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Abstract 18 

Plastic debris is an environmentally persistent and complex contaminant of increasing concern. 19 

Understanding the sources, abundance and composition of microplastics present in the environment 20 

is a huge challenge due to the fact that hundreds of millions of tonnes of plastic material is 21 

manufactured for societal use annually, some of which is released to the environment. The majority 22 

of microplastics research to date has focussed on the marine environment. Although freshwater and 23 

terrestrial environments are recognised as origins and transport pathways of plastics to the oceans, 24 

there is still a comparative lack of knowledge about these environmental compartments. It is highly 25 

likely that microplastics will accumulate within continental environments, especially in areas of high 26 

anthropogenic influence such as agricultural or urban areas. This review critically evaluates the current 27 

literature on the presence, behaviour and fate of microplastics in freshwater and terrestrial 28 

environments and, where appropriate, also draws on relevant studies from other fields including 29 

nanotechnology, agriculture and waste management. Furthermore, we evaluate the relevant 30 

biological and chemical information from the substantial body of marine microplastic literature, 31 

determining the applicability and comparability of this data to freshwater and terrestrial systems. 32 

With the evidence presented, the authors have set out the current state of the knowledge, and 33 

identified the key gaps. These include the volume and composition of microplastics entering the 34 

environment, behaviour and fate of microplastics under a variety of environmental conditions and 35 

how characteristics of microplastics influence their toxicity. Given the technical challenges 36 

surrounding microplastics research, it is especially important that future studies develop standardised 37 

techniques to allow for comparability of data. The identification of these research needs will help 38 

inform the design of future studies, to determine both the extent and potential ecological impacts of 39 

microplastic pollution in freshwater and terrestrial environments.   40 

 41 

 42 

 43 
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Introduction 44 

 Research on microplastics as an environmental contaminant is rapidly advancing. Although 45 

marine microplastics research remains at the forefront, in recent years researchers recognising the 46 

comparative lack of studies on microplastics in freshwater environments have begun to address this 47 

field as a matter of priority, quantifying microplastics in lake and river systems and assessing exposure 48 

to, and uptake by, organisms (Dris et al., 2015b; Wagner et al., 2014). Despite the knowledge that 49 

microplastics (and indeed plastics of all sizes) are also widespread within terrestrial environments as 50 

a result of human activities, there is a dearth of studies that have quantified microplastics in terrestrial 51 

environments. In fact, much of the existing information about the environmental presence of 52 

microplastics considers terrestrial and freshwater environments only as sources and transport 53 

pathways of microplastics to the oceans. However, given that the majority of all plastics will be used 54 

and disposed of on land, both terrestrial and adjacent freshwater environments will themselves be 55 

subject to extensive pollution by plastics of all sizes, based on large amounts of anthropogenic litter 56 

from both point (e.g. wastewater treatment discharge, sewage sludge application) and diffuse (e.g. 57 

general littering) sources. As such it is highly likely that soils will act as long term sinks for microplastic 58 

debris (Rillig, 2012; Zubris and Richards, 2005). Hence it is important to understand release rates, fate 59 

and transport of microplastics entering terrestrial systems as well as freshwater systems in order to 60 

allow for the assessment of hazards and risks posed by microplastics, and indeed plastics in general, 61 

to ecosystems. 62 

 The aim of this review is to synthesise available information relevant to understanding 63 

microplastics behaviour, fate and ecological effects within freshwater environments and soils. The 64 

review draws primarily on the published literature available from freshwater and the relatively few 65 

terrestrial microplastic studies published to date, setting out the key factors that will influence 66 

microplastic distribution, fate and exposure. One important consideration is that the processes 67 

governing distribution and exposure to plastics are not necessarily exclusive to a specific 68 

environmental ‘compartment’ (e.g. plastics within a shallow freshwater system may be exposed to 69 
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similar levels of UV radiation as a particle in coastal marine systems) and plastics can be transported 70 

between compartments (e.g. from land to rivers and the sea, and from rivers and sea to land during 71 

flooding, storm events or tidal surges). Therefore it is not realistic to consider such studies in isolation 72 

from the body of marine work. Thus, where appropriate, we also include key studies from the 73 

extensive body of marine literature that will inform knowledge of the processes likely to occur in 74 

freshwaters and soils.  75 

 Microplastics as a term has quite a broad definition and can refer to a wide range of polymers, 76 

particle sizes and densities (see section 2). In this review we will predominantly focus on microplastics 77 

defined as being any polymer within the size range 1 µm to 5 mm as this is the size range which has 78 

been the major focus of reported microplastics research to date. Where information is available, we 79 

have in places included relevant information from reported studies for nanoplastics (< 100nm) as 80 

contaminants that are also likely to occur in soils and water. For the purposes of this review, 81 

microplastics and nanoplastics have been defined as per the study in which they were used/discussed 82 

and parallels drawn between the two where appropriate. However, we do not intend to carry out a 83 

complete review of nanoplastics or compare them with other nanomaterials as this topic has been 84 

has been previously addressed (Syberg et al., 2015).  Finally in places throughout the text, we also use 85 

the term “plastics” to refer to plastics as a whole class (macro-, micro- and nano-sized plastics). This is 86 

in order to capture the relevant influence of processes such as wind or water flow, exposure to UV, 87 

temperature fluctuations and associations with organic matter that can, alone or together, commonly 88 

affect the fate and behaviour with different sized plastic materials. The reality is that there are likely 89 

to be significant similarities between the effects and behaviours of plastics of different size 90 

classifications, for example when comparing ‘large nanoplastics’ to ‘small microplastics’. As the size 91 

and state of plastics within the environment can change with time, we believe it is necessary to include 92 

information that extends beyond plastics in the micron size range to fully understand the drivers of 93 

microplastic and indeed all plastic transport, fate and resulting bioavailability.  94 
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 Available information on plastic usage and presence on land is used in order to make informed 95 

estimations about the likely presence and effects of microplastics within terrestrial environments.  96 

This includes considering relevant data on plastic sources and transport through different 97 

environmental compartments, and therefore the organisms that may encounter and be affected by 98 

these plastics. We evaluate the available literature on ecological effects of microplastics to freshwater 99 

species (using both studies with freshwater species and any studies in comparable marine species) 100 

that can be directly related to organisms occupying the same ecological niche within aquatic and 101 

terrestrial environments. Finally, we review chemical associations and plasticiser leaching, including 102 

examples from microplastics and also large plastic products (‘macroplastics’) that may have 103 

implications for the toxicity of microplastics within freshwater and terrestrial environments. If we are 104 

to fully understand or predict the effects of microplastic pollution within the environment as a whole, 105 

a multidisciplinary approach will be needed to integrate knowledge on presence and behaviour of 106 

plastic waste, particles and associated chemical pollution in the environment. Our review sets out to 107 

reflect this by drawing together knowledge from all relevant fields including waste management, 108 

nanotechnology, agriculture and toxicology. By using all available knowledge we are able to establish 109 

how previous studies can inform our knowledge of presence and effects of microplastics in terrestrial 110 

and freshwater environments and, thus, make recommendations for further research. 111 

 112 

2. Plastic as an environmental contaminant 113 

2.1. Plastic pollution in the environment 114 

In 2014, annual plastic production exceeded 311 million tonnes, an increase of nearly 84 115 

million tonnes since 2004 (PlasticsEurope, 2015; Thompson et al., 2005). By 2050 it is estimated that 116 

this may increase to a colossal 33 billion tonnes (Rochman et al., 2013a). Of anthropogenic waste 117 

materials released to the environment, plastic can constitute up to 54% by mass (Hoellein et al., 2014). 118 

Established widespread uses of plastic include packaging materials (39.5% total plastic production), 119 
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building materials (20.1%), automotive components (8.6%), electronic appliances (5.7%) and 120 

agricultural materials (3.4%), with the remainder including products such as household appliances and 121 

sporting equipment (PlasticsEurope, 2015). There are approximately 30,000 different polymer 122 

materials registered for use in the European Union. A ‘polymer’ is difficult to characterise as definitions 123 

will vary between manufacturers, with much information commercially confidential. However the 124 

European Commission report states that 84% of this 30,000 are represented by thermoplastics (Postle 125 

et al., 2012). Although they share similar characteristics, each polymer has different physical 126 

properties with respect to their plasticity and density. The density of the material in particular will be 127 

important for determining environmental fate. For example, density will influence how particles 128 

partition in the aquatic environment including whether they float on water surfaces or settle to 129 

sediment and the ease with which they will be transported by wind action across land (Zylstra, 2013). 130 

However, even when properties are known, it can be difficult to predict the fate of polymers. For 131 

example, it has been observed that supposedly buoyant particles such as polyethylene and 132 

polypropylene can be retained within sediments (Horton et al., 2016). This could be due to biofouling 133 

or agglomeration with organic materials. These differences highlight polymers to be complex 134 

environmental pollutants. 135 

 For many plastic products their useful lifetimes are often relatively short. This is especially the 136 

case for single-use packaging materials. However, the qualities which make plastic a good material for 137 

consumer products: waterproof, durable and resistant to wear and biodegradation, can also make 138 

plastic extremely persistent (Barnes et al., 2009; Imhof et al., 2012). Many commonly-used polymers 139 

are extremely resistant to biodegradation, for example polyethylene and polystyrene (Gautam et al., 140 

