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The influence of plants on soil 

Plants are the main primary producers in terrestrial ecosystems. As providers of resources, they can 

significantly influence soil biota. Through releasing low-molecular-mass compounds (i.e. sugars, amino 

acids and organic acids), polymerized sugars (i.e. mucilage), root border cells and dead root cap cells, a 

plant creates a unique environment in its rhizosphere (Philippot et al. 2013; Badri et al. 2009). These 

compounds can attract or inhibit the growth of symbionts and pathogens in the rhizosphere (Bais et al. 

2006). Plant identity is an important determinant of the composition and concentration of these root 

exudates, and thus an important determinant of the rhizosphere microbiome, which is defined as the 

microorganisms live in the rhizosphere of a particular plant (Bais et al. 2006; Bardgett and Wardle 2010; 

Bulgarelli et al. 2013). For example, Acidobacteria is one of the most abundance phyla in the 

rhizosphere of the plant Mannillaria carnea, while Acidobacteria are rarely detected in the rhizosphere 

of Deschampsia antarctica and Colobanthus quitensis (Torres-Cortés et al. 2012; Teixeira et al. 2010). 

Moreover, plants vary in net primary productivity (NPP), and hence in the amount of resources that 

enter the soil. Plant litter quantity, for example, can play an important role in structuring the soil 

microbial community, and can influence the rate of processes that occur in the soil, such as soil C 

sequestration and soil enzyme activity (Binkley and Giardina 1998; Kuzyakov and Blagodatskaya 2015; 

Tian and Shi 2014). These effects of plant litter on the bulk soil would also influence the composition 

of the plant rhizosphere microbiome (Pérez-Jaramillo et al. 2016). The influence of a plant on its 

rhizosphere microbiome is a dynamic process. When under attack by enemies, plants can also modify 

their rhizosphere microbiomes to increase the defense against the attack. For example, Arabidopsis 

thaliana recruits beneficial groups of rhizobacteria when under attack by a foliar pathogen (Rudrappa 

et al. 2008). Several studies reported that when under attack by soil pathogens, plants can also recruit 

beneficial microbes, which can act as antagonists to these soil pathogens (Bakker et al. 2018; Berendsen 

et al. 2018; Mavrodi et al. 2012). The influence of a plant on its rhizosphere microbiome may also 

depend on the genotype and the age of the plant (Chaparro et al. 2014; Wagner et al. 2016). All this 

makes the plant that grows in the soil an important determinant of the composition of its rhizosphere 

soil community (Bardgett and Wardle 2010).  

 

The influence of soil on plants 

Soil biota, in turn, also influence the performance of plants. Specific groups of soil microbes such as 

plant growth promoting bacteria, or arbuscular mycorrhizal fungi, promote plant growth and protect 

plants from pathogen attacks. Nitrogen-fixing rhizobia (such as Rhizobium and Bradyrhizobium) assist 

plants in uptaking nitrogen, and mycorrhizal fungi can facilitate phosphorus uptake of plants (Peix et al. 

2015; Richardson et al. 2009). Mycorrhizal fungi can also translocate other nutrients and minerals from 

soil to plants (Gianinazzi et al. 2010; Johnson and Graham 2013). The mechanisms by which soil 
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microbes protect plants under biotic stress such as pathogen attack, include releasing antibiotics that can 

suppress soil pathogens (Haas and Défago 2005; Lugtenberg and Kamilova 2009), competition with soil 

pathogens for nutrients and microsites (Raaijmakers et al. 2009), hyperparasitism on soil pathogens 

(Druzhinina et al. 2011) and inducing systematic resistance in plants (van Loon et al. 2007). 

Pseudomonas and Bacillus are examples of beneficial bacteria, Trichoderma, Gliocladium, 

Piriformospora are fungi with beneficial functions for plants (Mendes et al. 2013).  

 

Soil-borne pathogens are another major group of microbes that significantly influence plants. Root 

feeding nematodes and fungi (both the true fungi and fungi like oomycetes) are important soil-borne 

pathogens for plants (Mendes et al. 2013; Raaijmakers et al. 2009). In the soil, fungi and oomycete 

pathogens often persist in a dormant stage and become active after they encounter their favorable abiotic 

environment or cues from their host plants. Phenolic compounds from root exudates, such as gallic acid, 

coumaric acid and cinnamic acid, can stimulate the germination of soil pathogens in low concentrations 

(Wu et al. 2008; Zhang et al. 2012). Well-known fungal pathogens are Fusarium oxysporum, 

Verticillium dahlia. Oomycete fungi produce motile zoospores that can swim to the plant root for 

infection. Oomycete pathogenic fungi such as Phytophthora infestans, Hyaloperonospora arabidopsidis, 

and Pythium ultimum are among the most widely studied (Kamoun et al. 2015). Plant parasitic 

nematodes either feed on the root exterior, penetrate and move into root interior, or develop a feeding 

site inside the root and reproduce (Mendes et al. 2013). These nematodes are free living in the soil, and 

their sensory organs enable them to move to nutrient sites or host plants based on chemical cues (Mendes 

et al. 2013).  

 

Plant-soil feedback 

‘Plant-soil feedback’ refers to the changes in soil communities caused by a plant that in turn influence 

another plant that grows later in this soil (Bever et al. 1997; van der Putten et al. 2013). Plant-induced 

changes in soil communities can affect the growth of individual plants, but also the temporal dynamics 

of vegetation and hence the succession of plant species or the structuring of plant communities (Bardgett 

and Wardle 2010). Typical plant-soil feedback experiments have two phases, the conditioning phase, in 

which single or multiple plant species are used to condition the soil, and the feedback phase, in which 

target plant species or plant communities grow in the conditioned soil (van der Putten et al. 2013). There 

are mainly two ways to measure the feedback effects, one is to compare plant performance in sterilized 

vs non-sterilized soil (i.e. the effect of the whole community), the other is to compare plant performance 

in own vs other soil (i.e. the effect of species-specialized soil biota) (Brinkman et al. 2010). If the 

performance of the succeeding plant species is promoted by the previous plant species via influencing 

the soil, this is termed positive plant-soil feedback and the reverse is termed negative plant-soil feedback 
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(van der Putten et al. 2013). Moreover, if the succeeding plant species is the same as the preceding plant 

species, the feedback loop is termed conspecific plant-soil feedback, and if the succeeding plant species 

is not the same as the preceding plant species, it is termed heterospecific plant-soil feedback (van der 

Putten et al. 2013). It is well-known that plant-soil feedback effects are plant species-specific (van de 

Voorde et al. 2011), and most plant species suffer from negative conspecific feedbacks (Kulmatiski et 

al. 2008; Petermann et al. 2008). This indicates that a plant will grow better in soil conditioned by other 

plant species than in soil in which the same species has been grown (Cortois et al. 2016; van de Voorde 

et al. 2011).  

 

Plant-soil feedbacks in agriculture 

For more than 1000 years, humans have been aware of the importance of plant-soil feedbacks in 

agriculture. In particular, negative conspecific plant-soil feedback effects have received considerable 

attention from farmers. For example, long-term mono-cropping leads to the loss of crop yield because 

of the build-up of pathogens and nutrient depletion in the soil. Fruit trees were subjected to replanting 

failure when they were planted in soil where conspecific trees had been grown. Crop rotation systems 

have been developed to increase the establishment and productivity of crops in the soil (van der Putten 

et al. 2013; Dias et al. 2015). However, until now, a limited number of crops has been used in crop 

rotations. One group of plants that is widely used in rotations is leguminous plants, which not only 

increase the abundance of nitrogen-fixing rhizobia, but also increase the abundance of arbuscular 

mycorrhizal fungi in the soil (Vukicevich et al. 2016). This is because high phosphorus costs during 

fixation of nitrogen, make legumes depend on arbuscular mycorrhizal fungi at the nodulation sites 

(Scheublin et al. 2004). However, legumes can also have negative effects on disease-suppressive 

bacteria (Latz et al. 2012, 2015), which could be because root defense compounds, such as saponins, are 

higher in the legumes than in other plant species (Osbourn 2003). Brassica species are also widely used 

because of their beneficial effects on soil microbial communities. For example, Brassica napus, and 

Brassica juncea are known to increase the abundance of disease-suppressive bacteria and beneficial 

fungi such as Trichoderma in the soil (Mazzola et al. 2015; Berg et al. 2002; Hollister et al. 2013; Galletti 

et al. 2008). Typically, only cash crops or soil-conserving cover crops are included in the rotation system, 

and so far, these studies have been conducted only in agricultural soils. Recourses from natural 

ecosystems are often neglected in agricultural practices, indicating the huge gap between ecological 

knowledge and current farming practices (Weiner 2017; Dias et al. 2015).  
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Recent papers (e.g. Mariotte et al. 2017; Pineda et al. 2017; Vukicevich et al. 2016) all highlight the 

importance of incorporating the soil and plant species from natural ecosystems for a more sustainable 

agriculture. Management practices in agricultural systems such as herbicide use, fungicide use, tillage 

and fertilization often lead to low biodiversity and simplified biotic interactions in the soil, while soils 

from natural ecosystems are typically much more diverse and with complex biotic interactions occurring 

within the soil communities (Mariotte et al. 2017). For example, in agricultural soils, tillage and 

fertilization typically decrease fungal biomass and disrupt arbuscular mycorrhizal fungal networks, 

resulting in the nitrogen leaching from soil (de Vries and Bardgett 2012). In contrast, soils from natural 

ecosystems often have higher abundance of and more diverse arbuscular mycorrhizal fungal 

communities (Holland et al. 2016). Moreover, compared with agricultural soils, soils from natural areas 

often poses greater suppression against soil pathogens (Garbeva et al. 2006), for example, the abundance 

of entomopathogenic fungi is often higher in these soils (Meyling et al. 2009). Moreover, a soil 

community with complex interactions is often more stable than the one with simple interactions when 

under abiotic or biotic pressures (Orwin and Wardle 2005; Griffiths and Philippot 2013) and a soil with 

high biotic diversity often reduces the possibility of the infection by soil pathogens to plants (van Elsas 

et al. 2012).  

 

In contrast to many domesticated crops, many wild plant species have “host control” over their soil 

microbiome, i.e. they have traits that have evolved to recruit beneficial microbes for symbiosis, reward 

beneficial microbe genotypes, and exclude or sanction ineffective symbiosis (Kiers et al. 2003, 2011; 

Bakker et al. 2014; Sachs et al. 2010). Domesticated crops are selected for high yields, but in this 

selection process they may have lost the capability of host control and to shape their microbiome. Hence, 

they are sensitive to pathogen infection from soils (Mueller and Sachs 2015). Because of the traits and 

co-evolution mechanisms of wild plant species with the microbial communities, their microbiome may 

contain highly diverse and beneficial microbes that can be used to improve the productivity and 

sustainability of domesticated crops. This has been demonstrated by studies that found the root-

associated microbes from wild relatives of crops can increase the ability of crops to cope with biotic 

(Santhanam et al. 2015) and abiotic stresses (Zachow et al. 2014). However, exploring the potential of 

wild plant species for agricultural benefits should move beyond only the wild relatives of domesticated 

crops, because other wild plant species also show beneficial interactions with soil microbes that can be 

potentially used to improve the yields of crops. Some wild plant species such as the grass Lolium perenne, 

for example, can enrich the abundance of bacteria that produce biocontrol compounds (Latz et al. 2015). 

The grass Andropogon gerardi enriches the abundance of mycorrhizal fungi in the soil (Hetrick et al. 

1988), while another wild grass species, Holcus lanatus allocates more carbon to soil bacteria and 

Actinomycetes compared with forb and legume species (Ladygina and Hedlund 2010). Finally, the grass 

species Anthoxanthum odoratum stimulates the abundance of mycorrhizal fungi in the soil (De Deyn et 
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al. 2011). Such effects of wild plant species on soil microbiomes could provide potential benefits, such 

as disease resistance to soil pathogens, to crops that grow later in this soil. An important challenge is 

now to make use of these beneficial co-evolved plant-soil interactions of wild plant species to improve 

the productivity and sustainability of commercial crops. 

 

Soil inoculation 

Soil inoculation studies demonstrated that the effects of soil microbiomes are transferable by inoculating 

a small amount of donor soil to a recipient soil. For example, inoculating small amounts of soil collected 

from natural plant communities steered the recipient (agricultural) soil community to a more natural 

state, and subsequently, led to the establishment of target plant species, which resembled those found in 

natural communities (Wubs et al. 2016; Carbajo et al. 2011). Inoculating soil microbiomes related with 

later or early flowering time to the new plant host altered the flowering time of the plant into later and 

early directions, respectively (Panke-Buisse et al. 2015). Moreover, soil with disease-suppressive 

properties can be successfully transplanted and remains effective in the recipient soil even when only 5-

10% is transplanted (Raaijmakers and Mazzola 2016; Mendes et al. 2011). The transferrable effects of 

soil microbiomes from the donor soil to the recipient soil could be that soil inoculation enhances the 

efficiency of the establishment of microbes in the recipient soil compared with inoculation of a single 

or a few beneficial microbial strains. Inoculating single or multiple microbial stains have often been 

reported to be insufficient as the microbes do not survive or fail to compete with native soil microbes 

(Gómez Expósito et al. 2017; Alabouvette et al. 2009; Gadhave et al. 2016). A recent study has pointed 

out that in order to maximize the plant growth promoting effects of beneficial microbial strains on plants, 

the microbes that play pivotal roles in organizing and keeping the composition of the beneficial 

microbiome are also important (Toju et al. 2018). This study further highlights the advantage of 

inoculating entire soil microbiomes as it can maximize the beneficial functions of certain microbial 

species by keeping the complex interactions between all the soil biota (Schlatter et al. 2017). Thus, if a 

plant species is known to create a positive soil feedback effect on a focal crop, disease suppressive soil 

could be created by growing this plant species first in soil, and then transferring this soil to the soil in 

which the crop is grown by soil inoculation. 

 

Interactions between plant-conditioned soil communities 

It is well-known that plant-soil feedback effects are plant species-specific, and an important question is 

whether there are synergistic, additive or antagonistic interactions between different plant-conditioned 

soil communities when mixed. Plant-soil feedback studies, which have tested the effects of mixtures of 

conditioned soils, are often carried out within in a "spatial heterogeneity" context and with naturally co-
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occurring plants. These studies have been conducted to examine how spatial heterogeneity in soil 

resources and soil biota that is common in natural environments (because different plant species grow 

together but in each one conditions its own local soil) influences plant growth (Xue et al. 2018; Hendriks 

et al. 2015; Burns et al. 2017; Wubs and Bezemer 2016). In these studies, spatially heterogeneous soils 

were compared with spatially homogeneous soils and the results indicate that the net effects of mixing 

soils may not be additive (Xue et al. 2018; Hendriks et al. 2015; Burns et al. 2017; Wubs and Bezemer 

2016). If the positive or negative effects of several conditioned soil inocula on the growth of a crop are 

known, will the effect of one conditioned soil inoculum be reduced by mixing it with an inoculum that 

has a different effect, and what will happen when two inocula with positive effects are mixed? Mixing 

soil microbial strains, such as beneficial or pathogenic strains, have been reported to interact both 

synergistically (Khan and Siddiqui 2017; Alizadeh et al. 2013) and antagonistically (Schisler et al. 1997; 

Johnson and Littrell 1970) on the inoculated plants. However, mixing two soil communities will be 

much more complex than mixing microbial strains, as the net effect of the mixture on plants may depend 

on both the interactions between different groups of soil microbes and also how they interact with the 

focal crop. Recently two studies, which tested the effects of homogenously mixing soil communities, 

found that two soil communities interacted synergistically in terms of soil pyrene removal efficiency 

(Wang et al. 2018), and agricultural land restoration (Wubs et al. 2018). Based on the results from these 

studies, we may expect that when mixing two soils, the effect of their mixture will be better than the 

sum of the effects of the two soils when inoculated separately. If this effect is also observed in 

agricultural systems, this means that the positive effect of inoculation with a beneficial soil may be 

strengthened by mixing it with another positive one.  

 

Temporal dynamics of soil inoculation effects 

Plants can leave legacies in the soil that have long-term influences on the soil microbial communities, 

thus can continue to influence other plants grow later in the soil (Wurst and Ohgushi 2015). This 

phenomenon has been observed both in natural (Kulmatiski et al. 2006) and agricultural systems 

(Detheridge et al. 2016). However, to achieve such long-term legacy effects may also require a long-

term growth period of the preceding plant species in the soil (Kulmatiski and Beard 2011). In a 

horticultural system, in which crops are harvested at the end of every growth cycle, will the inoculated 

soil community in the beginning of the cultivation still influence the crop in the second or later growth 

cycles? Wubs and Bezemer (2018) reported that the conditioning plant species that grew in the first 

phase still influenced the plant species in third phase even though there was one other plant species 

growing in the soil in an intermediate phase. Thus, we may expect that if a beneficial microbiome has 

been inoculated into the soil at the beginning of the first growth cycle, the inoculated soil community 

may continue to influence the crop during later growth cycles. However, monocropping may decrease 
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the abundance of beneficial microbes and increase the abundance of pathogenic microbes in the soil, 

which subsequently leads to a more negative effect on the succeeding crop with increasing growth cycles 

(Sanguin et al. 2009; Zhou et al. 2016; Packer and Clay 2004). Therefore, although it is likely that the 

inoculated beneficial microbiome will continue to influence the crop in the second growth cycle, it is 

unknown whether the effect of the inoculated beneficial microbiome will remain positive or not. The 

net effect of the inoculated microbiome on the crop may depend on how fast the negative conspecific 

feedback effects of the crop build-up in the soil, and also depend on the interactions between the 

beneficial microbiome and the conspecific feedback effect of the focal crop.  

 

Root-associated microbiome 

Plant-soil feedback often uses a black box approach where the net effect of a plant, via the soil on another 

plant is recorded but without knowing what changed in the soil (van der Putten et al. 2013). However, 

apart from knowledge about the effects of inoculating soil conditioned by another plant species on crop 

performance, it is also important to identity the microbiome that has successfully established in the soil 

and that interacts with the crop. The root-associated microbiome includes two compartments: the 

rhizosphere (microbes surrounding the roots) and the endosphere (microbes within the roots) (Lundberg 

et al. 2012; Fitzpatrick et al. 2018). Compared to the microbiome in the bulk soil, the root-associated 

microbiome has more access to resources (root exudates) and typically contains a much larger 

population of microorganisms (Foster et al. 1983; Bakker et al. 2013). The composition of microbiota 

that are associated with plant roots can be greatly different from the composition of microbiota in the 

bulk soil (Lundberg et al. 2012; Bakker et al. 2013). The activities of these microorganisms are essential 

for plant functioning as they assist in plant nutrient uptake and protection against pathogen attack 

(Bakker et al. 2013). Identifying the root microbiome of a plant can provide knowledge about the 

potential beneficial and pathogenic microbes that may play a role in the productivity of that plant species. 

For example, Enterobacter strains isolated from the roots of Poplar trees showed significant growth 

promoting effects when inoculating these Enterobacter strains to Poplar saplings (Taghavi et al. 2009). 

A Gluconacetobacter diazotrophicus strain isolated from sugarcane roots is identified as a beneficial 

strain to sugarcane through fixing nitrogen and synthesizing auxin for this plant species (Bertalan et al. 

2009). The bulk soil can also be an important determinant of the root-associated microbiome of plants. 

The microbiome in the bulk soil serves as the microbial seed bank for the root microbiome of the plant 

(Philippot et al. 2013). Not only does the type of bulk soil influence the assembly and composition of 

the root microbiome of plants (de Ridder-Duine et al. 2005; Mendes et al. 2014), but also changes 

brought about in the bulk soil can significantly influence the composition of the plant root microbiome 

(Estendorfer et al. 2017; Hartman et al. 2018; Liu et al. 2018). For example, the addition of bio-fertilizer 

alters the microbial composition in the bulk soil, and this subsequently steers the root microbiome of the 
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plant into a disease suppressive state (Liu et al. 2018). Another important factor in influencing the 

composition of plant root microbiome is the order of the arrival of the microbial species (Toju et al. 

2018). For example, some biocontrol microbes are only effective in suppressing soil pathogens when 

they colonize the host plant before the pathogens (Braun-Kiewnick et al. 2000; Werner and Kiers 2015). 

These early-colonized beneficial microbes will fully use the habitat and resources of plant roots and 

produce antibiotics to the pathogen, thus, creating barriers for the colonization of pathogens (Wei et al. 

2015). Therefore, by inoculating plants with a beneficial microbiome, the chances of pathogen infection 

to the host plant will be reduced. Moreover, we may also expect that by inoculating plants with different 

starter microbiomes, the root-associated microbiome of the plant will be modified in different ways. To 

advance our understanding and provide information about the development of methods to use soils to 

manipulate crop growth and health, it is important to identify the microbial groups that are associated 

with crop growth and health, and how they respond to different soil treatments. 

 

Chrysanthemum as a model system 

Chrysanthemum is one of the major cut flower crops that is cultivated in soil in commercial greenhouses 

in the Netherlands, and also an important export product with an export value of more than €250 million 

in 2017. Dutch growers produce most chrysanthemum in all year-round greenhouses. These greenhouses 

are divided into different cropping compartments. Cuttings are imported into the Netherlands and rooted 

in peat blocks by nurseries companies. These rooted cuttings in the peat blocks are then planted in 

chrysanthemum greenhouses. The growth period of chrysanthemum from planting untill harvest 

(including flowering) lasts on average 11 to 12 weeks depending on the season, after the plants have 

been harvested, new chrysanthemum cuttings are planted in the soil again (van der Hoeven 1986). This 

mono-cropping of chrysanthemum in the greenhouse leads to the rapid build-up of pathogens in the soil, 

and to control soil-borne disease, the soil is disinfected by steaming (Thuerig et al. 2009; Tamm et al. 

2010). During the steaming process, the soil is covered with plastic foil and heating to 70°C using water 

boilers. This soil steaming is generally executed with an interval of five growth cycles. This practice 

leaves the soil as an empty niche, in which pathogens will re-establish rapidly as their antagonists are 

absent. However, this regularly disinfected soil also makes it a perfect system for testing plant-soil 

feedback effects. Many plant-soil feedback studies take the approach of inoculating a small amount of 

conditioned soil into sterilized bulk soil. With this approach, the abiotic soil conditions are kept constant 

in all treatments, enabling to focus on plant-soil feedback effects mediated by soil biota (Brinkman et 

al. 2010).  

Belowground diseases of chrysanthemum 

Soil-borne diseases are difficult to control because they can survive in soil for long time in the absence 

of the host crop, they often have a wide range of hosts, chemical control is often not environmental 
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friendly (Dignam et al. 2016). Chrysanthemum suffers from soil-borne diseases caused by a wide range 

of pathogens. In this thesis, I test the effects of one oomycete pathogen and one plant parasitic nematode 

on chrysanthemum. 

 

Pythium ultimum is a pathogenic oomycete, which infests both germinating seeds and roots of mature 

plants with a wide range of host plant species. Pythium spp are found in undisturbed soils (Hendrix and 

Campbell 1973) as well as in previously cultivated soils (Pettitt et al. 2011). In chrysanthemum, the 

symptoms of Pythium infection are black lesions that occur on stems near the soil line, stunted growth, 

reduced development of root systems and wilting (Reddy 2016). Although Pythium can quickly colonize 

organic matter present in the soil, this pathogen is a poor competitor and suffers in competition with 

other soil microorganisms (Awasthi 2015). A study that tested the soil suppression against Pythium 

found that many microbial parameters are negatively associated with Pythium growth rates, and that 

high microbial biomass and activity can induce soil suppression against Pythium growth in horticultural 

soils (van Os and van Ginkel 2001). Specific groups of fungi, such as Trichoderma and Gliocladium 

spp, and bacteria, such as fluorescent pseudomonads, Burkholderia cepacia, Enterobacter cloacae are 

effective antagonists against Pythium (Martin and Loper 1999). The horticultural practice of steaming 

soil will eliminate these antagonists and may facilitate colonization of Pythium on chrysanthemum 

(Knudsen et al. 2002).  

 

Meloidogyne incognita is a sedentary root endoparasitic nematode, which causes root-knot disease of 

both cultivated and wild plant species. The infective stage of the nematode is the second stage juvenile 

(J2). The infective J2 penetrates the root and goes through three stages before it becomes an adult. The 

infection of Meloidogyne in the plant causes abnormal root galls (Siddiqui et al. 2014). The activity of 

Meloidogyne in roots kills root cells, and the root eventually starts to rot. The nematode can dwell in 

dead root tissues, and this can act as an infection source in the next growth cycle or season (Reddy 2016). 

The infection severity of Meloidogyne in roots can be characterized using the gall index, which describes 

the gall number and size at a categorical level (Dias et al. 2016). Aboveground symptoms of 

Meloidogyne on chrysanthemum are yellowing of leaves and stunted growth. Bacteria, such as 

fluorescent pseudomonads, Bacillus thurigiensis, and fungi, such as Trichoderma harzianum, 

Purpureocillium lilacinum are antagonists to Meloidogyne incognita (Berg 2009; Li et al. 2007; Silva et 

al. 2018). Plant species that belong to the family Tagetes also have antagonistic effects to Meloidogyne 

incognita because of the nematicidal compounds that are released by their roots (Chitwood 2002; Hooks 

et al. 2010). 
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Aboveground pests of chrysanthemum 

Chrysanthemum suffers from many aboveground pests such as aphids, leaf miners, thrips, leaf folders 

and spider mites (Reddy 2016). Thrips is one of the major pests in chrysanthemum (Maniania et al. 2013; 

Anyango et al. 1992; Leiss et al. 2009), and one of the major pests worldwide in many vegetables and 

ornamental crops (Manners et al. 2013; Leiss et al. 2013; Badenes-Pérez et al. 2018). Increased 

resistance of chrysanthemum to thrips is related to the increase of its resistance to other pests, such as 

leaf miner and spider mite (Kos et al. 2014). In this thesis, I test the effect of Western flower thrips 

(Frankliniella occidentalis), a generalist herbivore, on chrysanthemum. Frankliniella occidentalis are 

sucking cell-feeders that live and reproduce on the flowers and leaves. Besides the direct negative effects 

of western flower thrips on chrysanthemum, it can also cause indirect damage to chrysanthemum via 

transmission of viruses and it can alter the appearance of the flowers (Reddy 2016). The life cycle of 

thrips consists of five stages: egg, larval, prepupal, pupal and adult. The eggs of thrips can be inserted 

into soft plant tissues, such as flowers, leaves and stems. The prepupal and pupal stages often develop 

on the soil or growth medium, and the pupation develops on the plant. Thus, thirps are in contact with 

the soil during the pupal stage, and soil microbes may influence thrips survival or development (Manners 

et al. 2013). The adult thrips are weak flyers, usually taking short flights from leaf to leaf or plant to 

plant, but they can disperse rapidly in the greenhouse (Manners et al. 2013). Predatory mites (Gerson 

and Weintraub 2007; McMurtry et al. 2013; Manners et al. 2013) and entomopathogenic microbes 

(Lacey et al. 2015; Maniania et al. 2003) are two widely studied biological control agents of thrips in 

greenhouses.   

 

Plant species used in the conditioning phase 

In this thesis, I use 36 wild plant species that are native to the Netherlands and that occur in temperate 

grasslands, and one domesticated plant to condition the soil in the monoculture. Some of these selected 

conditioning plant species have been reported to either have antagonistic effects on soil-borne diseases 

or to promote beneficial microbes, and the domesticated crop has antagonistic effect on plant parasitic 

nematodes (Table 1.1). I grew these plants in soil collected from a natural grassland. In natural 

ecosystems, microbial communities are more diverse than in agricultural systems, and plants and 

microorganisms have co-evolved. These co-evolved microorganisms may have a more positive effect 

on plants (Philippot et al. 2013). Therefore, growing wild plant species in their native soil may lead to 

good functional microbiomes so that the inocula from these soils can be used to improve the performance 

of crops.  
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Table 1.1 Influence of conditioning plant species (36 wild plant species and one domesticated crop) on soil biotic 

and abiotic processes and their current uses in agriculture.  

Aim of this thesis 
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In this thesis, I test plant-soil feedback effects in the context of improving chrysanthemum growth and 

disease susceptibility to belowground diseases and aboveground thrips. 

 

First, I test the plant-soil feedback effects of a large range of wild plant species on chrysanthemum. In 

this study, 37 plant species from three functional groups (grass, legume, forb) were used to condition a 

soil collected from a natural grassland. The effects of inoculation of these different soils conditioned by 

each of the plant species individually on chrysanthemum in presence and absence of a soil-borne 

pathogen Pythium ultimum were evaluated (Chapter 2). I examine the positive and negative effects of 

these inocula in terms of chrysanthemum growth, chrysanthemum susceptibility to Pythium infection, 

and measure how inoculation altered the levels of plant defense compounds in chrysanthemum leaves 

as an indication for the potential defense ability of chrysanthemum against aboveground pests such as 

thrips. Then, I analyze the generality of the effects of these inocula by comparing the effects within and 

between the functional groups of the conditioning plant species, and by analyzing whether the effects of 

these inocula depend on the phylogenetic distances of the conditioning plant species to chrysanthemum. 

 

Second, I test the additivity of plant-soil feedback effects on chrysanthemum. Based on the previous 

study, I selected eight of the 37 plant species with negative or positive effects on chrysanthemum. In 

this study, monospecific conditioned soil inocula were pairwise mixed, and the effects of these mixtures 

and the monospecific soil inocula on chrysanthemum growth and leaf yellowness were tested (Chapter 

3). I compare the observed effects of each mixed inoculum with the predicted effects of this mixed 

inoculum based on the effects of the monospecific soil inocula to infer whether the interactions between 

two soil communities are synergistic, antagonistic or additive. Further, I examine whether the 

differences between the effects of two soil communities influence their interactions when mixed. 

 

Third, I test the carry-over effects of plant-soil feedback effects on chrysanthemum. The same eight 

plant species were used to condition natural grassland soil and these conditioned soils were inoculated 

into sterilized soil at the beginning of the first growth cycle. Chrysanthemum was then grown in these 

soils for two consecutive growth cycles. During the first growth cycle, a subset of the plants was exposed 

to either the soil pathogen Pythium, or the plant parasitic nematode Meloidogyne. In the second growth 

cycle, these plants were then again exposed to Pythium or to a second soil inoculum that is collected 

from a commercial chrysanthemum greenhouse and that contained a high density of Meloidogyne 

nematodes (Chapter 4). I test whether the soil inocula added in the beginning of the first growth cycle 

continue to influence chrysanthemum performance during the second growth cycle. Then, I analyze 

whether the direction of the effects of the different soil inocula changes during the two successive growth 
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cycles. Finally, I examine the effects of soil inocula on chrysanthemum growth and health with and 

without the disease treatments in each growth cycle to infer how soil inocula influence the disease 

susceptibility of chrysanthemum during the two successive growth cycles. 

 

Forth, I test the possibility of using wild plant species and grassland soil to steer the soil from a 

commercial chrysanthemum greenhouse towards a more beneficial state for chrysanthemum. I examine 

how inoculation influences the composition of root microbiomes of chrysanthemum, and how it affects 

the growth of chrysanthemum, and the susceptibility to thrips. The soils used for conditioning were 

collected from a natural grassland or from a commercial greenhouse, eight wild plant species and 

chrysanthemum were used to conditioned the soils individually. The conditioned soils were inoculated 

in background soil that consisted of sterilized or live commercial greenhouse soil (Chapter 5). I describe 

the composition of the chrysanthemum root microbiome in different soil treatments and correlate 

changes in the root microbiome with chrysanthemum growth and its susceptibility to thrips.  

 

Finally, I conclude with a general discussion and synthesis of my findings (Chapter 6). I compare the 

results of my studies with other studies in the field. I will highlight a number of questions that deserve 

further investigation and identify issues related to the practical implementation of the results.  



 

 
 

 

Chapter 2 

Plant–soil feedback effects on growth, defense and 

susceptibility to a soil-borne disease in a cut flower crop: 

species and functional group effects 

 

Haikun Ma*, Ana Pineda, Andre W.G. van der Wurff, Ciska Raaijmakers and T. Martijn Bezemer 

 

Frontiers in Plant Science (2017), 8: 2127.
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Abstract 

Plants can influence the soil they grow in, and via these changes in the soil they can positively or 

negatively influence other plants that grow later in this soil, a phenomenon called plant–soil feedback. 

A fascinating possibility is then to apply positive plant–soil feedback effects in sustainable agriculture 

to promote plant growth and resistance to pathogens. We grew the cut flower chrysanthemum 

(Dendranthema X grandiflora) in sterile soil inoculated with soil collected from a grassland that was 

subsequently conditioned by 37 plant species of three functional groups (grass, forb, legume), and 

compared it to growth in 100% sterile soil (control). We tested the performance of chrysanthemum by 

measuring plant growth, and defense (leaf chlorogenic acid concentration) and susceptibility to the 

oomycete pathogen Pythium ultimum. In presence of Pythium, belowground biomass of chrysanthemum 

declined but aboveground biomass was not affected compared to non-Pythium inoculated plants. We 

observed strong differences among species and among functional groups in their plant–soil feedback 

effects on chrysanthemum. Soil inocula that were conditioned by grasses produced higher 

chrysanthemum above- and belowground biomass and less leaf yellowness than inocula conditioned by 

legumes or forbs. Chrysanthemum had lower root/shoot ratios in response to Pythium in soil conditioned 

by forbs than by grasses. Leaf chlorogenic acid concentrations increased in presence of Pythium and 

correlated positively with chrysanthemum aboveground biomass. Although chlorogenic acid differed 

between soil inocula, it did not differ between functional groups. There was no relationship between the 

phylogenetic distance of the conditioning plant species to chrysanthemum and their plant–soil feedback 

effects on chrysanthemum. Our study provides novel evidence that plant–soil feedback effects can 

influence crop health, and shows that plant–soil feedbacks, plant disease susceptibility, and plant 

aboveground defense compounds are tightly linked. Moreover, we highlight the relevance of 

considering plant–soil feedbacks in sustainable horticulture, and the larger role of grasses compared to 

legumes or forbs in this. 

 

Key words: Chlorogenic acid, Chrysanthemum, Disease susceptibility, Plant–soil feedback, Pythium 

ultimum, Plant functional group, Phylogenetic distance
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Introduction 

Plants are the main primary producers in terrestrial ecosystems and as provider of resources, such as 

litter and root exudates, plants are important determinants of soil biota (Bever et al. 1997; Bardgett and 

Wardle 2010). These effects of plants on the soil may differ greatly between plant species as plants vary 

in the quality and quantity of litter and in the chemical composition of root exudates (Wardle et al. 2003; 

Bais et al. 2006; Bardgett and Wardle 2010). Moreover, via their effects on the soil, plants can influence 

other plants that grow later in the same soil, a phenomenon termed ‘plant–soil feedback’ (van der Putten 

et al. 2013). Plant–soil feedback effects can be positive, if the succeeding plant grows better in 

conditioned soil compared to a control soil, and negative, if the growth is reduced (van der Putten et al. 

2013). Heterospecific plant–soil feedback (where one species influences the growth of another species) 

has been recognized as an important mechanism in plant competition and coexistence (Kulmatiski et al. 

2008; van der Putten et al. 2013), and there is an increasing interest among ecologists to unravel the 

mechanisms and determine the generality of plant–soil feedback effects (van der Putten et al. 2013). 

Although negative conspecific feedbacks are the basis for crop rotation in agriculture, how 

heterospecific plant–soil feedback influences cultivated plant species is relatively poorly understood as 

most studies, so far, have focused on interactions among wild plant species (van der Putten et al. 2013; 

Dias et al. 2015; Detheridge et al. 2016). 

 

Heterospecific plant–soil feedback effects may differ between plant functional groups such as grasses, 

forbs or leguminous plants (Bezemer et al. 2006; Kos et al. 2015). Legumes, as nitrogen fixers may 

increase nutrient availability for other plants, and thus may cause positive plant–soil feedback effects 

(Tilman et al. 1997; Harrison and Bardgett 2010). Similarly, grasses which have highly branched roots 

may provide a more suitable habitat for root-associated microbes that have beneficial effects on other 

plants (Bessler et al. 2009; Pérès et al. 2013; Latz et al. 2015). Clearly, an increase in root surface area 

that is often found in grasses could also lead to an increase in the abundance of plant antagonists such 

as root pathogens, but root pathogens of grasses are specialized on monocots, and it is unlikely they will 

negatively influence plants from another functional group (Cortois et al. 2016). Instead, roots of forb 

species that typically have higher phosphate contents than grass species are more susceptible to soil-

borne pathogens (Laliberté et al. 2015; Zhang et al. 2016). Hence, forbs often host more pathogens than 

grasses, and are thereby more likely to have a negative feedback effect on later growing plants (Rottstock 

et al. 2014). As closely related species are more likely to share the same natural enemies and resources 

(Webb et al. 2006; Gilbert and Webb 2007), it is legitimate to hypothesize that heterospecific plant–soil 

feedback effects among closely related species are more negative than among more distantly related 

species (Brandt et al. 2009; Burns and Strauss 2011; Anacker et al. 2014; Mehrabi and Tuck 2015; 

Münzbergová and Šurinová 2015). 
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By growing in the soil, a plant may cause an increase in the density of pathogens in the soil, but at the 

same time, it may also increase beneficial microbes such as bacteria and fungi that promote plant growth, 

suppress pathogens or induce resistance in plants against herbivore or pathogen attack (Haas and Défago 

2005; Pineda et al. 2010). Hence, plant–soil feedback effects could influence the susceptibility of a plant 

to soil pathogens or the disease or pest severity experienced by that plant. We are not aware of any work 

reporting how plant–soil feedback influences the susceptibility of a plant to soil pathogens, but several 

studies reported that conditioning of soil by a plant can influence the levels of aboveground herbivory 

experienced by another plant that grows later in that soil via the feedback effects on the composition 

and concentration of aboveground secondary compounds of the responding plant (Kostenko et al. 2012; 

Bezemer et al. 2013; Kos et al. 2015). Soil biota, such as root herbivores, nematodes, and (non-) 

pathogenic soil microbes can affect plant aboveground primary and secondary compounds (Bezemer et 

al. 2005; Soler et al. 2012; van de Mortel et al. 2012; Badri et al. 2013), and hence we may expect that 

plant–soil feedback effects on the susceptibility of a plant to soil diseases will also influence the 

concentration of aboveground defense compounds in that plant. 

 

In the present study, we examine how plant–soil feedback effects of a wide range of plant species 

influence the growth and secondary chemistry of the commercial cut flower chrysanthemum and its 

susceptibility to the soil pathogen Pythium ultimum. Pythium causes damping off disease to a wide range 

of plants including chrysanthemum (Weller et al. 2002; Meghvansi and Varma 2015). Several studies 

have shown that high abundance and diversity of soil microbes can suppress P. ultimum (van Os and 

van Ginkel 2001; Yu et al. 2015). We examined in a greenhouse experiment the plant–soil feedback 

effects of 37 plant species belonging to three plant functional groups on chrysanthemum growth and 

disease susceptibility. We tested three hypotheses: (i) plant–soil feedbacks will not only influence plant 

growth, but also influence plant disease susceptibility and plant defense, (ii) soil conditioned by grasses 

and legumes will positively affect chrysanthemum growth and reduce disease severity relative to soil 

conditioning by forbs, (iii) species closely related to chrysanthemum will have a more negative effect 

on chrysanthemum growth than more distantly related species. 

 

Materials and methods 

Plant and pathogen material 

The focal plant in our study is Dendranthema X grandiflora (Ramat.) Kitam. cv. Grand Pink 

[Chrysanthemum, syn. Chrysanthemum X morifolium (Ramat.) Hemsl., Asteraceae]. Chrysanthemum 

cuttings were provided by the breeding company FIDES by Dümmen Orange (De Lier, Netherlands). 

