstand van het 

lichaam tot de sensor, lichaamszijde (d.w.z. links of rechts) en staplengte op de 

voetplaatsingslocaties bepaald aan de hand van de geschatte enkelposities door 

de Kinect v2-sensor van de Interactive Walkway. De voetplaatsingslocaties zijn 

nodig voor het kwantificeren van spatiële gangparameters en verschillende 

uitkomstmaten van het aanpassingsvermogen. In totaal hebben 12 gezonde 

personen staptaken met opgelegde voetplaatsingslocaties op verschillende 

afstanden van de Kinect sensor uitgevoerd, voor zowel de linker- als de 

rechtervoet en met verschillende opgelegde staplengten. Deze staptaken 

werden gelijktijdig vastgelegd met de Kinect v2-sensor en het Optotrak 

systeem. Kleine maar significante verschillen tussen de systemen werden 

gevonden voor voetplaatsingslocaties en staplengte. Deze werden 

waarschijnlijk veroorzaakt door verschillen in lichaamsoriëntatie ten opzichte 

van de Kinect sensor, waardoor de enkelposities meer naar achteren werden 

geschat. Dit effect kan eenvoudig verminderd worden door de afstanden tussen 

de sensoren van de Interactive Walkway-opstelling te verkleinen, om zo 

voetplaatsingslocaties op grotere afstanden van de sensor te kunnen bepalen. 

 Uit deze drie validatiestudies kan worden geconcludeerd dat de 

Interactive Walkway gebruikt kan worden om zowel het gangbeeld (Hoofdstuk 

2) als het loopspecifieke aanpassingsvermogen (Hoofdstuk 3) valide in kaart te 

brengen bij gezonde personen. Het biedt tevens de mogelijkheid voor een 

volledig(er) looponderzoek, waarbij alle onderdelen van het drieledig model 

van loopvaardigheid worden meegenomen, te weten het vermogen om 1) 
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stappen te genereren, 2) de balans te bewaren en 3) het lopen aan te passen 

aan de omgeving. De resultaten van Hoofdstukken 2 tot en met 4 hebben ook 

tot een verbetering van de Interactive Walkway-opstelling geleid door het 

verkleinen van de afstand tussen de sensoren. De volgende stap was het 

bestuderen van de klinische potentie van de Interactive Walkway ter bepaling 

van loopvaardigheid en valrisico bij verschillende patiëntgroepen, zoals hierna 

zal worden besproken. 

 

Deel 2: Is de Interactive Walkway nuttig voor het bepalen van 

loopvaardigheid en valrisico in de kliniek? 

Het doel van de studie beschreven in Hoofdstuk 5 was om te onderzoeken of 

de Interactive Walkway gebruikt kan worden ter bepaling van loopvaardigheid 

bij patiënten met een beroerte. Het in kaart brengen van beperkingen in 

loopvaardigheid kan helpen bij het ontwikkelen van geïndividualiseerde 

revalidatiestrategieën. Bij 30 patiënten met een beroerte en 30 gezonde 

controlepersonen van gelijke leeftijd en gelijk geslacht werden verschillende 

klinische testen afgenomen, evenals kwantitatieve 3D-gangbeeldanalyses en 

verschillende Interactive Walkway-taken. De resultaten van deze studie 

suggereren een goede known-groups validiteit voor Interactive Walkway-

uitkomstmaten van het aanpassingsvermogen, vergelijkbaar met die van 

klinische testen en kwantitatieve gangbeeldanalyses. Bovendien bleken 

Interactive Walkway-taken aanvullende informatie te geven, gezien de 

overwegend lage tot middelmatig sterke correlaties tussen de uitkomstmaten 

van het aanpassingsvermogen, en die van klinische testen en kwantitatieve 

gangbeeldanalyses. Deze bevindingen suggereerden daarom dat het bepalen 

van het gangbeeld en het loopspecifieke aanpassingsvermogen, door middel 

van obstakels ontwijken en doelgericht stappen, met de Interactive Walkway 

een snel, niet-invasief en volledig kwantitatief beeld geeft van loopvaardigheid. 