2007). Common characteristics of plastics that can impede biodegradation are high molecular weight, 141 

hydrophobicity and cross-linked chemical structure (Gautam et al., 2007; Shah et al., 2008). There is 142 

evidence that biodegradation of polymers by some organisms can occur, for example bacteria, fungi 143 

and mealworms (due to gut bacteria) (Gu, 2003; Yang et al., 2015a, b). However, when biodegradation 144 

does occur, it is reliant on exposure of polymers to these and other specific degrading organisms that 145 
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have the ability to degrade these specific polymers – conditions that may not necessarily be 146 

encountered in the environment. Indeed it has been proposed that no polymers can be efficiently 147 

biodegraded in landfill sites (Shah et al., 2008). Therefore, apart from incineration, it is understood 148 

that the vast majority of plastic ever made is still present in the environment in some form (Barnes et 149 

al., 2009; Thompson et al., 2005). It is this persistence that makes plastic pervasive as an 150 

environmental pollutant and is a main driver underpinning current concerns about the possible 151 

ecological impacts of the growing burden of plastic materials present in ecosystems. Plastic litter is 152 

present in terrestrial, freshwater, estuarine, coastal and marine environments, particularly in 153 

urbanised regions (Cole et al., 2011; Free et al., 2014; Zylstra, 2013). Plastics have been observed even 154 

in remote areas of the world including deep-sea sediments (Van Cauwenberghe et al., 2013; Woodall 155 

et al., 2014), submarine canyons (Pham et al., 2014) and encapsulated in Arctic sea ice (Obbard et al., 156 

2014), far from any potential land-based source. It has even been observed in some locations that 157 

plastic debris can fuse together, becoming associated with volcanic rocks, sediment and organic 158 

materials forming ‘plastiglomerates’, solid rock-like substances, that have the potential to become 159 

preserved in the fossil record. As human influence begins to dominate even the most fundamental 160 

processes on earth, the potential for this evidence of human impact to last far into geological records 161 

has prompted the suggestion that we are moving into a new geological epoch from the Holocene to 162 

the ‘Anthropocene’ (Corcoran et al., 2014). 163 

 164 

 165 

2.2. Microplastics: a brief background 166 

Plastic debris is broadly classified by size: mega-debris (> 100 mm), macro-debris (> 20 mm), 167 

meso-debris (20-5 mm) and micro-debris (< 5 mm) (Barnes et al., 2009). Although microscale plastic 168 

particles were first observed in the marine environment in the early 1970s (Buchanan, 1971; Carpenter 169 

and Smith, 1972), it was not until 2004 that the term “microplastic” became commonly used as the 170 
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result of a study by Thompson et al. (2004).  Microplastics are now commonly defined as particles with 171 

the largest dimension smaller than 5 mm, although no lower size limit has been specifically defined 172 

(Arthur and Baker, 2009; Duis and Coors, 2016; Faure et al., 2012). It is understood that plastic particles 173 

in the environment will continue to degrade and become steadily smaller, eventually forming 174 

‘nanoplastics’ (Koelmans et al., 2015; Mattsson et al., 2015). Microplastics in environmental samples 175 

can currently be detected down to a size of 1 µm, however few environmental studies identify 176 

particles <50 µm due to methodological limitations (Hidalgo-Ruz et al., 2012; Imhof et al., 2016).  177 

Microplastics fall within two categories: primary and secondary. Primary microplastics are 178 

specifically manufactured in the micrometre size range, for example those used in industrial abrasives 179 

for sandblasting, either acrylic or polyester beads (von Moos et al., 2012; Zitko and Hanlon, 1991), 180 

plastic pre-production pellets (‘nurdles’) or in personal care products such as exfoliating agents in 181 

creams and cleansers containing polyethylene ‘microbeads’ (Napper et al., 2015). Primary microplastic 182 

particles are likely to be washed down industrial or domestic drainage systems and into wastewater 183 

treatment streams (Fendall and Sewell, 2009; Lechner and Ramler, 2015). Despite the capability of 184 

some sewage treatment works to remove up to 99.9% microplastic particles from wastewater 185 

(dependent on the processes employed by the treatment plant), the sheer number of particles 186 

entering the system may still allow a significant number to bypass filtration systems and be released 187 

into the freshwater environment with effluent (Carr et al., 2016; Murphy et al., 2016).  188 

 Secondary microplastics are formed as a result of meso and macroplastic litter fragmentation. 189 

Plastics are susceptible to the effects of UV radiation and high temperatures which can cause chemical 190 

changes making plastics brittle and thus more susceptible to fragmentation (Andrady, 2011; Barnes et 191 

al., 2009; Hidalgo-Ruz et al., 2012; Ivar do Sul and Costa, 2014; Rillig, 2012; Shah et al., 2008). 192 

Fragmentation increases surface area and number of particles per unit of mass. Both exposure to 193 

sunlight and wave action are primary causes of fragmentation in marine waters. On land, especially at 194 

the soil surface, fragmentation of plastics is thought to occur readily as a result of direct exposure to 195 

UV radiation from sunlight, aided also by temperature fluctuations which will generally be greater 196 
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than those in sea water (Andrady, 2011).  Similarly, exposure to UV may be higher in small shallow 197 

aquatic systems such as ponds and rivers than in large lakes or the open ocean. However many 198 

freshwater environments may lack the fragmentation potential that is offered by turbulence and wave 199 

action in coastal waters, especially in rocky tidal areas (Barnes et al., 2009). An additional source of 200 

secondary microplastics is derived from synthetic fabrics, which can shed up to 1900 fibres per 201 

garment during washing (Browne et al., 2011). Although microfibres are secondary particles they will 202 

be released to the environment along with primary microplastics through wastewater effluents and 203 

sludge application. Hence in this respect the fate and transport of these fibres may be more closely 204 

aligned with that of primary microplastics, based on similar release routes. 205 

 206 

3. Sources, environmental presence and transport of microplastics 207 

3.1. Sources of microplastics to freshwater and terrestrial environments  208 

A significant direct input of primary microplastics to terrestrial environments has been 209 

identified as being through the application of sewage sludge containing synthetic fibres or sedimented 210 

microplastics from personal care or household products to land (Habib et al., 1996; Zubris and 211 

Richards, 2005).  Polymers used in synthetic textiles include polyester and nylon, while polyethylene 212 

or polypropylene are commonly used as microbeads or glitter in cosmetics. As sewage treatment 213 

works are efficient in removing the majority of microplastic particles from wastewater, many of the 214 

particles that are removed will be retained within the sludge (Magnusson and Norén, 2014; Mintenig 215 

et al., 2017). This suggests that the major routes of release for secondary microfibres and primary 216 

microplastics are the same. In Europe it is common practice to compost and pasteurise sewage sludge 217 

for use as agricultural fertiliser as well as dispose of large quantities of sludge produced by wastewater 218 

treatment to land (DEFRA, 2012). Between four and five million tons dry weight of sewage sludge are 219 

applied to arable land every year in the European Union (Cieślik et al., 2015; Willén et al., 2016), 220 

although application rates are highly variable between countries (Nizzetto et al., 2016b). Despite 221 
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regulations on harmful substances within sludge applied to land, microplastics are not yet considered 222 

by these and thus the mass of microplastics inadvertently applied to land annually may exceed 223 

400,000 tonnes – higher than the mass currently estimated to be present in oceanic surface waters 224 

worldwide (Nizzetto et al., 2016b). Zubris & Richards (2005) found that soils with a known history of 225 

sewage sludge application contained significantly higher concentrations of synthetic microfibres than 226 

soils which had not received sewage sludge. In some field sites, synthetic microfibres were found 15 227 

years after the last sludge application (Zubris and Richards, 2005). This suggests that microplastics and 228 

synthetic fibres are likely to accumulate in soils after repeated sludge applications.   229 

Those particles that are not retained within the sewage sludge, or removed by skimming 230 

during the treatment process, will enter the environment via effluent input to rivers. For primary 231 

microplastics and secondary microfibres, effluent from sewage treatment is thought to be a major 232 

source of microplastics to freshwater bodies. Synthetic microfibres have been identified by many 233 

studies as the most abundant microplastic particle type found throughout freshwater, terrestrial and 234 

marine environments (Browne et al., 2011; Dubaish and Liebezeit, 2013; Free et al., 2014; Zubris and 235 

Richards, 2005), with primary microbeads from personal care products also likely to be a significant 236 

contributor to microplastic pollution (Castañeda et al., 2014; Murphy et al., 2016; Napper et al., 2015). 237 