Chrysanthemum is one of the major cut flower crops that is cultivated in soil in greenhouses. In 
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commercial chrysanthemum greenhouses, the soil is disinfected regularly with hot steam to circumvent 

soil diseases. However, this practice also eliminates the (beneficial) microbial community in the soil and 

pathogens rapidly recolonize the soil after steaming (Thuerig et al. 2009; Tamm et al. 2010). 

 

The soil–borne oomycete pathogen Pythium ultimum (Pythiaceae) was obtained from Wageningen UR 

Greenhouse Horticulture (Wageningen UR, Greenhouse Horticulture, Bleiswijk, Netherlands). Pythium 

ultimum was isolated from diseased chrysanthemum plants, and cultured on liquid V8 medium (200 ml 

of organic tomato suspension without added salt, 2 g CaCO3, and 800 ml water) at room temperature 

for 2 weeks. Then, the P. ultimum culture was blended in a mixer and filtered to obtain a solution with 

only oospores based on a modified protocol of van der Gaag and Wever (2005). The oospores 

concentration was determined by counting (Fuchs-Rosenthal chamber) the oospore number in 1 ml 

liquid suspensions under the microscope. 

 

Experimental set-up 

The experiment consisted of two phases. In the first phase, the conditioning phase, we used 37 plant 

species to condition soil by growing them in monocultures. In the second phase, the test phase, we 

measured the effects of the species-specific conditioned soils as inocula on the performance of 

chrysanthemum plants with and without P. ultimum addition. 

 

Phase I: Conditioning phase 

For the conditioning phase, 300 Kg soil was collected (5–20 cm deep) in November 2014 from a semi-

natural grassland that was previously used to grow maize and where agricultural activities ceased in 

1995 (Mossel, Ede, Netherlands). The collected soil was homogenized and sieved (1 cm mesh size) to 

remove coarse fragments and all macro-arthropods. Pots (13 cm × 13 cm × 13 cm) were filled with a 

homogenized mixture of field soil and sterilized field soil in a 1:1 ratio (total 1.6 Kg soil per pot). Part 

of the soil was sterilized by gamma irradiation (>25 K Gray gamma irradiation, Isotron, Ede, 

Netherlands). 

 

Thirty-seven plant species were selected to create conditioned soils (Table 2.1). The species were 

classified as grasses (9 species), forbs (21 species), or legumes (7 species) (Table 2.1). Most species 

were wild species that are typical of natural grasslands in Netherlands. Tagetes minuta is a domesticated 

species that was included because of its known disease suppressive properties (Hooks et al. 2010). Seeds 

of the wild species were obtained from a wild plant seed supplier (Cruydt-Hoeck, Assen, Netherlands) 
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and Tagetes minuta seeds were obtained from a garden plant seed supplier (Vreeken seeds, Dordrecht, 

Netherlands). Seeds were surface sterilized in 3% sodium hypochlorite solution for 1 min, rinsed and 

germinated on sterile glass beads in a climate chamber at 20°C (16 h/8 h, light/dark). 

 

Five 1-week-old seedlings were transplanted in monocultures in each pot (13 cm × 13 cm × 13 cm), 

with five replicate pots for each species. A set of five pots filled with field soil (without plants) was also 

kept in the greenhouse, and served as the “no plant” control for the test phase. In total, the conditioning 

phase comprised of 190 pots (monocultures of 37 plant species × 5 replicates + no plant pots × 5 

replicates). The replicate pots of each species in the conditioning phase were kept separately throughout 

the experiment. Seedlings that died during the first week of the experiment were replaced. A few 

seedlings died after transplantation. Therefore, 2 week later, the number of seedlings in each pot was 

reduced to four. All pots were placed randomly in a greenhouse with 70% RH, 16 h 21° (day) and 8 h 

16° (night). Natural daylight was supplemented by 400 W metal halide lamps (225 μmol s-1m-2 

photosynthetically active radiation, one lamp per 1.5 m2). The pots were watered regularly. Ten weeks 

after transplanting, plants were clipped and the largest roots were removed from the soil as they may act 

as a source for re-growing plants. Finer roots were left in the soil as the rhizosphere may include a major 

part of the microbial rhizosphere community. The soil from each pot was homogenized and stored in a 

plastic bag at 4°C (1 bag for each pot) until used in the test phase. These soils are called “soil inocula” 

hereafter. 

 

Phase II: Test phase 

For the test phase, 1 L pots (11 cm × 11 cm × 12 cm; length × wide × height) were filled with a 

homogenized mixture of 10% soil inoculum (plant species-specific conditioned soil) and 90% sterile 

soil (see above). Two controls were included in the test phase: 100% sterile soil and 90% sterile soil 

mixed with 10% field soil that was kept without plants in the greenhouse during the conditioning phase 

(“no plant” inoculum). Two chrysanthemum cuttings (without roots) were planted in each pot as 

preliminary work showed that not all cuttings establish properly with this method. Prior to planting, the 

soil in each pot was well watered and 100 ml half-strength Hoagland nutrient solution was added. The 

pots were placed on trolleys, each trolley had 48 pots and was tightly covered with a thin transparent 

plastic foil for 10 days to create a closed environment with high humidity that favors rooting. After 10 

days, one of the chrysanthemum cuttings was removed from each pot. Plants were fertilized following 

grower’s practice: half-strength Hoagland nutrient solution for the first 2 weeks, and single strength 

Hoagland solution during the following 2 weeks. For the last 2 weeks, the strength was increased to 1.6 

mS/cm EC (electrical conductivity). The density of pots on each trolley was reduced 2 weeks after the 

start of the second phase to 32 pots per trolley so that there was 10 cm space between each pot. 
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Table 2.1. List of plant species used in the conditioning phase, their abbreviation used in the manuscript, family 

and functional group are also presented. 

Species Abbreviation Family Functional group 

Agrostis capillaris AC Poaceae Grass 

Agrostis stolonifera AS Poaceae Grass 

Anthoxanthum odoratum AO Poaceae Grass 

Bromus hordeaceus BH Poaceae Grass 

Festuca filiformis FF Poaceae Grass 

Festuca rubra FR Poaceae Grass 

Holcus lanatus HL Poaceae Grass 

Lolium perenne LP Poaceae Grass 

Phleum pratense PP Poaceae Grass 

Carum carvi CAC Apiaceae Forb 

Achillea millefolium ACM Asteraceae Forb 

Arnica montana ARM Asteraceae Forb 

Centaurea jacea CJ Asteraceae Forb 

Crepis capillaris CRC Asteraceae Forb 

Hypochaeris radicata HR Asteraceae Forb 

Jacobaea vulgaris JV Asteraceae Forb 

Leucanthemum vulgare LV Asteraceae Forb 

Matricaria recutita MR Asteraceae Forb 

Tagetes minuta TM Asteraceae Forb 

Tanacetum vulgare TV Asteraceae Forb 

Taraxacum officinale TO Asteraceae Forb 

Arabidopsis thaliana AT Brassicaceae Forb 

Capsella bursa-pastoris CB Brassicaceae Forb 

Campanula rotundifolia CR Campanulaceae Forb 

Hypericum perforatum HP Hypericaceae Forb 

Prunella vulgaris PV Lamiaceae Forb 

Thymus pulegioides THP Lamiaceae Forb 

Plantago lanceolata PL Plantaginaceae Forb 

Rumex acetosella RA Polygonaceae Forb 

Galium verum GV Rubiaceae Forb 

Lotus corniculatus LC Fabaceae Legume 

Medicago sativa MS Fabaceae Legume 

Trifolium arvense TA Fabaceae Legume 

Trifolium pratense TRP Fabaceae Legume 

Trifolium repens TR Fabaceae Legume 

Vicia cracca VC Fabaceae Legume 

Vicia sativa VS Fabaceae Legume 

 

Five days after the transparent plastic foil had been removed, 3 ml of the oospore suspension (ca. 355000 

oospores of P. ultimum) was added onto the soil next to the stem of each plant allocated to the disease 

treatment. For plants in the control treatment (non-Pythium inoculated), 3 ml water was added. In both 
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treatments, there were two replicate pots for each soil from the conditioning phase. Hence, the feedback 

phase comprised of 780 pots [(37 plant specific soil inocula + no plant soil inoculum) × 2 disease 

treatments × 5 soil replicates × 2 replicate pots + 100% sterile soil × 2 disease treatments × 10 replicates]. 

All pots were randomly arranged in a greenhouse compartment and kept under the same conditions as 

described for the conditioning phase. 

 

Plant performance and disease susceptibility 

Six weeks after disease inoculation, all plants were harvested. For each plant, the total number of leaves 

and the number of yellow leaves was recorded and plant yellowness was calculated as the proportion of 

yellow leaves. The third fully expanded leaf from the top of each plant was then clipped and stored at -

80°C for chlorogenic acid analysis (see below). Plants were then clipped at soil level and roots were 

rinsed from the soil. Shoot and root biomass were oven-dried (60°C for 3 days) and weighed and the 

root/shoot ratio was calculated. The main symptom of Pythium infection is the reduced root system 

caused by root rot (Agrios 2005), and thus plant root/shoot ratio is used as an indicator of plant 

susceptibility to Pythium. 

 

Analysis of chlorogenic acid 

Chlorogenic acid acts as an important resistance factor in chrysanthemum against plant attackers such 

as herbivorous insects (Leiss et al. 2009). Chemical analysis was performed using high performance 

liquid chromatography (HPLC) with UV diode array detection following the procedure outlined by 

Olszewska (2007). Leaves were freeze-dried and finely ground. Ten mg of ground leaf material was 

then used for chemical analysis. Each leaf sample was extracted twice. In the first extraction, 1 ml 70% 

MeOH was added to each sample, vortexed for 0.5 min, then ultrasonicated for 30 min at 20°C, 

centrifuged for 10 min at 10000 rpm, and labeled. The extraction was repeated so that each sample was 

extracted by 2 ml 70% MeOH. The extraction was filtered using a 0.2 μm PTFE syringe filter and stored 

at -20°C until analysis. A standard solution that contained 10 mg chlorogenic acid per 10 ml 70% MeOH 

was used to produce an external standard curve. In each sample chlorogenic acid was then quantified 

based on the standard curve. The concentration of chlorogenic acid was determined, and expressed per 

g leaf dry weight. 

 

Phylogenetic analysis 

We constructed a phylogenetic tree of the 37 plant species, and chrysanthemum using the program 

Phylomatic (Webb and Donoghue 2005), in which a taxon list is matched against a backbone ‘metatree,’ 
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returning a pruned tree of genus-level relationships. The backbone tree is based on the recent 

phylogenetic hypothesis of the Angiosperm Phylogeny Group (R20120829 for plants). We used the 

BLADJ algorithm of the Phylocom version 4.1 software package (Webb et al. 2008) to get branch 

lengths scaled to time, based on clade ages according to Wikström et al. (2001). 

 

Statistical analysis 

Prior to analyses, data from the two pots with the same soil inoculum replicate of the same disease 

treatment were averaged. Sterile soil came from the same homogenized source, and therefore these ten 

replicate pots were kept as 10 replicates. Before conducting analysis, data were checked for homogeneity 

of variance and normality was confirmed by inspection of the residuals. The overall effects of plant 

species-specific inocula and pathogen inoculation on chrysanthemum were analyzed using a linear 

mixed model. In the model, plant species-specific inocula and disease treatment were set as fixed factors, 

and soil replicate was set as random factor. In this analysis, sterile soil and no plant soil inocula were 

not included, as they are not species-specific soil inocula. 

 

The pathogen effect was calculated for each soil replicate (including sterile soil and the no plant soil 

inoculum) as biomass in disease soil minus biomass in no disease soil. One-way ANOVA was used to 

determine the difference of pathogen effects between soils. A one sample t-test was then used to 

determine for each soil inoculum if the pathogen effect was significantly different from zero. The soil 

effects (including sterile soil and no plant soil) in the control treatment were compared using one-way 

ANOVA. Post hoc Dunnett tests were performed to compare each plant species-specific inoculum with 

sterile soil and with the no plant soil inoculum. The analyses described above were done for 

chrysanthemum aboveground biomass, belowground biomass, leaf chlorogenic acid and root/shoot ratio 

(Figure S2.1). Plant proportional yellowness was not normally distributed, and thus the analyses were 

done slightly different. The effects of plant species-specific inocula and pathogen inoculation on 

chrysanthemum yellowness were analyzed using a generalized linear mixed model with binomial 

distribution and logit link function, with plant species-specific inocula and pathogen inoculation set as 

fixed factors, and soil replicate as random factor. The pathogen effect was calculated for each soil 

replicate (including sterile soil and no plant soil inocula) as proportion yellowness in disease soil minus 

that in no disease soil. One-way ANOVA was used to determine the difference of pathogen effects 

between soils. A one sample t-test was then used to determine for each soil inoculum if the pathogen 

effect was significantly different from zero. The soil effects (including sterile soil and no plant soil 

inoculum) in the control treatment were compared using a generalized linear model. Post hoc Dunnett 

tests were performed to compare each plant species-specific inoculum with sterile soil and with the no 

plant soil inoculum. To quantify plant–soil feedback effects of a conditioning species on chrysanthemum, 
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the plant–soil feedback effect was calculated as natural log of the (chrysanthemum biomass 

(aboveground biomass + belowground biomass) on soil conditioned by that species minus average 

chrysanthemum biomass on sterile soil or no plant inoculum). This calculation was done for both the 

control treatment and the pathogen treatment. Two-way ANOVA was used to determine the overall 

effects of conditioning species and disease treatment on plant–soil feedback effects. A one sample t-test 

was used to determine for each species inoculum, if the effect was significantly different from zero. 

 

To compare functional groups of the conditioning plant species (grass, forb, or legume), linear mixed 

models were used with plant functional group and pathogen inoculation as fixed factors, and soil 

replicate nested in plant species identity as a random factor, so that each conditioning species was 

considered a replicate. In this analysis, the sterile soil and no plant soil inoculum were not included, as 

these treatments were not allocated to a specific plant functional group. Post hoc tests were conducted 

with the functions ‘glht’ (multcomp package) and ‘lsm’ (lsmean package) to assess pairwise 

comparisons between plant functional groups. The analyses described above were done for 

chrysanthemum aboveground biomass, belowground biomass, root/shoot ratio and leaf chlorogenic acid. 

For plant yellowness, a generalized linear mixed model was used (binomial distribution and logit link 

function), with plant functional group and pathogen inoculation as fixed factors, and soil replicate nested 

in plant species identity as random factor. The same post hoc tests were done for pairwise comparisons 

of different plant functional groups. 

 

Linear regression analysis was used to test the relationship between the phylogenetic distance of the 

conditioning plant species to chrysanthemum, and chrysanthemum biomass (aboveground biomass + 

belowground biomass). Linear regression analysis was also used to determine the relationship between 

chrysanthemum leaf chlorogenic acid and chrysanthemum aboveground biomass for the control and 

disease treatment separately. All analyses were performed in R (version 3.0.1, R Development Core 

Team, 2013). 

 

Results 

Above- and belowground biomass of chrysanthemum plants differed significantly between inocula and 

average root and shoot biomass varied more than threefold (Figure 2.1 and Table 2.2). In the control 

treatment, aboveground biomass of chrysanthemum grown with soil inocula from 8 species (Thymus 

pulegioides, Crepis capillaris, Tagetes minuta, Hypochaeris radicata, Centaurea jacea, Medicago 

sativa, Vicia Sativa, and Trifolium arvense) was significant lower than that of chrysanthemum grown in  
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Figure 2.1. Effects of 37 species-specific soil inocula, no plant inoculum and sterile soil on chrysanthemum 

aboveground biomass (A) and belowground biomass (B). In each figure, bars represent chrysanthemum biomass 

(mean ± SE) of soil inocula in control soil, and squares represent the pathogen effect on plant biomass (biomass 

in P. ultimum soil – biomass in non-Pythium inoculated soil). Striped bars indicate controls. “*” Represents 

significant difference from the sterile soil (P < 0.05). “+” Represents significant difference from the no plant soil 

inoculum (P < 0.05), “#” represents significantly different from zero (P < 0.05). Dashed lines separate soil inocula 

into different functional groups. Species abbreviations are given in Table 2.1. Statistics presented in the lower part 

of each panel represent the effects of soil on chrysanthemum biomass in control soil, and statistics presented in the 

upper part of each panel indicate the effects of soil inocula on the disease severity of chrysanthemum biomass. 
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sterile soil. Compared to the no plant inoculum this was observed for 19 of the 37 species-specific soil 

inocula (Figure 2.1A). Overall, pathogen addition did not significantly influence plant aboveground 

biomass, and did not modify the effects of the different soil inocula on chrysanthemum aboveground 

biomass (no interaction between disease treatment and soil inoculum, Table 2.2). However, 

chrysanthemum growing with soil inocula conditioned by Lolium perenne and Vicia sativa had 

significantly higher aboveground biomass with P. ultimum than without P. ultimum addition (Figure 

2.1A). 

 

Root biomass of chrysanthemum grown with inocula conditioned by Centaurea jacea and Trifolium 

arvense was significantly lower than that of plants grown in 100% sterile soil in the no-disease treatment 

(Figure 2.1B). Addition of 12 species-specific soil inocula resulted in lower chrysanthemum root 

biomass than no plant soil inoculum. Addition of P. ultimum caused a significant reduction in root 

biomass but the interaction between disease addition and soil inoculation was not significant (Table 2.2). 

Addition of P. ultimum in soil inoculated with Agrostis stolonifera, Achillea millefolium, Tanacetum 

vulgare, or Tagetes minuta soil resulted in a significant reduction in root biomass. Root/shoot ratios 

were significantly lower in soil with P. ultimum addition (Figure S2.1) and the effects of P. ultimum 

addition differed between inocula resulting in a significant interaction between these two factors (Table 

2.2). Grass species had neutral to positive plant–soil feedback effects on chrysanthemum, while forb 

and legume species had neutral to negative plant–soil feedback effects compared to sterile  soil with or 

without Pythium addition (Figure S2.2A). Most plant species had negative plant–soil feedback effects 

on chrysanthemum when compared with the no plant inoculum either with or without Pythium addition 

(Figure S2.2B). 

 

Table 2.2. Overall effects of identity and functional group of the conditioning plant species, and of Pythium 

addition on aboveground biomass, belowground biomass, root/shoot ratio, proportion of yellow leaves and leaf 

chlorogenic acid concentrations in chrysanthemum. 
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Figure 2.2. Effects of 37 species-specific soil inocula, no plant inoculum and sterile soil on chrysanthemum 

yellowness (A) and leaf chlorogenic acid concentration (B). In each figure, bars represent the mean (±SE) of each 

soil inoculum in control soil, and squares represent the pathogen effect (value in P. ultimum soil – value in non-

Pythium inoculated soil). Striped bars indicate controls. “*” Represents significant difference from the sterile soil 

(P < 0.05). “+” Represents significant difference from the no plant soil inoculum (P < 0.05), “#” represents 

significantly different from zero (P < 0.05). Dashed lines separate soil inocula into different functional groups. 

Statistics presented in the lower part of each panel represent the effects of soil in control soil, and statistics 

presented in the upper part of each panel indicate the effects of soil inocula on the disease severity of 

chrysanthemum biomass. 
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Figure 2.3. Effects of plant functional group and pathogen addition on chrysanthemum aboveground biomass (A), 

belowground biomass (B), root/shoot ratio (C), proportion of yellow leaves (D), and leaf chlorogenic acid 

concentration (E). Data show means ± SE, with white bars representing control soil, and black bars representing 

the P. ultimum treatment. Different letters indicate significant differences between functional groups (P < 0.05). 

For root/shoot ratio, different letters above bars indicate significant differences (P < 0.05). Full statistics are listed 

in Table 2.2. 

 

The proportion of yellow leaves differed significantly between soil inocula (Figure 2.2A and Table 2.2). 

In the control treatment, leaf chlorogenic acid concentrations of plants growing in soils with Capsella 

bursa-pastoris, Centaurea jacea, Medicago sativa, Trifolium arvense, Trifolium pratense, and Vicia 

sativa inocula were significantly lower than in sterile soil, and leaf chlorogenic acid concentrations in 

soil conditioned by Centaurea jacea was significantly lower than no plant soil (Figure 2.2B). With P. 

ultimum inoculation, leaf chlorogenic acid concentrations of plants growing in soils with Lolium perenne 

and Crepis capillaris inocula were significantly lower than those in control treatment, while leaf 

chlorogenic acid concentrations of plants growing in soil conditioned by Capsella bursa-pastoris, 

Centaurea jacea were significantly higher than those growing in control soil (Figure 2.2B). 

 

Both aboveground and belowground biomass of chrysanthemum differed significantly between 

functional groups of the conditioning plant species (Figures 2.3A,B). Addition of soil inocula created  
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Figure 2.4. Relationships between chrysanthemum leaf chlorogenic acid concentration and aboveground biomass 

in control soil (A), and Pythium added soils (B). Black triangles represent forb inocula; Gray triangles represent 

grass inocula; White triangles represent legume inocula; White circles represent 100% sterile soil; Striped circles 

represent no plant soil. 

 

by grasses resulted in significantly higher above- and belowground biomass of chrysanthemum than 

addition of forb or legume inocula. The root/shoot ratio differed between functional groups of the 

conditioning plant species and disease treatment, there were interactions between functional groups and 

the disease treatment (Figure 2.3C and Table 2.2). Root/shoot ratios did not differ between grass, legume 

or forb inocula in control soil but in presence of P. ultimum, root/shoot ratios were significantly lower 

with forb than with grass inocula (Figure 2.3C). 
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The proportion of yellow leaves differed significantly between functional groups of the conditioning 

plant species (Figure 2.3D). Pythium ultimum inoculation did not significantly influence chrysanthemum 

yellowness. Addition of soil inocula created by grasses resulted in significantly lower chrysanthemum 

yellowness than addition of forb or legume inocula. 

 

The concentration of chlorogenic acid was significantly influenced by the identity of the plant species 

that was used to create the inoculum but did not differ between plant functional groups (Figure 2.3E and 

Table 2.2). The concentration of chlorogenic acid significantly increased in response to P. ultimum 

addition (Figure 2.3E and Table 2.2). Chlorogenic acid concentrations were positively related with 

chrysanthemum aboveground biomass in both the no-disease and disease treatments (Figures 2.4A,B). 

 

There was no significant relationship between phylogenetic distance and the effect of the inoculum on 

chrysanthemum growth (R2= 0.05, P = 0.11) (Figure 2.5). Topology of the phylogenetic tree is given in 

Suppleme ntary Figure 2.3. 

 

 

Figure 2.5. Effects of phylogenetic relationships on the chrysanthemum biomass (aboveground biomass + 

belowground biomass). The phylogenetic distance is the distance of conditioning plant species to chrysanthemum. 

The phylogenetic relationship is based on a backbone tree of the recent phylogenetic hypothesis of the Angiosperm 

Phylogeny Group (R20120829 for plants). We used the BLADJ algorithm of the Phylocom to get branch lengths 

scaled to time, based on clade ages according to Wikström et al. (2001). 
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Discussion 

Our study shows that the identity of the plant species that conditioned the soil had a large effect on the 

plant–soil feedback effects on chrysanthemum growth and that plant functional group is a strong 

determinant of plant–soil feedback effects. When quantifying plant–soil feedback effects relative to 

sterile soil, most legume and forb species had negative plant–soil feedback effects on chrysanthemum 

biomass. In contrast, grass species had neutral to positive feedback effects on chrysanthemum biomass, 

and this became more apparent when Pythium was added. Moreover, addition of grass inocula led to 

more biomass and less yellowness than addition of legume or forb inocula, and led to less strong Pythium 

effects than addition of forb inocula. Importantly, and contrary to our initial hypothesis, addition of soil 

inocula that were created by legumes did not result in positive effects on chrysanthemum growth and 

did not reduce disease severity. 

 

Inoculation with eight of the 37 soil inocula we tested negatively influenced chrysanthemum biomass 

compared with growth on sterile soil. Interestingly, plants grown with Lolium perenne inoculum that 

were exposed to P. ultimum had higher aboveground biomass than plants without P. ultimum. Lolium 

perenne has a highly diverse soil microbial community (Wardle et al. 2003; Clayton et al. 2005), and 

this species has been reported to cause increases in the density of bacteria that produce biocontrol 

compounds, such as 2,4-diacetylphloroglucinol, pyrrolnitrin and hydrogen cyanide (Latz et al. 2015). 

Thus, chrysanthemum plants grown with Lolium perenne inoculum may have been primed by these 

rhizobacteria, so that later when exposed to P. ultimum, the plants could respond better and faster to 

pathogen invasion (Pieterse et al. 2014). Pathogen infection can also lead to higher root colonization of 

beneficial bacteria (Rudrappa et al. 2008; Liu et al. 2014). This may explain why the biomass of 

chrysanthemum grown with Lolium perenne inoculum was larger in presence of P. ultimum than without 

the pathogen. 

 

Chrysanthemum grown in soil with grass inocula sustained higher above- and belowground biomass 

than plants grown with inocula conditioned by legumes or forbs. This is partially in line with our 

hypothesis that grass and legume inocula have a more positive influence on chrysanthemum growth than 

forb inocula. Other studies with the same and with different soils have shown that the composition of 

the microbial community of grass-conditioned soil differs distinctly from legume-conditioned soil (Chen 

et al. 2008; Kos et al. 2015). Several other studies have shown that grasses in particular increase the 

abundance of soil bacteria, such as Bacillus, Pseudomonas and Actinomyces, which can act as 

antagonists of soil pathogens (Latz et al. 2012, 2016; Chen et al. 2016). Moreover, grasses can also 

increase the abundance of AM-fungi (De Deyn et al. 2010). These mechanisms may explain the better 

effects of grass inocula relative to legume or forb inocula in our study. Grass inocula also sustained 
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lower chrysanthemum yellowness than forb or legume inocula, and grass inocula overall increased plant 

growth and health more than legume or forb inocula. Steaming soil can kill both beneficial and 

pathogenic microbes in the soil, and this can lead to the rapid build-up of soil pathogens. Although grass-

conditioned soil inocula did not enhance chrysanthemum growth more than that of plants grown in 

sterile soil, our study shows that it can provide other benefits to plants, e.g., higher resistance to pathogen 

infection. For example, in presence of Pythium, addition Lolium perenne inoculum, resulted in higher 

chrysanthemum aboveground biomass. Further studies concerning the microbial interactions between 

soil pathogen addition and species-specific soil inocula are needed to unravel the mechanism behind 

this. 

 

Surprisingly and in contrast to our hypothesis, chrysanthemum performance was worse overall with 

legume inocula. Legumes are often used in crop rotation to increase nitrogen content of soils 

(Drinkwater et al. 1998). Since in our experiments chrysanthemum plants were heavily fertilized, a 

nitrogen-mediated benefit of legume soil is unlikely. In contrast, the negative influence of soil inocula 

conditioned by legumes on chrysanthemum growth could be explained by the negative effects of 

legumes on certain beneficial soil bacteria (Latz et al. 2012, 2015). Legumes produce steroid saponins 

that act as antifungal and antibacterial compounds (Mahato et al. 1982). Moreover, the rhizobia have 

similar colonization strategies to both legume and non-legume plants, however, rhizobia refine their 

strategy to symbiosis when interacting with legumes (Soto et al. 2006, 2009). Thus, for the non-

leguminous plant chrysanthemum, rhizobia would act like pathogens, explaining the reduction of plant 

growth in soils conditioned by legumes. Addition of soil inocula created by forbs overall also 

significantly decreased chrysanthemum growth. Chrysanthemum root/shoot ratios indicated plant 

susceptibility to Pythium, as Pythium infection reduces the root system and leads to root rot (Agrios 

2005). There were no significant differences between chrysanthemum root/shoot ratios in grass, forb or 

legume inocula without P. ultimum addition. However, with P. ultimum addition, chrysanthemum 

root/shoot ratios of plants growing with in forb inocula decreased significantly more than that of plants 

growing with grass inocula, suggesting poor plant resistance to P. ultimum attack when grown with forb 

inocula. Forbs generally allocate less carbon to roots and have overall less microbial activity and 

abundance in roots than grasses (Warembourg et al. 2003; Chen et al. 2016). Hence, we speculate that 

the microbial community of soil inocula from forbs was smaller or less active or diverse than the 

microbial community of grasses. Whether this is true remains to be tested. 

 

Plant–soil feedback effects can also be due to the modification of abiotic conditions (Ehrenfeld et al. 

2005). However, in our study, we inoculated 90% homogenized sterile soil with 10% conditioned soil, 

and thus we minimized the heterogeneity of abiotic factors (Kardol et al. 2006). More importantly, in 
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the feedback phase, plants received a high dose of Hoagland fertilizer following common practice in 

commercial chrysanthemum greenhouses. Thus it is highly unlikely that inocula-related differences in 

nutrient availability influenced the results in our study, and therefore we can assume that the different 

plant–soil feedback effects were due to differences in microbial communities. Nutrient-rich substrates 

are typically exploited by r-strategist species such as P. ultimum, and the suppression of P. ultimum can 

be difficult in soils with high nutrient levels (van Bruggen and Semenov 2000). This may explain why 

the inocula were relative ineffective in suppressing P. ultimum infection. 

 

Overall, the concentration of chlorogenic acid in chrysanthemum leaves differed significantly between 

the inocula. However, although the concentration of leaf chlorogenic acid was positively related with 

aboveground plant biomass, and grass inocula sustained significantly higher chrysanthemum 

aboveground biomass compared to forb inocula or legume inocula, the concentration of chlorogenic 

acid in grass inocula did not differ from those in legume inocula or forb inocula. The concentration of 

leaf chlorogenic acid was found to be positively correlated with plant carbon assimilation rates in 

sorghum (Turner et al. 2016). In our study, the levels of aboveground chlorogenic acid also increased 

with pathogen attack belowground compared to uninfected plants. Soil pathogens can increase 

aboveground plant defense even in absence of aboveground plant antagonists (Bezemer and van Dam 

2005). In chrysanthemum, chlorogenic acid is related to resistance against thrips (Leiss et al. 2009, 2011), 

as well as to other herbivores, such as leafminers and spider mites (Kos et al. 2014). Our work therefore 

suggests that soil inoculation but also the presence of soil pathogens can influence the resistance of 

chrysanthemum against aboveground herbivorous pests and that plant–soil feedback effects may 

influence pest severity and biocontrol in chrysanthemum cultivations. 

 

In contrast to our hypothesis, the plant–soil feedback effect of species closely related to chrysanthemum 

was not more severe than that of distantly related species. It may be possible that beyond a certain 

threshold phylogenetic distance, effects do become apparent, as shown by the grass clade, which is the 

most distantly related one. To prove this, future studies should select species across large phylogenetic 

scales to test their plant–soil feedback effects. Our result is in line with an increasing number of studies 

with wild plant species showing that phylogenetic distance is a poor predictor of plant–soil feedback 

effects (Pavoine et al. 2013; Kelly et al. 2014; Mehrabi and Tuck 2015; Mehrabi et al. 2015). Thus, 

although our study demonstrated species specific plant–soil feedback effects, these patterns may not 

correspond to mechanisms like shared pathogens or symbionts. Moreover, there is a growing awareness 

that the phylogenetic distance is a weak predictor of the dissimilarity of plant functional traits (Mouquet 

et al. 2012; Pavoine et al. 2013; Kelly et al. 2014). If for example, traits responsible for resource use or 

host susceptibility to natural enemies are not conserved, the plant species will influence or respond to 
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the soil in a very different way even though they are closely related (Mehrabi and Tuck 2015). Several 

recent studies have shown that PSF effects can be predicted from life history forms or plant traits such 

as root thickness or density or plant growth rate (Baxendale et al. 2014; Cortois et al. 2016; De Deyn 

2017). Therefor, plant traits instead of phylogenetic distance could be a good predictor of plant–soil 

feedback effects. 

 

Conclusion 

In summary, we demonstrate that plant species through changes in the soil can influence the growth, 

disease susceptibility and the concentration of aboveground defense compounds of cultivated crop 

species, all in a species-specific manner. Our results further show clearly that these plant–soil feedback 

effects depend on plant functional groups of the species where the inocula are created from, with the 

highest chrysanthemum performance in soil with grass inocula. Our study with a cultivated plant species 

highlights that species-specific plant–soil feedback effects can also play an important role in deciphering 

interactions between plants and pathogens or herbivorous insects in horticulture. Disentangling the 

mechanisms of enhanced plant performance, and evaluating the consequences for plant yield in a real 

horticultural setting may allow us to implement the concept of plant–soil feedbacks in current 

greenhouse horticulture. 
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Supplementary material 

 

Figure S2.1. Effects of 37 species-specific soil inocula, no plant inocula and sterile soil on chrysanthemum 

root/shoot ratio. In each figure, bars represent chrysanthemum biomass (mean + SE) of soil inocula in control soil, 

and squares represent the pathogen effect on plant biomass (root/shoot ratio in P. ultimum soil – root/shoot ratio 

in non-Pythium soil). Stripe bars indicate controls. “*” represents significant difference from the sterile soil (P < 

0.05). “+” represents significant difference from the no plant soil inocula (P < 0.05), “#” represents significantly 

different from zero (P < 0.05). Dashed lines separate soil inocula into different functional groups. Species 

abbreviations are given in Table 2.1. Statistics presented in the lower part of each pannel represent the effects of 

soil on chrysanthemum root/shoot ratio in control soil, and statistics presented in the upper part of each pannel 

indicate the effects of soil inocula on the disease severity of chrysanthemum root/shoot ratio. 
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Figure S2.2. Plant–soil feedback effects of 37 plant species on chrysanthemum biomass (mean + SE). 

Chrysanthemum biomass calculated as the sum of aboveground biomass and belowground biomass. (A) The plant–

soil feedback effect of soil conditioning by a species on chrysanthemum biomass was calculated as the natural 

logarithm of chrysanthemum biomass on soil conditioned by that species minus the natural logarithm of average 

chrysanthemum biomass on 100% sterile soil. (B) The plant–soil feedback effect of soil conditioning by a species 

on chrysanthemum biomass was calculated as the natural logarithm of chrysanthemum biomass on soil conditioned 

by that species minus the natural logarithm of average chrysanthemum biomass on no plant soil. White bars 

indicate control treatment; black bars indicate P. ultimum treatment. “*” above each bar indicates significant 

difference from zero (P < 0.05), suggesting significant difference from sterile soil. Overall effects of conditioning 

plant species, disease treatment, and the interaction between the two from a two-way ANOVA are present on the 

graph. “*” indicates significant effects. “n.s.” indicates no significant effects. Species abbreviations are given in 

Table 2.1.  

(A) 

(B) 
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Figure S2.3. Phylogenetic relationships between conditioned plant species and chrysanthemum. Topology from 

Phylomatic program (Webb and Donoghue 2005). 
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Table S2.1. The amount of detected leaf phenolics (mean + SE of mg/g of dry leaf weight) in different soils with 

disease and control treatment. 