Dit biedt mogelijkheden voor het monitoren van herstel na een beroerte en 

voor het individualiseren van revalidatiestrategieën. 
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 In Hoofdstuk 6 werden het gangbeeld (d.w.z. kwantitatieve 

gangbeeldanalyse), adaptief lopen en dubbeltaaklopen onderzocht met de 

Interactive Walkway bij 14 patiënten met de ziekte van Parkinson met freezing 

of gait, 16 patiënten met de ziekte van Parkinson zonder freezing of gait en 30 

gezonde controlepersonen. Patiënten met freezing of gait scoorden het slechtst, 

patiënten zonder freezing of gait scoorden gemiddeld en controlepersonen 

scoorden het best op de meeste Interactive Walkway-taken, in 

overeenstemming met de resultaten van de klinische testen. Dit suggereert een 

goede known-groups validiteit voor de Interactive Walkway-taken. Patiënten 

met de ziekte van Parkinson ondervonden vooral problemen wanneer zij 

moesten afwijken van hun eigen looppatroon, waarbij een beroep moest 

worden gedaan op de dynamische balanscontrole. Om een goed beeld te krijgen 

van iemands loopvaardigheid moet daarom zowel het gangbeeld als het 

adaptief lopen worden onderzocht, bijvoorbeeld door middel van obstakels 

ontwijken en doelgericht stappen. In deze studie werd aangetoond dat deze 

Interactive Walkway-taken ook aanvullende informatie geven ten opzichte van 

klinische testen, gezien de lage tot middelmatig sterke correlaties tussen deze 

twee typen testen. Bovendien bleek classificatie van patiënten mét en zónder 

freezing of gait aan de hand van Interactive Walkway-uitkomstmaten van 

adaptief lopen iets beter dan classificatie op grond van klinische testscores. De 

Interactive Walkway heeft dus potentie om loopvaardigheid bij de ziekte van 

Parkinson volledig(er) te bepalen. Het maakt het mogelijke om belangrijke 

aspecten die mogelijk een verband hebben met valincidenten in kaart te 

brengen, zoals is onderzocht in Hoofdstuk 7. 

 In Hoofdstuk 7 werd onderzocht of de Interactive Walkway gebruikt 

kan worden om toekomstige vallers en risicofactoren voor toekomstige 

valincidenten te identificeren in een gemengd cohort van patiënten met een 

beroerte, patiënten met de ziekte van Parkinson en gezonde personen. In deze 

studie werd gekeken naar persoonskarakteristieken, klinische loop- en 

balanstesten, een kwantitatieve gangbeeldanalyse en Interactive Walkway-
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taken. Valkalenders werden gebruikt om gedurende zes maanden prospectief 

alle valincidenten te registeren. Zodoende konden personen als vallers (d.w.z. 

tenminste een loopgerelateerde val gedurende de vervolgperiode) of niet-

vallers worden geïdentificeerd. Bij aanvang van de vervolgperiode hadden 

vallers meer angst om te vallen en vermeden ze meer activiteiten uit angst om 

te vallen dan niet-vallers. Daarnaast liepen vallers langzamer en met kleinere 

stappen en presteerden ze slechter op klinische loop- en balanstesten. Zoals 

verwacht presteerden vallers ook slechter op verschillende Interactive 

Walkway-taken. Naast valgeschiedenis werden het percentage succesvol 

ontweken obstakels en de genormaliseerde loopsnelheid tijdens doelgericht 

stappen geïdentificeerd als voorspellende variabelen van valincidenten, en 

toevoeging van deze risicofactoren verbeterde de identificatie van vallers. 

Personen die slecht scoorden op de obstakel-ontwijktaak en die hun 

loopsnelheid niet aanzienlijk verlaagden tijdens doelgericht stappen liepen het 

grootste risico om te vallen. Het identificeren van deze taakspecifieke 

valrisicofactoren kan leiden tot meer gerichte, gepersonaliseerde en mogelijke 

effectievere valpreventieprogramma’s. Deze taken lijken, mits geverifieerd in 

een grotere groep, dus veelbelovende aangrijpingspunten voor toekomstige 

valpreventieprogramma’s. 

 Gezamenlijk laten deze bevindingen zien dat de loopvaardigheid van 

patiënten met een beroerte (Hoofdstuk 5) en patiënten met de ziekte van 

Parkinson (Hoofdstuk 6) valide en volledig gemeten kan worden met de 

Interactive Walkway. Bovendien bleken beperkingen in het 

aanpassingsvermogen risicofactoren voor valincidenten, variabelen die ook bij 

kunnen dragen aan een betere identificatie van vallers (Hoofdstuk 7). De 

Interactive Walkway heeft dus potentie om de loopvaardigheid bij patiënten 

met een beroerte en patiënten met de ziekte van Parkinson valide en volledig in 

kaart te brengen, en is daarmee veelbelovend voor het inschatten van het 

valrisico. 
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It is good to have an end to journey towards; but it is the journey that matters, in 

the end – Ursula K. Le Guin 
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