However, it must be noted that the sampling equipment and methodology will influence the size of 238 

particles observed, and therefore may determine the dominant particle type observed. For example, 239 

because fibres have at least one very small dimension, they may not always be retained on a mesh 240 

even if the length of the fibre exceeds the mesh size. This variation in sampling methodology could 241 

lead to fragments or pellets being erroneously identified as the most abundant particle type and may 242 

make comparison of particle types and abundances between studies difficult (Dris et al., 2015b; Ivleva 243 

et al., 2016).   244 

Due to the small size of primary microplastics they are unlikely to be removed by existing 245 

screening of debris, with coarse screens retaining particles >10 mm and even the finest screens 246 

retaining particles >1.5 mm (Fendall and Sewell, 2009).  An important predictor of microplastic 247 
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partitioning in sewage treatment will be particle density, with dense particles settling to sludge and 248 

buoyant particles floating in effluents (Fig. 1). The extent to which this occurs will also depend on a 249 

number of relevant processes that may affect the characteristics of the microplastics. For example, 250 

the aggregation of microplastic particles, either with themselves or more likely with other (organic) 251 

particulate materials can increase size and density leading to an increase in sedimentation rate (Long 252 

et al., 2015). The growth of bacterial biofilms on microplastic surface may again increase particle 253 

weight and density, resulting in settling (Cozar et al., 2014; Kowalski et al., 2016; Moret-Ferguson et 254 

al., 2010).  255 

Figure 1 shows a schematic diagram of waste water treatment processes and how particle 256 

partitioning is likely to occur through processing. Removal of coarse debris with physical screens, 257 

primary settling lagoons and aerobic oxidation are common across many treatment plants, additional 258 

settling lagoons and tertiary treatments may also be present. Plastic materials will generally not be 259 

degraded at any point throughout the process and as a consequence, any plastic not removed for 260 

disposal during the initial filtering steps will remain in the solids or the effluent after processing. Many 261 

microplastics from sewage treatment works will therefore ultimately be directly released to the 262 

environment in effluents or through sludge application to land. Other methods of sludge disposal 263 

include landfilling, incineration and even in production of cement for use in construction. In these 264 

cases, plastic particles are likely to be well-contained and so unlikely to leach into the surrounding 265 

environment (Browne et al., 2011; Cieślik et al., 2015; Dubaish and Liebezeit, 2013; Rillig, 2012; Zubris 266 

and Richards, 2005).  267 
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 268 

269 

Figure 1.  Schematic diagram of standard wastewater treatment processes and particle behaviour influenced by 270 

density at each stage of treatment.  Adapted from Baird and Cann (2012). 271 

 272 

A recent study observed microbeads originating from cosmetic products in wastewater 273 

treatment influents and effluents at seven wastewater reclamation plants in California, in which waste 274 

waters were treated for reuse with tertiary treatment. The treatment processes at these plants 275 

resulted in the complete removal of microparticles (45–400 µm) from water outputs, as a result of 276 

tertiary treatment including surface skimming, sludge settling and microfiltration processes (Carr et 277 

al., 2016). After secondary treatment only (elimination microfiltration), effluents contained on 278 

average one plastic particle per 1140 litres of effluent, compared to an estimated one particle per litre 279 

in the influent (Carr et al., 2016). No fibres were found despite these being the most frequently 280 

reported kind of microplastics found in environmental samples, however as previously highlighted, 281 

this may be a result of the sampling technique used. Murphy et al. (2016) similarly found that 282 

microplastics were significantly reduced in effluent following a secondary treatment process. In this 283 

study, plastic flakes and fibres were the two most abundant microplastic types (67.3% and 18.5% 284 
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respectively), with microbeads only contributing to 3% of total particles. For this mixture of materials, 285 

average microplastic concentrations reduced from 15.7 particles litre-1 (± 5.23) in sewage treatment 286 

influents to 0.25 particles litre-1 (± 0.04) in final effluents, which represents a 98% reduction in 287 

microplastic concentrations (Murphy et al., 2016). Other recent studies have reported similar high 288 

removal rates: 95% (Talvitie et al., 2017), 97% (Mintenig et al., 2017) and 99% (Magnusson and Norén, 289 

2014). Notably, these proportions of partitioning between solid waste and effluent are similar to 290 

estimates that have been provided for nanomaterials: 90% removal of titanium (Ti) associated with 291 

titanium dioxide (TiO2) nanoparticles (Johnson et al., 2011), 96% removal of Ti (Westerhoff et al., 292 

2011), 94% removal of surfactant-coated silicon dioxide (SiO2) nanoparticles (Jarvie et al., 2009). This 293 

suggests that similar processes may affect the fate of microplastics as they do poorly soluble and 294 

potentially inert nanomaterials such as gold and titanium dioxide during waste water treatment (e.g. 295 

heteroaggregation), and highlights the importance of interdisciplinary research for understanding the 296 

fates and behaviours of microplastics and nanoparticles and the parallels that can be drawn between 297 

them (Bouwmeester et al., 2015; Syberg et al., 2015). Despite the significant removal of particles from 298 

treated wastewater, given the large volumes passing through wastewater treatment plants the 299 

remaining 5%, or less, of the microplastics that are not filtered out will likely represent a large number 300 

and mass entering the freshwater environment in effluent (Murphy et al., 2016; Ziajahromi et al., 301 

2016). It is also important to note that these results are based on efficient current-generation 302 

wastewater treatment processes that may not be widely available or utilised worldwide. In many 303 

countries, untreated sewage is input directly to watercourses without treatment (Duis and Coors, 304 

2016; Hammer et al., 2012).  Where the most modern facilities are not available, these estimates could 305 

fall short by up to 100-fold in places. 306 

Sources of secondary microplastics derived from plastic litter are both numerous and diverse, 307 

ranging from releases during municipal solid waste collection, processing and land-filling, release from 308 

transportation and disposal systems to individuals creating litter either accidentally or intentionally 309 

(Fig. 2). This includes large plastic items and sanitary waste input to rivers via combined sewage 310 
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overflows (CSOs). Runoff via drainage ditches from agricultural land, or storm drains from roads 311 

containing plastics such as tyre wear particles, vehicle-derived debris or fragments of road-marking 312 

paints is another significant source of riverine microplastic loads (Browne et al., 2010; Eriksen et al., 313 

2013; Galgani et al., 2015; Horton et al., 2016; Tibbetts, 2015). Additionally, wind action may also 314 

transport lighter plastic items into water bodies or across land (Zylstra, 2013) and there is evidence to 315 

suggest that anthropogenic fibres can be transported and deposited by atmospheric fallout. This 316 

appears to be especially significant in urban areas, with deposition increasing during periods of rain 317 

(Dris et al., 2016). Although the fibres found in atmospheric studies were not exclusively synthetic 318 

(<33% fibres were pure polymers), with an estimated deposition of between 3-10 tonnes of fibres 319 

deposited annually in an area approximately 2500 km2 (based on the Paris region), this may therefore 320 

still represent a significant pathway of microplastics from consumer products to the environment (Dris 321 

et al., 2017; Dris et al., 2016). Airborne particles are determined to originate from a variety of sources 322 

including construction materials, artificial turf and household dust (Magnusson et al., 2016). 323 

 Another direct source of secondary microplastics to land is the use and fragmentation of 324 

agricultural plastics. For example, plastic mulches and polytunnels are used to control temperature 325 

and moisture, and retard weed growth in agricultural and horticultural applications (Kasirajan and 326 

Ngouajio, 2012; Kyrikou and Briassoulis, 2007; Rillig, 2012; Steinmetz et al., 2016). Polymer seed 327 

coatings can also be used to control germination (Clayton et al., 2004). These may consist of various 328 

polymers and often contain incorporated pesticides and fertilisers. Commonly used polymers for seed 329 

coatings are non-biodegradable and therefore following germination, will remain in the soil (Schultz 330 

et al., 2014; Turnblad and Chen, 1998). Additional products used in agriculture include bale twines and 331 

wraps, containers, packaging and netting, all of which have the potential for dispersal within the 332 

environment (Scarascia-Mugnozza et al., 2012). Exposure of these materials to sunlight and high 333 

temperatures may lead to their relatively rapid fragmentation after which they are difficult to 334 

completely remove from soils. Dense polymers are more likely to remain in soil and ultimately to be 335 

transported into deeper soil layers, whereas lighter polymers will be more likely to be transported by 336 
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wind and water action either to other terrestrial locations or to surface waters. To our knowledge, to 337 

date there are no studies which quantify microplastic presence at terrestrial field sites. Based on the 338 

above evidence, however, it is highly likely that microplastics will be present within terrestrial 339 

environments and, if investigated in detail, may be found to be as equally pervasive as they are in 340 

freshwater and marine environments (Nizzetto et al., 2016a).   341 

 342 

3.2. Presence of microplastics in the freshwater environment 343 

Studies of microplastics in freshwater environments are rapidly advancing, with microplastic 344 

particles found across a range of freshwater environments worldwide, including lakes and rivers. Area 345 

of water surface, depth, wind, currents and density of particles are all factors determining transport 346 

and fate of particles within these aquatic systems (Eriksen et al., 2014; Eriksen et al., 2013; Fischer et 347 

al., 2016; Free et al., 2014). Given the lack of terrestrial studies to date, it is necessary to use our 348 

knowledge of microplastics in the freshwater environment, notably sediments, to infer the presence 349 

and behaviour of microplastics in soils and to inform future sampling efforts.  350 