    P1 P2 P3 P4 P5 P6 P7 

AC C 13.8+2.1 0.79+0.11 12.9+1.5 4.3+0.5 1.7+0.5 0.10+0.0

1 

0.60+0.2

0 
AC P 12.4+2.0 0.75+0.10 13.5+1.9 3.6+0.9 2.3+0.8 0.12+0.0

1 

0.85+0.2

6 
ACM C   8.9+0.5 0.54+0.03   8.4+0.3 3.3+0.3 1.9+0.2 0.11+0.0

1 

0.81+0.1

1 
ACM P 13.3+0.8 0.87+0.07 14.0+1.5 4.7+0.4 1.4+0.3 0.12+0.0

1 

0.48+0.1

2 
AO C 10.8+0.6 0.56+0.05   9.6+1.0 3.7+0.2 1.3+0.6 0.12+0.0

1 

0.45+0.1

8 
AO P 13.7+1.7 0.81+0.09 12.7+1.1 5.2+0.6 1.3+0.5 0.14+0.0

1 

0.49+0.1

7 
ARM C 13.6+1.1 0.83+0.04 12.7+0.9 4.7+0.6 1.9+0.6 0.13+0.0

2 

0.68+0.2

0 
ARM P 14.1+1.5 0.88+0.08 14.8+1.9 4.9+0.4 2.0+0.4 0.11+0.0

1 

0.70+0.0

9 
AS C 14.7+2.0 0.91+0.08 13.9+1.6 4.9+0.4 1.1+0.3 0.12+0.0

1 

0.42+0.1

0 
AS P 13.5+2.0 0.89+0.14 14.6+1.2 4.9+0.8 2.0+0.7 0.12+0.0

2 

0.75+0.2

4 
AT C 14.4+2.3 0.86+0.14 15.0+2.6 4.9+0.5 1.8+0.6 0.13+0.0

2 

0.70+0.2

0 
AT P 10.6+1.7 0.64+0.09 10.7+1.2 4.0+0.6 1.9+0.4 0.12+0.0

1 

0.78+0.1

9 
BH C 14.1+2.5 0.78+0.15 12.6+2.6 4.5+0.6 0.9+0.2 0.13+0.0

1 

0.33+0.0

8 
BH P 12.8+1.7 0.86+0.12 13.5+0.9 4.3+0.3 1.7+0.4 0.11+0.0

1 

0.64+0.1

4 
CAC C 12.9+2.1 0.68+0.14 13.7+1.2 4.4+0.8 3.7+1.7 0.10+0.0

1 

1.22+0.4

9 
CAC P 12.1+3.1 0.78+0.18 13.5+2.0 4.2+1.1 2.5+1.1 0.11+0.0

2 

0.89+0.3

1 
CB C 11.1+1.0 0.57+0.06   9.6+0.8 3.8+0.2 2.2+0.5 0.10+0.0

1 

0.84+0.1

7 
CB P 10.0+1.7 0.67+0.13 11.6+1.0 3.7+0.5 2.9+0.8 0.11+0.0

1 

1.11+0.3

2 
CJ C 13.9+3.6 0.57+0.14 10.5+1.4 4.6+0.8 1.6+0.7 0.12+0.0

2 

0.70+0.3

0 
CJ P 14.0+3.0 0.85+0.18 14.3+2.5 5.0+0.7 0.9+0.4 0.12+0.0

1 

0.38+0.1

3 
CR C 13.0+2.2 0.74+0.21 14.6+3.3 4.1+0.5 2.1+0.7 0.10+0.0

1 

0.75+0.2

0 
CR P   7.7+2.1 0.47+0.15   9.1+1.4 3.4+0.5 0.4+0.2 0.11+0.0

1 

0.24+0.1

0 
CRC C   8.9+0.3 0.48+0.06 10.3+0.9 3.0+0.3 3.1+1.1 0.10+0.0

1 

1.08+0.2

9 
CRC P 16.3+1.9 0.98+0.10 16.1+1.2 4.9+0.4 2.1+0.6 0.11+0.0

1 

0.70+0.2

2 
FF C 15.3+2.5 0.83+0.15 12.5+2.2 4.8+0.6 1.5+0.6 0.14+0.0

1 

0.57+0.2

2 
FF P 13.5+2.2 0.91+0.16 14.4+2.1 4.2+0.5 2.4+0.7 0.12+0.0

1 

0.73+0.1

8 
FR C 10.9+1.5 0.58+0.05 11.0+1.4 3.5+0.4 2.4+0.9 0.10+0.0

2 

0.84+0.3

0 
FR P 13.0+1.5 0.80+0.12 11.9+1.8 4.5+0.3 1.2+0.2 0.12+0.0

1 

0.43+0.0

7 
GV C 12.4+1.9 0.72+0.11 11.8+1.7 3.9+0.4 2.1+0.5 0.12+0.0

1 

0.72+0.1

4 
GV P 16.6+2.7 1.02+0.13 16.4+1.4 5.3+0.6 1.7+0.7 0.12+0.0

1 

0.54+0.2

3 
HL C 14.3+2.5 0.80+0.13 13.2+1.4 4.7+0.8 2.1+0.3 0.12+0.0

2 

0.80+0.1

3 
HL P 14.7+1.5 0.97+0.08 14.7+1.1 4.7+0.6 1.3+0.7 0.11+0.0

1 

0.42+0.2

0 
HP C 16.2+0.8 0.98+0.04 14.0+0.8 5.3+0.2 1.3+0.5 0.13+0.0

1 

0.46+0.1

8 
HP P 12.6+1.5 0.86+0.12 14.3+1.4 4.3+0.4 1.6+0.2 0.10+0.0

1 

0.57+0.0

6 
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    P1 P2 P3 P4 P5 P6 P7 

HR C 13.8+0.6 0.73+0.10 12.5+0.8 4.2+0.3 1.7+0.3 0.10+0.0

1 

0.63+0.1

3 
HR P 11.8+2.6 0.71+0.14 13.0+2.5 4.2+0.6 1.7+0.6 0.10+0.0

1 

0.71+0.2

7 
JV C 11.5+2.0 0.72+0.13 12.4+1.6 3.8+0.4 2.2+0.8 0.11+0.0

1 

0.79+0.2

8 
JV P 12.8+0.5 0.81+0.04 12.9+0.7 4.6+0.4 1.5+0.4 0.12+0.0

1 

0.53+0.1

3 
LC C 11.2+0.7 0.63+0.07 11.5+0.9 4.2+0.4 1.9+0.6 0.11+0.0

1 

0.7+0.20 

LC P 11.6+1.2 0.83+0.07 12.7+0.9 4.4+0.5 1.4+0.3 0.11+0.0

1 

0.53+0.1

1 
LP C 11.9+3.6 0.62+0.16 11.8+2.2 3.2+0.4 1.9+0.5 0.09+0.0

1 

0.60+0.1

5 
LP P 10.7+1.7 0.67+0.09 10.8+0.7 3.4+0.5 1.9+0.7 0.11+0.0

1 

0.71+0.2

7 
LV C   9.8+0.4 0.60+0.04   9.6+0.5 3.7+0.3 1.7+0.4 0.11+0.0

1 

0.66+0.1

7 
LV P 10.8+2.0 0.66+0.11 12.6+1.9 3.5+0.3 3.0+0.6 0.10+0.0

1 

1.05+0.1

5 
MR C 18.5+3.3 0.99+0.18 15.3+2.1 5.9+0.7 1.0+0.4 0.12+0.0

1 

0.32+0.1

0 
MR P 16.2+3.1 1.00+0.14 16.0+1.9 4.7+1.0 2.2+0.9 0.09+0.0

1 

0.65+0.2

4 
MS C   8.0+1.9 0.39+0.12*   8.0+0.9 3.4+0.7 1.4+0.2 0.12+0.0

1 

0.76+0.0

9 
MS P 12.6+1.1 0.76+0.07 13.2+1.1 4.9+0.5 1.3+0.5 0.12+0.0

1 

0.53+0.2

0 
PL C   9.7+1.8 0.58+0.1 11.0+1.0 3.4+0.5 1.8+0.4 0.11+0.0

1 

0.82+0.2

1 
PL P 10.4+1.4 0.70+0.10 12.3+1.4 3.7+0.3 2.4+0.5 0.11+0.0

1 

0.93+0.2

3 
PP C 12.1+2.5 0.70+0.14 11.8+2.1 4.2+0.6 1.1+0.3 0.13+0.0

1 

0.48+0.1

6 
PP P 18.9+4.3 1.15+0.19 18.0+3.9 5.1+0.7 0.9+0.3 0.11+0.0

2 

0.29+0.1

0 
PV C 10.2+1.9 0.52+0.17 11.3+1.0 3.3+0.6 1.5+0.5 0.09+0.0

1 

0.58+0.1

9 
PV P 13.7+1.1 0.89+0.04 14.1+0.7 5.1+0.5 1.2+0.3 0.13+0.0

1 

0.47+0.1

3 
RA C 13.3+1.9 0.74+0.09 12.9+1.0 4.7+0.8 2.0+0.8 0.11+0.0

1 

0.77+0.2

8 
RA P 12.2+1.8 0.83+0.13 13.0+1.7 4.0+0.5 2.3+0.8 0.11+0.0

1 

0.81+0.3

4 
TA C   9.6+2.2 0.48+0.11   9.5+2.0 3.9+0.6 1.7+0.6 0.12+0.0

1 

0.74+0.1

9 
TA P   9.1+1.3 0.52+0.08 10.6+1.0 4.1+0.5 1.5+0.4 0.11+0.0

1 

0.70+0.2

0 
THP C 11.7+2.6 0.64+0.13 11.9+1.6 3.6+0.8 2. 6+0.6 0.10+0.0

1 

0.97+0.2

3 
THP P   8.7+2.3 0.52+0.14 12.0+1.1 3.0+0.8 3.3+0.8 0.09+0.0

2 

1.30+0.3

4 
TM C 10.2+1.3 0.56+0.09   8.8+1.1 3.5+0.2 2.6+0.7 0.10+0.0

2 

0.98+0.2

1 
TM P 10.9+1.8 0.64+0.15 12.1+1.5 3.9+0.6 3.0+0.9 0.09+0.0

1 

1.06+0.2

5 
TO C 10.1+1.2 0.52+0.07 10.1+0.9 3.7+0.3 2.9+0.8 0.11+0.0

1 

1.08+0.2

2 
TO P 10.2+1.5 0.73+0.11 11.8+1.2 3.9+0.5 2.7+0.4 0.11+0.0

1 

1.04+0.1

7 
TR C 15.0+2.6 0.78+0.12 13.0+1.7 4.7+0.5 0.5+0.2 0.10+0.0

1 

0.23+0.0

8 
TR P 11.6+2.1 0.76+0.14 12.8+1.6 4.6+0.5 1.8+0.2 0.12+0.0

1 

0.73+0.0

7 
TRP C   6.7+0.8 0.40+0.06*   7.0+0.7 2.8+0.3 1.8+0.5 0.10+0.0

1 

0.87+0.2

3 
TRP P 13.6+1.8 0.85+0.08 13.4+1.2 5.2+0.4 1.7+0.4 0.12+0.0

1 

0.66+0.1

5 
TV C 17.6+1.3 1.09+0.07 17.0+1.5 5.2+0.4 2.0+0.5 0.13+0.0

1 

0.61+0.1

4 
TV P 11.1+1.3 0.78+0.09 12.2+1.1 3.7+0.3 2.3+0.5 0.09+0.0

1 

0.93+0.2

4 



Chapter 2 

46 
 

    P1 P2 P3 P4 P5 P6 P7 

VC C   9.9+1.4 0.60+0.12   9.3+1.4 3.8+0.4 1.2+0.2 0.11+0.0

1 

0.54+0.1

4 
VC P 10.5+1.0 0.68+0.05 11.4+1.1 4.4+0.5 2.0+0.9 0.11+0.0

1 

0.79+0.2

8 
VS C   7.6+1.5 0.25+0.07**

* 

  8.9+1.1 3.2+0.5 1.8+0.3 0.13+0.0

3 

0.94+0.1

7 
VS P   8.8+1.0 0.55+0.08   9.8+0.8 3.8+0.3 1.4+0.3 0.11+0.0

1 

0.62+0.1

0 
Sterile C 12.9+1.1 0.91+0.07 12.7+0.9 4.3+0.3 1.4+0.4 0.11+0.0

1 

0.52+0.1

6 
Sterile P 11.5+2.2 0.67+0.17 13.6+0.7 4.0+1.0 4.8+2.6 0.10+0.0

3 

0.78+0.1

9 
No plant 

plantplan

t 

C 12.0+1.7 0.66+0.10 15.1+3.1 3.4+0.5 3.8+1.4 0.09+0.0

1 

1.14+0.3

7 
No plant P 17.5+2.3 1.01+0.09 17.0+2.3 5.0+0.5 1.8+0.6 0.11+0.0

1 

0.49+0.1

5 
 

P: P. ultimum treatment; C: control treatment; P1 to P7 are detected unidentified leaf phenolics. Asterisks indicate 

significant difference from sterile soil. ***P<0.001, **P<0.01, *P<0.05. 
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Abstract 

Background and aims Plants influence the soil they grow in, and this can alter the performance of other, 

later growing plants in the same soil. This is called plant-soil feedback and is usually tested with 

monospecific soils, i.e. soils that are conditioned by one plant species. Here, we test if plant-soil 

feedbacks of inocula consisting of mixtures of monospecific soils can be predicted from the effects of 

the component inocula. 

 

Methods Chrysanthemum plants were grown in sterile soil inoculated with eight monospecific 

conditioned soils and with mixtures consisting of all pairwise combinations. Plant biomass and leaf 

yellowness were measured and the additivity was calculated. 

 

Results On average, plant biomass in the mixed inocula was slightly but significantly (6%) lower than 

predicted. In contrast, when growing in mixed inocula, plants showed 38% less disease symptoms than 

predicted. Moreover, the larger the difference between the effects of the two monospecific soils on plant 

growth, the higher the observed effect in the mixture exceeded the predicted effects. 

 

Conclusions We show that mixed monospecific soils interact antagonistically in terms of plant growth, 

but synergistically for disease symptoms. Our study further advances our understanding of plant-soil 

feedbacks, and suggests that mixing soils can be a powerful tool to steer soil microbiomes to improve 

plant-soil feedback effects. 

 

Key words: Plant-soil feedback, Plant health, Additivity, Interaction, Species-specific soil
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Introduction 

Plants are an important determinant of the composition of soil communities, and the effect of a plant on 

the soil microbial community can subsequently affect the performance of other plants that grow later in 

that soil, a phenomenon termed plant-soil feedback (van der Putten et al. 2013; Bever et al. 1997). Such 

plant-soil feedback effects are typically recorded as the net outcome of all negative and positive effects 

on plant growth. However, a single plant can increase the density of soil organisms with both negative 

(e.g. soil pathogens) and positive (e.g. beneficial soil organisms such as plant growth promoting bacteria) 

effects (Mendes et al. 2013; Raaijmakers et al. 2009). An important question that has received little 

attention is how mixing soils conditioned by different plant species, each with positive and negative 

effects, influences the net effect of this soil on plant performance. 

 

When mixing soils or in fact any two characteristics, three possible effects can be expected: synergistic, 

additive, or antagonistic. First, the outcome of mixing two specific soil communities can be stronger 

than the two individual effects together (synergistic effect). For example, Hendriks et al. (2013) found 

that when the same amount of soil was added, mixtures of soil collected from different monocultures 

sustained higher plant biomass than pure monoculture soils. On the contrary, mixing soil communities 

could also lead to antagonistic effects, so that the mixed effects are weaker than what would be predicted 

from the individual effects. Several studies reported, for example, that combinations of biocontrol 

microbial strains fail to reduce specific plant diseases, even though the individual strains all have 

suppressing effects on the disease, suggesting that antagonistic interactions occur among these microbial 

strains (Schisler et al. 1997; Sarma et al. 2015). Third, it is also possible that positive and negative 

interactions between plants and soil organisms counterbalance each other, so that the mixed soil effect 

is simply the sum of individual effects (additive effects; Singh et al. 2015). Ladygina et al. (2010), for 

example, showed that when added in isolation, arbuscular mycorrhizal fungi increased plant community 

productivity, while addition of soil decomposers decreased productivity, and addition of root herbivores 

had no effect. When these three groups of soil organisms were added together, their effect on 

productivity could be predicted from adding up the individual negative and positive effects. Due to the 

potential for interactions between soil microorganisms, whether plant performance in mixed soil 

communities can be predicted from the plant performance in the soils conditioned by a single plant 

species (i.e. monospecific soils), is an open question. 

 

Whether plant-soil feedback effects in mixtures of monospecific soils, are additive, synergistic or 

antagonistic may depend on how different the effects of the monospecific soils are, but to our knowledge, 

there are no studies yet that have tested how the difference between two monospecific soils influences 

the effects on plant growth or plant health. However, from plant competition experiments it is known 



Chapter 3 

50 
 

that synergistic effects occur more often when characteristics of the two species that compete differ 

considerably. Growing together two species that occupy different niches, allows the species to capture 

resources in ways that are complementary, leading to aboveground overyielding (Mommer et al. 2010; 

Cardinale et al. 2007). Similarly, decomposition experiments have shown that mixing plant species-

specific litters that differ greatly in chemistry leads to higher than expected decomposition rates, but this 

is not true when the different litters are relatively similar in chemical composition (Harguindeguy et al. 

2008). Thus, when mixing two factors (e.g. two plant species-specific litters) that greatly differ in 

composition or effect, the net effect of the mixture tends to be better than predicted. Hence, we may also 

expect that mixing two monospecific soils with distinctly different soil communities, and thus with 

largely different effects on plant growth should result in a more positive effect of plant growth than what 

is predicted based on the sum of the effects of the individual soil communities. 

 

In this study we examine how mixing soils conditioned by different plant species influences net plant-

soil feedback effects on plant growth and leaf yellowness (a plant health indicator) (Reddy 2016). In a 

previous study, we tested the plant-soil feedback effects of 37 different plant species and observed that 

inoculation of soil conditioned by several species led to increased growth and resistance against Pythium, 

while inoculation of soils conditioned by other species reduced growth and resistance (Ma et al. 2017). 

In the current study, we selected eight plant species (that previously showed positive and negative soil 

effects on chrysanthemum growth) and examined the effects of mixing these plant species-specific soil 

inocula on chrysanthemum performance. Specifically, we ask: (i) can the effects of mixed soil inocula 

be predicted from the effects observed with the monospecific soil inocula that are used for the mixture? 

(ii) is such effect synergistic, additive, or antagonistic? and, (iii) how is this related to the absolute 

difference between the effect of the two monospecific inocula? For each inoculum we also examined 

how its effect is influenced by mixing it with other inocula. 

 

Materials and methods 

Plant material 

The focal plant in our study is Dendranthema X grandiflora (Ramat.) Kitam. cv. Grand Pink 

(Chrysanthemum, syn. Chrysanthemum X morifolium (Ramat.) Hemsl., Asteraceae). Chrysanthemum 

is one of the major cut flower crops that is cultivated in soil in glasshouses. The soil is sterilized regularly 

by steaming to control soil pathogens (Thuerig et al. 2009; Tamm et al. 2010). Hence, in this system the 

use of inoculating conditioned soil inocula into sterilized bulk soil represents a realistic scenario. 

Chrysanthemum cuttings were provided by the breeding company FIDES by Dümmen Orange (De Lier, 

The Netherlands). 
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Experimental set-up 

The experiment consisted of two phases, in the first phase, the conditioning phase, we grew eight plant 

species in monocultures to create monospecific soils. In the second phase, the test phase, we used 

mixtures of all combinations of two monospecific soils (including mixtures of two identical 

monospecific soils), and used these soils as inocula to test the effects on chrysanthemum growth. 

 

Phase I: Conditioning phase 

For the conditioning phase, soil was collected (5–20 cm deep) in June 2015 from a former arable field, 

which has become a natural grassland since 1996 (Mossel, Ede, The Netherlands). The sandy-loam soil 

was homogenized and sieved (1 cm mesh size) to remove coarse fragments and all macro-arthropods. 

Pots (13 × 13 × 13 cm) were filled with a homogenized mixture of field soil and sterilized field soil in a 

1:1 ratio. The sterilized soil was added to minimize potential differences in soil nutrients and to provide 

a niche for the soil microbes to grow and hence increase the potential for plantspecies-specific effects 

on the soil community. Pots were filled with 1.6 Kg of soil (based on dry weight). Soil sterilization was 

done by gamma irradiation (> 25 K Gray gamma irradiation, Isotron, Ede, The Netherlands). 

 

Eight plant species were used to condition the soils: Anthoxanthum odoratum (AO), Bromus hordeaceus 

(BH), Festuca filiformis (FF), Lolium perenne (LP), Holcus lanatus (HL), Rumex acetosella (RA), 

Galium verum (GV) and Hypochaeris radicata (HR). Seeds of all species were obtained from a wild 

plant seed supplier (Cruydt-Hoeck, Assen, The Netherlands). Seeds were surface sterilized in 3% 

sodium hypochlorite solution for 1 min, rinsed and germinated on sterile glass beads in a climate 

chamber at 20 °C (16 h/8 h, light/dark). 

 

Five one-week-old seedlings were transplanted in monocultures in each pot, and there were ten replicate 

pots for each species. In total, the conditioning phase comprised of 80 pots (monocultures of 8 plant 

species × 10 replicates). Seedlings that died during the first week of the experiment were replaced. As a 

few seedlings died later, after two weeks, the number of seedlings in each pot was reduced to four so 

that the density was the same in all pots. All pots were placed randomly in a greenhouse with 70% RH, 

16 h 21° (day) and 8 h 16° (night). Natural daylight was supplemented by 400 W metal halide lamps 

(225 μmol s−1m−2 photosynthetically active radiation, one lamp per 1.5 m2). The pots were watered by 

hand every other day. Ten weeks after transplanting, the plants were carefully removed from each pot 

and the largest roots were removed from the soil as they may act as a source for re-growing plants. Finer 

roots were left in the soil as the rhizosphere around these roots may include a major part of the microbial 
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rhizosphere community. The soil from each pot was homogenized and stored separately in a plastic bag 

at 4 °C until used in the test phase so that there were 10 replicate soils for each plant species. The soils 

are called “soil inocula” hereafter. 

 

Phase II: Test phase 

For the test phase, the conditioned soil from the first phase was used as inoculum. There were two types 

of inocula, monospecific inocula (i.e. soil conditioned by one plant species), and heterospecific soil 

inocula (i.e. 1:1 mixtures of two monospecific conditioned soils). Mixtures of all combinations were 

used, thus the feedback phase comprised of 360 pots (28 combinations of mixed inocula × 10 replicates 

+ 8 conspecific mixtures × 10 replicates). Pots of 1 L (11 × 11 × 12 cm; length × wide × height) were 

filled with a homogenized mixture of 10% inoculum and 90% sterile field soil (see above). Two 5 cm 

chrysanthemum cuttings (without roots) were planted in each pot. Prior to planting, the soil in each pot 

was well watered and 100 ml half-strength Hoagland nutrient solution was added (Li and Cheng 2015). 

The pots were randomly placed on trolleys, each trolley had 48 pots and was tightly covered with a thin 

transparent plastic film for 10 days to create a closed environment with high humidity that favors rooting. 

After 10 days, most of the cuttings had rooted. Non-rooted cuttings were removed and from pots where 

both cuttings had rooted, a randomly selected chrysanthemum cutting was removed. Plants were 

fertilized following grower practice: half-strength Hoagland nutrient solution (0.9 mS/cm electric 

conductivity) for the first two weeks, and full strength Hoagland solution (1.4 mS/cm electric 

conductivity) during the following two weeks. For the last two weeks, the strength was increased to 1.6 

mS/cm electric conductivity. The density of pots on each trolley was reduced two weeks after the 

beginning of the second phase to 32 pots per trolley so that there was 10 cm space between each pot. 

All pots were randomly arranged in a greenhouse compartment kept under the same conditions as 

described for the conditioning phase. 

 

Plant performance 

Eight weeks after planting the cuttings, all plants were harvested. For each plant, the number of leaves 

that showed yellowness and the total number of leaves were recorded. Leaf yellowness in 

chrysanthemum is symptomatic for diseases such as those caused by soil pathogens like Verticillium 

and Fusarium (Reddy 2016). The characterization of yellowness was based on observations by eye, and 

for all leaves which were characterized as yellow, an area of at least 5% of the leaf was yellow. 

Yellowness was then calculated as the proportion of yellow leaves (number of yellow leaves relative to 

the total number of leaves on that plant). Plants were clipped at soil level and roots were washed over a 
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sieve (2 mm mesh). Shoot and root biomass was then oven-dried (60 °C for 3 days) and weighed. Plant 

biomass was calculated as the sum of plant shoot and root dry weight. 

 

Calculations and statistical analysis 

The predicted (additive) effects of mixed inoculum (e.g. combination AB) on chrysanthemum biomass 

and yellowness were calculated as (effect of inoculum A + effect of inoculum B)/2. This was done for 

each soil replicate separately. Then, the observed effects of mixed inocula were compared with their 

predicted effects. If there is no significant difference between these two effects, this indicates that the 

effects of mixing are additive. A significantly lower than predicted effect indicates antagonistic 

interactions, while a significant higher effect indicates synergistic interactions. In this analysis, we used 

each mixture as a replicate. For this, we averaged the values of the replicate samples of each mixture. A 

paired t-test was used to test if the observed effects of mixing inocula (real values) were significantly 

different from the predicted effects. This analysis was done for chrysanthemum biomass and yellowness. 

For the statistical analysis, chrysanthemum yellowness was arcsine-transformed, as yellowness was 

entered as proportional data. The average effect for all inocula combinations is presented in the main 

text. The detailed results for each mixture (i.e. each combination of two monospecific soils) are 

presented in the supplementary materials (Fig. S3.1). 

 

To examine whether there was a relationship between the difference among two monospecific inocula 

on chrysanthemum performance and the difference between the observed and predicted effects when 

mixing these two inocula, we used linear regression. We first calculated the absolute difference between 

the effects of the two monospecific inocula, and this was plotted against the difference between the 

observed and the predicted effect of the mixture. In this latter calculation, positive or negative values 

indicate synergistic or antagonistic interactions between component monospecific inocula respectively. 

Data were checked for homogeneity of variance and normality by inspection of the residuals before the 

analysis. We then determined the sign and strength of the linear relationship between these two 

parameters. 

 

To examine for each conditioning species the effects of mixing on plant biomass and leaf yellowness, 

we compared the eight inocula that contained each conditioning species using a one-way ANOVA. 

Individual comparisons were based on a post-hoc Tukey test. The response of each monospecific 

inoculum to mixing was determined by comparing the effects of the heterospecific mixtures containing 

a monospecific inoculum to the effect of the monospecific inoculum: (response of inoculum A to 

mixing = the average effect of heterospecific mixtures containing inoculum A – the effect of 
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monospecific inoculum A). This was done for each replicate separately. A one-sample t-test was used 

to test for each inoculum if the response was significantly different from zero. Values that are not 

different from zero indicate that the response is not different from the monospecific mixture, values less 

than zero indicate that heterospecific mixing has a negative influence, while values larger than zero 

indicate that mixing has a positive effect. One-way ANOVA was used to determine if these mixing 

effects on biomass differed between inocula, and a generalized linear model was used to analyze 

differences in yellowness. The chrysanthemum biomass and yellowness in each mixed inoculum are 

listed in Table S3.1 and Table S3.2 of the supplementary materials. 

 

To test whether there were significant differences between mixtures which contained a specific 

monospecific inoculum on plant biomass and yellowness, we used one-way ANOVA. A post-hoc Tukey 

test was used for pairwise comparisons between different mixed inocula. All analyses were performed 

in R (version 3.0.1, R Development Core Team, 2017). 

 

Results 

The biomass of plants exposed to mixed soil inocula was lower than what was predicted from the effects 

of the monospecific inocula, suggesting that on average two soil communities interact antagonistically 

with respect to plant growth. However, leaf yellowness was also lower than predicted and therefore soil 

mixing benefited plant health (Fig. 3.1). With regard to each monospecific inoculum, for four out of 

eight plant species, observed chrysanthemum biomass was significantly lower in mixtures than predicted. 

For two out of eight species leaf yellowness was significantly lower in mixtures than predicted (Fig. 

S3.1). 

 

For total plant biomass, there was a weak but significantly positive relationship between the absolute 

difference among the two monospecific inocula and how much the observed effects of their mixture 

varied from the predicted effects (Fig. 3.2a). This means that the larger the difference between the effects 

of the two monospecific soils on plant growth is, the higher the observed effect of the mixture exceeds 

the predicted effect. The difference between observed and predicted yellowness became more negative 

with increasing differences between the effects of the two component inocula (Fig. 3.2b). This 

relationship was not driven by the inoculum with most extreme effects, H. radicata, since removal of 

this species-species soil inoculum from the analysis did not alter the trend (Fig. S3.2). 
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Fig. 3.1 Mean (± SE) predicted (white bars) and observed (hatched bars) effects of soil mixing on chrysanthemum 

biomass (a) and yellowness (b). White bars represent predicted effects of mixed inocula based on effects in 

component monospecific inocula (effect of inoculum A + effect of inoculum B)/2. T and P values from a paired t-

test are also presented. The figure shows the average effects of all mixtures. The effects for each separate two-

species soil mixture are presented in Fig. S3.1. 

 

Overall, chrysanthemum biomass differed significantly among monospecific inocula. Greatest gain in 

chrysanthemum biomass was observed when grown with monospecific A. odoratum inoculum, and 

lowest with H. radicata inoculum (Fig. 3.3a). On average, plant biomass in heterospecific mixtures was 

significantly lower than in conspecific mixtures for inocula that included soil conditioned by A. 

odoratum, B. hordeaceus and L. perenne. Mixing soil conditioned by H. radicata, the most negative 

monospecific inoculum, with other inocula resulted in more biomass than when chrysanthemum was 

grown in monospecific soil conditioned by H. radicata (Fig. 3.3a). Leaf yellowness did not differ 

between monospecific inocula. Yellowness in heterospecific mixtures did not significantly differ from 

those in conspecific mixtures, except for soil conditioned by H. radicata, where heterospecific mixing 

resulted in lower levels of leaf yellowness (Fig. 3.3b). 
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Fig. 3.2 Relationship between the difference among two monospecific inocula on plant biomass (a) and yellowness 

(b), and the difference between the observed and predicted effects when mixing these two inocula. The difference 

of monoculture inocula is calculated as (|effect of inoculum A – effect of inoculum B|). The difference between 

observed and predicted effects of the mixtures is calculated as (observed value of mixture A + B – predicted value 

of mixture A + B). The goodness of fit (R2) and P value of both regressions are also presented.  
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Fig. 3.3 Effects of monospecific soil inocula on chrysanthemum biomass (a), and yellowness (b) in conspecific 

and heterospecific mixtures. Mixing effects are calculated as (average effects of heterospecific mixtures that 

include inoculum A – effects of monospecific inoculum A). The zero line indicates that mixing does not differ 

from the effects of the monoculture species inocula. “*” represents significantly different from zero (one-sample 

t-test, P < 0.05). The bars represent the effects of each monospecific inoculum (mean ± SE). F and P values from 

a one-way ANOVA are also presented. Bars with identical letters are not significantly different from each other 

based on a post hoc Tukey test. Species abbreviations are explained in the Materials and methods section.  



Chapter 3 

58 
 

When inocula conditioned by A. odoratum, B. hordeaceus, F. filiformis and H. lanatus were mixed with 

other inocula, this did not lead to differences between these mixtures on plant biomass. In contrast, 

mixing inocula conditioned by R. acetosella, H. radicata, G. verum or L. perenne with other inocula 

resulted in significant differences between these mixtures on plant biomass, as mixing of L. perenne 

with inocula conditioned by forbs resulted in lower biomass (Table S3.1). Leaf yellowness did not differ 

in these comparisons (Table S3.2). 

 

Discussion 

Our study shows that plant-soil feedback effects that arise from mixing monospecific conditioned soils 

are on average non-additive. In this experiment, the biomass and the yellowness of plants growing in 

pots with mixed inocula were significantly lower than what was predicted from the effects of the 

monospecific inocula. Moreover, when the difference in the effects between two monospecific inocula 

increased, the effects on plant biomass and health when mixing these two inocula became weakly 

positive than expected. This suggests that synergistic interactions in soil microbial communities increase 

when the effects of the two monospecific inocula are more different, implying that the synergistic or 

antagonistic effects of soils on plant growth can be predicted based on the difference between their 

individual effects. 

 

Plant biomass was not enhanced by mixing plant monospecific soils, but leaf yellowness was reduced. 

The observed reduction in plant biomass and leaf yellowness relative to the effects predicted from the 

monospecific soils could be due to several reasons. First, the mixed inocula consisted of 50% of both 

monospecific soils, and as such only consisted of 50% of the density of soil microorganisms of both 

monospecific soils. Previous studies found that a reduction in volume of a soil inoculum reduces the 

effect of the inoculum on the plant (St-Denis et al. 2017; Mendes et al. 2011; Hol et al. 2017). However, 

whether the relative reduction of the effectiveness of the soil inoculum is linearly or non-linearly related 

to the change in soil volume is unknown. Our results suggest that when the volume of one monospecific 

soil in the inoculum is reduced by 50%, the effects of the soil microorganisms on plant growth are 

reduced by more than 50%, as the mixed inocula had weaker effects than what was predicted. Thus, the 

observed reduction in plant biomass and leaf yellowness may be due to the weakened effects of 

beneficial or detrimental microbes in mixed inocula. Second, mixed soils most likely harbor a higher 

microbial diversity than monoculture soils, and this may increase the likelihood of introducing in the 

mixture both detrimental and beneficial organisms that will interact with the plant. However, the 

observed chrysanthemum leaf yellowness which is presumably caused by soil pathogens was also 

reduced, and this indicates that soil pathogens are not the reason of the reduction in plant biomass in 

mixed inocula. Instead, it is possible that enhanced plant health may be at the cost of plant growth as 
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interacting with beneficial soil microbes can be costly for plants (Morgan et al. 2005). However, such 

interaction can also provide extra functions such as disease suppression or induced resistance (Pieterse 

et al. 2014; Mendes et al. 2011), as we observed in terms of leaf yellowness. It is important to note that, 

in this study, we only recorded plant performance during one growth cycle and that the soil-mediated 

effects reported here may become stronger during subsequent plant growth cycles when the soil 

community has developed further. 

 

The fact that mixing monospecific soils leads to non-additive effects on plant growth is in line with other 

studies that reported non-additive effects of mixing soils from different origins on plant growth (Brandt 

et al. 2013; Burns et al. 2017). Brandt et al. (2013) found that plants grew worse in homogenized 

mixtures of soils that are of different origins than what would be predicted from the effects observed in 

plants grown in monospecific soil. Later, Burns et al. (2017) showed that the composition of soil 

microbial communities in soil mixtures differs from that in monoculture soils. They proposed that the 

influence of the microbial community on plants could be either via direct effects of soil microbes on the 

plant or via indirect effects of soil microbes on soil nutrient availability for the plant. In their study, the 

pots contained 100% live soil. In contrast, in our study we inoculated 90% sterile soil with 10% live 

conditioned soil to homogenize abiotic conditions (Kardol et al. 2006). Furthermore, in our experiment, 

all soils received high levels of fertilization, following farmer’s practices further minimizing differences 

in abiotic conditions (i.e. nutrient levels). Therefore we suggest that the mixing effects that we observed 

on plant performance were likely to be caused by interactions between soil microbes (Brinkman et al. 

2010). In the studies by Brandt et al. (2013) and Burns et al. (2017), the effects in homogenized soil 

mixtures were compared with effects in heterogeneous monospecific soil, and differences in patchiness 

between different soil treatments may have an important impact on the results (Wubs and Bezemer 2016). 

In our study, we compared the homogenized soil mixtures with homogenized monospecific soils, thus 

narrowing down the number of factors that could potentially influence the results. To our knowledge, 

no study has tested both responses in terms of plant growth and plant health to soil mixing. The leaf 

yellowness results in our study provide important information about the negative influence that certain 

soils can have on plant health, and how such negative effects can be reduced by mixing soils. 

 

Our results show that there was a weak relationship between the magnitude of the difference between 

the effects of two monospecific soil inocula on plant growth and how much the observed effect differed 

from the predicted effect. This trend did not change when we excluded mixtures that contained soil 

conditioned by Hypochaeris radicata from the analysis, the soil inoculum that had the most negative 

influence on chrysanthemum performance. This result has three implications, first, when mixing two 

monospecific soils with similar positive effects on plant growth, the effect of the mixture will be worse 
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than the sum of their individual effects. Similarly, mixing two monospecific soils with similar negative 

effects will not reduce the negative effect more than what would predicted from the monospecific soil 

effects. Third, when mixing two soils that have opposing effects, the effect of the mixture tends to be 

more positive than the sum of their individual effects. 

 

The effects discussed above are on plant growth, with regard to yellowness, there were only additive to 

synergistic interactions (in terms of plant benefits). Our results therefore suggest that mixing two inocula 

will alleviate negative effects of monospecific inocula on plant health. Mixing two soils with different 

microbial communities (and we expect with large differences in their effect on plant growth) can lead 

to synergistic effects if adding a second soil will be complementary to the existing microbial community. 

This is in accordance with studies about mixing plant species or plant litters, which have found that 

synergistic interactions are likely to happen when the two species or litters have very different 

characteristics (Mommer et al. 2010; Cardinale et al. 2007; Harguindeguy et al. 2008; Gartner and 

Cardon 2004). Further studies should examine the differences in soil microbial composition before and 

after mixing. 

 

In summary, this study demonstrates that the plant-soil feedback effects of monospecific conditioned 

soils are non-additive when mixed. On average, plants show less disease symptoms but also grow worse 

in soil with mixed inocula compared with prediction. Moreover, with increasing differences among the 

effects of two soil inocula on plant growth and health, the synergistic effects also increase when the soils 

are mixed. The synergistic and antagonistic effects of soils are two extreme outcomes in the wide range 

of potential interactions that can occur. We created an antagonistic to synergistic continuum and such 

continuum could provide important information about predicting the effect of mixing two soils on plant. 

For example, if our results can be extended to other systems, we may be able to select soil inocula that 

vary greatly in how they affect plant growth and mix them, in order to create synergistic interactions. 

This study therefore exemplifies how soil microbiomes can be manipulated to enhance disease resistance 

(Pineda et al. 2017). Our study with the cut flower chrysanthemum also highlights the role and potential 

of using plant-soil feedbacks in influencing the health and yield of a horticultural crops (Dias et al. 2015; 

Pineda et al. 2017).  
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Supplementary material 

Table S3.1 Plant biomass in each mixed inoculum (mean + SE). Each row/column combination indicates the average biomass for this inocula combination. For each column, 

the F value from a one-way ANOVA is also presented. *,**,*** indicate significant differences at P<0.05, P<0.01 or P<0.001, respectively. Within each column, values 

followed by identical letters are not significantly different based on a post hoc Tukey test. The shaded part of the table is presented twice. Plant species abbreviations are 

described in the material and methods section.    

Inocula AO BH FF GV HL HR LP RA 

AO 12.3+0.4a 10.1+0.8a 11.0+1.2a 10.9+ 0.5b 10.1+0.8a 10.5+ 0.7ab 12.9+0.3c 11.6+ 0.8b 

BH 10.1+0.8a 10.9+0.3a   8.8+1.0a 10.5+ 1.2ab 10.3+0.9a   9.6+ 0.8ab 11.4+0.7c   9.2+ 0.5ab 

FF 11.0+1.2a   8.8+1.0a 10.6+0.8a 10.7+ 0.6ab 12.7+0.8a   9.7+ 0.9ab 10.4+0.6bc   9.1+ 0.9ab 

GV 10.9+0.5a 10.5+1.2a 10.7+0.6a 11.1+ 0.4b 10.4+0.6a 11.2+ 0.8b   7.5+1.1ab   9.1+ 0.4ab 

HL 10.1+0.8a 10.3+0.9a 12.7+0.8a 10.4+ 0.6ab 10.9+0.8a 10.9+ 0.5ab 11.7+0.8c 10.1+ 1.2ab 

HR 10.5+0.7a   9.6+0.8a   9.7+0.9a 11.2+ 0.8b 10.9+0.5a   8.7+ 0.6ab   7.7+0.5ab   9.7+ 1.1ab 

LP 12.9+0.3a 11.4+0.7a 10.4+0.6a   7.5+ 1.1a 11.7+0.8a   7.7+ 0.5a 11.3+0.7c   7.1+ 0.9a 

RA 11.6+0.8a   9.2+0.5a   9.1+0.9a   9.1+ 0.4ab 10.1+1.2a   9.7+ 1.1ab   7.1+0.9a 10.2+ 0.7ab 

         

Mixture(df=7,72) 1.88 1.16 1.90 2.99** 1.11 2.26* 9.17*** 2.23* 
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Table S3.2 Plant yellowness in each mixed inoculum (mean + SE). Each row/column combination indicates the average biomass for this inocula combination. For each column, 

the F value from a one-way ANOVA is also presented. The shaded part of the table is presented twice. Plant species abbreviations are described in the material and methods 

section.    

 

  

Inocula AO BH FF GV HL HR LP RA 

AO 0.07+0.02 0.06+0.04 0.06+0.05 0.03+0.02 0.11+0.05 0.03+0.02 0.03+0.02 0.02+0.02 

BH 0.06+0.04 0.06+0.02 0.09+0.04 0.07+0.03 0.10+0.05 0.05+0.03 0.03+0.02 0.05+0.02 

FF 0.06+0.05 0.09+0.04 0.12+0.02 0.09+0.03 0.02+0.02 0.07+0.04 0.07+0.03 0.05+0.03 

GV 0.03+0.02 0.07+0.03 0.09+0.03 0.10+0.03 0.05+0.04 0.04+0.04 0.17+0.05 0.12+0.04 

HL 0.11+0.05 0.10+0.05 0.02+0.02 0.05+0.04 0.10+0.03 0.03+0.02 0.08+0.05 0.08+0.05 

HR 0.03+0.02 0.05+0.03 0.07+0.04 0.04+0.04 0.03+0.02 0.19+0.02 0.09+0.04 0.08+0.04 

LP 0.03+0.02 0.03+0.02 0.07+0.03 0.17+0.05 0.08+0.05 0.09+0.04 0.13+0.04 0.13+0.04 

RA 0.02+0.02 0.05+0.02 0.05+0.03 0.12+0.04 0.08+0.05 0.08+0.04 0.13+0.04 0.16+0.04 

         

Mixture(df=7,72) 0.78 0.28 0.72 1.37 0.65 1.93 1.61 1.60 
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Fig.S3.1 The ratio of predicted and observed effects of mixtures on chrysanthemum biomass (a) and yellowness 

(b). Means are shown (+/- 1 SE). Predicted effects of mixed inocula are calculated as (effect of inoculum A + 

effect of inoculum B)/2. Figures show the average effects of all mixtures which contained the respective 

monospecific inoculum. “Average” means the average effect of all mixed inocula, which is the same as presented 

in Fig.3.1. “*” represents significant difference from one sample t-test. 
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Fig.S3.2 Relationship between the difference among the effects of monospecific inocula on plant biomass (a) and 

yellowness (b), and the difference between the observed and predicted effects of their mixtures (excluding mixtures 

which containing HR and monospecific HR inocula). The difference of monoculture inocula is calculated as an 

absolute value |effect of inoculum A – effect of inoculum B|. The difference between observed and predicted 

effects of the mixtures is calculated as (observed value of mixture A+B – predicted value of mixture A+B). The 

fit (R2) and P value of both regressions are also presented. 
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Abstract 

Background and aims Most plant-soil feedback and inoculation studies are limited to one growth cycle. 

We examined the effects of inoculation with eight plant-conditioned soils on chrysanthemum during 

two sequential growth cycles. The plants were also exposed sequentially to soil diseases. 

 

Methods In cycle 1, plants were grown in sterile soil inoculated or not with plant-conditioned soils, and 

exposed or not to Pythium or root feeding nematodes. In cycle 2, new plants were grown in soil from 

cycle 1 or in new 100% sterile soil. Plants were exposed again to Pythium, or to soil with pathogens and 

nematodes collected from a commercial chrysanthemum greenhouse. 

 

Results After two cycles, effects of soil inoculation on plant growth were still present. Chrysanthemum 

exhibited a negative conspecific feedback response, but this was less strong in inoculated soils. Pythium 

or nematode addition did not affect plant growth. However, addition of pathogen-containing soil from 

the commercial greenhouse reduced plant growth in sterile soil but increased growth in plant-

conditioned soils. 

 

Conclusions Inoculation with plant-conditioned soil can reduce the negative conspecific plant-soil 

feedback of chrysanthemum. Our study further advances our understanding of the temporal dynamics 

of conspecific and heterospecific plant-soil feedbacks, and how they interact with soil-borne diseases. 

