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Chapter 1

1.1 The CRB1 complex: Following the trail of Crumbs

to a feasible gene therapy strategy

P.M. Quinn, L.P. Pellissier and J. Wijnholds
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1.2 Aim and outline of this thesis



Chapter 1

ABSTRACT

Once considered science fiction, gene therapy is rapidly becoming scientific
reality, targeting a growing number of the approximately 250 genes linked to
hereditary retinal disorders such as retinitis pigmentosa and Leber’s congenital
amaurosis. Powerful new technologies have emerged, leading to the development
of humanized models for testing and screening these therapies, bringing us
closer to the goal of personalized medicine. These tools include the ability to
differentiate human induced pluripotent stem cells (iPSCs) to create a “retina-in-
a-dish” model and the self-formed ectodermal autonomous multi-zone, which
can mimic whole eye development. In addition, highly specific gene-editing tools
are now available, including the CRISPR/Cas9 system and the recently developed
homology-independent targeted integration approach, which allows gene editing
in non-dividing cells. Variants in the CRB1 gene have long been associated with
retinopathies, and more recently the CRB2 gene has also been shown to have
possible clinical relevance with respect to retinopathies. In this review, we discuss
the role of the CRB protein complex in patients with retinopathy. In addition, we
discuss new opportunities provided by stem cells and gene-editing tools, and we
provide insight into how the retinal therapeutic pipeline can be improved. Finally,
we discuss the current state of adeno-associated virus-mediated gene therapy and
how it can be applied to treat retinopathies associated with mutations in CRB1.
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General Introduction

CRB1-Related Retinopathies: No Clear Phenotype-To-Genotype Correlation

CRBI1-linked retinal dystrophies represent a diverse spectrum and present with a
wide complexity of clinical features (Table 1) (1-12). In children, mutations in the
CRB1 gene have been identified as a causal factor underlying Leber’s congenital
amaurosis (LCA) and early-onset retinitis pigmentosa (RP) (4,13). The CRB1 gene
has been linked to 7-17% of autosomal recessive LCA cases and 3—9% of autosomal
recessive RP cases (8,14,15). In patients, CRB1-linked LCA is associated with atypical
thickeningoftheretinaand disorganizedretinal layering (1,16). Both of these features
are also present in double-knockout mice lacking both Crb1 and Crb2 in their retinal
progenitor cells (Crb1°Crb24%7€). During development, these Crb1°Crb2f"¢ mice
also have dysregulated apical-basal polarity in the retina, altered retinal progenitor
cell proliferation, and reduced downstream CRB signaling, including dysregulation
of YAP (Yes-associated protein). These findings highlight the essential role that the
CRB (Crumbs) complex plays in normal retinal development (17).

Table 1 | Summary of patient phenotypes associated with mutations in the CRB1 gene.

Phenotype Inheritance  References

Leber congenital amaurosis 8 (LCA8) AR Jacobson et al., 2003; Cordovez et al.,
2015; Talib et al., 2017

Early-onset retinitis pigmentosa (RP) AR den Hollander et al., 1999; Lotery et
al., 2001

RP with preserved para-arteriolar retinal AR Heckenlively, 1982

pigment epithelium

RP with intraretinal cystoid spaces AR Cordovez et al., 2015

RP with Coats-like exudative vasculopathy AR den Hollander et al., 2001

Peripheral nummular pigmentation AR Bujakowska et al., 2012

Pigmented paravenous chorioretinal AD McKay et al., 2005

atrophy

Cystoid macular edema AR Tsang et al., 2014; Morarji et al., 2016

Macular atrophy AR Bujakowska et al., 2012

Familial foveal retinoschisis AR Vincent et al., 2016

AD, autosomal dominant; AR, autosomal recessive.