A study carried out on lake beaches by Imhof et al (2013) measured microplastics found in 351 

sediments of two beaches on the north and south shores of Lake Garda (Italy).  Particle numbers 352 

between these sites were significantly different, with these differences attributed to the prevailing 353 

southerly wind direction transporting plastics either directly or by surface water movement to the 354 

opposite shore (Imhof et al., 2013). The number of local sources, together with factors including water 355 

surface area, depth, wind, currents and density of particles are all factors determining transport and 356 

fate of particles within these aquatic systems and can lead to large variation, even within a relatively 357 

small area (Castañeda et al., 2014; Eriksen et al., 2014; Eriksen et al., 2013; Fischer et al., 2016; Free 358 

et al., 2014). Another significant factor influencing particle presence and abundance is urbanisation of 359 

the area surrounding and influencing the waterbody. Eriksen et al. (2013) conducted a study in the 360 

Great Lakes (USA) and found that downstream of highly populated Detroit and Cleveland metropolitan 361 
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areas, particle concentrations ranged from 280,947-466,305 particles km-2. In Lake Huron, where the 362 

shorelines are less influenced by the presence of major urban centres, particle concentrations 363 

estimated from sampling were generally orders of magnitude lower, ranging from 456-6541 particles 364 

km-2, with one trawl finding no particles (Eriksen et al., 2013). A similar study of the remote lake 365 

Hovsgol (Mongolia) also found microplastics present in all samples at concentrations comparable to 366 

those found in the Great Lakes (Table 1). Although the area surrounding Lake Hovsgol has a low 367 

population density, poor local waste management and inputs of wastewater are blamed for the 368 

presence of microplastic particles in the lake (Free et al., 2014). Additionally, the smaller volume of 369 

Lake Hovsgol, compared to the Great Lakes of the USA, may be an important reason for microplastic 370 

concentrations being comparable between these two studies.  371 

 Urbanisation has also been observed to be a significant factor influencing presence of 372 

microplastics in riverine environments, with plastics being introduced from a variety of sources 373 

including effluent, road runoff, littering and atmospheric deposition (discussed further in Section 3.1). 374 

Mani et al. (2015) and Yonkos et al. (2014) are among those who have found microplastics in higher 375 

abundances at sites in close proximity to urban areas than at more remote sites. However, although 376 

particle numbers are regularly found to be high near urban areas, this is not the only factor influencing 377 

presence of microplastic particles. For example, Horton et al. (2016), in addition to finding high 378 

numbers of particles downstream of urban discharge points, also found particles in rural areas where 379 

few human-associated inputs would be expected.  380 

Given the growing need to make comparative assessments in order to identify regional, 381 

national and global trends in microplastic distribution, it would be desirable to be able to collate the 382 

available data to conduct meta-analyses. However, a major challenge to this is that no standard 383 

protocol for collecting particles from environmental samples exists, with different authors using 384 

different approaches. While many studies use broadly similar techniques to extract microplastics from 385 

environmental samples, including size fractionation, digestion of organic matter and density 386 
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separation, the specific parameters of methods differ between studies regarding volume of sample 387 

studied, upper and lower particle size limits, density separation media and particle identification 388 

criteria (Besley et al., 2016; Hidalgo-Ruz et al., 2012). Given that many methods currently rely on visual 389 

identification, there are also many opportunities for the introduction of sampling error, bias or 390 

omission of particles of certain size or density, leading many results to be qualitative rather than 391 

quantitative (Ivleva et al., 2016). Although many studies have established ‘standard methods’ for 392 

particle extraction in an effort to introduce consistency across studies, these methods are in fact quite 393 

disparate. Moreover, studies are still identifying new and reportedly more effective criteria. Thus no 394 

standardised methods have yet been agreed (Hidalgo-Ruz et al., 2012; Syberg et al., 2015). An 395 

additional issue is the use of non-standard units of measurement for reporting microplastic 396 

concentrations. In order to compare studies where units are not consistent, units must be transformed 397 

to units per volume, either as particles per litre of sampled water or as particles per kilogram of 398 

sediment (see Table 1). It is therefore of utmost importance that authors detail results in all units, or 399 

provide sufficient detail on the sampling methodology to do so (Phuong et al., 2016; Van 400 

Cauwenberghe et al., 2015). These differences between studies highlight the need for continued 401 

efforts to standardise methods for microplastic extraction and quantification, as has been recognised 402 

in environmental nanomaterial research (Delay et al., 2010).   403 

 404 

Table 1.  Summary of selected freshwater microplastic environmental sampling studies, covering a range of 405 

freshwater environments (water, plus benthic and shore sediments of lakes and rivers). Selected studies were 406 

those which quantified specifically microplastics and provided sufficient methodological detail to allow for 407 

conversion of units, to standardise by volume or mass for comparability.. Converted units for water and 408 

sediment were calculated by multiplying area sampled by sampling depth to estimate total volume, then 409 

converting this volume into litres or kg (dry weight). For sediment this calculation is based on typical dry 410 

sediment bulk density of 1.3 g cm-3 (Sekellick et al., 2013) Conversion was not required where the study already 411 

reports results as particles L-1 or kg-1. For details of additional freshwater studies, refer to (Dris et al., 2015b). 412 
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Water 
body type 

Sample 
type 

Sample location and 
description 

Study findings (reported 
units) 

Study findings 
(converted units) Study 

Lake Water Great Lakes (USA) 16 
cm sampling depth   

Average particle 
concentration 43,000 km-2 

Average 0.00027 
particles L-1 

Eriksen et 
al. (2013) 

Lake Water Lake Hovsgol 
(Mongolia), sampling 
depth 16 cm   

Average particle 
concentration 20,264 km-2  

Average 0.00012 
particles L-1 

Free et al. 
(2014) 

Lake Benthic 
sediment 

Lake Ontario (Canada)  
sampling depth 8 cm 

26 particles in 42.2 g 
(station 403) 
9 particles in 103.2 g 
(station 208) 

616.1 particles kg-1 
(station 403) 
87 particles kg-1 
(station 208) 

Corcoran et 
al. (2015) 

Lake Shore 
sediment 

Lake Garda (Italy),  
sampling depth 5 cm  

Average particle abundance 
1108 and 108 m-2 (north 
and south shores 
respectively) 

Average 17 particles 
kg-1 (north) 
1.7 particles kg-1 

(south) 

Imhof et al. 
(2013) 

Lake Shore 
sediment 

Lake Garda (Italy),  
sampling depth 5 cm 

Average particle abundance 
75 m-2 

Average 1.2 particles 
kg-1  

Imhof et al. 
(2016) 

Lake Shore 
sediment 

Various lakes 
(Switzerland), sampling 
depth 5 cm 

Average particle abundance 
1300 m-2 

Average 20 particles 
kg-1 

Faure et al. 
(2015) 

Lake Water and 
shore 
sediment 

Lake Chiusi and 
Lake Bolsena (Italy) 

Average particle abundance 
234 kg-1, 3.02 m-3 surface 
water (Chiusi) 

Average particle abundance 
112 kg-1, 2.51 m-3 surface 
water (Bolsena) 

Average 0.03 particles 
L-1 surface water 
(Chiusi) 
Average 0.025 
particles L-1 surface 
water (Bolsena) 

Fischer et 
al. (2016) 

Lake Water and 
benthic 
sediment 

Taihu Lake (China) Particle abundance range: 
3.4 – 25.8 L-1 surface water 
11 – 234.6 kg-1 benthic 
sediment 

- Su et al. 
(2016) 

Lake Benthic 
and shore 
sediments 

Lake Ontario (Canada) Average particle abundance 
980 kg-1 lake benthic  
140 kg-1 lake beach 

- Ballent et al. 
(2016) 

River Water Great Lakes tributaries 
(USA) 

Particle abundance range: 
0.05 – 32 m-3 

0.00005 – 0.032 
particles L-1 

Baldwin et 
al. (2016) 

River Water River Seine, urban area 
(Paris, France) 

Average particle abundance 
30 m-3 (plankton trawl) 

Average particle abundance 
0.35 m-3 (manta trawl) 

Average 0.03 particles 
L-1 
Average 0.00035 
particles L-1 

Dris et al. 
(2015a) 

River Water Various rivers 
(Switzerland) 

Average particle abundance 
7 m-3 

Average particles 
0.007 L-1 

Faure et al. 
(2015) 

River Water River Danube (Austria) Average particle abundance 
316.8 m-3   

Average 0.32 particles 
L-1 

 

Lechner et 
al. (2014) 

River Water River Rhine (various) 
sampling depth 18 cm 

Average particle abundance 
892,777 km-2 

Average particles 
0.005 L-1 

Mani et al. 
(2015) 
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River Water Nine different rivers, 
Chicago area (USA) 

Average particle abundance 
2.4 m-3, upstream sewage 
treatment works (STW) 
Average particle abundance 
5.7 m-3, downstream STW 

Average particles 
0.002 L-1 

Average particles 
0.006 L-1 

McCormick 
et al. (2014) 

River Water Rivers: 
Papatsco 
Corsica 
Rhode 
Magothy 
Sampling depth 15 cm 

Average particle abundance 
155,374 km-2  
40,852 km-2 
67,469 km-2 
112,590 km-2 

Average particles 
0.001 L-1 

0.00027 L-1 
0.00045 L-1 
0.00075 L-1 

Yonkos et 
al. (2014) 

River Shore 
sediment 

Rivers Rhine and Main 
(Germany) 

Particle abundance range: 
228 - 3763 kg-1 

- Klein et al. 
(2015) 

River Benthic 
sediment 

Lake Ontario tributaries 
(Canada) 

Average particle abundance  
610 kg-1 

- Ballent et al. 
(2016) 

River Benthic 
sediment 

St Lawrence river 
sediments, sampling 
depth 10-15 cm 
(Canada). 