 

Key Words: Carry-over effects, Soil inoculation, Chrysanthemum, Soil-borne disease, Plant-soil 

feedback.
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Introduction 

Belowground plant pathogens, parasites, herbivores and mutualists can greatly influence the 

performance of plants (Wardle et al. 2004). Plants also selectively affect soil biota by releasing organic 

compounds into the soil via e.g. root exudation or dead plant material (Wardle et al. 2004). This 

interdependency leads to feedbacks between plants that grew first in the soil and plants that grow later 

in that soil, a phenomenon called plant-soil feedback (van der Putten et al. 2013; Bever et al. 1997). 

Many plant species grow better in soil where previously another plant species was grown than in their 

own soil (Kulmatiski et al. 2008; van de Voorde et al. 2011; Cortois et al. 2016). There is increasing 

interest to implement soil ecological concepts such as plant-soil feedbacks into agricultural systems to 

enhance soil health and quality and therefore the sustainability of crop production (Pineda et al. 2017; 

Mariotte et al. 2017; Zhou et al. 2017; Wang et al. 2017a). It is well-known that inoculation with specific 

soil microbes can reduce the susceptibility of a crop to pests and diseases. However, a number of studies 

have reported that many of these disease-suppressive strains poorly colonize and survive in the 

rhizosphere (e.g. Gómez Expósito et al. 2017; Alabouvette et al. 2009). Inoculation of soil with 

beneficial microbiomes rather than with individual microbial species can also transfer disease-

suppressive properties, and may be more efficient than inoculation with specific microbial strains 

(Pineda et al. 2017; Schlatter et al. 2017; Ma et al. 2017; Chaparro et al. 2012). An important challenge 

is to examine how long these soil community inocula remain effective, and thus whether we can improve 

crop health in the longer term using heterospecific plant-soil feedback principles. 

 

The biotic and abiotic legacies that plants leave in the soil can have long-lasting effects on other plants, 

and this has been detected both in natural and agricultural systems (Kulmatiski et al. 2006, Kulmatiski 

and Beard 2011; Detheridge et al. 2016). These long-term soil mediated effects could be due to the 

persistence of plant allelochemicals in the soil (Huang et al. 2013), or due to long dormancy stages of 

certain soil organisms (Lennon and Jones 2011), or because many free-living soil microbes can survive 

in the soil without their host (Lapsansky et al. 2016). Recently, two microcosm studies showed that after 

sequentially growing different plant species in the same soil, the first plant species, via a legacy left in 

the soil, still influenced a third plant species even though another plant species had been grown in the 

soil intermediately (Wubs and Bezemer 2018; Bezemer et al. 2018). However, the plant that grew most 

recently in the soil had the strongest influence, via its effect on the soil, on the last plant (Wubs and 

Bezemer 2018). Thus, by repeatedly growing a focal plant in soil inoculated with a microbial community, 

we would expect that the impact of the microbial community that was inoculated at the beginning may 

still be detected in later growth cycles. However, we also expect that the influence of the focal plant 

itself on later plant growth (i.e. conspecific plant-soil feedback) will increase with time. Hence, the 
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effect of the microbial community that was inoculated initially will diminish over time (Bezemer et al. 

2018). 

 

How carry-over effects of inoculation on plant growth are influenced by exposure of the focal plant to 

soil-borne diseases is unknown. Several studies have shown that repeated exposure to soil pathogens 

during different growth cycles affects plant growth more negatively than a single exposure to soil 

pathogens (Hajihassani et al. 2013; Khan and Siddiqui 2017; Whitelaw-Weckert et al. 2013). In such 

sequential interactions between plants and belowground pathogenic organisms, the first inoculation with 

a pathogen may have a stronger negative influence on plant growth than the second inoculation (Siddiqui 

et al. 1999; Castillo et al. 1998; Wurst and Ohgushi 2015; Pung et al. 1991). However, the severity of 

sequential inoculations with pathogens will also depend on the microbial community that is present. For 

example, microbial communities that negatively affect the growth of a focal plant may also increase the 

susceptibility of this plant to other soil-borne diseases, while soil microbial communities that suppress 

soil pathogens, may reduce the susceptibility of the focal plant to later exposure to (other) soil pathogens 

(Mallon et al. 2018). 

 

In this study, we examine how inoculation with soil microbial communities from eight plant species 

influences the growth and disease susceptibility of chrysanthemum during two growth cycles with 

sequential exposure to different soil-borne diseases. The focal plant chrysanthemum (Dendrathema X 

grandiflora) is a commercial cut-flower, and in commercial greenhouses in the Netherlands, the soil is 

sterilized regularly by steaming to control soil pathogens (Thuerig et al. 2009; Tamm et al. 2010). The 

selection of the eight plant species used in this study to condition the soil was based on a previous study, 

in which we observed that inoculation with plant-conditioned soil had highly variable effects on 

chrysanthemum performance and that the effects were species-specific (Ma et al. 2017). Based on these 

previous results, we selected plant species with positive and negative effects on chrysanthemum, to 

examine how these positive and negative soil feedback effects develop when chrysanthemum is also 

sequentially exposed to soil-borne diseases. We exposed plants in inoculated and un-inoculated soil to 

the root pathogen Pythium ultimum and the root knot nematode Meloidogyne incognita in the first 

growth cycle. Pythium ultimum is an important root pathogen in chrysanthemum and causes symptoms 

such as root rot (Reddy 2015; Pettitt et al. 2011). Meloidogyne incognita is a sedentary root endoparasite, 

which causes root galls in chrysanthemum and subsequent leaf yellowing, eventually resulting in stunted 

growth (Johnson and Littrell 1970; Siddiqui et al. 2014). In the second growth cycle, we grew new 

chrysanthemum plants in the soil from cycle 1. These plants were exposed again to Pythium ultimum or 

to 10% “diseased soil” collected from a commercial chrysanthemum greenhouse with a severe 

Meloidogyne infestation. We tested four hypotheses: 1) the effects of inoculation at the beginning of the 
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first growth cycle will remain present in the second growth cycle; but 2) negative conspecific feedback 

effects of chrysanthemum will more strongly influence plant growth in the second cycle than the effects 

of initial inoculation with plant-conditioned soil; and 3) inoculation with plant-conditioned soils that 

have negative effects on chrysanthemum will increase the negative effects of introduced soil-borne 

diseases in the second growth cycle, while plant-conditioned soil inocula with positive effects on 

chrysanthemum growth will suppress the effects of soil-borne diseases in the second growth cycle. 4) 

Plant growth in the second cycle will be more strongly influenced by soil-borne diseases added in the 

first than in the second growth cycle. 

 

Materials and methods 

Plant material 

The focal plant in our study was Dendranthema X grandiflora (Ramat.) Kitam. cv. Grand Pink 

(Chrysanthemum, syn. Chrysanthemum X morifolium (Ramat.) Hemsl., Asteraceae). Chrysanthemum 

cuttings were provided by the breeding company FIDES by Dümmen Orange (De Lier, The 

Netherlands). 

 

Pathogen propagations 

The soil-borne oomycete pathogen Pythium ultimum (Pythiaceae) was obtained from Wageningen UR 

Greenhouse Horticulture (Wageningen UR, Greenhouse Horticulture, Bleiswijk, The Netherlands). 

Pythium ultimum was isolated from chrysanthemum plants, and cultured on liquid V8 medium (200 ml 

of organic tomato suspension without added salt, 2 g CaCO3, and 800 ml water) at room temperature 

for 2 weeks. The P. ultimum culture was then blended in a mixer and filtered to obtain a solution with 

only oospores based on a modified protocol of van der Gaag and Wever (2005). The oospores 

concentration was determined by counting the number of oospores in 1 ml liquid suspension under the 

microscope using a Fuchs-Rosenthal chamber. 

 

Meloidogyne incognita J2 nematodes were obtained from HZPC Holland B.V., The Netherlands. The 

purity of the culture was assessed with species-specific markers by AgroXpertus (Wageningen, The 

Netherlands). The culture contained 99% M. incognita and 1% M. hapla. 

 

Diseased soil was obtained from a commercial chrysanthemum greenhouse in Made, The Netherlands. 

The soil from this commercial greenhouse contained high densities of Meloidogyne incognita. 
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Experimental set-up 

The experiment consisted of three phases. In the conditioning phase, eight plant species were used to 

condition soil individually: Anthoxanthum odoratum, Poaceae (AO), Bromus hordeaceus, Poaceae (BH), 

Festuca filiformis, Poaceae (FF), Lolium perenne, Poaceae (LP), Holcus lanatus, Poaceae (HL), Rumex 

acetosella, Polygonaceae (RA), Galium verum, Rubiaceae (GV) and Hypochaeris radicata, Asteraceae 

(HR). For the next two growth cycles, chrysanthemum plants were grown repeatedly either in sterile 

soil inoculated with plant-conditioned soil or in sterile soil (un-inoculated), and either with exposure to 

different disease treatments in each cycle or not exposed (control). Disease treatments added in cycle 1 

(Pythium or Meloidogyne or control) were termed as “disease 1”, disease treatments added in cycle 2 

(Pythium or diseased soil inoculum or control) were termed as “disease 2”. The soils that were used at 

the start of cycle 1 as inoculum and conditioned by plant monocultures were termed “plant-conditioned 

inocula”. 

 

In cycle 2, there were nine combined disease treatments, as a result of the full factorial combination of 

treatments in the first and the second cycle. Treatments were abbreviated with codes consisting of two 

letters, the first one represents the disease treatment applied during the first cycle and the second one 

represents the treatment imposed during the second cycle: control – control (C-C), control – Pythium 

(C-P), control – diseased soil inoculum (C-D), Pythium – control (P-C), Pythium- Pythium (P-P), 

Pythium – diseased soil inoculum (P-D), Meloidogyne – control (M-C), Meloidogyne – Pythium (M-P), 

Meloidogyne – diseased soil inoculum (M-D). In addition, in cycle 2, the three disease treatments 

(control, Pythium, diseased soil) were also imposed to new sterilized soil making a total of 12 treatments 

in cycle 2. A schematic drawing of the experiment is presented in Fig. 4.1. 

 

Phase I: Conditioning phase 

For the conditioning phase, soil was collected (5–20 cm deep) in June 2015 from a semi-natural 

grassland on former arable land (Mossel, Ede, The Netherlands). The field had been used for agricultural 

purpose until 1996. The sandy-loam soil was homogenized and sieved (1 cm mesh size) to remove 

coarse fragments and all macro-arthropods. Pots (13 × 13 × 13 cm) were filled with a homogenized 

mixture of field soil and sterilized field soil in a 1:1 ratio. Soil sterilization was done by gamma 

irradiation (> 25 K Gray gamma irradiation, Isotron, Ede, The Netherlands). The sterilized soil was 

added to minimize potential differences in soil nutrient heterogeneity and to provide a niche for the soil 

microbes to grow and hence increase the potential for plant-species-specific effects on the soil 

community. Pots were filled with 1.6 Kg of soil (based on dry weight). 
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Fig. 4.1 Experimental design. Eight plant species were grown in monocultures for 10 weeks, for clarity, only one 

of the eight species is depicted. In growth cycle 1, chrysanthemum was planted in 90% sterile soil inoculated with 

10% plant conditioned soil. A set of replicates with un-inoculated soil (100% sterile soil) was also included. Each 

soil treatment was further divided in three disease treatments: Pythium, Meloidogyne or control. In growth cycle 

2, all soils from the previous cycle were used for a second round of chrysanthemum growth. Each treatment 

combination from cycle 1 was divided into pots receiving Pythium, 10% diseased soil inoculum, or control pots. 

In cycle 2, a new set of replicates with 100% sterile soil was included and these were also imposed to disease 

treatments. 

 

Seeds of all wild plant species were obtained from a wild plant seed supplier (Cruydt-Hoeck, Assen, 

The Netherlands). Seeds were surface sterilized in 3% sodium hypochlorite solution for 1 min, rinsed 

and germinated on sterile glass beads in a climate chamber at 20 °C (16 h/8 h, light/dark). Five one-

week-old seedlings were transplanted in monocultures in each pot, and there were ten replicate pots for 

each species. In total, the conditioning phase comprised of 80 pots (monocultures of 8 plant species × 

10 replicates). Seedlings that died during the first week of the experiment were replaced. As a few 

seedlings died later, the number of seedlings in each pot was reduced to four so that the density was the 

same in all pots. All pots were placed randomly in a climate controlled greenhouse with 70% RH, 16 h 

at 21 °C (day) and 8 h at 16 °C (night). Natural daylight was supplemented by 400 W metal halide lamps 

(225 μmol s−1m−2 photosynthetically active radiation, one lamp per 1.5 m2). The pots were watered 

regularly. Ten weeks after transplanting, the plants were carefully removed from each pot and the largest 

roots were removed from the soil as they may act as a source for re-growing plants. Finer roots were left 

in the soil as the rhizosphere around these roots may include a major part of the microbial rhizosphere 

community. The soil from each pot was homogenized and stored separately in plastic bags at 4 °C until 

used in the test phase so that there were 10 replicate soils for each plant species. 
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Phase II: Growth cycle 1 

For growth cycle 1, 1 L pots (11 × 11 × 12 cm; length × wide × height) were filled with a homogenized 

mixture of 10% soil inoculum (plant species-specific conditioned soil) and 90% sterilized soil (see 

above). Pots filled with 100% sterilized soil served as control (un-inoculated soil). Two chrysanthemum 

cuttings (without roots) were planted in each pot as preliminary work showed that not all cuttings 

establish properly with this method. Prior to planting, the soil in each pot was watered and 100 ml half-

strength Hoagland nutrient solution was added. The pots were placed on trolleys, each trolley had 48 

pots and was tightly covered with a thin transparent plastic film for 10 days to create a closed 

environment with high humidity that favors rooting. After 10 days, one of the chrysanthemum cuttings 

was removed from each pot. Seven days after the transparent plastic film had been removed, 2 ml of the 

oospore suspension (ca. 60,000 oospores of P. ultimum) was added onto the soil next to the stem of each 

plant allocated to the Pythium treatment. A 1.5 cm deep hole was made in the soil a near the stem of 

each plant allocated to the nematode treatment, and 5 ml suspension containing M. incognita (ca. 5900 

Juveniles stage 2) was added. Plants were fertilized following common practices used by 

chrysanthemum growers: half-strength Hoagland nutrient solution for the first two weeks, single-

strength Hoagland solution during the following two weeks. The strength was increased to 1.6 mS/cm 

EC (electrical conductivity) for the last two weeks. The density of pots on each trolley was reduced two 

weeks after the start of the second phase to 32 pots per trolley so that there was 10 cm space between 

each pot. There were three replicate pots for each soil from the conditioning phase. Hence, cycle 1 

comprised of 810 pots (8 plant species-specific soil inocula × 3 disease treatments × 10 soil replicates × 

3 pot replicates + non-inoculated soil × 3 disease treatments × 10 soil replicates × 3 pot replicates). All 

pots were randomly arranged in a greenhouse compartment and kept under the same conditions as 

described for the conditioning phase. 

Six weeks after rooting, all plants were harvested. Plants were clipped at soil level and roots were 

removed from the soil and the soil was returned to each pot for the next grow cycle. Roots were washed 

over a sieve (2 mm mesh). For each plant, leaf yellowness was recorded as a plant health indicator, 

because in chrysanthemum leaf yellowness is symptomatic for diseases such as those caused by soil 

pathogens like Verticillium, Fusarium (Reddy 2015). All leaves were counted on each plant and the 

number of leaves that showed yellowness (partly, or completely) was recorded. Leaf yellowness was 

calculated as the proportion of leaves that showed yellowness. Root color was also recorded at a scale 

of 0 to 3, where 3 indicates a dark and diseased root system, and 0 indicates a white/light colored and 

healthy root system (photos of root systems illustrative for the root darkness categories are presented in 

Fig.S4.1). Root galls caused by root knot nematodes were scored with a scale of 0 to 10 (Dhandaydham 

et al. 2008). 0 = no visual galling, 1 = less than 5% small galls, 2 = 10% small galls, 3 = 15% small galls, 

4 = 20% large galls, 5 = 30% large galls, 6 = 40% big galls, 7 = 50% big galls, 8 = 60% big galls, 9 = 70% 

big galls, 10 = more than 75% big galls. In cycle 1, nematode scores were only recorded for 
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chrysanthemum roots from plants exposed to the Meloidogyne treatment, but in cycle 2, this was done 

for all plants from all treatments. Shoot and root biomass was then oven-dried (60 °C for 3 days) and 

weighed. 

 

Phase III: Growth cycle 2 

The experimental procedure was as described for cycle 1. In this phase, we used as disease treatments 

P. ultimum addition (6 × 10^4 oospores), 10% “diseased” soil, i.e. soil collected from a commercial 

chrysanthemum greenhouse with severe soil disease problems, and control. Two new unrooted 

chrysanthemum cuttings were planted into each pot from growth cycle 1 as described above. A new set 

of 30 pots filled with 100% sterilized soil was included during growth cycle 2, either with 10% diseased 

soil, or 60,000 oospores of P. ultimum, or control. This phase comprised of the same 810 pots plus 10 

replicates for each of the 3 soil disease treatments using new 100% sterile soil, resulting in a total of 840 

pots. Six weeks after rooting, plants were harvested as described above. 

 

Statistical analysis 

After growth cycle 1, the overall effects of the plant-conditioned soil inocula and disease treatments on 

chrysanthemum shoot biomass and root biomass were determined using a linear mixed model. In the 

model, “soil identity” and “disease treatment 1” were used as fixed factors, and soil replicate was used 

as random factor. Post-hoc Tukey tests were used for pairwise comparisons between plant-conditioned 

soil inocula. The same analysis was also performed including un-inoculated soil. A post-hoc Dunnet test 

was used to compare chrysanthemum biomass for each of the plant-conditioned soil inocula with that 

of un-inoculated soil. As chrysanthemum leaf yellowness is proportional data, a generalized linear 

mixed model with a binomial distribution and logit link function was used. Data on root darkness are 

categorical, therefore a generalized linear mixed model with Poisson distribution was used. Nematode 

scores were only recorded for plants in the Meloidogyne treatment, therefore, a generalized linear model 

was used to determine the overall effects of the soil inoculation treatments on nematode infection. 

 

For data from growth cycle 2, the effects of the plant-conditioned soil inocula and disease treatments on 

chrysanthemum shoot biomass and root biomass were determined using a linear mixed model. In the 

model, “soil identity”, “disease treatment 1” and “disease treatment 2” were used as fixed factors, and 

soil replicate was used as random factor. A post-hoc Tukey test was used for pairwise comparisons 

among the disease treatments of both cycles. For root darkness and root nematode scores, a generalized 

linear mixed model with Poisson distribution was used to examine the overall soil effects (analyzed 
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separately with and without un-inoculated soil) and effects of disease treatments in cycle 1 and disease 

treatments in cycle 2. 

 

We then compared the effects of the three disease treatments imposed during cycle 2 on chrysanthemum 

performance in (i) soils inoculated in cycle 1, (ii) soils that were not inoculated in cycle 1, and (iii) new 

sterile soil. We used the average for the inoculated soils as the differences between the effects of plant-

conditioned inocula on chrysanthemum in cycle 2 were less variable compared with their effects in cycle 

1 (see results). For inoculated and un-inoculated soils from cycle 1, there were 9 combinations of disease 

treatments (3 for cycle 1 × 3 for cycle 2) while for new sterile soil there were only 3 treatments (3 for 

cycle 2). The disease treatments added to inoculated and un-inoculated soil in cycle 1 were therefore 

grouped based on the three disease treatments from cycle 2. C-C, P-C and M-C of inoculated and un-

inoculated soil were compared to the C in new sterile soil; C-P, P-P and M-P were compared to P, and 

C-D, P-D and M-D to D. One-way ANOVA was then used to compare these seven groups and a post-

hoc Tukey test was used for pairwise comparisons. These analyses were done for chrysanthemum shoot 

biomass, root biomass and leaf yellowness. As leaf yellowness were recorded as a proportion, a 

generalized linear model was used instead. 

 

Additionally, chrysanthemum shoot biomass, root biomass and yellowness were grouped based on the 

soil treatment (soils inoculated in cycle 1 and soils that were not inoculated in cycle 1), and a linear 

mixed model was then used to examine the impact of the disease treatments. In this model, the disease 

treatments were used as fixed factor, and soil replicate was used as random factor. For sterile soil, one-

way ANOVA was used to examine the impact of disease treatments. Within each disease treatment, 

chrysanthemum shoot and root biomass of plants growing in different inoculated soil was compared 

using one-way ANOVA. The same analysis was done for chrysanthemum leaf yellowness, but either 

with a generalized linear model or a generalized linear mixed model with binomial distribution and logit 

link function. To determine the effects of the disease treatments within each soil, a generalized linear 

model was used to compare chrysanthemum root darkness and root nematode score between different 

disease treatments. We also used linear regression to determine the relationship between root biomass 

of conditioning plant species and root biomass of chrysanthemum grown later in the conditioned soils. 

This analysis was done for root biomass of chrysanthemum in both cycle 1 and cycle 2. All analyses 

were performed in R (version 3.0.1, R Development Core Team 2017). 
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Results 

After growth cycle 1, chrysanthemum shoot biomass, root biomass and leaf yellowness significantly 

differed between plant-conditioned inocula, while “disease treatment 1” only significantly influenced 

leaf yellowness. Root darkness and the root nematode scores were not significantly affected by any of 

the treatments (Table 4.1, Table S4.1, Fig. S4.2). When un-inoculated soil was included in the analysis, 

the same effects were significant (Table S4.1). Plants grown with AO inoculum sustained higher shoot 

and root biomass than plants with HR inoculum, and AO, BH, GV, and LP inocula sustained 

significantly higher shoot biomass than un-inoculated soil (Fig. 4.2a, b). Root biomass of plants grown 

with plant-conditioned inocula did not differ from root biomass in un-inoculated soil (Fig. 4.2b). In the 

control, without addition of diseases, the proportion of yellow leaves, was significantly lower with AO, 

BH, or HL inocula than with un-inoculated soil, and did not differ between plant-conditioned soil 

inocula. Plants exposed to Meloidogyne and growing with AO, BH, GV inocula had a significantly lower 

proportion of yellow leaves, than plants grown with Meloidogyne and RA inoculum. In presence of 

Meloidogyne, none of the plant-conditioned inocula were significantly different from un-inoculated soil. 

When exposed to Pythium, plants with AO and FF inocula had a significantly lower proportion of yellow 

leaves than plants grown in un-inoculated soil, and there were no significant differences between plant-

conditioned inocula (Fig. 4.2c). 

 

After growth cycle 2, there were no significant interactions between any factors on shoot biomass or 

root biomass. Root biomass and leaf yellowness differed significantly between plant-conditioned 

inocula (Table 4.2; Fig. 4.3). Shoot biomass and leaf yellowness were significantly influenced by 

“disease treatment 1”. Shoot biomass and leaf yellowness of plants grown in soil where Meloidogyne 

were added in cycle 1 was higher than in plants grown in soil from the control treatment from cycle 1. 

Plants growing in soil inoculated with diseased soil in cycle 2 had higher root biomass than those 

growing in soil from the control and the Pythium treatment. Plants exposed to Pythium in cycle 2 in 

general had significantly lower leaf yellowness than plants from the control treatment. Leaf yellowness 

varied between disease and soil treatments resulting in significant interactions between “disease 

treatment 1” and “soil”, “disease treatment 1” and “disease treatment 2”, and between “disease treatment 

1”, “disease treatment 2” and “soil” (Table 4.2, Fig. 4.3c). In the Pythium treatment in cycle 1 yellowness 

was higher in inoculated soil that had been conditioned by LP and RA, and lower in soil conditioned by 

HL. For AO, GV, and HR and un-inoculated soil, yellowness was higher in the control treatment in 

cycle 1 than in other disease treatments, while in cycle 2 this was true for the control treatment for soil 

conditioned by BH, HL and LP. Yellowness in the diseased soil treatment in cycle 2 was higher when 

plants were grown in soil conditioned by FF and RA. Exposure to Pythium in both cycles led to higher 

yellowness in RA soil, while exposure first to Meloidogyne and then Pythium led to higher yellowness 
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Table 4.1 Effects of plant-conditioned soil inocula and disease treatment 1 on chrysanthemum shoot biomass, root 

biomass and leaf yellowness at the end of cycle 1. “Species” indicates the identity of the conditioning plant species. 

“Treatment 1” indicates the disease treatments in cycle 1. Presented are F-values obtained from a mixed linear 

model (generalized mixed linear model for leaf yellowness). *** indicates significant difference at P < 0.001. 

 
Df Shoot biomass Root biomass Yellowness 

Species 7,72 7.751*** 4.678*** 5.708*** 

Treatment1 2,624 1.101 0.263 8.240*** 

Treatment1*Species 14,624 1.472 1.113 5.694*** 

 

in AO soil and in un-inoculated soil (Table 4.2; Fig. 4.3c). Plants grown in diseased soil had healthier 

roots (lower root darkness scores) than plants from the Pythium and control treatment. However, the 

root nematode score was significantly higher for plants inoculated with diseased soil in cycle 2 than for 

other plants (Table S4.2; Fig.S4.3). When un-inoculated soil was included in the same analysis, the 

results were similar, except that for this analysis, “disease treatment 1” effects were significant for 

chrysanthemum root biomass (Table S4.3). 

 

We subsequently analyzed the ten soil categories separately (the eight plant-conditioned soil inocula, 

the un-inoculated soil from cycle 1, and new sterile soil). Shoot biomass of plants grown in LP and un-

inoculated soil from cycle 1 and in new sterile soil differed significantly between disease treatments 

(Fig. 4.3a). Root biomass of plants in all soil categories, except for HL inoculum, differed significantly 

between disease treatments (Fig. 4.3b). Overall, in soils from cycle 1 (8 plant-conditioned inocula and 

un-inoculated soil), chrysanthemum grown in pots where diseased soil was added had more biomass 

than chrysanthemum exposed to the other disease treatments. At the end of cycle 2, for plants grown in 

un-inoculated soil from cycle 1, biomass in the double control treatment (C-C) was lower than in the 

other treatments. For chrysanthemum grown in sterile soil in cycle 2, addition of diseased soil led to a 

reduction in biomass, and Pythium addition did not affect biomass. In cycle 2, root darkness did not 

differ between disease treatments within each soil category (Fig.S4.3a). However, nematodes scores in 

plants grown in pots where diseased soil was added were much higher than in plants from other 

treatments (Fig.S4.3b). Figures and statistical analyses presenting the ten soil categories for each of the 

nine disease treatment combinations are shown in the appendix (Fig.S4.4, Table S4.4, S4.5). 
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Fig. 4.2 Chrysanthemum shoot biomass (a), root biomass (b) and leaf yellowness (c) in plant-conditioned soil 

inocula with different disease treatments after growth cycle 1. White bars indicate chrysanthemum performance 

in the control treatment, grey bars the Meloidogyne treatment, and black bars the Pythium treatment. Statistics 

presented in the upper part of each panel are the overall effects of the plant-conditioned inocula and disease 

treatment 1 from a mixed linear model (generalized mixed linear model for leaf yellowness). *** indicates 

significant difference at P < 0.001. “n.s.” indicates no significant difference detected. Different letters above each 

set of bars indicate significant difference between plant-conditioned soil inocula (P < 0.05). * indicates significant 

difference of a plant-conditioned inoculum and the un-inoculated soil (P < 0.05). 
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Table 4.2 Overall effects of plant-conditioned soil inocula, disease treatment 1, and disease treatment 2 on chrysanthemum shoot biomass, root biomass and leaf yellowness at 

the end of cycle 2. “Species” indicates the identity of plant species that conditioned the soil used for the inoculum. “Treatment 1” indicates the disease treatments imposed 

during cycle 1, “Treatment 2” indicates the disease treatments added in cycle 2. Presented are F-values obtained from a linear mixed model (generalized linear mixed model for 

leaf yellowness). For pairwise comparisons between each category of disease treatments T-values are presented (Z-value for leaf yellowness). *,**,*** indicates significant 

differences at P < 0.05, 0.01 or 0.001, respectively. 

 
Df Shoot biomass Root biomass Yellowness 

Species 7,72 1.937 2.568* 2.147* 

Treatment1 2,576 3.081* 2.425 9.190** 

   Control vs Meloidogyne 
 

-2.292* -2.187 2.638* 

   Control vs Pythium 
 

-0.320 -0.868  0.097   

   Meloidogyne vs Pythium 
 

1.972 1.318  0.055 

Treatment2 2,576 0.869  52.441*** 71.139*** 

   Control vs Diseased soil 
 

-0.101 -9.463*** 0.248  

   Control vs Pythium 
 

-1.189 -1.339 2.253* 

   Diseased soil vs Pythium 
 

-1.088  8.123*** -0.220 

Treatment1*Species 14,576 1.155 0.868 4.401* 

Treatment2*Species  14,576 0.833  0.496 2.335 

Treatment1*treatment2 4,576 0.676 0.671  8.944* 

Treatment1*Treatment2*Species 28,576 1.053 0.839 3.725* 
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Fig. 4.3 Chrysanthemum shoot biomass (a), root biomass (b) and leaf yellowness (c) in plant-conditioned soil 

inocula with different disease treatments after growth cycle 2. Colors of the bars indicate the different inoculation 

and disease treatment combinations. “*” indicates that for this specific soil inoculum there is an overall significant 

effect of disease treatments, however individual treatments do not significantly differ. Statistics presented in the 

upper part of each figure are the significant effects, more details are presented in Table 4.2. For inocula with 

different letters above bars there is an overall significant effect of disease treatments and significant differences 

among the treatments are highlighted with red letters. “n.s.” indicates no significant difference detected. Statistics 

of each soil category are presented in Table S4.4. 

 

In cycle 2, on average, chrysanthemum shoot biomass and root biomass was higher in pots that were 

inoculated in cycle 1 with plant-conditioned soil than in pots that were not inoculated in cycle 1 (Fig. 

4.4a, d). However, in soil where chrysanthemum had been grown before, both in pots inoculated with 

plant-conditioned soil and in un-inoculated soil, shoot and root biomass was lower in cycle 2 than in 

sterile soil for the control (Fig.4.4a, d) and Pythium treatment (Fig. 4.4b, e) in cycle 2. For plants grown 

in pots where diseased soil was added in cycle 2, there were no significant differences for shoot and root 

biomass between the three types of soils (cycle 1 inoculated, cycle 1 un-inoculated, cycle 2 sterile; Fig. 

4.3c, f). Leaf yellowness did not significantly differ among plants grown in the different types of soils 

(Fig. 4.4g–i). Moreover, there was no significant relationship between root biomass of the conditioning 

plant species and root biomass of chrysanthemum in both cycle 1 and cycle 2 (Fig.S4.5). 
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Fig. 4.4 Average values for inoculated soil (average of the 8 inocula), un-inoculated soil (100% sterile in cycle 1) 

and new sterile soil (100% sterile soil in cycle 2) for chrysanthemum shoot biomass (a–c), root biomass (d–f) and 

leaf yellowness (g–i) at the end of cycle 2. White bars indicate average chrysanthemum performance in soil 

inoculated with plant-conditioned inocula, black bars indicate performance in un-inoculated soil from cycle 1, 

striped bars indicate performance in sterile soil from cycle 2. For each plant parameter, the figure is grouped by 

disease treatments imposed in cycle 2 and split into three panels. In each panel, a one-way ANOVA was used to 

test the overall differences between all the bars, and a post hoc Tukey test was used to do pairwise comparisons 

between bars. Bars with identical letters are not significantly different. F-value and P value of one-way ANOVAs 

are presented in the upper part of each panel. 

 

Discussion 

Our results show that the effects of soil inoculation at the start of cycle 1 were still detectable after the 

second growth cycle. After two growth cycles, chrysanthemum generally grew better in new soil (sterile 

soil) than in soils in which chrysanthemum had been grown before (i.e. in plant-conditioned soil and in 

un-inoculated soil), indicating that this species exhibits a negative conspecific plant-soil feedback. 

Importantly, inoculating sterilized soil with plant-conditioned soil reduced this negative conspecific 

feedback effect, as plant growth in cycle 2 in plant-conditioned soil was better than in un-inoculated soil. 

Moreover, in cycle 2, the effects of plant-conditioned inocula on plant growth were less variable than in 

cycle 1, suggesting that growth of chrysanthemum in all soils for one cycle caused all plant-conditioned 
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soils to develop in a similar way. Remarkably, inoculation with soil from a commercial greenhouse that 

contained diseases had a strong negative effect on plant growth when this was done in sterile soil, but 

when this “diseased soil” was added to soils in which chrysanthemum had been grown before, it 

increased plant growth. 

 

In accordance with the first hypothesis, the effects of adding inocula that consisted of soil in which 

another plant had been grown (plant-conditioned inocula) were still present in the second growth cycle. 

This is in line with other studies that show that plant-mediated changes in the soil can affect the 

performance of other succeeding plants in both agricultural and natural ecosystems (de la Peña et al. 

2016; Jangid et al. 2011; Wubs and Bezemer 2018). In general, the mechanisms for these effects are 

difficult to disentangle because they can be due to changes in soil abiotic and biotic conditions (de la 

Peña et al. 2016). In this study, we found that addition of 10% of a soil inoculum to sterile soil influenced 

chrysanthemum growth during two cycles. The small amount of soil inoculum added, and the high 

fertilization rates in all treatments, make it unlikely that soil nutrient availability played a role, and hints 

at a pivotal role of the soil microbial community (Brinkman et al. 2010). Extended impacts of the soil 

microbial community on plant health, have also been reported in studies on soil disease suppression, 

where suppressiveness of the soil against pathogens could be maintained for several growth cycles 

(Lapsansky et al. 2016; Janvier et al. 2007; Mendes et al. 2011). In the current study, we only tested the 

effects of soil inoculation for two growth cycles. How long these effects of the soil inocula persist, and 

whether and how they influence chrysanthemum performance in subsequent growth cycles is unknown 

and this is an important question to be addressed in future studies. 

 

In accordance with the second hypothesis, chrysanthemum, which was the most recently growing 

species in the soil, had a stronger influence on biomass in cycle 2 than the plant species that conditioned 

the soil that was used for inoculation at the start of cycle 1. Additionally, we also observed that 

chrysanthemum grew better in new sterile soil than in soil in which it had been grown before. This 

indicates that chrysanthemum exhibits a negative feedback, due to the build-up of pathogens in the 

rhizosphere or due to the release of plant metabolites in the soil that inhibit plant growth (i.e. autotoxic 

effects, Zhou et al. 2009). Inoculation of the sterilized soil with soil that was conditioned by another 

plant species reduced this negative plant-soil feedback effect. Such negative conspecific feedbacks are 

a commonly observed problem in continuous cropping systems (Song et al. 2013; Zhou et al. 2009; 

Wang et al. 2017b). However, we now show that adding an inoculum consisting of soil conditioned by 

other plant species to the sterilized soil before the first growth cycle starts can reduce this negative effect. 

Previous studies have reported that certain soil microbiomes have disease-suppressive properties in soils 

(Schlatter et al. 2017; Mendes et al. 2011; Ridout and Newcombe 2016; Berendsen et al. 2012). Our 
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study further shows that over successive growth cycles, microbiomes of unrelated plant species can be 

used to reduce negative conspecific plant-soil feedbacks in horticultural crops. This could be achieved 

by changing the soil via growing another crop intermediately, or by soil inoculation, as in our study. 

Our study indicates that addition of soil conditioned by other plant species to sterilized or steamed soil 

could potentially increase crop yield of later harvests, as well as increase the number of crops that can 

be harvested sequentially before the soil has to be steamed again. Steaming of soil exhibits a significant 

environmental footprint (Ispahani et al. 2008) and an additional harvest before the grower has to steam 

the soil again would increase the sustainability of the crop, which is an important aim in the 

chrysanthemum sector (Kos et al. 2014). 

 

To answer the third hypothesis, the plant-conditioned soil inocula should be characterized as positive 

and negative. However, compared to control soil, in the first cycle there were only positive to neutral 

effects of inoculation with plant-conditioned soil, and the difference among the effects of plant-

conditioned soil inocula was less variable in the second than in the first cycle. For example, in cycle 1, 

addition of soil conditioned by the plant species Hypochaeris radicata (HR) had the most negative 

influence on chrysanthemum, while inoculation with from soil conditioned by Anthoxanthum odoratum 

(AO) resulted in the greatest biomass. In the second cycle, this difference between AO and HR 

disappeared. Other studies on the temporal dynamics of plant-soil feedback effects have argued that the 

changes in plant-soil feedbacks over time will depend on the target plant species in the feedback phase 

(Kardol et al. 2006, 2013; Hawkes et al. 2013). In this study, the effects of all inocula converged over 

time. This is probably because of the overriding effects of chrysanthemum on the soil. We did not 

examine the microbial community of the different inocula and how much of these differences remained 

present after chrysanthemum had grown in the inoculated soils. Future studies should test how the 

composition of the soil microbial communities changes due to inoculation with plant-conditioned soil 

and how this is subsequently influenced by the growth of chrysanthemum in these soils. 

 

In our study, addition of Pythium and Meloidogyne did not have consistent negative effects on plant 

growth and health. After cycle 2, leaf yellowness differed significantly between soil treatments. 

However, this pattern was not consistent among the disease treatments imposed in cycle 1 or 2. 

Moreover, for some soils and in both cycles, the yellowness of plants in the control treatments was 

significantly higher than in disease treatments, suggesting that the disease treatments may even reduce 

yellowness. Although leaf yellowness is a health indicator in chrysanthemum (Reddy 2015), it is not 

caused specifically by Pythium or Meloidogyne, and other pathogens that may have been present in the 

soil inocula or in the diseased soil could also cause leaf yellowing. On the basis of these results, 

conclusions regarding the fourth hypothesis cannot be made. The spore and juvenile density of Pythium 
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and Meloidogyne used in this study are sufficient to cause symptoms in plant growth (van der Wurff et 

al. 2010) but we speculate that the virulence of the disease inocula was limited. This is supported by the 

low nematode and darkness scores in the roots and the lack of differences among disease treatments in 

these scores. It is also possible that the Pythium and Meloidogyne inoculations were ineffective e.g. 

because these pathogens did not establish successfully in the soil or were outcompeted by microbes 

present in the soil. An interesting finding of our study is that the addition of diseased soil in cycle 2 

significantly increased performance of chrysanthemum in soils where chrysanthemum had been grown 

before, but that it had a negative effect on biomass when added to new sterile soil. Plant performance in 

the soils in which chrysanthemum had been grown before was worse than in new sterile soil. Hence, a 

negative treatment (i.e. diseased soil) was imposed to soils where plant performance was reduced already. 

This phenomenon that addition of a negative treatment to a soil which already has a negative effect is 

similar to a concept of soil immunity (Raaijmakers and Mazzola 2016). However, soil immunity 

typically appears after an outbreak of a soil-borne disease, and it takes a long period of mono-cropping, 

up to decades, to achieve soil immunity (Hamid et al. 2017; Raaijmakers and Mazzola 2016). Whether, 

the soils from cycle one in our study have become immune to soil diseases is unknown, and further work 

is required to disentangle these plant-soil feedback and soil disease interactions. 

 

In conclusion, this study provides a possible application of the plant-soil feedback concept in 

horticulture, and demonstrates that inoculation of sterile soil with live soil conditioned by other plant 

species can reduce but not completely remove the negative conspecific plant-soil feedback of 

chrysanthemum. We did not observe strong effects of addition of soil diseases. Plant growth was best 

in sterile soil but, importantly, this effect disappeared when plants were grown in pots where soil was 

added from a commercial greenhouse with soil disease problems. Future studies should unravel the role 

of the composition of the microbiome, and mechanisms behind the soil inoculation effects, as well as 

test the effects of soil inoculation with whole microbiomes in a real horticultural greenhouse scenarios. 
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Supplementary material 

Table S4.1 The effects of soil inoculation (plant-conditioned soil inocula and un-inoculated soil) and disease 

treatment 1 on chrysanthemum shoot biomass, root biomass, leaf yellowness, root darkness and nematode 

infestation score. Presented are F values from a linear mixed model (generalized mixed linear model for leaf 

yellowness and root darkness, generalized linear model for nematode score). Nematode score were only measured 

for plants in the Meloidogyne treatment. **,*** indicate significant difference at P<0.01 or 0.001, respectively. 