More than 230 pathogenic variants have been identified in the CRB1 gene (see
http://exac.broadinstitute.org/transcript/ENSTO0000367400 and http://databases.
lovd.nl/shared/variants/CRB1). It is not currently clear why a given variant can lead
to either early-onset LCA or RP within the disease spectrum. A possible modifier
of this effect in the human retina is CRB2, as shown in the mouse retina (18). Early
studies suggest that variants in the CRB2 gene are not a frequent cause of either
autosomal recessive LCA or RP (19). However, missense mutations in the human
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CRB2 gene were recently associated with minor retinal symptoms, including mild
opticatrophy, reduced visual acuity, and irregular retinal pigmentation, in a subset of
patients (20). Interestingly, the CRB2 gene is also expressed in vital organs such as the
brain, testis, and kidney, and genetic variants lead to a clinically extensive syndromic
phenotype causing multiple abnormalities and lethality (20). Homozygous and/or
heterozygous variants are reported to cause brain conditions (e.g., ventriculomegaly
and hydrocephalus), kidney conditions (e.g., congenital nephrosis, steroid-resistant
nephrotic syndrome, and ureteropelvic renal anomalies), and other conditions such
as lung hypoplasia and cardiac malformation (20-23).

Crb2 knockout mice are embryonic lethal due to a defect in epithelial-to-
mesenchymal transition during the gastrulation stage (24,25). In addition, proteins
that modify the extracellular domain of Crb2 (for example, O-glucosyltransferase-1)
canalterthereceptor’sfunction (26). The offspring of conditional Crb2 knockout mice
crossed with CrxCre mice (Crb24™PR¢) mimic the human CRBI-linked RP phenotype
and develop hydrocephalus (27). Consistent with this report, conditionally knocking
out YAP—a Hippo pathway effector and an interactor with CRB complex members—
was recently reported to cause hydrocephalus in a mouse model due to a disruption
in the CRB complex and adherens junctions (28-30). Finally, although CRB3 mRNA
has been found in the macula and peripheral retina, the CRB3 gene has yet to be
linked to retinal disease (18).

CRB Expression and Localization

The human CRB1 gene is a complex, large gene mapped to chromosome 1g31.3.
The gene contains 12 exons spanning 210 kb of genomic DNA (Figure 1A and
Table 2) (4,31). The gene has 10 predicted transcript variants, 95 orthologs, and
10 paralogs (interestingly, these are involved primarily in Notch signaling) (http://
www.ensembl.org/Homo_sapiens/Gene/Summary?db=core;g=ENSG000001343
76;r=1:197268204-197478455). To date, mRNA corresponding to three CRBI1
transcript variants has been identified in the retina (Figure 1A, Table 2); these
variants are expressed at similar levels in the macula and periphery of the retina,
but are below detectable levels in adult retinal pigment epithelium and choroid
tissues (18). The first validated transcript variant contains 12 exons and encodes the
prototypic canonical CRB1 isoform. This 1406-aa protein contains a signal peptide, 19
epidermal growth factor-like domains, 3 laminin-A globular domains, a single C-type
lectin domain, a single transmembrane domain, and a short (37-aa) intracellular
domain (Figure 2A) (31). In contrast, the second validated transcript, which encodes
a 1376-aa isoform of CRB1, contains an alternative exon 11 (exon f; see Figure 1A).
This isoform lacks the transmembrane and intracellular domains, possibly serving
as a putative secreted protein (Figure 2A) (4). The third validated transcript encodes
a 1294-aa isoform of CRB1; this transcript lacks exons 3 and 4, causing the in-frame
deletion of epidermal growth factor-like domains 6 through 8 while retaining both
the N- and C-termini present in the prototypic CRB1 isoform (Figures 1A, 2A).
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General Introduction