Average particle abundance 
13,759 m-2 

Average approx. 70.6-
105.8 particles kg-1 
(depending on depth 
sampled) 

Castañeda 
et al. (2014) 

River Benthic 
sediment 

River Thames Basin 
(UK), sampling depth 
approx. 10cm 

Average particle abundance 
range: 185 kg-1 to 660 kg-1 
depending on site. 

- Horton et 
al. (2016) 

River Benthic 
sediment 

Beijiang River (China) Particle abundance range: 
178 - 554 particles kg-1  

- Wang et al. 
(2016) 

 413 

The numbers of particles reported in marine and freshwater surface waters are extremely 414 

variable. Concentrations of microplastics in marine surface waters have been reported from 0.0005 415 

particles L-1 (Carson et al., 2013) (calculated as per Table 1) to 16 particles L-1 (Song et al., 2014) with 416 

a range of intermediate concentrations reported (Lusher et al., 2014; Zhao et al., 2014). Studies of 417 

freshwater surface samples generally show concentrations comparable to the lower end of the 418 

reported marine surface concentrations such as those seen by Carson et al. (2013) (see Table 1). Dris 419 

et al. (2015a) highlight the consequence of using different mesh sizes when determining the number 420 

of particles observed. When sampling with a plankton net (80 µm mesh), up to 100-fold more particles 421 

can be collected compared to use of a manta net (330 µm mesh). This effect of mesh size is an 422 

important consideration when comparing surface water studies, as differences in sampling method 423 

and equipment may lead to inconsistencies that prohibit the comparability of datasets (Cole et al., 424 

2011). However, despite this variation, it remains possible that freshwater concentrations comparable 425 

to the higher marine concentrations will be found, likely within urban areas.  426 
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Studies in river sediments consistently report abundances of microplastics in the tens to 427 

hundreds of particles kg-1 (Table 1), values that are broadly comparable to those reported in marine 428 

sediment studies. For example, Dekiff et al. (2014) and Nor and Obbard (2014) reported marine 429 

microplastic concentrations in the range from individual particles to tens of particles per kilogram of 430 

dry sediment, consistent with a study of the sediments of the St Lawrence River (Castañeda et al., 431 

2014). Hundreds of particles per kilogram of dry sediment were reported by Horton et al. (2016) in UK 432 

river sediments, values also reflected by Laglbauer et al. (2014) in coastal sediments in Slovenia. At 433 

the highest concentrations, thousands of particles kg-1 of dry sediment have been reported in river 434 

sediments in Germany (Klein et al., 2015), comparable to the 2000-8000 particles kg-1 reported by 435 

Mathalon and Hill (2014) in coastal sediments in Canada.  436 

Efforts in colloid science and nanotoxicology have shown the value of working towards 437 

standard methods for key measurements of colloid and nanomaterial characteristics, such as size, 438 

stability and surface properties (Hassellov et al., 2008; Montes-Burgos et al., 2009). Similar efforts 439 

seem warranted in the microplastic community with respect to environmental sampling and 440 

qualification. Currently in the field of microplastics research, there are two widely accepted methods 441 

of polymer identification – Fourier transform infra-red (FTIR) spectroscopy and Raman spectroscopy, 442 

although both have drawbacks. Alternative identification methods such as differential scanning 443 

calorimetery (DSC) and thermo-gravimetric analysis (TGA) have been tested but not been widely 444 

applied (Dumichen et al., 2015). Of the sampling configurations available for FTIR, there are two that 445 

are most common: attenuated total reflectance (ATR) and or transmission (or absorbance). ATR is not 446 

effective for analysing very small particles due to the fact that the sample needs to be large enough 447 

to cover an ‘ATR window’ in order for a satisfactory spectrum to be obtained (typically > 1 mm). 448 

Additionally, while in transmission mode refractive or scattering artefacts can occur, most notably for 449 

particles with irregular surfaces (Harrison et al., 2012). Raman spectroscopy can be overridden by 450 

fluorescence from some polymer particles, while other interferences may occur if particles are dirty 451 

or contain larger amounts of filler, such as dyes or plasticisers (Löder and Gerdts 2015). These 452 
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limitations reduce the possibility of determining probable sources, fate and potential short and long-453 

term environmental impacts of these microplastics as well as advising policy makers on how to 454 

regulate microplastic pollutants. It could be that in order to effectively identify environmental 455 

polymers, a combined and complementary approach is required, for example using both spectroscopy 456 

and thermal analysis (Gigault et al., 2016; Majewsky et al., 2016; Sgier et al., 2016). It will be important 457 

to use the experience of working with microplastics in aquatic environments, especially sediments, to 458 

inform methods for terrestrial studies. 459 

 460 

3.3. Transport of microplastics within the environment 461 

Estimating the quantity of plastic litter which is released to the environment is difficult due 462 

to a lack of data and international variations between plastic waste generation and disposal. These 463 

disparities arise as a result of international differences in societal attitudes, education and 464 

investment in waste management infrastructure. For example, in China in 2010, 76% of plastic waste 465 

(8.82 million metric tonnes) was considered to be mismanaged, compared with 2% (0.28 million 466 

metric tonnes) in the United States (Jambeck et al., 2015). Mismanaged waste accounts for plastic 467 

released to land by littering and wind-blown debris. The best available estimates for managed and 468 

mismanaged plastic waste worldwide are from Jambeck et al. (2015), who modelled how much 469 

plastic waste was emitted globally to the oceans from land-based sources during 2010. Our 470 

estimates presented in Table 2 focus on Europe and assume that the proportion of waste that is 471 

mismanaged in the European Union (EU) is equivalent to that of the United States (2%). This is a 472 

reasonable assumption based on similarities in national income and development of waste 473 

management infrastructure, evidenced by the application of EU wide policies governing waste 474 

management, such as the 1999 EC landfill directive (1999/31/EC) (European Council, 1999). Based on 475 

this assumption we estimate how much of this mismanaged waste, plus the additional source of 476 
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microplastics from sewage sludge application, is likely to remain on land annually within Europe 477 

(Table 2).  478 

 479 

Table 2. Waste management data and estimates of plastic waste released to terrestrial and freshwater 480 

(continental) environments, based on figures for the European Union. Rows highlighted in grey are those directly 481 

related to plastic within continental environments. ¤Values for specific waste management practises do not 482 

account for mismanaged waste. *Managed and mismanaged waste figures are calculated based on the 483 

proportion of waste categorised as managed or mismanaged in the United States: 2% (Jambeck et al., 2015). 484 

¥Values are calculated based on mismanaged waste to include plastics within sewage sludge, minus plastic that 485 

is transported to the oceans. Some sources, such as atmospheric fallout have not been considered due to the 486 

limited data available. 1PlasticsEurope (2015) 2Jambeck et al. (2015) 3Nizzetto et al. (2016b) 487 

Plastic handling/disposal Plastic million metric tonnes/year  

 
Plastic production (EU total, 2014)1 

 

 
59 

Plastic waste (EU total, 2014)1 

 

25.8 

Managed plastic waste (-2% mismanaged waste)* 
 

25.28 
 

Landfill (EU total)1¤ 

 

8 
 

Recycling (EU total)1¤ 

 

7.6 
 

Energy recovery (EU total)1¤ 

 

10.2 
 

Mismanaged plastic waste (2% of plastic waste in the EU)* 

 

0.52 
 

Plastic in sewage sludge (EU total)3 0.063 - 0.43 
 

Ocean input (EU total)2 

 
0.04 - 0.11 

 
Total mismanaged plastic waste remaining in continental 

environments (EU) ¥ 

0.47 - 0.91 

 488 

Plastic materials used in consumer, domestic and agricultural products in Europe amounted 489 

to 59 million metric tonnes in 2014 (PlasticsEurope, 2015). Mismanaged plastic waste within the EU is 490 

calculated at 520,000 metric tonnes (plastic waste – managed waste).In addition to this, it is estimated 491 

that between 63,000 and 430,000 metric tonnes of microplastics in sewage sludge are deposited on 492 
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land annually (Nizzetto et al., 2016b). As a result we calculate that in the EU between 473,000 and 493 