 

 
Df Shoot biomass Root biomass Yellowness Root darkness Nematode 

score 

Soil 8,72 7.870*** 4.216*** 5.234*** 1.209 0.150 

Treatment1 2,711 0.867 0.522 3.185** 0.670 N.A 

Treatment1*Soil 16,711 1.613 0.995 6.597*** 0.382 N.A 
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Table S4.2 Overall effects of plant-conditioned soil inocula, disease treatment 1 and disease treatment 2 on 

chrysanthemum root darkness and nematode scores. “Species” indicates the identity of conditioning plant species. 

Presented are F-values following a generalized mixed linear model. For pairwise comparisons between each 

category of disease treatments Z-values are presented. *,**,*** indicates significant difference at P<0.05, 0.01 or 

0.001, respectively. 

 
Df Root darkness Nematode score 

Species 7,72 0.082 1.072 

Treatment1 2,576 0.237 1.264 

   Control vs Meloidogyne 
 

-0.251  0 

   Control vs Pythium 
 

0.416  0 

   Meloidogyne vs Pythium 
 

0.668  0 

Treatment2 2,576 5.281* 71.906*** 

   Control vs Disease soil 
 

3.316** -0.005 

   Control vs Pythium 
 

0.791 0 

   Disease soil vs Pythium 
 

-2.530* 0 

Treatment1*Species 14,576 0.287 0.644 

Treatment2*Species  14,576 0.234 0.203 

Treatment1*treatment2 4,576 0.567 0 

Treatment1*Treatment2*Species 28,576 0.276 0 
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Table S4.3 Overall effects of soil inoculation (plant-conditioned soil inocula and un-inoculated soil), disease treatment 1, and disease treatment 2 on chrysanthemum shoot 

biomass, root biomass, leaf yellowness, root darkness and nematode scores at the end of cycle 2. Presented are F-values from a mixed linear model (generalized mixed linear 

model for leaf yellowness, root darkness and nematode scores), for pairwise comparisons between each category of disease treatments, T-values are presented (Z-value for leaf 

yellowness, root darkness and nematode scores). *,**,*** indicates significant difference at P<0.05, 0.01 or 0.001, respectively. 

 

 
Df Shoot biomass Root biomass Yellowness Root darkness Nematode score 

Soil 8,72 1.697 2.251* 1.962* 0.101 0.940 

Treatment1 2,657 4.258* 3.888* 9.962** 0.406 1.064 

   Control vs Meloidogyne 
 

-2.918* -2.761* 3.029** -0.547 0 

   Control vs Pythium 
 

-1.461 -1.722 0.065  0.346  0 

   Meloidogyne vs Pythium 
 

1.458 1.039 0.032 0.893  0 

Treatment2 2,657 1.415 63.403*** 84.331*** 5.046* 82.515*** 

   Control vs Disease soil 
 

-0.804 -10.563*** 0.179 3.217** -0.005 

   Control vs Pythium 
 

-1.682  -1.903 2.185  0.804 0 

   Disease soil vs Pythium 
 

-0.878 8.660*** -0.160  -2.418* 0 

Treatment1*Soil 16,657 1.615  1.074 4.621* 0.267 0.671 

Treatment2*Soil  16,657 0.957 0.643 2.497 0.242 0.251 

Treatment1*treatment2 4,657 0.799 0.572 6.916* 0.206 0.000 

Treatment1*Treatment2*Soil 32,657 1.199 0.784 4.174* 0.328 0.000 
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Table S4.4 Statistics of Fig.4.4, presented are degrees of freedom (df) and F-values folowing a linear mixed model (generalized linear mixed model for leaf yellowness, root 

darkness and nematode scores) for plant-conditioned soil and un-inoculated soil and a one-way ANOVA (generalized linear model for leaf yellowness, root darkness and 

nematode score) for sterile soil. *,**,*** indicates significant difference at P<0.05, 0.01 or 0.001, respectively. Only plants grown in the diseased soil treatment added to sterile 

soil had detectable nematode infections. This was not the case for plants grown in sterile soil with the control and Pythium treatments, so there are no one-way ANOVA results 

for the disease treatments effects. Thus, the F-value in sterile soil is presented as “N.A”. Abbreviations of plant species are described in materials and methods. 

 

 

Species df Shoot biomass Root biomass Leaf yellowness Root darkness Nematode score 

AO 8,72 1.096  2.262* 7.730*** 0.428 23.049*** 

BH 8,72 1.285 2.341* 5.564*** 0.197 37.27*** 

FF 8,72 1.078 2.297* 2.504* 0.233 44.124*** 

GV 8,72 0.716 1.535 8.617*** 0.722 20.75*** 

HL 8,72 0.563 0.831 6.315*** 0.551 53.11*** 

HR 8,72 0.804 2.492* 4.722** 0.523 27.36*** 

LP 8,72 2.491* 5.628***  7.906*** 0.586 40.34*** 

RA 8,72 1.139 3.645** 5.966*** 0.314 30.42*** 

Un-inoculated 8,72 2.909** 4.111*** 8.555*** 0.265 28.57*** 

Sterile soil 2,57 18.22*** 4.895* 6.872** 0.310 N.A 
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Table S4.5 Statistics of Fig.S4.3, presented are degrees of freedom and F-values folowing a linear mixed model (generalized linear mixed model for leaf yellowness). *,**,*** 

indicates significant difference at P<0.05, 0.01 or 0.001, respectively. Abbreviations of disease treatments are described in material and methods. 

 

Treatment df Shoot biomass Root biomass Leaf yellowness Root darkness 

C-C 8,81 2.450* 1.809  2.265* 0.996 

M-C 8,81 1.383  1.137  0.663 0.999 

P-C 8,81 1.168  1.567  1.502 0.981 

C-P 8,81 1.257 1.062  0.466 0.965 

M-P 8,81 0.794  0.484  1.855 0.926 

P-P 8,81 1.627  1.111 1.272  0.998 

C-D 8,81 1.035  0.796 0.748  0.782 

M-D 8,81 1.898  2.073 * 0.778 0.966 

P-D 8,81 0.657 0.443  0.787 0.991 
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Fig.S4.1 Photos of root systems indicative for the root darkness scores at each level. 
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Fig.S4.2 Root darkness (a) and nematode infestation scores (b) of chrysanthemum grown in soil inoculated with 

plant-conditioned soil and in un-inoculated soil with and without disease treatments after growth cycle 1. White 

bars indicate root darkness in the control treatment, grey bars indicate the Meloidogyne treatment, black bars 

indicate the Pythium treatment. Statistics presented in the upper part of the graph are the results from a generalized 

linear mixed model for root darkness, and a generalized linear model for nematode score. “n.s.” indicates no 

significant difference. 
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Fig.S4.3 Chrysanthemum root darkness (a) and nematode scores (b) in all soils with and without disease 

treatments after growth cycle 2. Different colors of the bars indicate different disease treatments. “n.s.” indicates 

no significant difference detected. Within each soil treatment, bars with identical letters are not significantly 

different.  
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Fig.S4.4 Chrysanthemum shoot biomass (a), root biomass (b) and leaf yellowness (c) in all soil and treatment 

combinations after growth cycle 2. Presented data are grouped by each disease treatment, in each treatment, 

different filling patterns of the bars indicate different soil types (plant-conditioned soils or un-inoculated soil). 

The color of each disease treatment corresponds with Fig.4.3 and Fig.S4.2. “n.s.” indicates no significant 

difference detected. “*” indicates significant difference between soils in the relevant disease treatment (P < 

0.05), but no significant pairwise comparisons detected. Letters above bars indicate significant differences 

among soil treatments in that relative disease treatment, bars that are significantly different are highlighted in 

red. Statistics for each disease treatment are presented in Table S4.5.  
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Fig.S4.5 Relationships between root biomass of conditioning plant species and root biomass of chrysanthemum 

in cycle 1 (a) and cycle 2 (b). R2 and P-values following a linear regression are presented on each panel. 
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Abstract 

Plant-soil feedbacks can be as an important mechanism in driving plant performance in both natural and 

agricultural systems. However, how and to what extent plant-soil feedbacks can be applied to improve 

the performance of agricultural crops is currently debated, and whether and how plant-soil feedbacks 

elucidate changes in the root microbiome of crops is poorly understood. In a two-phase plant-soil 

feedback experiment, we tested the potential of using plant species and soil from a natural ecosystem to 

steer the greenhouse soil to become more beneficial for chrysanthemum growth, its root-associated 

microbiome and aboveground defense. In the conditioning phase, eight wild plant species and 

chrysanthemum were used to condition either soil collected from a commercial chrysanthemum 

greenhouse, or soil collected from a natural grassland. In the test phase, the conditioned soils were 

inoculated in background soil that consisted of live or sterilized greenhouse soil. The effects on 

chrysanthemum growth, the root-associated microbiome (bacteria and fungi) and the performance of 

thrips were tested. Inoculation of soil into both live and sterilized background soil significantly 

influenced the root microbiome of the test plant chrysanthemum. Inoculating natural grassland soil into 

sterilized greenhouse soil led to higher plant growth, to more complex and connected microbial networks 

and to a lower abundance of pathogenic fungi in chrysanthemum roots than the other three soil 

combinations. Soil inoculation did not affect plant shoot biomass when added to live greenhouse soil. 

However, when chrysanthemum was grown in live greenhouse soil, inoculated with soil from Lolium 

perenne, Rumex acetosella and Festuca filiformis the microbial diversity in the roots increased, and the 

relative abundance of pathogenic fungi decreased. The root-associated fungal communities of 

chrysanthemum grown in live greenhouse soil were dominated by the pathogen Olpidiomycota and by 

Ascomycota. The root-associated bacterial communities of chrysanthemum consisted mainly of 

Proteobacteria, Actinobacteria, Patescibacteria, Bacteroidetes and Cyanobacteria. The soil type that 

sustained higher chrysanthemum growth also sustained higher relative abundance of Chloroflexi, 

Verrucomicrobia, Armatimonadetes and lower relative abundance of Patescibacteria in chrysanthemum 

roots. Out of eight OTUs that were both abundant and highly correlated with plant growth, two OTUs 

were from Streptomyces spp, indicating that this genus may play an important role in chrysanthemum 

growth. Overall, different soil treatments and the changes in the root microbiome of chrysanthemum did 

not significantly influence the susceptibility of chrysanthemum to thrips. Our study highlights that 

inoculation with soil in which first other plant species have been grown alters the root-associated 

microbiome of chrysanthemum both in sterilized and live background soil, and advances our 

understanding of the role that plant-soil feedbacks can play in horticulture.  

 

Key words: Root microbiome, Chrysanthemum, Wild plant species, Greenhouse soil, Plant-soil 

feedback, Streptomyces, Olpidium. 
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Introduction 

Plant-soil feedbacks are the effects of preceding plants on a succeeding plant by influencing the biotic 

and abiotic conditions of the soil in which they have grown (Bever et al. 1997; van der Putten et al. 

2013). Plant-soil feedback can be an important phenomenon both in natural and in agricultural systems 

and many plant-soil feedbacks are driven by soil biota (van der Putten et al. 2013; Mariotte et al. 2017). 

In agriculture, mono-cropping, the continuous cultivation of the same crop, for example, can lead to the 

build-up of host specialized pathogens in the soil resulting in reduced yields (Mazzoleni et al. 2015; 

Packer and Clay 2004). Such conspecific plant-soil feedback effects can be avoided by growing other 

crops in between (i.e. crop rotation and cover cropping), because other crop species influence the soil 

and its microbiome differently (Dias et al. 2013; Kaplan et al. 2018). Recently, several authors have 

argued that plant-soil feedback effects of wild plant species may be used to improve the soil for the 

succeeding crop (Vukicevich et al. 2016; Mariotte et al. 2018; Pineda et al. 2017). For example, the 

grass Lolium perenne can increase populations of bacteria that produce antibiotics in the soil, while the 

grass Andropogon gerardi can stimulate the abundance of AM fungi in the soil, which may improve the 

growth and resistance against soil-borne diseases of the crop that grows later in the soil (Latz et al. 2015; 

Hetrick et al. 1988). Interestingly, soils from natural ecosystems often contain a diverse soil microbiome 

with biotic interactions or organisms that could be beneficial in agricultural settings (Mariotte et al. 2017; 

Morriën et al. 2017). For example, soils from native grasslands suppress the soil pathogen Rhizoctonia 

solani better than soils from agricultural fields (Garbeva et al. 2006), and soils from natural ecosystems 

typically harbor more diverse communities of entomopathogenic and mycorrhizal fungi than agricultural 

soils (Meyling et al. 2009; Holland et al. 2016). An important challenge is now to make use of plant-

soil feedbacks of plant species and soils from natural ecosystems to enhance the productivity of crops 

or their resistance against pests and diseases. 

 

Plants shape their rhizosphere microbiomes through a hierarchy of events. First, the bulk soil serves as 

the “microbial seed bank” (Lennon and Jones 2011). Then, the plant, through rhizodeposition, influences 

which microbial groups from this reservoir can grow and thrive (Philippot et al. 2013). Some plant 

species were found to create similar rhizosphere microbiomes in different soils (Miethling et al. 2000; 

Costa et al. 2006; Wieland et al. 2001). Therefore, it is likely they will also have similar effects on the 

succeeding plant species when growing in different soils. It is possible to expect that growing non-

domesticated plant species in agricultural soil may have the same effects on the soil as growing these 

plant species in their native soil. However, microbial diversity in agricultural soils is likely to be lower 

than in natural soils due to the management practices (Mariotte et al. 2017). In addition, microorganisms 

in natural soils may have long co-evolution histories with wild plant species and this means that they 

proliferate in natural but not in agricultural soils (Vukicevich et al. 2016). To what extent wild plant 
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species can be used to change agricultural soils so that the soil becomes more beneficial for crops is still 

an open question. 

 

The success of introducing a microbial strain into a recipient soil depends at least on four steps: 

introduction, establishment, growth and spread, and impact (Mallon et al. 2015). The effect of 

inoculating an entire microbiome is likely to be even more complicated. As different microbes may 

respond differently to the resident soil. The net impact of the introduced microbiome on the recipient 

soil will depend, among others, on the adaptation of the introduced microbiome to the new environment 

and on the resilience of the recipient microbiome to the introduced microbiome (Thomsen and Hart 

2018; Mallon et al. 2015). However, studies on disease suppressive soils found that by adding 10% 

disease suppressive soil to disease conducive soil, the suppressive properties were successfully 

transferred, although not to the same extent as in 100% disease suppressive soil (Siegel-Hertz et al. 2018; 

Mendes et al. 2011; Haas and Défago 2005). Hence, an important question is whether and to what extent 

inoculating soil microbiomes into soils with already existing microbiomes will alter the effects of 

existing microbiomes on plants.  

 

Soil microbes can play an important role in influencing the chemical composition of the foliage of the 

plant that grows in the soil and this can subsequently alter the susceptibility of that plant to aboveground 

pests or diseases (Kos et al. 2015a,b; Badri et al. 2013). The direction of these belowground-

aboveground effects may depend on the abundance or composition of microbes in the soil and the plant 

and pest species tested. Such positive or negative effects of soil microorganisms on plant resistance to 

aboveground herbivory have been explained by different mechanisms (Kaplan et al. 2018; Pineda et al. 

2010). For example, beneficial microbes in the soil, such as mycorrhizal fungi, or plant growth 

promoting bacteria, can induce systemic resistance in aboveground tissues, which protects the plant 

against future attack by herbivorous insects (Pineda et al. 2010; Pieterse et al. 2014). However, 

beneficial microbes may also improve the growth or the nutritional quality of plants, and this can lead 

to increased levels of aboveground herbivory on the plant (Kaplan et al. 2018; Pineda et al. 2010). 

Infection by root pathogens which generally hampers plant growth may also, at the same time, induce 

plant systemic acquired resistance against aboveground herbivory (van Dam 2009; Kammerhofer et al. 

2015). The net effect of inoculating a soil community on the susceptibility of a plant to aboveground 

antagonists will thus be determined by the balance of these opposing forces in the soil and by how this 

is perceived by the focal plant. A major challenge in agricultural research is now to identify microbiomes 

that successfully establish after inoculation in soils, and that enhance the growth and hence yield of the 

crop as well as improve its resistance against pests and diseases.  
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Here we investigated how inoculation with soils conditioned by eight plant species influences the 

biomass of chrysanthemum, its root-associated microbiome, and the susceptibility of this crop to an 

aboveground insect pest. The soil in which the conditioning plants were grown to create the inocula 

originated either from a natural grassland or was collected from a commercial chrysanthemum 

greenhouse. Chrysanthemum (Dendranthema X grandiflora) is an economically important ornamental 

in the horticultural industry. Mono-cropping of chrysanthemum in commercial greenhouses leads to a 

rapid build-up of soil pathogens (Song et al. 2013). To avoid this, the soil is regularly steam-sterilized, 

a process that kills both detrimental microbes but also beneficial ones. This practice, besides not being 

sustainable, leaves an empty niche and soil pathogens can easily re-establish in these steamed soils 

(Thuerig et al. 2009). Previously we showed that inoculating these sterilized soils with live soil in which 

wild plant species had been grown previously can increase plant growth and reduce the severity of soil 

pathogens but that the effects depend greatly on the inoculum used (Ma et al. 2017, 2018). In the current 

study, the plant-conditioned soil inocula were added to either sterilized greenhouse soil, resembling the 

situation immediately after steaming, or to live greenhouse soil, which was collected after five cycles of 

chrysanthemum cultivation. We determined the root microbiomes in chrysanthemum plants growing in 

all combinations of conditioning soil types (natural or greenhouse soil) and background soil types 

(sterilized or live greenhouse soil). Moreover, we examine whether the susceptibility to Western flower 

thrips (Frankliniella occidentalis), a major aboveground pest of chrysanthemum (Leiss et al. 2009), can 

be altered by soil inoculation. A better understanding of the role of conditioning plant species, the origin 

of the soil used for conditioning, and whether the background soil is live or sterilized in influencing the 

root-associated microbiomes that establish in the crop is important. This can greatly advance our 

understanding of the potential use of soil inoculations and plant-soil feedbacks in horticulture and may 

pave the way to new methods that promote crop growth and health (Bakker et al. 2013). 

 

Specifically, we asked five questions, First, will inoculation with soil conditioned by wild plant species 

enhance chrysanthemum performance compared to inoculation with chrysanthemum-conditioned 

inocula or un-inoculated soil? Second, will the effects of inoculation with plant-conditioned greenhouse 

soil resemble the effects of inoculation with native soil when these soils are conditioned by the same 

plant species? Third, will inoculating soil from different plant species into greenhouse soil positively 

affect chrysanthemum growth and how does this depend on whether the background soil is sterilized or 

not? Fourth, how does soil inoculation influence the root-associated microbiome of chrysanthemum? 

Fifth, which microbial groups in the chrysanthemum root-associated microbiome correlate with 

chrysanthemum growth and its susceptibility to an aboveground pest? 
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Materials and methods 

Plant and insect material 

The focal plant in our study is Dendranthema X grandiflora (Ramat.) Kitam. cv. Grand Pink 

(Chrysanthemum, syn. Chrysanthemum X morifolium (Ramat.) Hemsl., Asteraceae). Chrysanthemum 

cuttings were provided by the breeding company FIDES by Dümmen Orange (De Lier, The 

Netherlands).  

 

A culture of the thrips Frankliniella occidentalis was established with a starting colony provided by the 

company Hazera Seeds (Made, The Netherlands). Thrips were reared for multiple generations on pods 

of Romano beans (Vicia faba) purchased weekly in a local supermarket. Thrips were reared in 0.7 l glass 

jars with anti-thrips mesh glued to the screw-cap top. To obtain first-instar larvae to use in the 

experiments, batches of eggs that were laid during a 24 h-period were collected. Thrips were reared in 

a climate chamber with a 16 h light and 8 h dark photo regime and 25 °C. 

 

Experimental set-up 

The experiment consisted of two phases, a conditioning phase and a test phase. In the conditioning phase, 

eight wild plant species and chrysanthemum were grown individually either in field soil collected from 

a natural grassland (F) or in greenhouse soil (D) collected from commercial chrysanthemum greenhouse. 

The conditioning plant species used in this study are four grasses: Anthoxanthum odoratum, Poaceae 

(AO), Bromus hordeaceus, Poaceae (BH), Festuca filiformis, Poaceae (FF), Lolium perenne, Poaceae 

(LP), four forbs: Rumex acetosella, Polygonaceae (RA), Galium verum, Rubiaceae (GV), Achillea 

millefolium, Asteraceae (AM), Tanacetum vulgare, Asteraceae (TV), and also the focal plant, 

chrysanthemum (CH). In the test phase, the conditioned soil was used as inoculum (10%) and mixed 

with either with 90% sterilized greenhouse soil (ST) or 90% live greenhouse soil (D). A chrysanthemum 

cutting was then planted in each pot, and shoot biomass, the performance of thrips, and the root-

associated microbiome were determined. The experimental design is shown in Fig.5.1. 

 

Phase I: Conditioning phase 

For the conditioning phase, field soil was collected in (5-20 cm deep) in April 2017 from a semi-natural 

grassland on former arable land (Mossel, Ede, The Netherlands). The field had been used for agriculture 

until 1996. The sandy-loam soil was homogenized and sieved (1 cm mesh size) to remove coarse 

fragments and all macro-arthropods. Greenhouse soil was collected in April 2017 from a commercial 

chrysanthemum greenhouse, the soil already had five cycles of chrysanthemum cultivation when  



Root microbiome of chrysanthemum 

103 
 

 

Fig.5.1 Experimental design. For clarity, only one wild plant species out of the eight tested is shown. Details about the conditioning plant species are described in the Materials 

and Methods section. In the conditioning phase, dark green soil indicates soil collected from a natural grassland; brown soil indicates soil collected from a commericial 

chrysanthemum greenhouse; light green soil indicates sterilized grassland soil; light yellow soil indicates sterilized greenhouse soil. In the test phase, the colors of inocula 

correspond to the combination of conditioning plant species and the conditioning soil type. Brown color of background soil indicates the background soil is live greenhouse soil; 

Grey color of background soil indicates the background soil is sterilized greenhouse soil; “conDbackD” indicates conditioned greenhouse soil with live background soil; 

“conFbackD” indicates conditioned field soil with live background soil; “conDbackST” indicates conditioned greenhouse soil with sterilized background soil; “conFbackST” 

indicates conditioned field soil with sterilized background soil. 
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collected (Brakel, The Netherlands). Pots (13 × 13 × 13 cm) were filled with 1.6 Kg of either field soil 

or greenhouse soil.  

 

Seeds of the eight wild plant species were obtained from a wild plant seed supplier (Cruydt-Hoeck, 

Assen, The Netherlands), and were surface sterilized in 3% sodium hypochlorite solution for 1 min, 

rinsed and germinated on sterile glass beads in a climate chamber at 20 ˚C (16h/8h, light/dark). In each 

pot, filled with either field soil or greenhouse soil, five one-week-old seedlings were then planted with 

10 replicate pots for each species and soil combination. For chrysanthemum, we planted cuttings in the 

soil and these were then rooted for ten days under thin plastic foil. We also included a set of pots with 

field soil or greenhouse soil that were not planted but kept in the same greenhouse (no-plant control). In 

total, the conditioning phase comprised of 200 pots (8 wild plant species × 2 conditioning soil types × 

10 replicates + chrysanthemum × 2 conditioning soil types × 10 replicates + no-plant soil × 2 

conditioning soil types × 10 replicates). As in a few pots a seedling died after transplantation, the number 

of seedlings in each pot was reduced to four. All pots were placed randomly in a climate controlled 

greenhouse with 70% RH, 16 h at 21˚C (day) and 8 h at 16˚C (night). Natural daylight was supplemented 

by 400 W metal halide lamps (225 μmol s-1m-2 photosynthetically active radiation, one lamp per 1.5 m2). 

The pots were watered regularly. Ten weeks after transplantation, all conditioning plants were removed 

from each pot, finer roots were left in the soil as the rhizosphere around the roots may include a major 

part of the rhizosphere microbial community. The soil from each pot was stored separately in a plastic 

bag at 4 ˚C for one week until use in the test phase. 

 

Phase II: Test phase 

In the test phase, 1 L pots (11 × 11 × 12 cm; length × wide × height) were filled with a homogenized 

mixture of 10 % soil inoculum (plant-conditioned field soil or plant-conditioned greenhouse soil) and 

90 % background soil. The background soil was non-sterilized greenhouse soil or sterilized greenhouse 

soil. In total, there were 440 pots: [(8 wild plant species + chrysanthemum + no-plant conditioning + 

sterilized no-plant conditioning) × 2 conditioning soil types × 2 background soil types × 10 replicates]. 

The soil was sterilized using gamma irradiation (> 25 K Gray, Isotron, Ede, The Netherlands). Two 

chrysanthemum cuttings (without roots) were planted in each pot as preliminary work showed that not 

all cuttings establish properly with this method. Prior to planting, the soil in each pot was well-watered 

and 100 ml half-strength Hoagland nutrient solution was added. The pots were placed on trolleys, each 

trolley had 48 pots and was tightly covered with a thin transparent plastic film for 10 days to create a 

closed environment with high humidity that favors rooting. After 10 days, the number of chrysanthemum 

cuttings in each pot was reduced to one. Plants were fertilized following common grower’s practice: 
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half-strength Hoagland nutrient solution for the first two weeks and single-strength Hoagland solution 

during the following two weeks. The strength was increased to 1.6 mS/cm EC (electrical conductivity) 

for the last two weeks. The density of pots on each trolley was reduced two weeks after the start of the 

second phase to 32 pots per trolley so that there was 10 cm space between each pot. All pots were 

randomly assigned in the greenhouse with the same conditions as described for the conditioning phase. 

 

Six weeks later, before harvesting, the performance of thrips on a detached plant leaf was measured. 

The fourth fully-developed leaf (counting form the top) from each plant was detached with a razor blade 

and placed into a petri-dish. Two one-day old thrips larvae were then placed on the leaf. All petri-dishes 

were kept in a growth chamber (24°C, 16h day 8h night) and their positions were randomly rotated 

several times a week. Ten days later, the life stages (pupa, larva or adult) of the thrips in each petri-dish 

was recorded. Adult thrips were frozen, and their gender and body length (mm) were recorded using a 

stereo microscope. The damage area on each leaf was recorded using transparent paper with a square 

millimeter raster and counting by eye the number of mm2 showing silver leaf damage. All detached 

leaves were oven-dried (60 ̊ C for 3 days) and the weight of the leaf was added to the total shoot biomass 

of the corresponding plant. After clipping the test leaf, plants were harvested. Each plant was clipped at 

soil level, and shoot biomass was oven-dried (60 ˚C for 3 days) and weighed. Roots were washed over 

a sieve (2 mm mesh) using tap water until there was no visible soil attached to the roots. All root samples 

were then freeze dried and stored at -20 ˚C to be used for root-associated microbiome analysis. 

 

Microbial DNA extraction 

For each treatment, replicate numbers 1 to 5 were used for DNA extraction. In total, root microbiomes 

of 220 samples were analyzed. Before extracting DNA, all freeze-dried roots were ground into powder 

using TissueLyser II, QIAGEN. DNA was extracted from 40 mg powdery freeze-dried root using the 

FastDNA SPIN Kit (MP Biomedicals, Solon, OH, USA) following the manufacturer’s protocol. The 

DNA quantity was measured using a Nanodrop spectrophotometer (Thermo Scientific, Hudson, NH, 

USA). All samples yielded between 100-400 ng/nl of DNA. We then carried out PCR using primers 

ITS4ngs and ITS3mix targeting the ITS2 region of fungal genes (Tedersoo et al. 2015) and the primers 

515FB and 806RB (Caporaso et al. 2012) targeting the V4 region of the 16Sr RNA for bacteria. PNA 

were used to block plant DNA (Lundberg et al. 2013). We used the Phusion Flash High-Fidelity PCR 

Master Mix (Thermo Scientific, Hudson, NH, USA). The cycling conditions for bacteria were 98 °C for 

3 min followed by 25 cycles of 98 °C for 15 s, 55 °C for 15 s and 72 °C for 30 s. The cycling conditions 

for fungi were 98 °C for 3 min followed by 30 cycles of 98 °C for 15 s, 55 °C for 15 s and 72 °C for 30 

s. Final extension for both was 72 °C for 3 min. Both a positive (mock community consisting of 10 
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fungal strains) and a negative control (water) were included in the amplification steps. Presence of PCR 

product was verified using agarose gel electrophoresis. The PCR products were purified using 

Agencourt AMPure XP magnetic beads (Beckman Coulter). Adapters and barcodes were added to 

samples using Nextera XT DNA library preparation kit sets A-C (Illumina, San Diego, CA, USA). The 

final PCR product was purified again with AMPure beads, checked using agarose gel electrophoresis 

and quantified with a Nanodrop spectrophotometer before equimolar pooling. The final libraries of 

bacteria consisted of 220 sample, and fungi consisted of 219 samples (one failed) (supplementary 

information). Both fungi and bacteria were sequenced in 4 separate MiSeq PE250 runs. A mock 

community was included to compare between runs. The samples were sequenced at McGill University 

and Génome Québec Innovation Centre (Canada). 

  

The data for bacteria was analyzed using an in-house pipeline (de Hollander 2017). The SILVA database 

was used to classify bacteria. Fungal data was analysed using the Pipits pipeline (Gweon et al. 2015). 

The UNITE database (Abarenkov et al. 2010) was used for identification of fungi and the ITSx extractor 

was used to extract fungal ITS regions (Nilsson et al. 2010). FUNGuild (Nguyen et al. 2016) was used 

to classify fungal OTUs into potential functions. The OTUs that could be classified were grouped into 

saprophytes, AMF, plant pathogens, plant symbionts, plant endophytes, and rest (Ectomycorrhizal, 

fungal/animal/unidentified plant pathogens). Standardization of the sequencing data is presented in the 

Supplementary Information. 

 

Statistical analysis 

The effects of conditioning (all inocula treatments, including sterilized inocula, no-plant conditioning 

inocula), conditioning soil type and background soil type on plant shoot biomass, leaf silver damage 

area and body length of thrips were examined using a linear mixed model. In the model, inoculum type, 

conditioning soil type and background soil type were defined as fixed factors, and soil replicate as 

random factor. Tukey post-hoc tests were used for pairwise comparisons between conditioning and 

background soil type combinations. For each conditioning soil and background soil type combination, 

a one-way ANOVA was used to test the overall differences between inocula. For each soil type, we used 

three different controls: sterilized no-plant inocula, no-plant inocula and chrysanthemum conditioned 

inocula. Post hoc Dunnet tests were used to compare each inoculum effect with the controls.  

 

Analysis of sequencing data: Permutational multivariate analysis of variance (PERMANOVA) was used 

to test whether bacterial and fungal communities were significantly influenced by inoculum type, 
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conditioning soil type and background soil type. Non-metric multidimensional scaling (NMDS) based 

on Bray-curtis distances was used to visualize the similarities between the four conditioning and 

background soil combinations. A cluster analysis based on Ward’s method (Ward 1963) was used to 

explore Bray-curtis based distances between each treatment. 

 

Network analysis: Co-correlation network analysis was performed to visualize the interactions among 

microbial taxa. Spearman Rank correlations were used to determine non-random co-occurrences. For 

this, only dominant OTUs which occurred in more than 90% of the samples were included. Correlations 

among OTUs with statistically significant (P<0.01 after Bonferroni correction) and a magnitude of >0.7 

or <-0.7 were included in the network analysis (Barberán et al. 2012). Each node in the network 

represents an individual OTU, whereas the edges represent significantly positive or negative correlations 

between nodes (Barberán et al. 2012). The network properties and topologies were measured based on 

the number of nodes, edges, average degree and average clustering coefficient. The visualization and 

properties measurements were calculated with the interactive platform Gephi. 

 

Inverse Simpson diversity was calculated for both bacteria and fungi communities. Pearson correlations 

were used to determine the correlations between bacterial and fungal diversity with shoot biomass, leaf 

silver damage area and thrips body length. To explore whether the relative abundance of particular 

bacterial or fungal OTU was related to shoot biomass, leaf silver damage area, or body length of thrips, 

Pearson correlations were used. After Bonferroni correction, correlations with P<0.05 were considered 

as significantly correlated OTUs. Explained variance (R) was always higher than 38% for all selected 

OTUs. Among the chrysanthemum growth-correlated OTUs, OTUs with average relative abundance 

higher than 1% were selected for further analysis of the treatments effects.  

 

The overall effects of conditioning plant species (including sterilized inocula and no-plant conditioning 

inocula), conditioning soil type, and background soil type, on the relative abundance of bacterial and 

fungal phyla of chrysanthemum roots were tested using a  linear mixed model. The bacterial phyla which 

had on average a relative abundance of less than 0.001% were grouped into “low abundance”. In the 

model, inoculum type, conditioning soil type and background soil type were used as fixed factors, soil 

replicate was used as random factor. For each soil type, a one-way ANOVA was used to test the overall 

differences between inocula. Then a post hoc Dunnet test was used to compare each inoculum effect 

with those of controls (sterilized inocula, no-plant conditioning inocula, and chrysanthemum 

conditioned inocula). The same analyses were also performed to test the effects of inoculum type, 

conditioning soil type and background soil type on bacterial diversity, fungal diversity, OTUs that both 
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highly correlated with plant shoot biomass and had an average abundance higher than 1%, and to 

compare the functional classification of fungal groups. 

 

Results 

Conditioning plant species and soil type effects on chrysanthemum growth and thrips 

performance 

Overall, chrysanthemum shoot biomass was higher in sterilized background soil than in live background 

soil. Inocula from field soil were better for chrysanthemum growth than inocula from greenhouse soil 

when the background soil was sterilized, while there were no significant differences between these two 

conditioning soil types when the background soil was live greenhouse soil. Body length of female thrips 

was higher with inocula from field soil than with inocula from greenhouse soil (Table 5.1, Fig.5.2). 

Body length of male thirps and leaf silver damage area were not significantly influenced by any 

treatments (Table 5.1, Fig.5.2). The effects of inoculation depended on the combination of conditioning 

soil type and background soil type. For inocula from field soil with live background soil, inoculation 

with soil from Festuca filiformis resulted in higher plant shoot biomass than inoculation with 

chrysanthemum-conditioned soil. Inoculating sterilized conditioned greenhouse or field soils into 

sterilized background soil, resulted in the highest shoot biomass of chrysanthemum (Fig.5.2a).  

 

Conditioning plant species and soil type effects on the diversity and community structure of the 

root microbiome  

The composition of the root-associated bacterial community and bacterial diversity were significantly 

influenced by conditioning plant species, conditioning soil type and background soil type (Table 5.1, 

5.2). Bacterial diversity in chrysanthemum roots was higher in sterilized background soil than in live 

background soil (Table 5.1, Fig.5.3). There were significant two way and three way interactions on the 

composition of root-associated bacterial communities (Table 5.2). The composition of root-associated 

fungi and fungal diversity were not significantly influenced by conditioning plant species, but 

significantly differed among soil types and there were significant interaction effects (Table 5.1, 5.2). 

Inoculating conditioned field soils into sterilized background soil led to significantly higher 

chrysanthemum root fungal diversity than inoculation of conditioned greenhouse soils into sterilized 

background soil (Table 5.1, Fig.5.3). 
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Table 5.1 Effects of conditioning (all soil treatments, including sterilized no-plant inocula, no-plant inocula), conditioning soil type and background soil type on chrysanthemum 

shoot biomass, leaf silver damage area, body length of female and male thrips, bacterial and fungal diversity. “consoil” indicates conditioning soil type, “backsoil” indicates 

background soil type. Presented are F-values following linear mixed model tests, T-values are presented for pairwise comparisons between soil types. “D,D” indicates 

conditioned greenhouse soil with live background soil. “D,ST” indicates conditioned greenhouse soil with sterilized background soil. “F,D” indicates conditioned field soil with 

live background soil. “F,ST” indicates conditioned filed soil with sterilized background soil. *,**,*** indicate significant differences at P<0.05, 0.001 and 0.0001, respectively. 

Contrasts following a non-significant conditioning soil type and background soil type interaction were not calculated. 

 
Shoot biomass Silver damage area Female body length Male body length Bacterial diversity Fungal diversity 

 df F value df F value df F value df F 

value 

df F value df F value 

Inocula 10,180 2.11* 10,180 1.05  10,141 0.37  10,142 0.91  10,80 2.14* 10,83 0.73 

Consoil 1,180 52.85 *** 1,180 0.14  1,141 4.74* 1,142 0.03  1,80 1.53 1,83 0.12 

Backsoil 1,216 554.92 *** 1,210 0.95  1,53 1.56  1,142 0.76  1,87 29.65*** 1,83 0.54 

Consoil × Backsoil 1,216 93.27 *** 1,210 0.10 1,53 3.26  1,142 1.78  1,87 0.13 1,83 5.48* 

D,D - F,D  
 

1.29           NA 

D,D - D,ST  
 

-9.83 ***          1.84 

D,D - F,ST  
 

-20.75 ***          -1.19 

F,D - D,ST  
 

-10.51 ***          NA 

F,D - F,ST  
 

-23.48 ***          NA 

D,ST - F,ST  
 

-11.53 ***          -2.82* 

Inocula × Consoil 10,180 1.56  10,180 1.31 10,141 0.39  10,142 0.83  10,80 1.24 10,83 1.36 

Inocula × Backsoil 10,216 7.89 *** 10,210 0.88 10,53 0.52  10,142 1.00  10,87 0.72 10,83 0.39 

Inocula × Consoil × Backsoil 10,216 1.48  10,210 1.10  10,53 0.69  9,142 0.25  10,87 1.21 10,83 0.56 
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Fig.5.2 Chrysanthemum shoot biomass (a), leaf silver damage area (b), body length of male thrips (c) and body length of female thrips (d) in different conditioning and 

background soil type combinations conditioned by wild plant species, chrysanthemum, no-plant conditioning and sterilized no-plant conditioning soils. In each bar plot, statistics 

of the overall effects are presented in the upper part of the figure, only significant effects are shown. “*” above bars (not for the bar of “sterilized no-plant inocula”) indicate 

significant differences compared with sterilized no-plant inoculum in that conditioning and background soil combination. “*” above the bar for sterilized no-plant inoculum 
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indicates that the sterilized inoculum is significantly different from all the other bars in that soil combination. “+” above bar indicates significant difference compared with 

chrysanthemum soil inoculum. Letters above each group of bars represent whether the groups differences significantly. “n.s.” indicates there were no significant differences 

between groups. “conDbackD” indicates conditioned greenhouse soil with live background soil; “conFbackD” indicates conditioned field soil with live background soil; 

“conDbackST” indicates conditioned greenhouse soil with sterilized background soil; “conFbackST” indicates conditioned field soil with sterilized background soil. Full names 

of the plant species are described in the materials and methods section, “No-plant” in the legend indicates no-plant conditioned inocula, “Sterilized” in the legend indicates 

sterilized no-plant soil inocula. 

 

Table 5.2 Effects of conditioning (all soil treatments, including no-plant inocula and sterilized no-plant inocula), conditioning soil type and background soil type on the 

composition of bacterial and fungal OTUs. Presented are degree of freedom (df), F-value and explained R2 following a PERMANOVA test. *,**,*** indicates significant 

differences at P<0.05, 0.01 and 0.001, respectively.  

 
Bacteria Fungi 

 
df F value R2 df F value R2 

Inocula 10,163 2.42*** 0.06 10,83 1.28 0.08 

Consoil 1,163 36.19*** 0.10 1,83 9.23*** 0.06 

Backsoil 1,163 74.85*** 0.20 1,83 5.73*** 0.04 

Inocula × Consoil 10,163 2.18*** 0.06 10,83 1.28 0.08 

Inocula × Backsoil 10,163 1.66*** 0.04 10,83 1.13 0.07 

Consoil × Backsoil 1,163 20.09*** 0.05 1,83 5.33*** 0.03 

Inocula × Consoil × Backsoil 10,163 1.50** 0.04 9,83 1.38* 0.08 
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Fig.5.3 Relationships between root-associated bacterial and fungal diversity with chrysanthemum shoot biomass (a,c), leaf silver damage area (b,d) and bacterial and fungal 

diversity in different soil treatments (e,f). In each bar plot, statistics of the overall effects are presented in the upper part of the figure, only significant effects are showed. “*” 

above bar indicates significant difference compared with sterilized no-plant inoculum in that relative soil type. “+” above bar indicates significant difference compared with 

chrysanthemum-conditioned inoculum in that relative soil type. “n.s.” indicates no significant differences between conditioning treatments in the relative soil type. “conDbackD” 

indicates conditioned greenhouse soil with live background soil; “conFbackD” indicates conditioned field soil with live background soil; “conDbackST” indicates conditioned 

greenhouse soil with sterilized background soil; “conFbackST” indicates conditioned field soil with sterilized background soil. “no-plant” indicates no-plant conditioning. 

“sterilized” indicates sterilized no-plant inocula. 
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Overall, bacterial diversity positively correlated with chrysanthemum shoot biomass, while there were 

no correlations between bacterial diversity and other plant parameters, or between fungal diversity and 

any plant parameters (Fig.5.3, Fig.S5.2). For the conditioned field soil with live background soil 

combination, inoculation with Festuca filiformis and Rumex acetosella soil led to higher chrysanthemum 

root bacterial diversity than inoculation with sterilized soil. Inoculation with soils conditioned by Rumex 

acetosella, resulted in the same effect when compared with chrysanthemum-conditioned soil (Fig.5.3e). 

 

The NMDS and Ward’s cluster analysis revealed a distinctive separation between bacterial communities 

from field and greenhouse soil inocula, when the background soil was sterilized. There was greater 

overlap between bacterial communities originating from the different conditioning soils when the 

background consisted of live soil (Fig.5.4a,c). There was no clear separation in fungal communities 

between the conditioning and background soil type combinations (Fig.5.4b,d). The effects of 

conditioning plant species on the community structure of the bacterial and fungal communities in the 

different treatments was not consistent (Fig.5.4c,d). Network analysis showed that microbiomes from 

conditioned field soils added to sterilized background soil had a more complex soil microbial network 

than the other three soil combinations. Microbiomes belonging to the combination conditioned field 

soils added to sterilized backgrounds soil, were characterized by higher numbers of nodes, edges and 

connections per node (average degree) (Fig.5.5, Table 5.3). 

 

Conditioning plant species and soil type effects on the composition of root-associated bacterial and 

fungal communities 

In the chrysanthemum root associated microbiome, Proteobacteria, Actinobacteria, Patescibacteria, 

Bacteroidetes, Cyanobacteria and Planctomycetes were the most abundant bacterial phyla (Fig.5.6a). 

Inoculation with greenhouse soils led to a higher relative abundance of Proteobacteria in the root 

associated microbiome of chrysanthemum than inoculation with field soils (Fig.5.6a, Table S5.1). In 

sterilized background soil, the relative abundance of Patescibacteria was fewer, and the relative 

abundance of Actinobacteria, Chloroflexi, Verrucomicrobia, Armatimonadetes higher in roots 

compared to live background soil. Except for Actinobacteria, addition of conditioned field soils to 

sterilized background soil made these patterns stronger (Table S5.1, Fig.5.6). The relative abundances 

of Bacteroidetes, Acidobacteria and Firmicutes changed but only in sterilized background soil 

inoculated with field soil, which led to lower relative abundances of Acidobacteria, and higher relative 

abundances of Bacteroidetes and Firmicutes in chrysanthemum roots than in the other three soil 

combinations.  
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Fig.5.4 Non-metric multidimensional scaling (NMDS) plot performed on taxonomic profile (OTU level for 16s 

and ITS DNA) of root-associated bacteria (a) and fungi (b), and the hierarchical cluster analysis of bray-curtis 

similarities between each treatment on root-associated bacteria (c) and fungi (d).  For NMDS plots, the four types 

of conditioning soil and background soil combinations are highlighted in different colors. The functional groups 

of conditioning plant species are presented by different shapes. “conDbackD” indicates conditioned greenhouse 

soil with live background soil; “conFbackD” indicates conditioned field soil with live background soil; 

“conDbackST” indicates conditioned greenhouse soil with sterilized background soil; “conFbackST” indicates 

conditioned field soil with sterilized background soil. “no plant” indicates no-plant conditioning. “sterilized” 

indicates sterilized no-plant inocula. In cluster analysis, the names of treatments are consisted of conditioning plant 

species identity + conditioning soil type + background soil type. The abbreviations of conditioning plant species 

are describes in material and methods. “ST” indicates sterilized inocucla. “N” indicates no-plant conditioning 

inocula. “D” indicates greenhouse soil, “F” indicates grassland soil. “ST” indicates sterilized soil. 
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Fig.5.5 Network co-occurrence analysis of chrysanthemum root-associated microbial communities in the four types of conditioning and background soil combinations. A 

connection stands for a Spearman Rank correlation with magnitude > 0.7 (both positive and negative) that is statistically significant (P < 0.05 with Bonferroni correction). Red 

edges indicate negative correlations, green edges indicate positive correlations. Each node represents an OTU, and the size of the node is proportional to its number of connections 

(i.e. degree). Each node was colored at phylum level. “conDbackD” indicates conditioned greenhouse soil with live background soil; “conFbackD” indicates conditioned field 

soil with live background soil; “conDbackST” indicates conditioned greenhouse soil with sterilized background soil; “conFbackST” indicates conditioned field soil with 

sterilized background soil.
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Table 5.3 Topological properties of co-occurrence network of root-associated microbial communities in four soil 

types. Networks are in Fig.5.5. 

a Microbial taxon (based on OTU) with at least one significant (P<0.01) and strong (Spearman Rank 

correlations >0.7 or <-0.7) correlation. 

bNumber of connections/correlations obtained by Spearman Rank correlation analysis. 

cThe acerage number of connections per node in the network, i.e. the node connectivity (Gephi). 

dHow nodes are embedded in their neighborhood and the degree to which they tend to cluster together (Gephi). 

 

The differences in bacterial phylum composition between different plant conditioned inocula were 

mainly due to the distinctive phylum composition in 100% sterilized soil. Inoculation of sterilized soil 

into sterilized background soil led to a lower relative abundance of Actinobacteria, Acidobacteria and a 

higher relative abundance of Cyanobacteria, Chloroflexi, and Armatimonadetes in the root microbiome 

compared to inoculation of plant-conditioned inocula (Fig.5.6a,b). For conditioned greenhouse soil 

added to sterilized background soil, inoculation of Galium verum soil led to lower relative abundance 

of Actinobacteria and higher relative abundance of Cyanobacteria in the root microbiome of 

chrysanthemum than chrysanthemum-conditioned soil (Fig.5.6a). Rumex acetosella conditioned field 

soil added to live background soil resulted in a relatively higher abundance of Cyanobacteria in the 

chrysanthemum root microbiome than with sterilized inocula, no-plant conditioned inocula and 

chrysanthemum conditioned inocula (Fig.5.6a). Lolium perenne conditioned field soil added to sterilized 

background soil, resulted in a higher relative abundance of Verrucomicrobia than the three control 

treatments (Fig.5.6b). 

  

Network Properties conDbackD conDbackST conFbackD conFbackST 

Number of nodesa 193 276 453 978 

Number of edgesb 172 244 365 1676 

Average degreec 1.782 1.768 1.611 3.427 

Average clustering coefficientd 0.61 0.593 0.29 0.313 
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The fungal community in chrysanthemum roots consisted mainly of Olpidiomycota and Ascomycota.  

Olpidiomycota is a phylum that consists of plant pathogenic fungi (Fig. 5.6c). The relative abundance 

of Olpidiomycota in chrysanthemum roots was lower with conditioned field inocula and sterilized 

background soil than in the other three conditioning and background soil combinations. Addition of 

conditioned greenhouse soil to sterilized background soil increased the relative Olpidiomycota 

abundance in roots relative to adding the same inocula into live background soil (Table S5.2, Fig.5.6c). 

The relative abundance of Ascomycota, Mortierellomycota and Mucoromycota was significantly 

increased after inoculation of conditioned field soil into sterilized background soil compared to the other 

three soil combinations (Table S5.2, Fig.5.6c). 

 

Roots of chrysanthemum growing in greenhouse soil inocula and sterilized background soil that were 

conditioned by Lolium perenne, Anthoxanthum odoratum and Achillea millefolium had lower relative 

abundance of Olpidiomycota are higher relative abundance of Ascomycota (except for Achillea 

millefolium) than roots growing in 100% sterilized soil (Fig.5.6c). For Lolium perenne inoculation, the 

same effect was also significant when compared with chrysanthemum conditioned inocula (Fig.5.6c). 

 

When classifying root-associated fungi based on their functional groups, the responses of pathogenic 

fungi to conditioning plant species and soil treatments were the same as for Olpidiomycota, because 

Olpidiomycota contributed substantially to the abundance in this group (Table 5.4, Fig.5.7). 

Saprotrophic fungi and plant symbiotic fungi had higher relative abundances in treatments consisting of 

conditioned field inocula and sterilized background soil than in the other three soil combinations (Table 

5.4, Fig.5.7). 

 

Conditioning plant species and soil type effects on the microbial taxa that correlate highly with 

plant performance 

After Bonferroni correction, only bacterial OTUs significantly correlated with plant shoot biomass. No 

bacterial or fungal OTUs correlated with leaf silver damage area or thrips body length. OTUs that were 

highly correlated with plant shoot biomass are shown in Table S5.3. There were eight OTUs that 

correlated with chrysanthemum growth and that had an average abundance of more than 1%: 

Streptomyces 1 (OTU-5), Unidentified Saccharimonadales 1 (OTU-9), Unidentified 

Micromonosporaceae (OTU-15), Unidentified Saccharimonadales 2 (OTU-23) and Glycomyces (OTU-

29)  
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Fig.5.6 The relative abundance of bacterial phyla (a,b) and fungal phyla (c) in each soil treatment. Fig.5.6a and b 

both show bacterial phyla composition, Fig.5.6b shows the relative low abundance phyla which are not visible in 

Fig.5.6a. Five-point stars following the legend of each phylum represent significant effects of factors and four-

point stars represent significant interactions between factors following linear mixed model. Black stars indicate 

significant effects of conditioning plant species; Green stars indicate significant effects of conditioning soil type; 

Yellow stars indicate significant effects of background soil type; Red stars indicate significant interactions between 

conditioning plant species and conditioning soil type; Blue stars indicate significant interactions between 

conditioning plant species with background soil type; Purple stars indicate significant interactions between 

conditioning soil type and background soil type; Grey stars indicate significant interactions between all three 

factors. In each soil type, “*” indicates significant difference compared with sterilized soil inocula; “+” indicates 

significant difference compared with chrysanthemum-conditioned inocula; “#” indicates significant difference 

compared with no-plant conditioned inocula; Name of each bar is labeled as conditioning plant species + 

conditioning soil type + background soil type, in which “N” = no-plant, “ST” = sterilized, “F” = field soil, “D” = 

greenhouse soil.  

 

were negatively correlated with chrysanthemum shoot biomass, and their explained variance (R) of plant 

shoot biomass was 0.59, 0.41, 0.41, 0.57 and 0.42, respectively (Fig.S5.3). Paenarthrobacter (OTU-14), 

Streptomyces 2 (OTU-10) and Rhizobium (OTU-13) were positively correlated with shoot biomass, and 

their explained variance of plant shoot biomass was 0.49, 0.46 and 0.51, respectively (Fig.S5.3). 

 

(c) 
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Table 5.4 The effects of conditioning plant species (all soil treatments, including no-plant conditioned and sterilized no-plant conditioned inocula), conditioning soil type and 

background soil type on the functional groups of fungal OTUs. F value from linear mixed model are presented, *,**,*** indicates significant difference at P < 0.05, 0.01 and 

0.001, respectively. T value from a post hoc test for the pairwise comparison between soil types are also presented. “D,D” indicates conditioned greenhouse soil with live 

background soil. “F,D” indicates conditioned field soil with live background soil. “D,ST” indicates conditioned greenhouse soil with sterilized background soil. “F.ST” indicates 

conditioned filed soil with sterilized background soil. Contrasts following a non-significant conditioning soil type and background soil type interaction were not calculated. 

  
 

df Plant pathogen Saprotroph Plant symbiont Endophyte Unknown Other 

Inocula 10,78 0.92 0.78 1.17 0.74 1.91 1.37 

Consoil 1,78 16.74*** 4.45* 3.67 1.39 9.79* 10.85* 

Backsoil 1,61 0.32 9.76** 5.26* 1.52 3.31 8.98* 

Consoil × Backsoil 1,61 22.78*** 18.75*** 11.67** 0.28 5.12* 4.12* 

D,D - F,D   -0.04 0.97 0.50  -0.88 0.88 

D,D - D,ST   -2.73* 0.67 0.47  2.74* -3.67** 

D,D - F,ST   3.96** -4.36*** -2.95*  -1.36 0.42 

F,D - D,ST   -2.66* -0.33 -0.09  3.56** -4.21*** 

F,D - F,ST   3.97*** -5.28*** -3.71**  -0.58 -0.38 

D,ST - F,ST   6.35*** -4.93*** -3.33**  -3.73** 3.38** 

Inocula × Consoil 10,78 1.52 1.47 1.34 0.68 1.65 1.06 

Inocula × Backsoil 10,61 1.14 0.78 1.68 0.71 1.77 1.20 

Inocula × Consoil × 

Backsoil 

10,61 0.38 1.06 1.74 0.69 0.43 0.72 
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Fig.5.7 The relative abundance of plant pathogenic fungi (a), saprotophic fungi (b), plant symbiontic fungi (c), 

endophytic fungi (d), fungi with unkown functions (e) and other functional group fungi (d) in different soil 

treatments. Other functional groups include fungi that are marine species, nematode pathogens, parasite of lichen, 

fungal parasites and animal pathogens. The overall effects of conditioning plant species, conditioning soil type 

and background soil type on each fungal functional group were examined, only significant effects are presented in 

each figure. “*” indicates significant difference compared with sterilized no-plant inoculum in that conditioning 

soil and background soil combination, “+” indicates significant difference compared with chrysanthemum 

conspecific inoculum in the soil combination. “n.s.” indicates no significant differences between conditioning 

treatment in that soil type. “conDbackD” indicates conditioned greenhouse soil with live background soil; 

“conFbackD” indicates conditioned field soil with live background soil; “conDbackST” indicates conditioned 

greenhouse soil with sterilized background soil; “conFbackST” indicates conditioned field soil with sterilized 

background soil. Abbreviations of plant species are described in material and methods part, “No plant” in the 

legend indicates no-plant conditioned inoculum, “Sterilized” in the legend indicates sterilized no-plant soil 

inoculum. 
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Table 5.5 The effects of conditioning (all soil treatments, including no-plant soil inocula and sterilized no-plant soil inocula), conditioning soil type and background soil type 

on OTUs that were highly related with chrysanthemum biomass, and with an average relative abundance were more than 1%. F values following linear mixed model are 

presented. T values from post hoc test for the pairwise comparisons between soil types are also presented. “D,D” indicates conditioned greenhouse soil with live background 

soil. “F,D” indicates conditioned field soil with live background soil. “D,ST” indicates conditioned greenhouse soil with sterilized background soil. “F.ST” indicates conditioned 

filed soil with sterilized background soil. *,**,*** indicate significant differences at P<0.05, 0.01 and 0.001, respectively. 

 
Inocula Consoil Backsoil Consoil × Backsoil Inocula × 

Consoil 

Inocula × 

Backsoil 

Inocula × 

Consoil × 

backsoil 
    

Overall D,D - F,D  D,D - D,ST  D,D - F,ST  F,D - D,ST  F,D- F,ST  D,ST- F,ST   
  

Df 10,80 1,80 1,87 1,87 
      

10,80 10,87 10,87 

OTU_5 1.35 1.38 206.45*** 8.82** -1.43 8.19*** 10.97*** 9.52*** 12.24*** 2.84* 1.67 1.47 1.03 

OTU_9 1.57 0.47 82.60*** 11.12** -1.88 4.20*** 7.06*** 6.04*** 8.84*** 2.90* 1.44 2.22* 3.94*** 

OTU_15 1.42 17.92*** 163.30*** 29.38*** -0.98 5.32*** 11.91*** 6.22*** 12.73*** 6.66*** 1.78 2.80** 1.16 

OTU_23 1.75 23.47*** 287.73*** 56.12*** -8.73*** 6.86*** 8.58*** 15.54*** 17.19*** 1.77 1.25 0.92 0.50 

OTU_29 0.59 23.14*** 39.84*** 16.91*** 0.43 1.66 7.89*** 1.20 7.34*** 6.26*** 1.15 1.29 1.79 

OTU_14 1.92 79.29*** 123.53*** 71.30*** -0.41 -1.94 -13.82*** -1.43 -13.72*** -12.02*** 1.07 1.72 1.03 

OTU_10 1.73 2.07 250.88*** 5.87* 0.80 -9.71*** -12.04*** -10.23*** -12.84*** -2.54 1.19 1.78 1.38 

OTU_13 2.20* 102.48*** 69.46*** 50.58*** -2.16 -0.90 -13.10*** 1.29 -10.75*** -12.28*** 0.85 2.83** 1.05 
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Fig.5.8 The relative abundance of OTUs in different soil treatments. The selection of the eight OTUs is from Table S5.3 that represents OTUs that are highly correlated with 

plant shoot biomass, and had an average relative abundance across all samples of more than 1%. The correlation between these OTUs and chrysanthemum growth is presented 

in Fig.S5.3. “*” indicates significant difference compared with sterilized no-plant inoculum in that soil type. If “*” above the bar of sterilized no-plant inoculum, this indicates 

sterilized no-plant inoculum are significant different from all the other treatments. “+” indicates significant difference compared with chrysanthemum-conditioned inoculum. 

“#” indicates significant difference compared with no-plant conditioning inoculum. “n.s.” indicates no significant differences between conditioning treatments in that soil type. 

“*” above all bars indicate overall significant effects were found, but no significant differences compared with sterilized no-plant inoculum or no-plant conditioning inoculum 

or chrysanthemum-conditioned inoculum. Only significant statistics are presented in the upper part of each figure. “conDbackD” indicates conditioned greenhouse soil with live 

background soil; “conFbackD” indicates conditioned field soil with live background soil; “conDbackST” indicates conditioned greenhouse soil with sterilized background soil; 

“conFbackST” indicates conditioned field soil with sterilized background soil. “No plant” indicates no-plant conditioning. “Sterilized” indicates sterilized no-plant inocula.
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In sterilized background soil, the relative abundance of Streptomyces 1 (OTU-5) and Unidentified 

Micromonosporaceae (OTU-15) in the chrysanthemum root microbiome was lower than in live 

background soil. Addition of conditioned field inocula to sterilized background soil made this pattern 

stronger than addition of conditioned greenhouse soil inocula to the same background soil (Table 5.5). 

The relative abundance of Glycomyces (OTU-29) decreased, and the relative abundance of 

Paenarthrobacter (OTU-14) and Rhizobium (OTU-13) increased in sterilized background soil 

inoculated with conditioned field soils compared to the other three soil combinations. The relative 

abundance of Streptomyces 2 (OTU-10) in chrysanthemum roots was higher in sterilized than in live 

background soil (Table 5.5).  

 

Roots of chrysanthemum growing in Lolium perenne and Bromus hordeaceus soil had lower and higher 

relative abundances of Streptomyces 1 (OTU-5) than roots growing in chrysanthemum conditioned soil, 

respectively (Fig.5.8a). Roots of chrysanthemum growing in soil with Festuca filiformis inoculum had 

higher relative abundance of Glycomyces (OTU-29) and Paenarthrobacter (OTU-14) than roots 

growing with sterilized inocula (Fig.5.8e,f). Inoculation of Lolium perenne, Galium verum and 

Tanacetum vulgare soil resulted in higher relative abundance of Streptomyces 2 (OTU-10) in 

chrysanthemum roots than inoculation with sterilized soil, chrysanthemum soil, or no-plant conditioned 

soil (Fig.5.8g). Chrysanthemum grown with 100% sterilized soil had a higher relative abundance of 

Rhizobium (OTU-13) than plants grown with plant conditioned inocula (except Rumex acetosella and 

Galium verum) (Fig.5.8h). The differences between the effects of conditioning plant species were all 

observed in soils that contained either conditioned greenhouse soil or live background soil (Fig.5.8).  

 

Discussion 

We show that inoculation of soil microbiomes at the start of a chrysanthemum growth cycle leads to 

differences in chrysanthemum root microbiomes at the end of this growth cycle and hence that these 

inoculated microbiomes established in the soil. Remarkably, this was also true in live background soil 

that contained a microbiome already. However, inoculating conditioned field soil into sterilized 

background soil was the best soil combination for chrysanthemum performance, and led to the most 

distinctive structure of chrysanthemum root microbiome. Chrysanthemum growth was negatively 

influenced in live greenhouse soil and inoculation of field soil or greenhouse soil conditioned by wild 

plant species into this soil did not significantly improve chrysanthemum growth in these soils. However, 

in terms of the chrysanthemum root microbiome, inoculation with soil conditioned by wild plant species 

significantly influenced the bacterial diversity and the relative abundance of OTUs that were both 

positively and negatively correlated with chrysanthemum growth, and reduced the relative abundance 

of pathogenic fungi. Chrysanthemum biomass was highest in sterilized soil but also the relative 
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abundance of plant pathogenic fungi was higher than in inoculated soils. Another important finding is 

that in this study, plant susceptibility to thrips was not influenced by inoculation, and we did not find 

any significant correlations between root-associated microbes and thrips performance. 

 

The effects of inoculation on the chrysanthemum root microbiome were more obvious than on shoot 

biomass of the plant. In terms of root pathogenic fungi and bacterial diversity in chrysanthemum roots, 

inoculation with soil from wild plant species either showed no significant effects or led to lower relative 

abundance of pathogenic fungi and higher bacterial diversity both when compared with sterilized 

inocula or with an inoculum of chrysanthemum soil. Comparing with domesticated crops, plant species 

that grow in natural soils typically have more diverse rhizosphere microbiomes, which may also increase 

the microbial diversity in the roots of plants that grow later in these soils (Pérez-Jaramillo et al. 2016; 

Mariotte et al. 2017). One specific conditioned soil which influenced chrysanthemum root microbiome 

in a consistent direction, is soil conditioned by Lolium perenne, which strongly affected the relative 

abundance of Streptomyces. Other work demonstrated that Lolium perenne increases the abundance of 

soil bacterial groups that have antagonistic activities against soil pathogenic fungi (Latz et al. 2015; 

2016). In the current study, these changes induced by Lolium perenne conditioning did not significantly 

influence chrysanthemum biomass. In previous studies using the same system, root biomass was always 

more responsive to different soil treatments than shoot biomass of chrysanthemum (Ma et al. 2017; 

2018). Unfortunately, we were unable to measure root biomass in this study because these samples were 

used for the molecular analysis of the root microbiome.  

 

It is plausible that plant growth in our study was not solely determined by the increase or decrease in the 

specific groups of microbes. Because the functional capacity of the plant microbiome is more than the 

sum of its individual groups and the influence of the root microbiome on plant growth is the net effect 

of all interactions between the beneficial and detrimental microbes (van der Heijden and Hartmann 2016; 

Kaplan et al. 2018). For example, inoculation with Festuca filiformis conditioned soils led to overall 

higher bacterial diversity on chrysanthemum roots and also a higher relative abundance of both positive 

and negative plant growth-correlated OTUs. Festuca filiformis was also the only wild plant species that 

conditioned soil in a way that resulted in higher chrysanthemum biomass after inoculation than 

inoculation with chrysanthemum conditioned soil, indicating that the net effects of the community may 

be more important than the changes in the specific groups. The changes in chrysanthemum root 

microbiomes induced by inoculation of soils conditioned by wild plant species could also be functional 

redundant, and therefore did not lead to the changes in the overall influence the root microbiome on 

chrysanthemum biomass (Allison and Martiny 2008). Hence, our results emphasize that metagenomics 

sequencing, which is commonly used nowadays, can be an important tool in examining plant-soil 
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feedbacks, and soils inoculations (Nesme et al. 2016), but that this method may not be sufficient to 

disentangle the causal effects and mechanisms.  

 

Our results also highlight that the benefit of sterilizing soil in this cultivation is short-term. In the short-

term, i.e. the first growth cycle after sterilization, sterilized soil provides the best chrysanthemum yield 

(Mahmood et al. 2014; Gebhardt et al. 2017). However, at the same time, soil sterilization can negatively 

influence the soil biota that could suppress infections of soil-borne diseases to the plant. For example, 

soil sterilization can reduce the spore attachment of a beneficial bacteria to the plant parasitic nematode 

Meloidogyne arenaria (Liu et al. 2017). In the current study, we observed two potential negative effects 

of sterilized soil on chrysanthemum. First, sterilized soil enriched the colonization of root-associated 

pathogenic fungi in plant roots compared with inoculated soils. Second, when inoculating conditioned 

greenhouse soil inocula which were bad for chrysanthemum growth and may potentially contain higher 

abundance of pathogens into sterilized background soil, the relative abundance of pathogenic fungi on 

chrysanthemum was even higher than after inoculating the same inocula into live greenhouse 

background soil. The dominant pathogenic fungi in this study was Olpidium brassicae. Apart from being 

a pathogen, Olpidium can be a transmission vector of viruses to host plant species by creating wounds 

in the host (Campbell 1996; Raaijmakers et al. 2009). Thus, because of these negative effects of soil 

sterilization on the soil microbial community, the yield of chrysanthemum in sterilized soil is likely to 

decline in the longer-term. Indeed, in a previous study, we observed that in the second growth cycle, 

chrysanthemum growth in originally sterilized soil decreased sharply, and that inoculation of plant-

conditioned soils at the start of the first growth cycle reduced such negative effects (Ma et al. 2018). 

Thus, negative effects of soil sterilization on soil microbial communities are likely to cause negative 

effects on plant growth in the longer term in chrysanthemum.  

 

The relative abundance of some bacterial phyla, such as Chloroflexi, Verrucomicrobia, 

Armatimonadetes, were highest in the best soil combination for chrysanthemum growth, and were 

lowest in the worst soil combination for chrysanthemum growth, indicating these bacterial phyla were 

associated with chrysanthemum growth. Chloroflexi and Verrucomicrobia were reported in previous 

studies as being enriched in disease suppressive soils against fungal pathogens (Xiong et al. 2017; 

Sanguin et al. 2009). Patescibacteria responded to the conditioning soil type and background soil type 

in the opposite direction, and thus may be negatively associated with plant biomass. Patescibacteria is 

a phylum with a presumed plant symbiotic or parasitic lifestyle (Sánchez-Osuna et al. 2017). It is 

possible that microbes with this lifestyle are costly for chrysanthemum and hence reduce growth. 

Moreover, chrysanthemum is known to form associations with arbuscular mycorrhizal fungi (del Mar 

Montiel-Rozas et al. 2016; Sohn et al. 2003; D’Amelio et al. 2011), but in this study, no mycorrhizal 
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fungi was detected in the roots even though the primers amplify also AMF. It is possible that with the 

high nutrient supply that we used following the recommendation of growth advisors, chrysanthemum 

plants do not need to form symbiosis with AMF.  

 

Among the eight most abundant chrysanthemum growth-correlated OTUs, there were two Streptomyces 

spp, indicating a potentially important role of Streptomyces spp for chrysanthemum growth. 

Streptomyces spp are known for their capabilities to compete for plant-produced resources including 

root exudates and dead plant tissue, often form an intimate association with plants and are common 

colonists of the rhizosphere and endosphere (Cao et al. 2004; Viaene et al. 2016; Franco et al. 2016; 

Schlatter et al. 2017). The mechanisms of beneficial Streptomyces strains that promote plant growth 

involve auxin production, production of antibiotics against plant pathogens, inducing systematic 

resistance of plants against the attack by pathogens and emission of volatile organic compounds that 

stimulate plant growth (Viaene et al. 2016). Manipulative studies have found that inoculation of 

beneficial Streptomyces strains resulted in an increase in plant biomass in crops such as rice, wheat, 

sorghum and tomato (Gopalakrishnan et al. 2013; 2014; Jog et al. 2014; Palaniyandi et al. 2014). Our 

study also provides evidence that this specific Streptomyces strain (OTU-10) not only had a high relative 

abundance in the root microbiome but also positively correlated with the growth of chrysanthemum crop. 

The Streptomyces genus also contains species with phytopathogenic features, such as the potato scab 

disease caused by Streptomyces scabies (Weller et al. 2002). In our study, one Streptomyces strain 

(OTU-5) with high relative abundance correlated negatively with chrysanthemum growth. It is important 

to note that correlations between microbial OTUs that are associated to the shoot biomass do not provide 

information about the causal relationships between these two. It is possible, for example, that increased 

growth of the plant stimulates or reduces the density of specific OTUs via changes in root exudation 

patterns rather than that these specific OTUs stimulate or reduce the growth of the plant. Manipulative 

studies are needed in the future to reveal the causal effects between these important OTUs and 

chrysanthemum performance. 

 

The changes in root microbiome or in shoot biomass of chrysanthemum did not significantly influence 

the performance of thrips. This is in contrast with previous studies that found changes in the composition 

or function of root-associated microbes can reduce or increase the aboveground defense of plants (Badri 

et al. 2013; Pieterse et al. 2014; Kos et al. 2015). The difference between their study and this study is 

the performance of thrips in this study was tested on a detached leaf taken from the plant. Hence, the 

response of chrysanthemum to thrips, such as the induced systematic resistance by beneficial microbes, 

was not measured. Effectively, in our study we tested whether changes in the leaf defense compounds 

of chrysanthemum due to growing in different soils influenced the performances of thrips (Wang et al. 
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2015). In a previous study, we found that the concentration of chlorogenic acid, which has been reported 

to be an important plant defense compound against thrips in chrysanthemum leaves (Leiss et al. 2009), 

was positively correlated with chrysanthemum shoot biomass (Ma et al. 2017). However, in the current 

study, the increase in chrysanthemum shoot biomass was not related to the performance of thrips and 

we did not measure chlorogenic acid. Remarkably, a meta-analysis about the influences of plant traits 

and secondary metabolites on plant resistance to herbivores found that there was no overall association 

between the concentrations of defense compounds with the herbivore susceptibility (Carmona et al. 

2011). Further studies are need to analyse the leaf metabolome of chrysanthemum growing in different 

soils, to infer whether these metabolomes change depending on the soil inoculation used and how this 

relates to the performance of thrips. 

 

In conclusion, this study highlights the potential of using soil from natural ecosystems to improve 

chrysanthemum performance in commercial greenhouses. Soil inoculation in greenhouse soil did not 

cause significant effects on chrysanthemum growth but altered the chrysanthemum root microbiome. 

Plant species such as Lolium perenne, Festuca filiformis, changed the soil so that inoculation with this 

soil increased the bacterial diversity and the abundance of positive and negative plant growth-correlated 

OTUs, and reduced the relative abundance of pathogenic fungi in the root-associated microbiome of 

chrysanthemum. Chrysanthemum biomass was highest in sterilized soil, but in this soil the root pathogen 

load was also highest, potentially leading to pathogen outbreak and hence sterilization without 

inoculation may not be a sustainable strategy. The root-associated fungal communities in 

chrysanthemum growing in live greenhouse soil were dominated by pathogenic fungi phylum 

Olpidiomycota. The bacteria phyla Patescibacteria, Chloroflexi, Verrucomicrobia, Armatimonadetes 

were related most strongly to changes in plant growth. Among the eight OTUs that were abundant and 

that highly correlated with plant growth, two of them were from Streptomyces spp. Future studies should 

explore the causal relationships between these strains and chrysanthemum growth.  
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Supplementary material 

Standardization of sequencing data  

For bacterial data, the total number of reads per sample were ranged from 1467 to 85096, samples with 

total number of reads less than 8000 were removed. There were 9 samples removed, they are AO2FD, 

AO4DD, AM2FD, FF5FST, LP2FST, TV4DST, TV5FD, TV3FD, ST5DD. Then, OTUs with total 

number of reads less than 3 were also removed. For each sample, abundance of each OTU was 

transformed by dividing it by the total amount of reads per sample (McMurdie and Holmes 2014). 

Further, OTUs with abundance less than 0.000125 were removed. The relationships between total 

number of reads with total number of OTUs before and after the standardization are shown in Fig.S5.1 

(a,b). For fungal data, the sequencing of sample “TV3FD” failed. Therefore, in total, there were 219 

samples. The total number of fungal reads per sample range from 1 to 9701 as plant material from 

chrysanthemum roots was co-amplified. Samples with less than 140 reads were removed. There were 

93 samples were removed. OTUs with less than 3 reads were then removed. For each sample, abundance 

of each OTU was transformed by dividing it by the total amount of reads per sample (McMurdie and 

Holmes 2014). OTUs with abundance less than 0.0069 were removed. The relationships between total 

number of reads with total number of OTUs before and after the standardization are shown in Fig.S5.1 

(c,d). The transformed abundance data were used for all analysis of the root microbiome. 
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Table S5.1 The effects of conditioning plant species (all soil treatments), conditioning soil type and background soil type on the bacterial phyla composition.  F-values 

following linear mixed model are presented. T-values from post hoc test for the pairwise comparisons between soil types are presented. “D,D” indicates conditioned disease 

soil with background disease soil. “D,ST” indicates conditioned disease soil with sterilized background soil. “F,D” indicates conditioned field soil with disease background 

soil. “F.ST” indicates conditioned filed soil with sterilized background soil. *,**,*** indicate significant differences at P<0.05, 0.01 and 0.001, respectively. 

Bacterial phylum Inocula Consoil Backsoil Consoil × Backsoil Inocula × 

Consoil 

Inocula × 

Backsoil 

Inocula × 

Consoil × 

backsoil 
    

Overall D,D-

F,D  

D,D- D,ST  D,D - F,ST  F,D - D,ST  F,D - F,ST  D,ST-F,ST   
  

df 10,80 1,80 1,87 1,87       10,80 10,87 10,87 

Proteobacteria 1.31 5.64* 1.18 0.96       1.78 0.60 0.63 

Actinobacteria 5.25*** 0.34 9.53** 5.79* 1.40 -0.59 -2.58 -1.99 -3.94*** -2.01 1.70 1.72 0.61 

Patescibacteria 0.84 3.19 180.72*** 4.82* -0.31 8.04*** 10.75*** 8.23*** 10.91*** 2.77* 0.64 0.47 1.36 

Bacteroidetes 1.82 8.62* 40.61*** 20.98*** 1.08 -1.16 -6.17*** -2.13 -7.86*** -5.15*** 1.41 1.73 0.47 

Cyanobacteria 2.09* 0.70 1.26 2.02       1.25 1.07 1.07 

Planctomycetes 2.10* 1.08 2.61 0.41       0.83 0.82 0.45 

Chloroflexi 1.22 9.93** 127.83*** 9.59** 0.06 -5.86*** -10.23*** -5.85*** -10.15*** -4.42*** 4.19*** 0.58 3.65** 

Acidobacteria 1.70 19.45*** 10.12** 9.18** 0.95 0.13 5.32*** -0.82 4.29*** 5.21*** 0.93 0.63 0.15 

Verrucomicrobia 1.72 10.29** 123.71*** 13.39** 0.25 -5.35*** -10.24*** -5.53*** -10.35*** -4.95*** 2.05* 1.71 2.09* 

Firmicutes 0.36 14.08*** 3.01 5.58* -1.35 0.37 -3.84*** 1.68 -2.80 -4.20*** 0.38 0.80 0.49 

Gemmatimonadetes 0.51 0.42 2.20 1.79       1.13 0.47 1.75 

Armatimonadetes 3.01** 23.06*** 203.39*** 45.01*** 1.32 -5.48*** -13.76*** -6.73*** -14.89*** -8.35*** 2.15* 2.57** 2.75** 

Chlamydiae 1.09 0.27 4.27* 1.99       0.87 0.93 0.77 

Dependentiae 2.27* 9.43** 27.64*** 0.28       0.94 2.47** 2.73** 

low.abundance 4.38*** 1.70 3.91* 3.57       1.32 1.44 1.06 
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Table S5.2 The effects of conditioning plant species (all soil treatments), conditioning soil type and background soil type on the fungal phyla composition.  F-values 

following linear mixed model are presented. T-values from post hoc test for the pairwise comparisons between soil types are presented. “D,D” indicates conditioned disease 

soil with background disease soil. “D,ST” indicates conditioned disease soil with sterilized background soil. “F,D” indicates conditioned field soil with disease background 

soil. “F.ST” indicates conditioned filed soil with sterilized background soil. *,**,*** indicate significant differences at P<0.05, 0.01 and 0.001, respectively. 

Fungal phylum Inocula Consoil Backsoil Consoil × Backsoil Inocula × 

Consoil 

Inocula × 

Backsoil 

Inocula × 

Consoil × 

backsoil 
    

Overall D,D-

F,D  

D,D-

D,ST  

D,D - F,ST  F,D - D,ST  F,D-F,ST  D,ST-

F,ST  

 
  

df 10,78 1,78 1,61 1,61       10,78 10,61 10,61 

Olpidiomycota 0.88 14.60** 0.15 23.33*** -0.30 -2.91* 3.64** -2.57 3.88** 6.19*** 1.53 1.20 0.31 

Ascomycota 2.06* 20.11*** 8.36** 49.78*** 1.18 2.47 -6.05*** 1.26 -7.04*** -8.22*** 1.19 0.95 0.63 

Basidiomycota 1.07 0.00 0.14 0.13       1.16 0.68 1.13 

Mortierellomycota 4.46*** 2.75 9.26** 4.14* 0.14 -0.39 -3.34** -0.53 -3.44** -3.00* 3.61** 2.39* 3.79** 

Rozellomycota 2.21* 4.51* 0.63 2.04       0.44 0.53 1.37 

Chytridiomycota 0.54 6.10* 5.13* 0.57       0.29 0.97 0.94 

Entomophthoromycota 0.81 1.07 1.56 1.11       0.61 0.97 0.65 

Glomeromycota 0.83 1.62 1.55 2.28       0.88 0.71 0.90 

Mucoromycota 0.89 9.43* 11.79* 16.91*** 0.04 0.00 -5.48*** -0.04 -5.69*** -5.48*** 1.15 1.51 2.54* 

unidentified 0.47 0.03 14.41** 2.71       0.36 1.65 0.37 
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Fig.S5.1 Relationships between total number of OTUs with total number of reads per sample. Panel a and b 

show bacterial OTUs and reads before and after standardization, respectively. Panel c and d show fungal OTUs 

and reads before and after standardization, respectively. 
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Fig.S5.2 Correlations between bacterial diversity and fungal diversity to body length of female and male thrips. 

“n.s.” indicates no significant correlation was found using Pearson correlation. 
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Fig.S5.3 OTUs which were highly related with chrysanthemum shoot biomass and with an average relative 

abundance over 1%. R and P-values following Pearson correlations are presented on each figure. 
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Table S5.3 Chrysanthemum growth-correlated OTUs. R following a Pearson correlation is presented for each 

OTU, the positive and negative of R indicate the positive and negative correlation between OTU and 

chrysanthemum biomass, respectively. “Uni” in the genus name indicates unidentified. 