910,000 metric tonnes of plastic waste is released and retained annually within continental 494 

environments, between 4 and 23 times the amount estimated to be released to oceans (Table 2). With 495 

the current lack of data on microplastics in soils, it is not possible to distinguish between particles that 496 

are retained within terrestrial environments and those retained within freshwater systems. As plastic 497 

production and thus environmental deposition increases, this will also result in greater accumulation, 498 

and larger amounts being ultimately transferred to the marine environment. However, for a 499 

considerable time into the future it remains likely that the amount of plastic deposited and retained 500 

within continental environments will exceed that entering the oceans. It is important to note that the 501 

study by Jambeck et al. (2015) considers all waste within the US to be well-managed, with the 502 

exception of litter (2% of all waste). However, it is possible that some fraction of the waste that is 503 

considered to be well-managed could enter the environment during waste processing (e.g. as wind-504 

blown debris or mechanical or human error). Therefore it remains plausible that the figures for 505 

mismanaged waste may be higher than the stated value. When it is also considered that there may be 506 

additional pathways of release that are poorly known, such as atmospheric deposition, then it may be 507 

the case that the calculations presented here may be an underestimation of plastic releases.  508 

Freshwater and soil systems are subject to both point and diffuse inputs of plastics and so 509 

great research effort is warranted to understand transport, exposure and ecological effects of 510 

microplastics in these systems. This knowledge will also inform our understanding of rivers and 511 

freshwater bodies as transport pathways for plastics from land to oceans (Jambeck et al., 2015; 512 

Lechner et al., 2014; Rillig, 2012). It has been estimated that between 70-80% of marine plastics are 513 

transported to the sea through the conduits provided by rivers (Bowmer and Kershaw, 2010).  514 

Recognising this need, freshwater environments have received more attention than terrestrial 515 

environments thus far as they are seen as a direct link between land-based plastic waste and the open 516 

oceans, as well as interest in the toxicological impact of microplastics on freshwater ecosystems (see 517 
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Table 1). Studies of microplastics in soil ecosystems are, however, notably lacking (Huerta Lwanga et 518 

al., 2016; Zubris and Richards, 2005). 519 

Figure 2 shows a conceptual diagram of the main flows of microplastics within and between 520 

three environmental compartments: terrestrial, freshwater and marine.  A key concept of the diagram 521 

is partitioning of plastic particles between aquatic and terrestrial environments, highlighting that 522 

plastic debris will not only be transported by rivers from land to sea, but that even once in the aquatic 523 

environment, may also return to land during high tide or flooding events (Fig. 2).  The extent of overall 524 

deposition, retention and transport of microplastics will depend on many factors including human 525 

behaviours, such as littering or recycling, particle characteristics such as density, shape and size, 526 

weather, including wind, rainfall and flooding, and environmental topography and hydrology. This 527 

variation can make predicting the spread of litter difficult (Zylstra, 2013). Transport of plastic particles 528 

within river systems will be largely affected by the same factors affecting sediment transport, such as 529 

hydrological characteristics and environmental conditions (Nizzetto et al., 2016a) . Conditions such as 530 

low flows and change in river depth or velocity (for example, on a bend) may lead to deposition of 531 

particulate matter, whereas high velocity flood conditions and erosion could lead to mobilisation of 532 

previously sedimented particles, in addition to the introduction of particles via runoff (Milliman et al., 533 

1985; Naden et al., 2016; Walling, 2009). Surrounding land-use can also affect the dynamics of 534 

sediment and particulate transport within a river due to erosion, use of soils, irrigation and runoff 535 

(Chakrapani, 2005). Plastic residing in river systems may also be subject to in-situ degradation, either  536 

by photodegradation or mechanical fragmentation (Williams and Simmons, 1999).  537 

To date only scant attention has been paid to investigating sources, fate and transport of 538 

microplastics in terrestrial environments. However it not unreasonable to suggest that microplastics 539 

are widely present across land. Litter has been widely reported as a common observation, with many 540 

studies commenting on land based (macro)plastic debris (Derraik, 2002; Hoellein et al., 2014; Jambeck 541 

et al., 2015; Townsend and Barker, 2014; Williams and Simmons, 1999; Zylstra, 2013). 542 
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 543 

 544 

Figure 2. Conceptual diagram of microplastic sources and flows throughout and between anthropogenic, 545 

terrestrial, freshwater and marine environmental compartments. 546 

 547 

4. Microplastics as an environmental hazard 548 

4.1. Ecological impacts of microplastics 549 

4.1.1. Organism interaction and ingestion of microplastics 550 

Based on the evidence of widespread presence of plastics, it is highly likely that organisms in 551 

terrestrial and freshwater ecosystems will encounter microplastic particles. Depending on the particle 552 

size and the physiological and behavioural traits of the organism, there is an opportunity for the 553 

ingestion of these particles by invertebrates and vertebrates. Indeed such consumption has been 554 

widely observed in many marine species. Although plastic is largely excreted following ingestion, there 555 

is evidence to suggest that microplastics can be retained in the gut over timescales beyond those 556 

expected for other ingested matter (Browne et al., 2008). Further, there is evidence that particles may 557 

even cross the gut wall and be translocated to other body tissues, with unknown consequences 558 
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(Browne et al., 2008; Farrell and Nelson, 2013; von Moos et al., 2012). Given the similarity of some 559 

phyla that are commonly found in freshwater and marine ecosystems (e.g. nematodes, annelids, 560 

molluscs, arthropods) and indeed in soils, similar findings of ingestion in species in these ecosystems 561 

are almost inevitable. Since many of these species, likely to take up microplastics, are important to 562 

ecosystems (Lavelle, 1997; Sampedro et al., 2006) ecosystem processes such as decomposition and 563 

nutrient cycling may be affected by microplastic exposure. Further, there is the potential for food web 564 

effects either through effects on keystone species or possibly through the trophic transfer of 565 

microplastics themselves.   566 

 Research to date, predominantly on marine species, has shown the ingestion of microplastic 567 

particles in a wide range of species at many organisational levels and with different feeding strategies, 568 

including detritivores, filter feeders and predators. In addition to accumulation of particles in 569 

organisms at lower trophic levels (Browne et al., 2008), there is also evidence for the trophic transfer 570 

of microplastic particles between marine species, especially bivalves and crustaceans (Farrell and 571 

Nelson, 2013; Van Cauwenberghe and Janssen, 2014; Watts et al., 2014). This is also likely to occur in 572 

terrestrial ecosystems in a similar manner to that of observed trophic transfer and accumulation of 573 

gold nanoparticles between earthworms Eisenia fetida and bullfrogs Rana catesbeina (Unrine et al., 574 

2012). Gold nanoparticles are comparable to (nano)plastic particles in that are they are similarly 575 

poorly soluble (Bouwmeester et al., 2015). There is also evidence that exposure to inert anthropogenic 576 

particles can cause physical damage to body tissues (Lahive et al., 2014; Van Der Ploeg et al., 2013).  577 

 As far as we are aware, to date only three terrestrial species, the earthworms Lumbricus 578 

terrestris (Huerta Lwanga et al., 2016) and Eisenia andrei (Rodriguez-Seijo et al., 2017) and the 579 

nematode Caenorhabditis elegans (Kiyama et al., 2012), have been studied in the literature exposed 580 

to microplastic particles under laboratory conditions and with ingestion being observed. Among 581 

freshwater organisms, the filter feeder Daphnia magna has been observed to ingest microplastics 582 

(Besseling et al., 2014; Casado et al., 2013; Rehse et al., 2016). Synthetic fibres have also been 583 

observed in the digestive systems of freshwater fish collected from the wild, indicating consumption 584 



27 
 

either directly or in association with consumed prey items (Sanchez et al., 2014). Through such 585 

consumption, mobile organisms such as fish, mammals and birds may also contribute to the dispersal 586 

of microplastics over long distances following the ingestion and subsequent egestion of consumed 587 

microplastics (Eerkes-Medrano et al., 2015). A major factor that is known to influence particle 588 

ingestion by organisms is particle to mouth size ratio, with smaller particles having greater potential 589 

to be ingested by a greater range of organisms. If ingested by lower tropic level organisms, this may 590 

support further transfer and accumulation along food chains (Cole et al., 2013; Farrell and Nelson, 591 

2013; Setälä et al., 2014).  592 

 593 

4.1.2. Observed toxicological effects of microplastics 594 

Ingestion of microplastic particles by marine invertebrates has been linked with a wide range 595 

of sub-lethal effects including reduced reproduction, reduced growth of individuals and reduced 596 

fitness. These are generally the result of the physical effects of ingested microplastics including 597 

internal damage such as lacerations, inflammatory responses and plastic particles replacing digestible 598 

food, causing individuals to reduce feeding hence resulting in lower energy intake, although effects 599 

vary between species and plastic types (Moore, 2008; von Moos et al., 2012; Wright et al., 2013a; 600 

Wright et al., 2013b). While there are fewer studies conducted to date with soil and freshwater 601 

species, the studies that have been conducted generally confirm the potential for microplastics to 602 

have detrimental effects on the physiology of species across many ecological niches.  603 

In a recent soil study, Huerta Lwanga et al. (2016) observed mortality in Lumbricus terrestris  604 

earthworms exposed to polyethylene particles; mortality was increased by 8% at a concentration of 605 

450 g kg-1 polyethylene (in overlying leaf litter) and 25% mortality at 600 g kg-1. Reduced growth and 606 

negative effects on burrow construction were also observed. As the concentrations of plastic litter 607 

micro-fragments found on soil surfaces are currently unknown, it is difficult to place the 608 

concentrations that are used in this study within the range of possible microplastic concentrations 609 
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that may occurs in soils. The exposure concentrations would certainly seem high compared to 610 

expected microplastic levels resulting from diffuse pollution. However, it remains possible that they 611 

may be consistent with exposure around some point sources, especially following in situ degradation. 612 

This finding that annelid worms can be affected by microplastics is consistent with a number of studies 613 

conducted for marine species. For example, in a study of Arenicola marina exposed to uPVC 614 

(unplasticised PVC) particles experienced weight loss and reduced lipid reserves were observed. A 615 

uPVC treatment of 10 g kg-1 dry sediment reduced energy reserves by 30% while at a uPVC 616 

concentration of 50 g kg-1 dry sediment, energy reserves were reduced by 50%. This effect overall 617 

suggests that exposure to UPVC causes metabolic stress to marine benthic sediment worms (Wright 618 

et al., 2013a). Due to the close relatedness of worm species in terms of morphology and how they 619 

feed in sediment it is likely that similar effects would be observed in freshwater and terrestrial worm 620 

species (Rillig, 2012). In the marine copepod, Tigriopus japonicas, Lee et al. (2013) found that although 621 

acute exposure (96 hours) to three different particle sizes (0.05, 0.5 and 6 µm) of polystyrene 622 

microbeads, had no impact on the survival rate of adults, in a two generation chronic exposure 623 

experiment mortality was observed at concentrations above 12.5 µg ml-1, with the second generation 624 

observed to be much more sensitive than the first generation, especially when exposed to the nano-625 

scale particles (0.05 µm). Larger particles in contrast (6 µm) had no effect on survival even over two 626 

generations, although fecundity was affected at concentrations above 25 µg ml-1. Although the species 627 

of copepod used in this study were marine, they are directly comparable to freshwater copepod 628 

species and other planktonic filter feeding organisms like Daphnia sp. This implies that toxic effects of 629 

microplastics may be size-dependent either as a result of particle ability to permeate body tissues or 630 

to cause greater inflammatory response. Studies conducted with nanoplastics also highlight possible 631 

size dependent influences on toxicity for both acute survival effects (Besseling et al., 2014; Nasser and 632 

Lynch, 2016) and different reproductive effects observed in response to smaller particle fractions (Lee 633 

et al., 2013).  634 
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It is also important to consider how alteration of particle characteristics over different 635 

environmental timescales may affect toxicity. Exposure to artificially aged (nano)polystyrene has been 636 

found to cause mortality, growth and reproduction effects to the standard test species Daphnia 637 

magna over a 21 day period, whereas pristine nano-polystyrene particles caused no significant effects 638 

on mortality. Mixtures of nano-polystyrene and fish kairomones (known to cause stress in D. magna) 639 

produced an additive effect on body size and reproductive endpoints, indicating that exposure to 640 

plastic particles can exacerbate existing environmental stress responses (Besseling et al., 2014). Many 641 

studies investigating the toxicological impacts of microplastics have used virgin plastic particles. 642 

However, if aged and contaminated, particles can have the potential for greater chemical transfer 643 

than virgin particles (see section 4.2.2.). This use of pristine particles could thus lead to a potential 644 

underestimation of the toxicological impacts of microplastic exposure under more realistic 645 

environmental exposure scenarios. Recently the nanotoxicology research community have recognised 646 

the need to conduct experiments with environmentally ‘aged’ nanomaterial forms (Christian et al., 647 

2008; Judy et al., 2015; Lahive et al., 2017). Common nanomaterial transformations, such as hetero- 648 

and homo-aggregation, changes in surface charge and in particular the development of a surface 649 

‘corona’ of associated macromolecules and chemicals may all occur for both nanoparticles and 650 

microplastics (Syberg et al., 2015). Hence future studies with these ‘aged’ particle forms may be 651 

needed to more accurately identify the possible effects of anthropogenic materials in real 652 

environments (Schultz et al., 2015).  653 

When considering microplastics and chemical co-transport, principles used in mixture 654 

toxicology may be useful to assess these multifaceted stresses in the environment. Given that most 655 

environmental microplastic studies quantify microplastics by number of particles rather than by 656 

weight (as is more common for bioassays), and none to our knowledge have yet detected nanoplastics 657 

in environmental samples, it is not yet possible to determine whether the concentrations used in these 658 

studies are environmentally relevant. This is a similarly common criticism of microplastic studies in 659 

that the concentrations of particles used are likely not environmentally realistic. Even though the 660 
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relationship between environmental concentrations and those used in toxicity bioassays is not fully 661 

established, it is likely that the concentrations used in laboratory tests are comparable to only the 662 

highest levels of environmental contamination. However, it is still valuable to understand the potential 663 

ecological implications of microplastic pollution at these high concentrations as a contribution to 664 

understanding of hazard and developing risk assessments. Further, given that environmental 665 

concentrations of microplastics are likely to increase with input and fragmentation of plastics already 666 

present in the environment, the future presence of higher concentrations can be expected (Phuong 667 

et al., 2016). 668 

 669 

4.2. Microplastics as a chemical hazard 670 

4.2.1. Leaching of plasticiser chemicals in freshwater and terrestrial environments 671 

Plastic materials often contain a wide range of plasticiser chemicals to give them specific 672 

physical properties such as elasticity, rigidity, UV stability, flame retardants and colourings (Browne et 673 

al., 2013; Lithner et al., 2009; Moore, 2008; Teuten et al., 2009). Many of the chemicals associated 674 

with plastics have been identified as either toxic or endocrine disruptors including bisphenol-A, 675 

phthalates such as di-n-butyl phthalate and di-(2-ethylhexyl) phthalate, polybrominated diphenyl 676 

ethers (PBDEs) and metals used as colourings (Hua et al., 2005; Kim et al., 2006; Lithner et al., 2009; 677 

Oehlmann et al., 2009; Rochman et al., 2013b; Teuten et al., 2009). Additive chemicals like these are 678 

weakly bound, or not bound at all to the polymer molecule and as such these chemicals will leach out 679 

of the plastic over time. Such releases can be facilitated in environments where particle dispersal is 680 

limited and where plastics will experience UV degradation and high temperatures (Andrady, 2011). 681 

The locations where microplastics may accumulate in soil and surface waters are therefore likely to 682 

be subject to the possible release of these chemicals from plastics and their subsequent transfer to 683 

water, sediment and organisms. Lithner et al. (2009) showed that different plastic items can leach 684 

toxic chemicals into water that can cause varying effects on Daphnia magna. Different items made of 685 
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the same polymer may have varying toxicity effects following leaching, based on the type and amount 686 

of plasticisers added during manufacture. This demonstrates that plastic materials can act as a source 687 

of complex leachate mixtures to the environment. 688 

As a major environmental sink for all types of plastic waste, landfill material and the leachates 689 

arising from landfill sites are highly likely to contain high concentrations of plasticiser chemicals (do 690 

Nascimento Filho et al., 2003; Slack et al., 2005; Yamamoto et al., 2001). Within a landfill site chemical 691 

conditions change over time with regards to temperature fluctuation, oxygen presence, acid/alkaline 692 

conditions and dissolved organic carbon all of which have the potential to change plasticiser leaching 693 

(Teuten et al., 2009; Xu et al., 2011). Large scale chemical monitoring studies have identified the 694 

presence of phthalate esters (plasticiser chemicals) in a wide range of agricultural and peri-urban soils 695 

in various regions of China. Zeng et al. (2008) analysed soil samples from a range of field sites around 696 

Guangzhou city, China. The study identified 16 phthalate compounds with concentrations for 697 

individual phthalate found ranged from 0.195–33.5 mg kg-1 dry weight soil. The highest concentration 698 

of phthalates were found in an agricultural soil, in close proximity to a water course into which 699 

wastewater was discharged from nearby industrial activities including manufacture and disposal of 700 

plastics and this was identified as the key source of phthalates in soil. Similarly Kong et al. (2012) 701 

analysed soil samples from farmland finding concentrations of phthalates ranging from 0.05–10.4 mg 702 

kg-1 dry weight. The highest concentrations were found in vegetable plots close to domestic rubbish 703 

sites, from which phthalates could be expected to leach. High concentrations were found at sites close 704 

to busy roads and at wasteland sites where plastic debris abundance was high. Further to these 705 

studies, Wang et al. (2013) sampled soils used for vegetable production near Nanjing (east China). 706 