OTUs Phylum Genus R 

OTU_652 Acidobacteria Blastocatella -0.47634 

OTU_903 Acidobacteria Bryobacter 0.439812 

OTU_647 Acidobacteria Bryobacter 0.489648 

OTU_597 Acidobacteria Subgroup_10 -0.54509 

OTU_585 Acidobacteria Subgroup_10 -0.48128 

OTU_883 Acidobacteria Uni.Acidobacteria -0.44697 

OTU_1417 Acidobacteria Uni.Acidobacteria -0.38933 

OTU_187 Acidobacteria Uni.Blastocatellaceae 0.422538 

OTU_609 Acidobacteria Uni.Blastocatellia_(Subgroup_4) -0.49561 

OTU_33 Actinobacteria Aeromicrobium 0.466094 

OTU_752 Actinobacteria Agromyces -0.48071 

OTU_1047 Actinobacteria Angustibacter 0.451613 

OTU_277 Actinobacteria Cellulosimicrobium -0.49631 

OTU_1873 Actinobacteria CL500-29_marine_group 0.441974 

OTU_1372 Actinobacteria Demequina -0.39926 

OTU_1726 Actinobacteria Fodinicola 0.407739 

OTU_879 Actinobacteria Geodermatophilus 0.477513 

OTU_29 Actinobacteria Glycomyces -0.42213 

OTU_1477 Actinobacteria Haloactinopolyspora 0.560683 

OTU_1750 Actinobacteria Iamia 0.399671 

OTU_907 Actinobacteria Iamia 0.418951 

OTU_1031 Actinobacteria Iamia 0.431053 

OTU_328 Actinobacteria Iamia 0.444016 

OTU_1196 Actinobacteria Iamia 0.461396 

OTU_259 Actinobacteria Iamia 0.462532 

OTU_423 Actinobacteria Iamia 0.614482 

OTU_808 Actinobacteria Ilumatobacter -0.47066 

OTU_159 Actinobacteria Marmoricola 0.577897 

OTU_456 Actinobacteria Microbacterium 0.567982 

OTU_713 Actinobacteria Mycobacterium 0.397728 

OTU_228 Actinobacteria Mycobacterium 0.486204 

OTU_453 Actinobacteria Nocardioides -0.44616 

OTU_247 Actinobacteria Nocardioides 0.392475 

OTU_770 Actinobacteria Nocardioides 0.39304 

OTU_399 Actinobacteria Nocardioides 0.400249 

OTU_325 Actinobacteria Nocardioides 0.421491 

OTU_413 Actinobacteria Nocardioides 0.426096 

OTU_1080 Actinobacteria Nocardioides 0.430078 

OTU_779 Actinobacteria Nocardioides 0.489582 

OTU_575 Actinobacteria Nocardioides 0.533037 

OTU_88 Actinobacteria Nocardioides 0.533118 

OTU_5643 Actinobacteria Nocardioides 0.544101 
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OTU_185 Actinobacteria Nocardioides 0.631145 

OTU_4057 Actinobacteria Paenarthrobacter 0.435646 

OTU_14 Actinobacteria Paenarthrobacter 0.489107 

OTU_127 Actinobacteria Phycicoccus 0.516922 

OTU_610 Actinobacteria Pseudonocardia 0.403993 

OTU_912 Actinobacteria Rhodococcus 0.468061 

OTU_576 Actinobacteria Streptomyces -0.60253 

OTU_5 Actinobacteria Streptomyces -0.58886 

OTU_580 Actinobacteria Streptomyces -0.53758 

OTU_1960 Actinobacteria Streptomyces -0.45851 

OTU_297 Actinobacteria Streptomyces -0.45337 

OTU_1775 Actinobacteria Streptomyces -0.4529 

OTU_2360 Actinobacteria Streptomyces -0.43477 

OTU_3833 Actinobacteria Streptomyces 0.403153 

OTU_2714 Actinobacteria Streptomyces 0.412275 

OTU_2027 Actinobacteria Streptomyces 0.417039 

OTU_10 Actinobacteria Streptomyces 0.462477 

OTU_169 Actinobacteria Streptomyces 0.483204 

OTU_1677 Actinobacteria Streptomyces 0.485293 

OTU_279 Actinobacteria Streptomyces 0.501712 

OTU_44 Actinobacteria Streptomyces 0.634779 

OTU_623 Actinobacteria Terrabacter 0.470358 

OTU_1048 Actinobacteria Uni.Acidimicrobiia 0.445889 

OTU_669 Actinobacteria Uni.Actinomarinales -0.4734 

OTU_154 Actinobacteria Uni.Intrasporangiaceae 0.407171 

OTU_434 Actinobacteria Uni.Micrococcaceae 0.548598 

OTU_50 Actinobacteria Uni.Micrococcaceae 0.555612 

OTU_15 Actinobacteria Uni.Micromonosporaceae -0.4123 

OTU_420 Actinobacteria Uni.Micromonosporaceae -0.40419 

OTU_335 Actinobacteria Uni.Microtrichales 0.445566 

OTU_548 Actinobacteria Uni.Nocardioidaceae 0.444814 

OTU_165 Actinobacteria Uni.Solirubrobacterales -0.61799 

OTU_108 Actinobacteria Uni.Solirubrobacterales -0.60189 

OTU_104 Actinobacteria Uni.Solirubrobacterales -0.58795 

OTU_200 Actinobacteria Uni.Solirubrobacterales -0.43583 

OTU_661 Actinobacteria Uni.Streptomycetaceae 0.418161 

OTU_895 Armatimonadetes Uni.Armatimonadales 0.431331 

OTU_1823 Armatimonadetes Uni.Armatimonadetes 0.405588 

OTU_1326 Armatimonadetes Uni.Armatimonadetes 0.491623 

OTU_440 Armatimonadetes Uni.Fimbriimonadaceae 0.417749 

OTU_442 Armatimonadetes Uni.Fimbriimonadaceae 0.433463 

OTU_208 Bacteroidetes Chitinophaga 0.421041 

OTU_305 Bacteroidetes Chryseolinea -0.58237 

OTU_701 Bacteroidetes Chryseolinea -0.46925 

OTU_1531 Bacteroidetes Chryseolinea -0.42683 



Root microbiome of chrysanthemum 

137 
 

OTUs Phylum Genus R 

OTU_1120 Bacteroidetes Chryseolinea 0.397513 

OTU_1829 Bacteroidetes Chryseolinea 0.418744 

OTU_319 Bacteroidetes Chryseolinea 0.462366 

OTU_173 Bacteroidetes Emticicia 0.4921 

OTU_717 Bacteroidetes Flavisolibacter 0.413845 

OTU_850 Bacteroidetes Flavisolibacter 0.419859 

OTU_1019 Bacteroidetes Flavisolibacter 0.437309 

OTU_1254 Bacteroidetes Flavisolibacter 0.52846 

OTU_391 Bacteroidetes Flavitalea 0.507189 

OTU_1352 Bacteroidetes Flavitalea 0.520299 

OTU_497 Bacteroidetes Flavitalea 0.550851 

OTU_675 Bacteroidetes Fluviicola 0.427183 

OTU_438 Bacteroidetes Lacibacter 0.393284 

OTU_2270 Bacteroidetes Larkinella 0.464173 

OTU_217 Bacteroidetes Niastella -0.58619 

OTU_77 Bacteroidetes Niastella 0.482436 

OTU_602 Bacteroidetes Pedobacter 0.3912 

OTU_2757 Bacteroidetes Pedobacter 0.418965 

OTU_1622 Bacteroidetes Pedobacter 0.420375 

OTU_109 Bacteroidetes Pedobacter 0.54717 

OTU_2246 Bacteroidetes Pseudoflavitalea 0.443741 

OTU_1054 Bacteroidetes Sporocytophaga -0.43169 

OTU_536 Bacteroidetes Terrimonas 0.392563 

OTU_1932 Bacteroidetes Uni.Chitinophagaceae -0.43706 

OTU_1276 Bacteroidetes Uni.Chitinophagaceae 0.443779 

OTU_714 Bacteroidetes Uni.Chitinophagaceae 0.492224 

OTU_562 Bacteroidetes Uni.Chitinophagaceae 0.504909 

OTU_667 Bacteroidetes Uni.Ignavibacteria -0.50274 

OTU_58 Bacteroidetes Uni.Microscillaceae -0.66381 

OTU_564 Bacteroidetes Uni.Microscillaceae -0.60225 

OTU_533 Bacteroidetes Uni.Microscillaceae -0.59843 

OTU_301 Bacteroidetes Uni.Microscillaceae -0.57591 

OTU_586 Bacteroidetes Uni.Microscillaceae -0.53081 

OTU_311 Bacteroidetes Uni.Microscillaceae -0.51004 

OTU_196 Bacteroidetes Uni.Microscillaceae -0.47692 

OTU_1110 Bacteroidetes Uni.Microscillaceae -0.45232 

OTU_351 Bacteroidetes Uni.Microscillaceae 0.413534 

OTU_121 Bacteroidetes Uni.Microscillaceae 0.415411 

OTU_614 Bacteroidetes Uni.Microscillaceae 0.420309 

OTU_1006 Bacteroidetes Uni.Microscillaceae 0.437237 

OTU_989 Bacteroidetes Uni.Rhodothermaceae 0.409612 

OTU_289 Bacteroidetes Uni.Sphingobacteriaceae 0.411957 

OTU_5349 Chlamydiae Uni.Chlamydiales 0.423321 

OTU_1018 Chloroflexi FFCH7168 0.427277 

OTU_166 Chloroflexi FFCH7168 0.496753 
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OTU_333 Chloroflexi FFCH7168 0.522302 

OTU_1140 Chloroflexi Uni.Anaerolineae -0.41436 

OTU_1331 Chloroflexi Uni.Anaerolineae 0.424423 

OTU_106 Chloroflexi Uni.Ardenticatenaceae 0.570648 

OTU_1101 Chloroflexi Uni.Ardenticatenales -0.42171 

OTU_709 Chloroflexi Uni.Ardenticatenales -0.3973 

OTU_759 Chloroflexi Uni.Caldilineaceae 0.398028 

OTU_643 Chloroflexi Uni.Chloroflexi -0.49307 

OTU_605 Chloroflexi Uni.Chloroflexi -0.44349 

OTU_5702 Chloroflexi Uni.Chloroflexi -0.39581 

OTU_1099 Chloroflexi Uni.Kallotenuales 0.412174 

OTU_1143 Chloroflexi Uni.Kallotenuales 0.457317 

OTU_182 Chloroflexi Uni.Roseiflexaceae -0.59452 

OTU_891 Chloroflexi Uni.Roseiflexaceae 0.446741 

OTU_1380 Chloroflexi Uni.Roseiflexaceae 0.476749 

OTU_212 Chloroflexi Uni.Roseiflexaceae 0.530794 

OTU_601 Chloroflexi Uni.Roseiflexaceae 0.532884 

OTU_47 Chloroflexi Uni.Roseiflexaceae 0.59337 

OTU_572 Chloroflexi Uni.SBR1031 -0.48816 

OTU_507 Chloroflexi Uni.SBR1031 -0.41624 

OTU_2009 Chloroflexi Uni.SBR1031 -0.41046 

OTU_2070 Chloroflexi Uni.SBR1031 0.432582 

OTU_1439 Chloroflexi Uni.Thermomicrobiales 0.413626 

OTU_1723 Chloroflexi Uni.Thermomicrobiales 0.466882 

OTU_991 Cyanobacteria Uni.Sericytochromatia 0.410722 

OTU_425 Cyanobacteria Uni.Sericytochromatia 0.550732 

OTU_429 Cyanobacteria Uni.Sericytochromatia 0.619879 

OTU_518 Firmicutes Paenibacillus -0.45929 

OTU_1597 Gemmatimonadetes Gemmatimonas 0.432686 

OTU_392 Gemmatimonadetes Uni.Gemmatimonadaceae -0.48351 

OTU_1498 Gemmatimonadetes Uni.Gemmatimonadaceae -0.39299 

OTU_818 Gemmatimonadetes Uni.Gemmatimonadaceae 0.398241 

OTU_1385 Gemmatimonadetes Uni.Gemmatimonadaceae 0.478934 

OTU_227 Patescibacteria Uni.Saccharimonadaceae 0.505487 

OTU_23 Patescibacteria Uni.Saccharimonadales -0.56967 

OTU_164 Patescibacteria Uni.Saccharimonadales -0.4772 

OTU_270 Patescibacteria Uni.Saccharimonadales -0.47094 

OTU_9 Patescibacteria Uni.Saccharimonadales -0.4092 

OTU_771 Patescibacteria Uni.Saccharimonadales -0.39196 

OTU_599 Patescibacteria Uni.Saccharimonadales 0.392211 

OTU_1436 Patescibacteria Uni.Saccharimonadales 0.39298 

OTU_718 Patescibacteria Uni.Saccharimonadales 0.402183 

OTU_346 Patescibacteria Uni.Saccharimonadales 0.430612 

OTU_1499 Planctomycetes Fimbriiglobus -0.41838 

OTU_1760 Planctomycetes Gemmata 0.399695 



Root microbiome of chrysanthemum 

139 
 

OTUs Phylum Genus R 

OTU_408 Planctomycetes Gemmata 0.410851 

OTU_1030 Planctomycetes Gemmata 0.475908 

OTU_99 Planctomycetes Pir4_lineage -0.71645 

OTU_338 Planctomycetes Pir4_lineage -0.6647 

OTU_517 Planctomycetes Pir4_lineage -0.61581 

OTU_1327 Planctomycetes Pir4_lineage -0.61278 

OTU_436 Planctomycetes Pir4_lineage -0.60434 

OTU_229 Planctomycetes Pir4_lineage -0.57211 

OTU_922 Planctomycetes Pir4_lineage -0.55433 

OTU_825 Planctomycetes Pir4_lineage -0.51597 

OTU_810 Planctomycetes Pir4_lineage -0.49145 

OTU_832 Planctomycetes Pir4_lineage -0.48392 

OTU_846 Planctomycetes Pir4_lineage -0.47857 

OTU_722 Planctomycetes Pir4_lineage -0.42856 

OTU_927 Planctomycetes Pir4_lineage -0.41876 

OTU_811 Planctomycetes Pirellula -0.45705 

OTU_876 Planctomycetes Pirellula 0.426637 

OTU_143 Planctomycetes Pirellula 0.469724 

OTU_1261 Planctomycetes Pirellula 0.476333 

OTU_367 Planctomycetes Planctomicrobium -0.44359 

OTU_1646 Planctomycetes Planctomicrobium -0.43912 

OTU_330 Planctomycetes Rhodopirellula -0.55899 

OTU_645 Planctomycetes Rhodopirellula 0.458468 

OTU_370 Planctomycetes SH-PL14 -0.65176 

OTU_748 Planctomycetes SH-PL14 -0.48059 

OTU_618 Planctomycetes SH-PL14 -0.42362 

OTU_685 Planctomycetes SH-PL14 -0.41311 

OTU_820 Planctomycetes SH-PL14 0.434482 

OTU_829 Planctomycetes SH-PL14 0.439917 

OTU_243 Planctomycetes SH-PL14 0.462753 

OTU_300 Planctomycetes SH-PL14 0.486571 

OTU_1636 Planctomycetes SH-PL14 0.497136 

OTU_2368 Planctomycetes Singulisphaera 0.417316 

OTU_1599 Planctomycetes Uni.Isosphaeraceae 0.416532 

OTU_1700 Planctomycetes Uni.Isosphaeraceae 0.449928 

OTU_776 Planctomycetes Uni.Isosphaeraceae 0.496409 

OTU_998 Planctomycetes Uni.Pirellulaceae -0.44482 

OTU_707 Planctomycetes Uni.Planctomycetales -0.46694 

OTU_1194 Planctomycetes Uni.Planctomycetales -0.46594 

OTU_753 Planctomycetes Uni.Planctomycetales -0.39279 

OTU_1161 Planctomycetes Uni.Planctomycetales 0.456942 

OTU_995 Planctomycetes Uni.Planctomycetales 0.46452 

OTU_1770 Planctomycetes Uni.Tepidisphaerales 0.391199 

OTU_1210 Planctomycetes Uni.Tepidisphaerales 0.448376 

OTU_110 Proteobacteria [Rhizobium]_sphaerophysae_group -0.39068 
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OTU_581 Proteobacteria [Rhizobium]_sphaerophysae_group -0.38975 

OTU_189 Proteobacteria Acidibacter 0.406473 

OTU_275 Proteobacteria 

Allorhizobium-Neorhizobium-Pararhizobium-

Rhizobium 0.435427 

OTU_25 Proteobacteria 

Allorhizobium-Neorhizobium-Pararhizobium-

Rhizobium 0.443698 

OTU_13 Proteobacteria 

Allorhizobium-Neorhizobium-Pararhizobium-

Rhizobium 0.512481 

OTU_941 Proteobacteria 

Allorhizobium-Neorhizobium-Pararhizobium-

Rhizobium 0.561572 

OTU_244 Proteobacteria Altererythrobacter -0.54532 

OTU_214 Proteobacteria Aminobacter 0.471688 

OTU_849 Proteobacteria Aquamicrobium 0.478735 

OTU_1032 Proteobacteria Aquicella -0.42804 

OTU_5221 Proteobacteria Arenimonas 0.408607 

OTU_690 Proteobacteria Bauldia -0.40214 

OTU_365 Proteobacteria Bauldia 0.614443 

OTU_231 Proteobacteria Bdellovibrio -0.45223 

OTU_495 Proteobacteria Bdellovibrio 0.435453 

OTU_37 Proteobacteria Bosea -0.39641 

OTU_84 Proteobacteria Bosea 0.481859 

OTU_85 Proteobacteria Bradyrhizobium 0.445319 

OTU_479 Proteobacteria Burkholderia-Caballeronia-Paraburkholderia 0.568284 

OTU_202 Proteobacteria Caulobacter 0.409963 

OTU_1467 Proteobacteria Cellvibrio -0.3977 

OTU_710 Proteobacteria Devosia 0.48285 

OTU_122 Proteobacteria Dokdonella -0.67113 

OTU_880 Proteobacteria Dokdonella -0.42826 

OTU_215 Proteobacteria Dongia -0.44383 

OTU_917 Proteobacteria Ensifer -0.40767 

OTU_204 Proteobacteria Ferrovibrio -0.55306 

OTU_406 Proteobacteria Haliangium 0.417709 

OTU_304 Proteobacteria Haliangium 0.487205 

OTU_348 Proteobacteria Haliangium 0.502025 

OTU_431 Proteobacteria Hirschia 0.394594 

OTU_101 Proteobacteria Hydrogenophaga -0.41081 

OTU_51 Proteobacteria Hyphomicrobium -0.67037 

OTU_1288 Proteobacteria Hyphomicrobium -0.66487 

OTU_76 Proteobacteria Hyphomicrobium -0.62158 

OTU_758 Proteobacteria Hyphomicrobium 0.39234 

OTU_356 Proteobacteria Hyphomicrobium 0.513757 

OTU_336 Proteobacteria Legionella 0.42132 

OTU_730 Proteobacteria Lysobacter 0.404024 

OTU_360 Proteobacteria Lysobacter 0.498036 

OTU_352 Proteobacteria Massilia 0.422407 

OTU_1216 Proteobacteria Massilia 0.527776 
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OTU_74 Proteobacteria Massilia 0.551807 

OTU_103 Proteobacteria Mesorhizobium -0.50119 

OTU_2822 Proteobacteria Mesorhizobium 0.425973 

OTU_203 Proteobacteria Mesorhizobium 0.476046 

OTU_702 Proteobacteria Methylobacterium 0.49691 

OTU_869 Proteobacteria Methyloceanibacter -0.45783 

OTU_1443 Proteobacteria Methylotenera -0.5402 

OTU_802 Proteobacteria Methylotenera -0.39136 

OTU_546 Proteobacteria Microvirga 0.405678 

OTU_175 Proteobacteria Microvirga 0.409732 

OTU_1045 Proteobacteria Microvirga 0.482123 

OTU_955 Proteobacteria MND1 -0.44471 

OTU_896 Proteobacteria Nordella -0.43483 

OTU_131 Proteobacteria Novosphingobium -0.59687 

OTU_1514 Proteobacteria Novosphingobium 0.433559 

OTU_1512 Proteobacteria Phenylobacterium 0.391215 

OTU_1008 Proteobacteria Phenylobacterium 0.472927 

OTU_840 Proteobacteria Phenylobacterium 0.561249 

OTU_102 Proteobacteria Pseudolabrys -0.60139 

OTU_1224 Proteobacteria Pseudolabrys -0.48252 

OTU_1704 Proteobacteria Pseudolabrys 0.41271 

OTU_765 Proteobacteria Pseudorhodoplanes 0.473658 

OTU_1174 Proteobacteria Ramlibacter 0.520952 

OTU_662 Proteobacteria Rhizorhapis -0.55033 

OTU_372 Proteobacteria Rhodopseudomonas 0.555086 

OTU_2364 Proteobacteria Rhodovastum 0.396037 

OTU_100 Proteobacteria Sphingobium -0.5733 

OTU_358 Proteobacteria Sphingobium -0.54411 

OTU_81 Proteobacteria Sphingobium -0.39932 

OTU_459 Proteobacteria Sphingomonas 0.426267 

OTU_640 Proteobacteria Sphingomonas 0.428877 

OTU_296 Proteobacteria Sphingomonas 0.468869 

OTU_191 Proteobacteria Sphingomonas 0.485239 

OTU_282 Proteobacteria Sphingopyxis 0.486523 

OTU_145 Proteobacteria Steroidobacter -0.50029 

OTU_1082 Proteobacteria SWB02 -0.47876 

OTU_394 Proteobacteria SWB02 -0.44266 

OTU_1223 Proteobacteria Uni.Alphaproteobacteria 0.444893 

OTU_899 Proteobacteria Uni.Beijerinckiaceae 0.391213 

OTU_978 Proteobacteria Uni.Beijerinckiaceae 0.453351 

OTU_2471 Proteobacteria Uni.Beijerinckiaceae 0.485239 

OTU_2395 Proteobacteria Uni.Beijerinckiaceae 0.553246 

OTU_238 Proteobacteria Uni.BIrii41 -0.60447 

OTU_266 Proteobacteria Uni.BIrii41 -0.4257 

OTU_419 Proteobacteria Uni.BIrii41 0.466932 
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OTU_142 Proteobacteria Uni.Burkholderiaceae 0.391062 

OTU_1903 Proteobacteria Uni.Burkholderiaceae 0.452536 

OTU_616 Proteobacteria Uni.Burkholderiaceae 0.456392 

OTU_4020 Proteobacteria Uni.Burkholderiaceae 0.470589 

OTU_1007 Proteobacteria Uni.Caulobacteraceae 0.414757 

OTU_337 Proteobacteria Uni.Cellvibrionaceae -0.49074 

OTU_3051 Proteobacteria Uni.Diplorickettsiaceae 0.469572 

OTU_588 Proteobacteria Uni.Gammaproteobacteria -0.52513 

OTU_281 Proteobacteria Uni.Hyphomicrobiaceae -0.54482 

OTU_578 Proteobacteria Uni.Hyphomicrobiaceae -0.44171 

OTU_637 Proteobacteria Uni.Methyloligellaceae -0.55609 

OTU_746 Proteobacteria Uni.Methyloligellaceae -0.40583 

OTU_466 Proteobacteria Uni.Micavibrionales -0.47689 

OTU_464 Proteobacteria Uni.Micavibrionales -0.42786 

OTU_950 Proteobacteria Uni.Micavibrionales -0.40422 

OTU_471 Proteobacteria Uni.Micropepsaceae 0.481394 

OTU_549 Proteobacteria Uni.PLTA13 -0.50317 

OTU_739 Proteobacteria Uni.Reyranellaceae -0.42482 

OTU_421 Proteobacteria Uni.Rhizobiaceae -0.58596 

OTU_2289 Proteobacteria Uni.Rhizobiaceae -0.5114 

OTU_113 Proteobacteria Uni.Rhizobiaceae -0.4425 

OTU_248 Proteobacteria Uni.Rhizobiaceae -0.43013 

OTU_1562 Proteobacteria Uni.Rhizobiaceae -0.40025 

OTU_111 Proteobacteria Uni.Rhizobiaceae 0.42998 

OTU_417 Proteobacteria Uni.Rhizobiaceae 0.449084 

OTU_148 Proteobacteria Uni.Rhizobiales -0.70379 

OTU_92 Proteobacteria Uni.Rhizobiales -0.60891 

OTU_382 Proteobacteria Uni.Rhizobiales -0.51785 

OTU_1296 Proteobacteria Uni.Rhizobiales 0.433043 

OTU_374 Proteobacteria Uni.Rhizobiales_Incertae_Sedis -0.51224 

OTU_209 Proteobacteria Uni.Rhodanobacteraceae -0.51901 

OTU_389 Proteobacteria Uni.Rhodobacteraceae -0.56618 

OTU_622 Proteobacteria Uni.Rhodospirillales -0.41587 

OTU_400 Proteobacteria Uni.Rhodospirillales -0.40705 

OTU_1580 Proteobacteria Uni.Rhodospirillales 0.408626 

OTU_1325 Proteobacteria Uni.Rhodospirillales 0.449134 

OTU_205 Proteobacteria Uni.Rickettsiales -0.49841 

OTU_1105 Proteobacteria Uni.Rickettsiales 0.443248 

OTU_4448 Proteobacteria Uni.Sandaracinaceae 0.558084 

OTU_317 Proteobacteria Uni.Sandaracinaceae 0.594079 

OTU_376 Proteobacteria Uni.Sphingomonadaceae -0.5991 

OTU_624 Proteobacteria Uni.Sphingomonadaceae -0.42685 

OTU_2180 Proteobacteria Uni.Sphingomonadaceae 0.461227 

OTU_3590 Proteobacteria Uni.Sphingomonadaceae 0.476439 

OTU_1066 Proteobacteria Uni.Sphingomonadaceae 0.497621 



Root microbiome of chrysanthemum 

143 
 

OTUs Phylum Genus R 

OTU_323 Proteobacteria Uni.Sphingomonadaceae 0.508866 

OTU_280 Proteobacteria Uni.Sphingomonadaceae 0.539196 

OTU_538 Proteobacteria Uni.Xanthobacteraceae -0.63185 

OTU_303 Proteobacteria Uni.Xanthobacteraceae -0.54682 

OTU_2066 Proteobacteria Uni.Xanthobacteraceae 0.396282 

OTU_216 Proteobacteria Uni.Xanthobacteraceae 0.408766 

OTU_1220 Proteobacteria Uni.Xanthobacteraceae 0.4203 

OTU_1485 Proteobacteria Uni.Xanthobacteraceae 0.453222 

OTU_535 Proteobacteria Uni.Xanthobacteraceae 0.454792 

OTU_2749 Proteobacteria Uni.Xanthobacteraceae 0.46097 

OTU_1365 Proteobacteria Uni.Xanthobacteraceae 0.479836 

OTU_716 Proteobacteria Uni.Xanthobacteraceae 0.550554 

OTU_1820 Proteobacteria Uni.Xanthobacteraceae 0.592428 

OTU_4025 Proteobacteria Variovorax 0.400431 

OTU_405 Proteobacteria Variovorax 0.419367 

OTU_1796 Verrucomicrobia Alterococcus -0.40268 

OTU_768 Verrucomicrobia Chthoniobacter 0.517364 

OTU_163 Verrucomicrobia Luteolibacter 0.394224 

OTU_188 Verrucomicrobia Luteolibacter 0.404769 

OTU_1904 Verrucomicrobia Opitutus 0.461347 

OTU_901 Verrucomicrobia Opitutus 0.55745 

OTU_1252 Verrucomicrobia Roseimicrobium -0.41901 

OTU_1412 Verrucomicrobia Uni.Verrucomicrobiaceae 0.464875 
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Scope 

Ecological knowledge about plants and soils can be of great importance for sustainable agriculture and 

agriculture is essentially applied ecology, which is the manipulation of individual organisms, 

populations and ecosystems to meet human needs (Weiner 2017). A main goal of plant and soil 

ecologists is to improve the sustainability of agricultural practices for example by reducing external 

energy inputs and enhancing plant and agroecosystem resistance to potential disturbances (Weiner 2017; 

de Vries et al. 2017; Kleijn et al. 2018). Horticultural crops suffer greatly from the threats of various 

above- and belowground pests, and sustainable approaches that can reduce the susceptibility of crops to 

pests and pathogens are urgently needed (Blom-Zandstra and Gremmen 2012; Blom-Zandstra and van 

Keulen 2008). Soil from natural ecosystems often harbors higher diversity and potentially more 

beneficial microbes than agricultural soils due to the differences in management such as the use of 

pesticides, fertilization and intensive cultivation practices (Mariotte et al. 2017). Plant species from 

natural ecosystems have also been reported to have antagonistic effects on soil-borne diseases or to 

promote beneficial microbes (Table 1.1). However, how soils and plants from natural ecosystems can 

improve the performance of crops has rarely been tested. In this thesis, I evaluated the possibilities of 

using wild plant species and soil from a natural ecosystem to enhance the growth and reduce the disease 

susceptibility of chrysanthemum through plant-soil feedback principles. Here, I will first compare the 

effects of inoculation with soil conditioned by wild plant species with the effects of sterilized soil on 

chrysanthemum growth, discuss why these effects may have been observed, and place these results in a 

wider context. Second, I will discuss the possibilities of reversing the negative effects of greenhouse 

soil after five growth cycles on chrysanthemum growth, and highlight some plant species that could be 

used to develop healthy soil microbiomes for chrysanthemum, and also discuss why legume soils that 

have been widely used in crop rotations may have strong negative effects on chrysanthemum. Third, I 

will discuss several microbial groups that are important for chrysanthemum performance. Finally, I will 

discuss ideas and directions for future studies that may help to advance our understanding of the 

mechanisms behind these effects. 
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Table 6.1 Chrysanthemum performance in un-inoculated soil and soil inoculated with plant-conditioned inocula 

in different treatments. The effects of plant-conditioned inocula presented in the table are the ones that showed 

benefits to chrysanthemum, such as Lolium perenne, Festuca filiformis or Anthoxanthum odoratum. Other plant-

conditioned inocula (i.e. legume-conditioned inocula) that had strong negative effects on chrysanthemum are 

discussed in a later paragraph. ‘>’ indicates chrysanthemum yields in un-inoculated soil were higher than in soil 

inoculated with plant-conditioned inocula. ‘<’ indicates chrysanthemum yields in un-inoculated soil were lower 

than in soil with plant-conditioned inocula. ‘n.s.’ indicates there were no significant differences of chrysanthemum 

yields between un-inoculated soil and soil inoculated with plant-conditioned inocula. 
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Maximum yield vs Sustainability 

Soil sterilization 

Sustainability means the ability to reduce external inputs while maintaining the yield and potentially 

increasing the yield over time (Blom-Zandstra and Gremmen 2012). Whereas, more intensive and less 

sustainable horticultural practices may lead to high yields in the short-term, the yield typically decreases 

over time or it requires ever-increasing inputs (Blom-Zandstra and Gremmen 2012). A good example of 

an unsustainable horticultural practice is soil sterilization. In my studies chrysanthemum grown in 

sterilized soil produced the highest yield, but the yield decreased in the disease treatments or over time. 

Soil sterilization is a common practice used by chrysanthemum growers to eliminate soil pathogens. I 

observed that the yield of chrysanthemum was highest in 100% sterilized soil in several of my studies 

(see Chapters 2 and 5). However, when plants were exposed to pathogens or when the soil was used 

for more growth cycles, the yield in originally 100% sterilized soil dropped sharply, and the performance 

of chrysanthemum grown in soils inoculated with soil conditioned by wild plant species was better. For 

example, when exposed to Pythium, chrysanthemum grown with soil inocula conditioned by Lolium 

perenne, Festuca spp and Anthoxanthum odoratum had higher biomass than plants grown in 100% 

sterilized soil (Chapter 2; Fig.S2.2A). Moreover, in Chapter 4 I showed that in the next growth cycle, 

the chrysanthemum biomass in originally 100% sterilized soil (un-inoculated soil) was lower than in 

other soils, indicating that addition of plant-conditioned inocula reduced the negative conspecific effects 

of chrysanthemum. This could be because soil sterilization leaves the soil as an empty habitat without 

buffering capacity, where pathogens can easily re-establish (Wei et al. 2015; van Elsas et al. 2012). 

Meanwhile, soil sterilization also hampers the re-establishment of the beneficial interactions between 

soil microbes that could protect plants from pathogen attack (Wurst and van Beersum 2009; Liu et al. 

2017). In Chapter 5 where I focused on the molecular analysis of the root-associated microbiome of 

chrysanthemum, I showed that the relative abundance of pathogenic fungi in roots of chrysanthemum 

growing in 100% sterilized soil was higher than in soils inoculated with soil conditioned by Lolium 

perenne, Anthoxanthum odoratum or Achillea millefolium. In Chapter 5, I also showed that the relative 

abundance of root pathogenic fungi in roots in 100% live greenhouse soil was lower than in plants 

growing in 10% live greenhouse soil with 90% sterilized background soil. This indicates that soil 

pathogens may proliferate better in sterilized soil than in soil that already contains a high abundance of 

pathogens. Thus, because of a lack of resistance to the pathogen invasion in sterilized soil, the high 

productivity of chrysanthemum that is typically found when grown in 100% sterilized soil is only 

observed in the first growth cycle and cannot be maintained in the longer-term. 

 

 

 



General discussion 

149 
 

Soil inocula conditioned by wild plant species 

The effects of inoculation with plant-conditioned soil on chrysanthemum growth vary in different 

scenarios: First, in the control treatment (no pathogen pressure), inoculation with soil conditioned by 

wild plant species did not significantly increase chrysanthemum growth compared with un-inoculated 

soil (100% sterilized soil) (Chapters 2 and 5). Second, with pathogen pressure, chrysanthemum 

produced more biomass in sterilized soil inoculated with soil from certain plant species (Lolium perenne 

or Anthoxanthum odoratum) than in un-inoculated soil (100% sterilized soil) (Chapters 2 and 4). Here, 

I will discuss two potential reasons why inoculating sterilized soil with plant-conditioned soil did not 

immediately lead to growth promotion for chrysanthemum: the high nutrient supply in the 

chrysanthemum growing system and the identity of the focal plant. 

 

Interactions between plants and soil microbiota can offer benefits to plants, such as nutrient uptake and 

protection from pathogen attack. Soil microbes can benefit from the carbon compounds released from 

plant roots (Raaijmakers et al. 2009; Philippot et al. 2013). Certain soil organisms are known to form 

close associations with plant species, and these symbiotic relationships are important for plants when 

they lack essential elements such as nitrogen or phosphorus. However, in the chrysanthemum growing 

system, plants receive high levels of nutrients, a situation that would negatively influence the symbiotic 

relationships between plants and soil microbes (Morgan et al. 2005). For example, high levels of 

nitrogen or phosphorus supply can directly reduce the growth and activity of mycorrhizal fungi (Oehl et 

al. 2004), and can inhibit the formation of symbiosis between mycorrhizal fungi and the host plant 

(Nouri et al. 2014; Kiernan et al. 1983). Several studies have reported that mycorrhizal fungi do colonize 

chrysanthemum plants (del Mar Montiel-Rozas et al. 2016; Sohn et al. 2003; D’Amelio et al. 2011). 

However, in Chapter 5 I did not find mycorrhizal fungal sequences in chrysanthemum roots, thus, it is 

possible that in high nutrient environments, this symbiosis that could potentially benefit plant growth 

was inhibited. It is also possible that the benefits provided by microbes to plants may become non-

significant under high nutrient supply (De Deyn et al. 2004). This has been demonstrated by several 

studies, for example plant growth promoting strains, such as Pseudomonas spp, were more efficient in 

promoting plant growth under low levels of nutrient supply, and their effects became non-significant 

under high levels of fertilization (Carlier et al. 2008; Zabihi et al. 2010). However, some bacterial strains 

can increase plant growth by facilitating the nutrient uptake of plants even at high nutrient supply 

(Miransari 2011; Shaharoona et al. 2008; Adesemoye et al. 2009). Further studies are needed to compare 

the effects of soil inoculation on chrysanthemum at different levels of fertilization to infer whether the 

current fertilization practice used in commercial chrysanthemum greenhouses overrules the potential 

growth promoting effects of inoculated soil communities on chrysanthemum. 
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Another possibility of why soil inocula conditioned by wild plant species did not show growth 

promoting effects in the control treatment is the focal plant I used. In a previous study (Badri et al. 2013), 

plants inoculated with soil microbiomes derived from other plant species showed higher biomass than 

in sterilized soil. This is opposite to what I observed in my studies. In that study (Badri et al. 2013), the 

focal plant was Arabidopsis thaliana, which is a wild plant species. However, chrysanthemum the 

species I used in my studies, is a domesticated crop. It is possible that crops, which have been selected 

for yield, may have a weaker ability to shape its microbiome, to sanction non-beneficial microbes, and 

to selectively recruit and amplify beneficial microbes compared with wild plant species (Mueller and 

Sachs 2015; Pérez-Jaramillo et al. 2016). Previous studies found that the rhizosphere microbiomes of 

domesticated crops have lower bacterial diversity (Germida and Siciliano 2001), fungal diversity 

(Szoboszlay et al. 2015), and more importantly a lower relative abundance of bacteria that are potentially 

antagonistic to soil pathogens (Pérez-Jaramillo et al. 2017) than their wild relatives, and this may make 

crops more susceptible to infection by soil pathogens. Recently, a study, which tested how inoculation 

of rhizosphere microbiomes derived from other plants on soybean and tomato alters the susceptibility 

to plant parasitic nematodes and growth, observed the same effects as I did in my studies (Elhady et al. 

2018). They found that both crops became more resistant to plant parasitic nematodes when the soil was 

inoculated with rhizosphere microbiomes derived from other plants, but that these effects did not 

necessarily lead to an improved crop yield in the absence of diseases (Elhady et al. 2018). This study 

and my studies have both used crops as focal plants, thus it is possible that for domesticated crops, 

inoculating soils with microbiomes from other plant species could deliver benefits to the crop such as 

protection against pathogen attack, however, that may not improve the growth of the crop immediately.  

 

The negative effects on chrysanthemum that are present in greenhouse soil can be reversed 

In both Chapters 4 and 5, I collected soil from commercial chrysanthemum greenhouses that had strong 

negative effects on chrysanthemum growth and used this soil as diseased soil inoculum in Chapter 4, 

and as greenhouse background soil in Chapter 5. Chapter 5 showed that inoculation of 10% plant-

conditioned soil into 90% of this greenhouse soil did not significantly alter the negative effects of the 

greenhouse soil on chrysanthemum. This is opposite to the study of Mendes et al. (2011), in which 

addition of 10% disease suppressive soil into 90% disease conducive soil successfully changed the 

disease conducive soil into a disease suppressive state. It is important to note that the 10% plant-

conditioned inocula used in Chapter 5 was not soil with specific disease suppressiveness against the 

pathogens present in the background greenhouse soil. However, in Chapter 4, I found that addition of 

10% diseased soil (greenhouse soil) to 90% of soil in which chrysanthemum had been grown for one 

cycle led to positive effects on chrysanthemum. This was observed both in soil inoculated with plant-

conditioned inocula and in un-inoculated soil. One possible explanation is that this phenomenon is due 

to general disease suppression that developed in the soil (Schlatter et al. 2017). First, the increase in 
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chrysanthemum biomass of plants grown in un-inoculated soil was not only observed in the diseased 

soil treatment but also observed in the Pythium treatment in the second growth cycle. Second, one 

growth cycle of chrysanthemum may have resulted in increased populations of soil microbes (Bartelt-

Ryser et al. 2005; Weller et al. 2002). Soil microbes can use root exudates or nutrients, and reduce the 

availability of the resources in the soil to pathogens (Schlatter et al. 2017). General disease suppression 

in soils is due to the collective competitive and antagonistic abilities of the entire community (Weller et 

al. 2002; Mazzola 2002). Moreover, chrysanthemum plants grown in soil inoculated with Lolium 

perenne conditioned soil increased more than grown in un-inoculated soil in the diseased soil treatment, 

indicating that certain plant-conditioned soils could amplify these general disease suppression effects. 