Measured concentrations of phthalates ranged between 0.15–9.68 mg kg-1 dry weight; the highest 707 

concentrations were found at sites where plastic mulches and polytunnels were in use. Proximity to 708 

municipal solid waste sites and application of sewage sludge were also identified as major sources of 709 

phthalates, indicating leaching of plasticiser chemicals from plastic particles deposited on land. Taken 710 

together, the results suggest that plastic materials release chemicals to soil via a number of the 711 
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pathways and are a potential source of plasticisers to soils. This may have significant implications for 712 

terrestrial locations where microplastic concentrations are high, although further studies are needed 713 

to confirm this early evidence.  714 

 715 

4.2.2. Microplastic associations with organic pollutants  716 

Microplastics themselves are widely understood to bind to a range of different hydrophobic 717 

organic chemicals (HOCs) within the environment, such as organochlorine pesticides, PAHs, PCBs, 718 

PBDEs, dioxins and metals (Besseling et al., 2013; Mato et al., 2001; Rochman et al., 2013c). This may 719 

be especially significant in continental freshwater and terrestrial environments, where concentrations 720 

of these chemicals are expected to be higher than in marine systems, due to proximity to the use of 721 

these chemicals (Dris et al., 2015b). HOCs are recognised as having high lipophilicity (i.e. high 722 

octanol/water partition coefficient, Kow), determining whether a chemical will dissolve in water and 723 

remain in solution).  Chemicals with such a high Kow will typically have a strong affinity for adsorption 724 

to organic and particulate matter within water, soil and sediment. These same characteristics, in 725 

addition to factors including hydrophobicity of polymer, large or abraded surface properties and 726 

biofouling, mean that HOCs also have the potential for sorption to plastic materials (Karapanagioti and 727 

Klontza, 2008; Teuten et al., 2007). Microplastics and representative chemicals from many POP classes 728 

may become associated in waste streams (e.g. sewage effluent and sludge, landfill waste and leachate) 729 

or in anthropogenically influenced environments. Hence, the interactions between microplastics and 730 

organic pollutants are particularly pertinent in freshwaters inland, especially those in close proximity 731 

to industrialised and populated areas with a high discharge of industrial and domestic wastewater, 732 

where small dispersal areas can lead to high pollutant concentrations (Eerkes-Medrano et al., 2015; 733 

Free et al., 2014).  This will be especially relevant in agricultural areas where plastic products are used 734 

in close proximity or in association with the application of hydrophobic chemicals such as some 735 

pesticides.  736 
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Changes to environmental conditions will influence equilibrium dynamics between chemicals 737 

and plastics, impacting on chemical accumulation and bioavailability (Bakir et al., 2016; Bakir et al., 738 

2014; Karapanagioti and Klontza, 2008; Koelmans et al., 2016). Additionally, particle size and texture 739 

will affect the capacity of microplastics to either adsorb or leach contaminants and indeed plasticiser 740 

additives. The greater surface area per unit of mass as particles decrease in size increases the potential 741 

for surface chemical interactions and thus binding with hydrophobic chemicals.  Physically weathered 742 

particles are expected to have a larger surface area as a result of cracking and abrasion which increases 743 

overall surface area (Ivar do Sul and Costa, 2014; Teuten et al., 2009). Such environmentally-induced 744 

changes may be particularly relevant for terrestrial microplastics, which may be exposed to high levels 745 

of UV radiation and wind. The ecological impacts of plastic-chemical associations are difficult to 746 

predict due to the many interactions between polymers, plastic additives, adsorbent characteristics 747 

and environmental conditions which will impact on bioavailability (Bakir et al., 2014; Koelmans et al., 748 

2016; Velzeboer et al., 2014).  749 

 750 

5.  Future research recommendations 751 

As this review highlights, the largest gaps in current knowledge are in our understanding of 752 

microplastic pollution in terrestrial ecosystems, especially environmental concentrations, sources and 753 

ecological impacts. In freshwater systems, knowledge of concentrations of microplastics is rapidly 754 

growing. However, in most instances this knowledge has yet to be related to ecological effects. Due 755 

to the lack of quantitative data, it is difficult to assess quantitatively the exact nature of the 756 

microplastic hazard in these systems and how the consequences of microplastic presence in these 757 

ecosystems will manifest themselves. Indeed this is true of microplastics research as a whole, where 758 

the long term implications of microplastics are still unclear compared to better-studied chemical 759 

pollutants.  760 
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There is a large degree of uncertainty around the volume, composition and diversity of 761 

microplastic particles entering the environment.  Information on the scale of production is available 762 

as is some data on plastic entry into major waste management systems, however current release rates 763 

from these streams either by deliberate or accidental release of refuse or wind action is not quantified. 764 

This route from accidental release and littering is, hence, one of the greatest uncertainties for emission 765 

predictions.  This review highlights the complex challenge of understanding the dynamics and impacts 766 

of microplastics as an environmental pollutant, especially understanding microplastics in a freshwater 767 

and terrestrial context, but also demonstrates how information from marine studies can be used to 768 

infer or predict what may occur in these less studied systems. In a similar way, nanomaterial research 769 

can also provide insights into particulate behaviour and fate. 770 

To progress the field of research, it is of utmost importance in the first place to define 771 

‘microplastics’ clearly as an environmental contaminant, and thereafter to develop standardised 772 

methods for collecting, processing and analysing environmental samples. Such standardisation has 773 

the potential to reduce ambiguity and thus allow direct comparison between studies with a view to 774 

understanding sources and transport pathways. Spectroscopy methods have already been used to 775 

identify freshwater and terrestrial nanoparticles and the continued development of such methods, as 776 

well as alternatives such as differential scanning calorimetery (DSC) and thermo-gravimetric analysis 777 

(TGA), is important to provide additional information on the polymers present in terrestrial and 778 

freshwater ecosystems.  779 

While an ideal scenario would be to reduce the amount of plastic entering the environment, 780 

the challenges of reduction from changes in manufacturer and consumer behaviour mean that 781 

releases can be expected to continue for some time. Given the volume of plastic currently present in 782 

the environment, and the likely increase of microplastics due to fragmentation, it therefore remains 783 

important to understand the potential effects of this ever-accumulating pollution (Nizzetto et al., 784 

2016a; Phuong et al., 2016). 785 
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 Based on the evidence presented in this review, it is clear that our understanding of 786 

microplastics in the environment is rapidly developing. However, there are still fundamental gaps in 787 

the knowledge and many questions still remain. In summary, the most important questions remaining 788 

are: 789 

1) What is the current extent of microplastic pollution in terrestrial environments, and how does 790 

this compare to known contamination in aquatic environments? Which polymers are most 791 

abundant and does this vary across habitats and regions? 792 

2) To what extent do environmental conditions and properties of different plastic materials 793 

affect microplastic behaviour and bioavailability under the conditions that are found in 794 

freshwater and terrestrial environments? 795 

3) Are adverse effects primarily due to physical impacts of the particle itself, chemical toxicity or 796 

mixture effects, and does this vary between polymers and species? Are there parallels that 797 

can be drawn with what is known concerning mechanisms of action for some nanoparticles? 798 

4) What are the likely ecological implications of plastics under realistic exposure conditions (i.e. 799 

microplastics of the type and concentrations likely to be encountered by organisms)? 800 

 801 

6. Conclusions 802 

The available literature reporting information on plastic use and release suggests that primary 803 

and certainly secondary microplastics are likely to be found ubiquitously across terrestrial and 804 

freshwater environmental compartments due to their proximity to most point and diffuse sources.  805 

Both primary and secondary microplastics entering the environment will persist and continue to 806 

fragment to smaller particles. These smaller fragments are likely to pose a greater risk to organism 807 

health due to their increased likelihood of uptake, increased surface area for interactions with 808 

chemicals and greater number of particles per unit of bulk mass (Jeong et al., 2016; Lee et al., 2013). 809 

The focus on nanoparticle hazards has recently generated a greater understanding of the behaviour 810 
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of particulate pollutants, as well as methods for their detection and hazard assessment. Clear parallels 811 

exist from this work to future studies with nanoparticles, with collaboration between the disciplines 812 

likely to improve understanding (Bouwmeester et al., 2015; Syberg et al., 2015). This takes the more 813 

environmentally relevant approach that it is necessary to understand the fate, behaviour and impacts 814 

of microplastics as an environmental pollutant and, therefore, their potential implications for keys 815 

ecosystem components and processes. 816 

As microplastics can act as both a direct (particulate) hazard and an indirect (chemical) hazard, 817 

unravelling ecological effects may call for the application of approaches for mixture toxicity may be 818 

beneficial for the analysis of combined plastic-chemical effects. Despite land being the least studied 819 

environmental compartment, many of the ecological risks of microplastics identified in aquatic species 820 

will also apply to terrestrial ecosystems due to the many ecological and taxonomic parallels that exist 821 

between resident species. Studies on the dynamic interactions between plastic particles, plasticiser 822 

additives and environmental contaminants is also a field that needs to be expanded to understand 823 

how organic chemical partition coefficients to plastics are altered in the presence of sediment and 824 

soil. Studies of chemical dynamics within the gut of organisms are also needed in order to better 825 

understand the processes that govern bioaccumulation of plasticisers and co-transported chemicals. 826 

Ultimately, studies are needed to link the finding in the field studies to laboratory results to better 827 

understand both environmentally relevant scenarios of real-world risks posed by microplastics and 828 

the underlying mechanisms.  829 
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