With the right management, general disease suppression in the soil can be enhanced and maintained for 

decades (Alabouvette 1986). Future studies are needed to test three questions: First, will the positive 

effects of general disease suppression in the soil be maintained during successive growth cycles? Second, 

if this is true, will soil conditioned by wild plant species amplify such positive effects? Third, is the 

positive influence of plant-conditioned soil on diseased soil due to the stimulation of particular (groups 

of) soil microbes or because of compositional shifts in the microbial community?  

 

Plant candidates for potential use in the chrysanthemum system 

The positive effects of soil conditioned by the grass Lolium perenne on chrysanthemum are quite 

consistent across all my studies. In Chapter 2, I found that when exposed to Pythium, only 

chrysanthemum plants grown with Lolium perenne conditioned inocula produced significantly higher 

shoot biomass than those grown in the same soil in the control treatment. In Chapter 4, in the second 

growth cycle of chrysanthemum, where diseased soil showed strong negative effects on chrysanthemum, 

only chrysanthemum grown in soil originally inoculated with Lolium perenne conditioned soil produced 

both higher shoot and root biomass in the diseased soil inoculum treatment. The increased 

chrysanthemum biomass in pots with Lolium perenne conditioned soil was also higher (although not 

significant) than the chrysanthemum biomass in new sterilized soil. Furthermore, in Chapter 5, Lolium 

perenne conditioned inocula also significantly influenced the relative abundance in the chrysanthemum 

roots of Streptomyces strains that were highly correlated with chrysanthemum growth: higher relative 

abundance of the positively correlated strain and lower relative abundance of the negatively correlated 

strain. Chrysanthemum grown in Lolium perenne conditioned soil also had lower relative abundance of 

root pathogenic fungi than plants grown with chrysanthemum-conditioned inocula and grown in un-

inoculated soil. Compared with legumes and forbs, Lolium perenne was found to sustain a highly diverse 

microbial community in the rhizosphere (Wardle et al. 2003), and high abundance of root associated 

bacteria (Clayton et al. 2005). Lolium perenne has highly branched roots and high root biomass (Wardle 

et al. 1999), providing more habitat for root-associated microbes, including pathogens. Based on this, it 

has been suggested that Lolium perenne relies on the activity in the soil of bacterial species that are 
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antagonists to fungal pathogens (Latz et al. 2015). As the abundance of these antagonists is increased in 

the soil, this could subsequently benefit other plants that grow later in that same soil. 

 

Anthoxanthum odoratum is another grass species that could be used to create a beneficial soil 

microbiome for chrysanthemum, especially when mixed with other inocula. Chrysanthemum grown 

with Anthoxanthum odoratum conditioned soil had higher biomass when exposed to Pythium than plants 

grown in sterilized soil (Chapter 2). In Chapter 3, chrysanthemum grown with Anthoxanthum 

odoratum conditioned soil produced the highest yield. Moreover, mixing two soil inocula on average 

interacted antagonistically in terms of chrysanthemum biomass, while mixing other plant-conditioned 

inocula with Anthoxanthum odoratum conditioned soil led to additive effects on chrysanthemum 

biomass. Although I observed a similar pattern in terms of additive effects on chrysanthemum biomass 

with Festuca filiformis, Holcus lanatus and Hypochaeris radicata conditioned inocula, the decrease in 

leaf yellowness of chrysanthemum was only observed when soils were mixed with Anthoxanthum 

odoratum conditioned inocula. Thus, mixing with Anthoxanthum odoratum conditioned inocula can 

provide benefits in terms of chrysanthemum health without compromising chrysanthemum growth. 

Previous studies found that Anthoxanthum odoratum stimulated the soil microbial biomass, especially 

the abundance of mycorrhizal fungi (De Deyn et al. 2011; Innes et al. 2004). Chapter 3 indicated that 

these beneficial effects of Anthoxanthum odoratum on the soil would also improve the effects of other 

soils on chrysanthemum. Future studies are needed that test if Anthoxanthum odoratum conditioned soil 

can improve the negative effects of diseased greenhouse soil on chrysanthemum. 

 

Strong negative effects of legume-conditioned inocula on chrysanthemum 

Legumes have been widely used as cover crops because of their significant effects on fixing nitrogen 

(Vukicevich et al. 2016). Legumes produce high quality litter, which can lead to increases in plant 

biomass and increased activities of soil microbiota (Wardle et al. 2003). Moreover, legumes can also 

promote the abundance of mycorrhizal fungi (Scheublin et al. 2004). However, my studies showed that 

chrysanthemum biomass was strongly negatively influenced by legume-conditioned inocula (Chapter 

2). Previous studies have found negative effects of leguminous plants on some beneficial bacterial 

groups, through the release of plant defense compounds in the rhizosphere (Latz et al. 2015; Osbourn 

2003; Wubs and Bezemer 2016). However, this is not sufficient to explain the strong growth reduction 

caused by legume-conditioned inocula on chrysanthemum. An analysis of the composition and function 

of the root microbiome of a leguminous plant (Trifolium pratense) revealed that 70% of the root-

associated microbiota consisted of the nitrogen-fixing rhizobia bacteria (Hartman et al. 2017). These 

nitrogen-fixing rhizobia have similar colonization processes to the host plant as pathogenic bacteria 

(Soto et al. 2009, 2006). When the host plant is a legume, the invading rhizobia adapt their strategies to 
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interact with the plant, and the leguminous host on the other hand has evolved mechanisms to 

discriminate rhizobia from other microbes and establish a mutualistic relationship (Soto et al. 2009). 

However, if the host plant species is not a legume, interacting with rhizobia may trigger a plant response 

similar to the infection by pathogens, which could lead to growth reduction in the host plant (Soto et al. 

2009). A previous study found that the strain Rhizobium skierniewicense could cause crown gall disease 

to chrysanthemum (Puławska et al. 2012), with the infected chrysanthemum having irregular galls on 

the stem (Reddy 2016). Moreover, isolated Rhizobium strains from chrysanthemum were pathogenic to 

various plant species (Puławska et al. 2012). The results of Chapter 5 showed Rhizobium strains that 

were positively and negatively correlated with chrysanthemum growth, however, the most significant 

growth reduction of chrysanthemum occurred between soil types, and this cannot be attributed to the 

difference in the relative abundance of Rhizobium. It is important to note that, in Chapter 5, 

chrysanthemum plants were not grown in leguminous soils. Legume-conditioned soil may have 

contained much higher abundance of Rhizobium, and also higher abundances of other nitrogen-fixing 

rhizobia that may have host-specificity to legumes and I speculate that these soil microbes are likely to 

cause growth reduction in chrysanthemum.  

 

Important microbiota for chrysanthemum 

Actinobacteria and Firmicutes have been well described for their roles in soil pathogen suppression 

(Mendes et al. 2011; Palaniyandi et al. 2013; Kim et al. 2011). Chapter 5 showed that both 

Actinobacteria and Firmicutes were abundant in the roots of chrysanthemum growing in the sterilized 

background soil (which showed more positive effects on chrysanthemum biomass than live background 

soil), with the relative abundance of Firmicutes being especially abundant in the roots of chrysanthemum 

in conditioned field soil inocula with sterilized background soil. However, these two phyla were not 

associated with changes in chrysanthemum biomass. The relative abundance of Chloroflexi, 

Verrucomicrobia and Armatimonadetes were highest in the roots of chrysanthemum growing in the best 

soil combination for chrysanthemum growth and lowest in roots of chrysanthemum plants growing in 

the worst soil combination for growth. On the contrary, the relative abundance of Patescibacteria was 

highest in the roots of chrysanthemum growing in the worst soil combination, and lowest in the roots of 

chrysanthemum growing in the best soil combination. Patescibacteria are known to form symbiotic or 

parasitic lifestyles with plants, which could be costly for chrysanthemum (Sánchez-Osuna et al. 2017). 

Previous studies have found that Chloroflexi and Verrucomicrobia were enriched in soil with disease 

suppression against fungal pathogens, indicating these two phyla may be associated with disease 

suppressive properties of the soil (Xiong et al. 2017; Sanguin et al. 2009).  
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I found a high relative abundance of Olpidium brassicae in chrysanthemum roots when chrysanthemum 

was grown with live greenhouse soil, the type of soil that yielded the lowest chrysanthemum biomass. 

However, the relative abundance of Olpidium brassicae was not significantly correlated with 

chrysanthemum growth. Olpidium is known as a vector of viruses to host plants by creating wounds on 

the host (Campbell 1996; Raaijmakers et al. 2009). Olpidium does not have vector specificity to viruses, 

and thus it can transfer multiple viruses to many host plant species (Hiruki 1994; Teakle and Hiruki 

1964). The pathogenicity of Olpidium brassicae to a specific plant species may depend on the presence 

of plant viruses, and several studies have found that the infection by Olpidium brassicae to some plant 

species did not lead to overall reduction in crop health (Bensaude 1923; Vanterpool 1990). However, 

other studies found that the infection by Olpidium brassicae led to fewer rootlets and discoloration in 

plant roots (Singh and Pavgi 1977). The occurrence of Olpidium brassicae has been well described on 

lettuce (Lay et al. 2018), cabbage (Singh and Pavgi 1977), groundnut (Subrahmanyam and McDonald 

1980) and tobacco (Hiruki 1965). However, to our knowledge, it is the first report of the occurrence of 

Olpidium brassicae in chrysanthemum (Chapter 5).  

 

Two of the eight abundant OTUs that were highly correlated with chrysanthemum growth belonged to 

Streptomyces spp, one was negatively correlated and the other one was positively correlated (Chapter 

5), indicating that there may be an important role for Streptomyces spp to influence chrysanthemum 

growth. Clearly, a correlation between Streptomyces spp and chrysanthemum growth does not indicate 

the causal effect of Streptomyces spp on chrysanthemum. However, a previous study, which used the 

same chrysanthemum cultivar as I did, showed that Streptomyces strains can increase chrysanthemum 

growth and also protect chrysanthemum from Pythium infection (van der Wurff et al. 2014). 

Streptomyces are recruited actively by plants from the soil (Viaene et al. 2016). The Streptomyces-

mediated plant growth promotion has been observed for plants like rice (Gopalakrishnan et al. 2013; 

2014), wheat (Jog et al. 2014), sorghum (Gopalakrishnan et al. 2013) and tomato (Palaniyandi et al. 

2014). Some of the mechanisms of plant growth promotion by Streptomyces include auxin production 

or facilitation of nutrients to plant roots (Viaene et al. 2016). Streptomyces strains isolated from the 

chrysanthemum rhizosphere soil were found to produce a significant amount of a plant growth-

promoting hormone: indole acetic acid (Gajendran et al. 2012). Streptomyces are also known as effective 

biocontrol agents, and are able to produce bioactive molecules with an antagonistic effect against plant 

pathogens (Viaene et al. 2016). Several studies have found that certain Streptomyces strains were 

effective against pathogens such as Fusarium and Rhizoctonia (Klein et al. 2013; Cordovez et al. 2015). 

Moreover, Streptomyces can also activate plant defense against pathogen attack (Viaene et al. 2016). It 

is however also important to note that Streptomyces spp can contain phytopathogenic features, and can 

cause e.g. potato scab disease. These strains are not host specific, and can elicit scab symptoms on other 

plants, such as carrot or beet (Loria et al. 2006). Although Chapter 5 showed that one Streptomyces 
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strain was highly negatively correlated with chrysanthemum growth, the scab symptom caused by 

phytopathogenic Streptomyces was not observed in chrysanthemum in my studies. Future studies are 

needed to isolate Streptomyces strains that are positively and negatively correlated with chrysanthemum 

growth, and re-inoculate these strains to chrysanthemum to unravel the causal effects of these strains on 

chrysanthemum. 

 

Future directions 

The plant microbiome is composed of active microorganisms that confer plant resistance against biotic 

stresses (Berg et al. 2014) and plant tolerance to abiotic stresses (Yuan et al. 2016; Santoyo et al. 2017). 

These functions of the microbiome of plants can be transferred to plants that lack them, such as 

increasing plant resistance to soil pathogens (Berg et al. 2014; Gopal et al. 2013). My studies 

demonstrated that the microbiome created by wild plant species growing in their native soil could be 

used to increase the performance of chrysanthemum. Inoculation of plant-conditioned soil into sterilized 

soil did not increase the chrysanthemum biomass in the absence of soil pathogens, but the highest 

chrysanthemum biomass was observed in soil inoculated with plant-conditioned soil when the plants 

were also exposed to disease treatments (Chapters 2, 4). It is possible that when exposed to pathogens, 

the abundance or activity of beneficial microbes is stimulated in the soil microbiome, these beneficial 

microbes could originated from the inoculated plant-conditioned soil or due to the interactions between 

chrysanthemum and the inoculated microbiome. Thus, a next step is to test if the high yield of 

chrysanthemum can be strengthened over growth cycles by selecting soil that sustained high yield of 

chrysanthemum from previous growth cycle, and inoculate this soil with the new relevant plant-

conditioned inocula, then grow chrysanthemum in it. Swenson et al (2000) and Panke-Buisse et al (2015) 

have successfully used artificial selection for host microbiomes with desired functions. After initial soil 

sterilization, they inoculated plants with a starter soil microbiome. At the end of each growth cycle, a 

host trait was evaluated for each soil replicate, such as plant biomass or flowering time. Then the soil 

from the best performing plant was used to inoculate again into sterilized soil and a next generation of 

plants was grown in this soil. However, this microbiome selection is a time consuming process. In both 

studies, ten rounds of selection for soil microbiomes produced significantly different plant phenotypes 

(Swenson et al. 2000; Panke-Buisse et al. 2015). In their studies, the starter microbiome arose from the 

microbiome of the same plant species. However, in my studies, I inoculated chrysanthemum with 

microbiomes derived from other plant species, and significant differences in terms of chrysanthemum 

growth and health were observed only after one growth cycle (Chapter 2). Based on their studies, I 

propose an artificial selection procedure for selecting chrysanthemum rhizosphere microbiomes that 

could lead to higher chrysanthemum growth and better resistance to soil pathogens (Fig.6.1).  
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Fig. 6.1. Selection on microbiomes that produce best chrysanthemum performance. Chrysanthemums are 

inoculated with 10% inocula conditioned by different wild plant species + 90% sterilized soil (Step 1). The host-

microbiome associations are allowed to mature (Step2), pathogen treatments can be added at this step to select for 

microbiomes that increase resistance of chrysanthemum against pathogens. Then, based on the performance of 

new chrysanthemum plants, microbiomes are chosen to inoculate during the next generation (Step 3, 4). New 

chrysanthemum cuttings will be rooted in the selected soils from the previous round with the new relevant plant-

conditioned inoculum (Step 5), and step 2-5 will be repeated until the microbiome with the best performance of 

chrysanthemum is produced. Scheme modified from Mueller and Sachs 2015.  

 

Based on the context of this thesis, I see another important area for future research: the need to establish 

the link between ‘the inoculated soil community’ and ‘the established soil community’. This means to 

unravel the soil microbial community in the soil inocula conditioned by wild plant species, and which 

parts or groups from this soil community successfully establish in, on, or around chrysanthemum roots 

and subsequently influence the growth of this plant species. More importantly, to determine the rules by 

which microbes from the inoculated microbiome assemble into the root microbiome of chrysanthemum. 

This is essential for future attempts to manipulate and manage the microbiome of chrysanthemum 

(Busby et al. 2017). A recent study, which compared the root microbiomes of 30 angiosperm species, 

found that greater similarities among the root microbiomes between hosts led to more negative plant-

soil feedback effects (Fitzpatrick et al. 2018). Thus, it is possible that the wild plant species with the 

most different root microbiome compared with chrysanthemum, will have the most positive feedback 

effect on chrysanthemum. However, several studies also found that crops can benefit from microbiomes 

of their wild relatives (Santhanam et al. 2015; Pérez-Jaramillo et al. 2018). Therefore, the relationship 
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of the similarity between the root microbiomes of plants and their plant-soil feedback effects may vary 

in different target plant species. Moreover, our understanding of the relationship between the soil 

microbes that were inoculated and the ones that establish should move beyond similarities between these 

microbiomes. Specifically, I see four main research questions that should be answered in future studies. 

First, which part of the microbiome from the soil inocula conditioned by wild plant species establishes 

in chrysanthemum root environments? Second, what is the difference between the abundance of the 

established microbes in their original soil community compared with the new soil community (i.e. does 

chrysanthemum selectively increase the population of some microbes from the inoculated soil 

community, and will the populations of other microbes be inhibited by chrysanthemum)? Third, to 

identify beneficial and pathogenic microbes of chrysanthemum, and to determine how much of these 

microbes are from the inoculated soil community and how much are carried by chrysanthemum itself? 

Fourth, using manipulative methods, how do the established microbes influence beneficial and 

pathogenic microbes that are essential to chrysanthemum? 

 

A promising direction in plant-soil feedbacks is to use plant species and soil from natural ecosystems to 

create effective soil microbiomes that suppress soil pathogens in chrysanthemum. Previous studies have 

found that soil immunity, which is natural disease suppression, can be induced in agricultural soils that 

have continuous (decades) mono-cropping and after a severe outbreak of certain soil-borne diseases 

(Schlatter et al. 2017; Raaijmakers and Mazzola 2016). However, to simulate this in the chrysanthemum 

greenhouse is not feasible since during the process (and hence exposure to pathogens), there will be 

severe economic loss. Moreover, not every long-term mono-cropping system would develop natural 

disease suppression in the soil. Alternatively, specialized soil disease suppressive microbiomes could be 

created by exposing wild plant species to pathogens of chrysanthemum when growing in their native 

soil in the conditioning phase. This is due to: first, soil-borne diseases of chrysanthemum, such as 

Pythium, Meloidogyne or Olpidium, have a broad range of host plants, and are also present in natural 

ecosystems (Kageyama 2014; Renčo and Murín 2013; Lay et al. 2018). Thus, plant species from natural 

ecosystems may have evolved mechanisms to defend themselves against pathogen infections. Second, 

wild plant species that showed positive effects on chrysanthemum through influencing the soil, such as 

Lolium perenne and Anthoxanthum odoratum, have been reported to be less susceptible to Pythium or 

Meloidogyne compared with forb or other grasses (Bithell et al. 2011; Mills and Bever 1998; Stiles et 

al. 2007). Therefore, when encountering soil pathogens, Lolium perenne and Anthoxanthum odoratum 

may be more effective in increasing the population of beneficial soil microbes in the soil, eventually 

leading to a complete shift in the composition of their rhizosphere microbiome (van Dam 2009; Wei et 

al. 2015). Analog to vaccines for humans, which stimulate the immune system by weakened pathogens, 

a disease suppressive soil microbiome would also be created by stimulating plant species that have 

strong defense against pathogens. Inoculation with these soils could then protect chrysanthemum from 
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the infection of pathogens. However, a balance should be established between stimulating the formation 

of a disease suppressive soil microbiome and avoiding remnant pathogens in this soil microbiome by 

testing different concentrations of pathogens during the conditioning phase. Future studies are needed 

to test the possibility of creating such defense-oriented microbiomes by exposing wild plant species to 

the specific pathogens. It is important to note that these plant species need to be grown in their native 

soils when exposing to pathogens, because in Chapter 5, when I grew wild plant species directly in the 

chrysanthemum greenhouse soil, no significant effects on chrysanthemum performance were observed. 

 

Conclusions   

In this thesis, I show that wild plant species and soil from natural ecosystems can be used to improve 

chrysanthemum performance through plant-soil feedback effects. Soil inoculum that originated from 

wild plant species had strong species-specific and functional group effects on chrysanthemum growth. 

Grass-conditioned inocula contributed more to chrysanthemum growth than forb- or legume-

conditioned inocula. Chrysanthemum grown in soil conditioned by some grass, such as Lolium perenne, 

Anthoxanthum odoratum, showed higher biomass than in 100% sterilized soil under Pythium pressure. 

Moreover, by mixing two plant-conditioned inocula, on average, they interacted synergistically in terms 

of plant health but antagonistically in terms of plant growth. The influence of plant-conditioned inocula 

on chrysanthemum were still significant after two successive growth cycles, but their effects tended to 

converge because of the overriding effect of chrysanthemum growth. Inoculating greenhouse soil 

conditioned by wild plant species or grassland soil to greenhouse soil did not significantly improve the 

negative effects of greenhouse soil on chrysanthemum growth. However, growing certain wild plant 

species in greenhouse soil and then inoculating this soil decreased the relative abundance of pathogenic 

fungi in chrysanthemum roots. Overall, my studies highlight the potential of using resources from 

natural ecosystems to enhance sustainability in horticulture and future studies should examine how 

plant-soil feedback principles can be implemented in commercial horticultural systems.  
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Mono-cropping often leads to the rapid build-up of pathogens in the soil, and this can cause great losses 

in agriculture yields. Steaming of soil is a commonly done in commercial chrysanthemum greenhouses 

to eliminate soil pathogens, but at the same time this also eliminates beneficial microbes. Besides 

consumption of gas and manpower, this is an unsustainable practice, because it leaves an empty niche 

in the soil where pathogens can easily re-establish. Soil from natural ecosystems harbors great diversity 

and potentially more beneficial soil microbes than agricultural soils. Plants can selectively recruit 

beneficial microbes, sanction non-efficient microbes, and hence can amplify the beneficial effects of 

soil microbial communities. Thus, by growing wild plant species in their native soil we may create 

functional microbiomes that could be used to improve the growth and health of crops. The aim of my 

thesis was to test the feasibility of using grassland soil and native plant species to increase 

chrysanthemum growth and health through plant-soil feedback principles; and hence whether soil and 

plant species from natural ecosystems can be used in agricultural systems to increase yield. 

 

I first screened the effects of 37 plant species that belong to three functional groups (grasses, forbs, 

legumes), on chrysanthemum growth, health and the concentration of leaf chlorogenic acid. The 

chrysanthemum plants were also exposed or not to the oomycete pathogen Pythium ultimum. The 

experiment had two phases, in the conditioning phase, the wild plant species were grown individually 

in soil from a grassland to create 37 inocula. In the test phase, chrysanthemum cuttings were grown in 

soil consisting of 10% conditioned inocula mixed with 90% sterilized soil, with or without exposure to 

Pythium. I found that conditioning plant species had strong species-specific and functional group-

specific effects on chrysanthemum via the soil, but their effects were not related with their phylogenetic 

distance to chrysanthemum. In general, grass-conditioned soil inocula had more positive effects on 

chrysanthemum growth and health than forb-conditioned inocula and legume-conditioned inocula. 

Chrysanthemum grown in soil with inocula conditioned by wild plant species did not have significantly 

higher biomass than in 100% sterilized soil. However, in presence of Pythium, inoculation with five out 

of nine grass-conditioned soils resulted in significantly higher chrysanthemum biomass than in 100% 

sterilized soil. The concentration of leaf chlorogenic acid was positively correlated with chrysanthemum 

shoot biomass. These results support the idea that plant species and soil from natural ecosystems can be 

used to improve the growth and health of chrysanthemum. 

 

Then, I tested how homogenously mixing two plant-conditioned inocula affects the growth and health 

of chrysanthemum. Based on the results from the previous experiment, I selected eight plant species 

with positive or negative effects on chrysanthemum. These plant species were grown in the grassland 

soil individually to create eight inocula. Then, I created mixtures of inocula by mixing pairs of the plant-

conditioned inocula (including mixing each inoculum with itself) in a 1:1 ratio. Chrysanthemum cuttings 
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were grown in soil consisting of 10% mixed inocula with 90% sterilized soil. For each mixed inoculum, 

I calculated the predicted effect based on the sum of the effects of the component soils, and compared 

this with the observed effects. I found on average, that mixing two plant-conditioned soil led to lower 

chrysanthemum biomass than predicted, but better chrysanthemum health than predicted. Moreover, the 

larger the differences between the effects of two plant-conditioned inocula were, the more likely the 

observed effect of the mixture was higher than the predicted effect. The results of this experiment 

indicate that potential increased soil microbial diversity caused by soil mixing is positive for 

chrysanthemum health with a cost in terms of growth. However, the antagonistic interactions between 

two soil inocula on chrysanthemum growth could be improved by mixing two inocula that have very 

distinctive effects on chrysanthemum growth. 

 

In a next experiment, I tested the carry-over effects of the same eight plant species on chrysanthemum 

growth and health during two successive growth cycles with exposure to different soil-borne diseases 

in each cycle. In the first growth cycle, chrysanthemum was grown in sterilized soil inoculated with 

eight plant-conditioned inocula and 100% sterilized soil (un-inoculated soil), and either exposed to the 

oomycete pathogen Pythium ultimum, to the plant parasitic nematode Meloidogyne incognita or not 

exposed (control). In the second growth cycle, new chrysanthemum cuttings were grown again in the 

soil from the previous round or in new 100% sterilized soil as control, either exposed to Pythium ultimum, 

to a diseased soil inoculum (collected from a commercial chrysanthemum greenhouse with soil disease 

problems), or without a disease treatment. I found that at the end of the second growth cycle, plant-

conditioned inocula that were added in the beginning of the cultivation were still influencing 

chrysanthemum performance. Further, chrysanthemum had strong negative conspecific feedback effects, 

and in general, in all soils in which chrysanthemum had been grown for one cycle we observed lower 

chrysanthemum biomass than in new sterilized soil. However, inoculation with plant-conditioned 

inocula significantly reduced the negative conspecific effects of chrysanthemum. The Pythium or 

Meloidogyne treatments did not significantly influence chrysanthemum growth. An interesting finding 

is that inoculation with diseased soil led to significant negative effects on chrysanthemum biomass when 

added to new sterilized soil, but on the contrary, it resulted in increased chrysanthemum growth in soils 

in which chrysanthemum had been grown before. With certain soil inocula (i.e. Lolium perenne 

conditioned soil), chrysanthemum biomass in pots where diseased soil was added was even higher than 

in pots with new sterilized soil and without a disease treatment. The results of this experiment indicate 

that the effects of inoculation with plant-conditioned soil on chrysanthemum may last for more than one 

growth cycle. When comparing with the effects of un-inoculated soil (sterilized soil), the effects of plant-

conditioned inocula became more obvious after a second growth cycle, when the plants were also 

exposed to diseases. 
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Finally, I tested the effects of inoculation of soil from eight wild plant species on the chrysanthemum 

root microbiome, on plant growth, and on the susceptibility to an aboveground insect (thrips) using soil 

collected from a commercial chrysanthemum greenhouse. In the conditioning phase, I grew eight plant 

species either in the greenhouse soil or in natural grassland soil. In the test phase, the conditioned soil 

inocula were then added to 90% sterilized greenhouse soil or 90% live greenhouse soil. I found that 

chrysanthemum performance was worse in live greenhouse soil than in sterilized greenhouse soil, and 

inoculation with either plant-conditioned soil or with greenhouse soil in which first wild plant species 

had been grown did not significantly influence this negative effect. However, inoculation of greenhouse 

soil that was conditioned by Lolium perenne or Festuca filiformis led to higher bacterial diversity and 

lower relative abundance of pathogenic fungi in chrysanthemum roots. The best soil combination for 

chrysanthemum growth was conditioned grassland soil inoculated into sterilized greenhouse soil. In this 

combination soils had a more connected and complex root-associated microbial network than soils from 

the other three soil combinations. Soil sterilization sustained the highest chrysanthemum growth, 

however, roots of chrysanthemum plants grown in 100% sterilized soil also had a higher relative 

abundance of pathogenic fungi than plants grown in soils with plant-conditioned inocula. Roots of 

chrysanthemum plants grown in live greenhouse soil were dominated by Olpidium brassicae. OTUs 

from Streptomyces spp were also abundant in roots and one OTU was highly positively and another 

OTU was negatively correlated with chrysanthemum growth, suggesting that they may be important for 

chrysanthemum growth. Overall, soil inoculation or changes in the root microbiome were not related to 

the susceptibility of chrysanthemum to thrips. The results of this experiment indicate that reversing the 

negative effect of greenhouse soil on chrysanthemum is difficult, especially with an inoculation ratio of 

1:9. However, inoculating with natural soil in which wild plant species had been grown first leads to a 

more functional and potentially more beneficial microbiome for chrysanthemum. 

 

In conclusion, my studies demonstrate that plant species and soil from natural ecosystems can be used 

to improve the growth and health of chrysanthemum through plant-soil feedback principles. Compared 

with 100% sterilized soil, inoculation with plant-conditioned soil does not significantly increase 

chrysanthemum growth in absence of other diseases. However, with exposure to pathogens, inoculation 

with plant-conditioned soil can significantly increase chrysanthemum growth. Moreover, inoculation 

with plant-conditioned soil significantly reduced the negative conspecific soil effects of chrysanthemum. 

My studies highlight the importance of plant and soil from natural ecosystems in enhancing the 

sustainability of horticulture. Future studies should focus on disentangling the microbiome in the 

inoculated soil and understanding its functions. 
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Mono-cropping leidt vaak tot de snelle opbouw van ziekteverwekkers in de bodem en dit kan grote 

verliezen in landbouwopbrengsten veroorzaken. In commerciële chrysanthemumkassen wordt de grond 

regelmatig gestoomd om bodempathogenen te elimineren, maar tegelijkertijd worden dan ook nuttige 

microben geëlimineerd. Naast het verbruik van gas en mankracht is dit een niet-duurzame praktijk, 

omdat het een vacuum in de bodem achterlaat waardoor ziekteverwekkers gemakkelijk kunnen 

hervestigen. De bodem van natuurlijke ecosystemen herbergt vaak een grotere diversiteit en bevat vaak 

meer potentieel nuttige bodemmicroben dan landbouwgronden. Planten kunnen selectief nuttige 

microben aantrekken, niet-efficiënte micro-organismen sanctioneren en daardoor de gunstige effecten 

van microbiële gemeenschappen in de bodem versterken. Door wilde plantensoorten te kweken in hun 

natuurlijke grond, kunnen we functionele microbiomen maken die kunnen worden gebruikt om de groei 

en gezondheid van gewassen te verbeteren. Het doel van mijn proefschrift is om de haalbaarheid te 

testen van het gebruik van grasland en inheemse plantensoorten om de groei en gezondheid van het 

gewas chrysant te verhogen via principes van plant-bodem terugkoppelingen; en dus of bodem- en 

plantensoorten uit natuurlijke ecosystemen kunnen worden gebruikt in landbouwsystemen om de 

opbrengst te verhogen. 

 

Ik onderzocht eerst de effecten via de bodem van 37 plantensoorten die behoren tot drie functionele 

groepen (grassen, kruiden en stikstofbinders) op de groei van chrysant, en op de gezondheid en de 

concentratie van chlorogenic zuur in de bladeren. De chrysant planten werden ook blootgesteld of niet 

aan de ziekteverwekkende schimmel Pythium ultimum. Het experiment had twee fasen, in de 

conditioneringsfase werden de wilde plantensoorten individueel gekweekt in bodem verzameld uit een 

natuurlijk grasland om 37 inocula te creeren. In de testfase werden chrysantstekken gegroeid in grond 

bestaande uit 10% geconditioneerd inoculum gemengd met 90% gesteriliseerde grond, met of zonder 

blootstelling aan Pythium. Ik ontdekte dat de conditionerende plantensoorten sterke soort-specifieke en 

functionele groep-specifieke effecten hadden op chrysant via de grond, maar dat hun effecten niet waren 

gerelateerd aan de fylogenetische afstand van de plantesoort tot chrysant. In het algemeen hadden 

inocula van grassen meer positieve effecten op de groei en gezondheid van chrysant dan inocula van 

kruiden of van stikstofbinders. Chrysanten die groeiden in geinoculeerde grond hadden geen significant 

hogere biomassa dan in 100% gesteriliseerde grond. In aanwezigheid van Pythium resulteerde inenting 

met vijf van de negen geconditioneerde bodems door grassoorten in aanzienlijk hogere biomassa van 

chrysant dan in 100% gesteriliseerde grond. De concentratie van chlorogeenzuur in het blad was positief 

gecorreleerd met chrysanthemum shoot biomassa. Deze resultaten ondersteunen het idee dat 

plantensoorten en de bodem van natuurlijke ecosystemen kunnen worden gebruikt om de groei en 

gezondheid van chrysanthemum te verbeteren. 
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Vervolgens heb ik getest hoe het homogeen mengen van twee inocula de groei en gezondheid van 

chrysant beïnvloedt. Op basis van de resultaten van het vorige experiment selecteerde ik acht 

plantensoorten met positieve of negatieve effecten op chrysant. Deze plantensoorten werden 

afzonderlijk in grond verzameld uit een natuurlijk grasland gekweekt om acht inocula te creëren. 

Vervolgens heb ik mengsels van twee inocula gemaakt door (inclusief het mengen van elk inoculum 

met zichzelf) in een verhouding van 1: 1. Chrysantenstekken werden geplant in grond bestaande uit 10% 

van het gemengde inoculum met 90% gesteriliseerde grond. Voor elk gemengd inoculum, berekende ik 

het voorspelde effect op basis van de som van de effecten van de twee afzonderlijke inocula, en 

vergeleek dit met de waargenomen effecten. Gemiddeld vond ik dat het mengen van twee inocula leidde 

tot lagere biomassa van chrysant dan voorspeld, maar een betere gezondheid dan was voorspeld. 

Bovendien, hoe groter de verschillen tussen de effecten van twee aparte inocula op de planten waren, 

hoe groter de kans was dat het waargenomen effect van het mengsel hoger was dan het voorspelde effect. 

De resultaten van dit experiment tonen aan dat de potentiële verhoogde bodemmicrobiële diversiteit 

veroorzaakt door het mengen van twee inocula positief is voor de gezondheid van chrysant maar met 

een kostenpost voor de groei. De antagonistische interacties tussen twee inocula op de groei van 

chrysanten kunnen echter worden verbeterd door twee inocula te mengen met een zeer verschillende 

werking op de groei van chrysanten. 

 

In een volgend experiment testte ik de langere termijneffecten van inoculeren met grond van dezelfde 

acht plantensoorten op de groei en gezondheid van chrysanten gedurende twee opeenvolgende groeicycli, 

met blootstelling aan verschillende door de bodem overgedragen ziekten in elke cyclus. In de eerste 

groeicyclus werd de chrysanten gekweekt in gesteriliseerde grond geënt met een van de acht inocula of 

in 100% gesteriliseerde grond (niet-geënte grond) en ofwel blootgesteld aan de ziekteverwekker 

Pythium ultimum, aan de plantparasitaire nematode Meloidogyne incognita of niet blootgesteld 

(controle). In de tweede groeicyclus werden nieuwe chrysantstekken opnieuw gegroeid in de bodem van 

de vorige ronde of in nieuwe 100% gesteriliseerde bodem als controle, en weer blootgesteld aan Pythium 

ultimum, of aan grond verzameld uit een commerciële chrysantekas met daarin bodemziekten, of 

gekweekt zonder een ziektebehandeling. Ik ontdekte dat aan het einde van de tweede groeicyclus het 

inoculeren aan het begin van de teelt, nog steeds de prestaties van de chrysant beïnvloedde. Verder 

vertoonde chrysant sterke negatieve conspecifieke terugkoppellingen via de bodem. In alle bodems 

waarin chrysant gedurende één cyclus had gegroeid was de biomassa lager dan in nieuwe gesteriliseerde 

grond. Inoculeren met bodem waarin eerst andere soorten hadden gegroeid verminderde echter deze 

negatieve effecten.  De Pythium- of Meloidogyne-behandelingen hadden geen significante invloed op 

de groei van chrysant. Een interessante bevinding is dat inenting met zieke bodem verzameld uit de kas, 

leidde tot aanzienlijke negatieve effecten op de biomassa van chrysant ald dit was toevoegd aan nieuwe 

gesteriliseerde grond. Echter, het resulteerde in verhoogde groei in bodems waarin eerder chrysant had 
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gegroeid. Met bepaalde bodeminocula (dat wil zeggen, met grond waarin eerst Lolium perenne had 

gegroeid) was de biomassa van chrysant in potten waar ook zieke grond werd toegevoegd zelfs hoger 

dan in potten met nieuwe gesteriliseerde grond en zonder een ziektebehandeling. De resultaten van dit 

experiment tonen aan dat de effecten van inoculatie met geconditioneerde grond op chrysanthemum 

meer dan één groeicyclus kunnen voortbestaan. Bij vergelijking met de effecten van niet-geënte grond 

(gesteriliseerde grond) werden de effecten van de inocula duidelijker na een tweede groeicyclus, voor 

planten die ook aan ziekten werden blootgesteld. 

 

Ten slotte testte ik de effecten van het enten van bodem waar eerst acht wilde plantensoorten in gegroeid 

hebben op het microbioom van de chrysanthemum, alsmede op de plantengroei en de gevoeligheid voor 

een bovengronds insect (trips). In de conditioneringsfase groeiden de acht plantensoorten in de grond 

verzameld uit een commerciele chrysantekas of in natuurlijke graslandgrond. In de testfase werden de 

geconditioneerde bodeminocula vervolgens toegevoegd aan 90% gesteriliseerde of 90% levende 

kasgrond. Ik vond dat chrysant slechter groeide in levende dan in gesteriliseerde kasgrond, en dat 

aanenten met ofwel geconditioneerde graslandgrond of kasgrond waarin eerst wilde planten gegroeid 

hadden, dit effect niet signficant verminderde. De inoculatie met grond waarin Lolium perenne of 

Festuca filiformis gegroeid had leidde echter tot een hogere bacteriële diversiteit en een lagere relatieve 

abundantie van pathogene schimmels in chrysantenwortels. Planten groeiden het beste in 

gesterriliseerde kasgrond aangeent met geconditioneerde graslandgrond. In deze combinatie was er een 

meer verbonden en complex root-geassocieerd microbieel netwerk dan in bodems van de andere drie 

grondcombinaties. Bodemsterilisatie leidde tot de hoogste biomassa van chrysant, maar wortels van 

chrysantenplanten die in 100% gesteriliseerde grond waren gekweekt, hadden ook een hogere relatieve 

abundantie van pathogene schimmels dan wortels van planten die in geinoculeerde bodems groeiden. 

De wortels van chrysantenplanten gekweekt in levende kasgrond werden gedomineerd door Olpidium 

brassicae. OTU's van Streptomyces spp waren ook overvloedig aanwezig in wortels. Eén van die OTUs 

was zeer positief en een andere negatief gecorreleerd met groei van de plant. Over het algemeen waren 

bodeminoculatie of veranderingen in het wortelmicrobioom niet gerelateerd aan de gevoeligheid van 

chrysant voor trips. De resultaten van dit experiment tonen aan dat het afwentelen van het negatieve 

effect dat aanwezig is in kasgrond op chrysant moeilijk is, zeker met een inoculatieverhouding van 1: 9. 

Het inoculeren met natuurlijke grond waarin eerst wilde plantensoorten hebben gegroeid, leidt echter 

tot een functioneler en mogelijk gunstiger microbioom voor chrysant. 

 

Mijn studies tonen aan dat plantensoorten en de bodem van natuurlijke ecosystemen kunnen worden 

gebruikt om de groei en gezondheid van chrysant te verbeteren via principes van plant-bodem 

terugkoppelingen. In vergelijking met 100% gesteriliseerde grond verhoogt inoculatie met 

geconditioneerde grond de groei van chrysant niet significant in afwezigheid van andere ziekten. Bij 
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blootstelling aan ziekteverwekkers kan aanenten met geconditioneerde grond de groei van chrysanten 

echter aanzienlijk verhogen. Bovendien verminderde aanenten met door planten geconditioneerde grond 

significant de negatieve conspecifieke bodemeffecten van chrysant. Mijn studies benadrukken de 

belangrijke rol die wilde planten en de natuurlijke bodems kunnen spelen bij het verbeteren van de 

duurzaamheid van de tuinbouw. Toekomstige studies moeten gericht zijn op het ontwarren van het 

microbioom in aangeënte bodems en het begrijpen van de functies ervan. 
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