Another alternatively spliced transcript encodes a 1382-aa isoform of CRB1. This
transcript contains 15 exons: an additional exon (exon e) lies between exons 7 and
8, and the prototypic first exon is replaced by three noncoding exons (exons a, b, and
c) in the 5’ UTR, resulting in a protein with a shorter N-terminus (Figures 1A, 2A).
In mammals, CRB1 is one of a three-member family of CRB proteins, together
with CRB2 and CRB3. In humans, both CRB2 and CRB3 have additional predicted
transcript variants that encode various protein isoforms in humans (Figures 1B—
C, 2B-C, and Table 2). Both CRB1 and CRB2 contain a large extracellular domain
with epidermal growth factor-like domains and laminin-A globular domains. The
CRB3 gene encodes two isoforms (CRB3A and CRB3B), both of which lack an
extracellular domain (32). In addition, the prototypic CRB1, CRB2, and CRB3A
proteins contain a single transmembrane domain and a short, highly conserved
37-aa intracellular domain, a FERM (4.1, ezrin, radixin, moesin) domain juxtaposed
with the transmembrane domain, and a C-terminal PDZ-binding motif. The 4-aa
ERLI (Glu-Arg-Leu-lle) sequence in the C-terminal PDZ domain is important for
the protein’s interaction with key adaptor proteins, including PALS1 and PAR6
(33-35). Binding of PALS1 to the C-terminal PDZ domain leads to the recruitment
of PAT) and MUPP1 and the assembly of the core CRB complex. Binding of PAR6
to the C-terminal PDZ domain leads to the recruitment of PAR3, aPKC (atypical
protein kinase C), and CDC42, known as the PAR complex (Figure 3A) (32,36). Via
these proteins, the CRB complex regulates apical-basal polarity, modulates apical
membrane size, and maintains cell adhesion through the cadherin-catenin complex
at adherens junctions (37-40). The FERM-binding domain—which sits adjacent
to the PDZ domain—binds other proteins such as EPB4.1L5, which plays a role in
the epithelial-to-mesenchymal transition in the gastrulation stage of development
(41,42). Although the function of EPB4.1L5 in the mammalian retina is not currently
known, in zebrafish this protein plays a role in retinal development and is a putative
negative regulator of outer segment size in rod photoreceptors (43). Binding of PDZ
and FERM proteins to their respective binding motifs in CRB is mutually exclusive
(44,45), suggesting that different CRB complexes may exist, each with a specific
function. Consistent with this hypothesis, the PDZ domain in the non-prototypic
CRB3B isoform contains a C-terminal CLPI (Cys-Leu-Pro-lle) motif instead of an ERLI
motif (Figure 2C), and CRB3B plays a role in ciliogenesis and cell division (46).
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Figure 1. Schematic overview of CRB transcripts. In each panel, the gene structure is shown at the
top, with the exons indicated. (A) The entire CRB1 gene with exons 1-12, alternative exons a through
g, and the 10 predicted mRNA transcript variants that encode their respective protein isoforms.
(B) The entire CRB2 gene with exons 1-13, alternative exons a and b, and the four predicted mRNA
transcript variants that encode their respective protein isoforms. (C) The entire CRB3 gene with exons
1-4, alternative exon a, b, 4a, and 4b, and the two mRNA transcript variants (CRB3A and CRB3B) that
encode their respective protein isoforms. See Table 2 for further details.
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A EXTRACELLULAR INTRACELLULAR
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Figure 2. Schematic overview of the domains present in CRB1 (A), CRB2 (B), and CRB3 (C) protein
isoforms. The epitopes for the extracellular and intracellular anti-CRB1 antibodies are also indicated.

See Table 2 for further details.
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CRB proteins are localized primarily at the subapical region above the adherens
junctions between two or more photoreceptors, between two or more Miiller
glial cells, and between photoreceptors and Miiller glial cells (Figures 3A, 4) (47-
49). In the subapical region, human CRB1 is present in the microvilli of Muller glial
cells and in the inner segments of photoreceptor cells (Figure 4). Interestingly, an
antibody that recognizes all isoforms of CRB1 containing the prototypic N-terminus
(the “extracellular CRB1” antibody; see Figures 2A, 4) reveals the presence of
CRB1 proteins along the membranes of photoreceptors and Miller glial cells; in
contrast, an antibody against the intracellular domain of CRB1 (the “intracellular
CRB1” antibody) shows only patchy or vesicular staining (50). This difference in
localization patterns may be due to the presence of the secreted 1376-aa form of
CRB1 (Figures 2A, 4). In addition to its localization at the subapical region, CRB1
is also localized at vesicles in the vicinity of mitochondria throughout the myoid
region of the inner segments of both rods and cones. Finally, CRB1 is also present in
the outer plexiform layer of Miiller glial cells, surrounding photoreceptor axons in
Henle’s fiber structure at the fovea (Figure 4).

In the human retina, CRB2 is localized in Miiller glial cells (specifically, at the
subapical region) and photoreceptor inner segments (in vesicles, presumably in the
striated ciliary rootlets at the apical tips known as the ellipsoid region) (Figure 4)
(50). CRB3 is present at the subapical region in the microvilli of Muller glial cells and
in the inner segments of photoreceptor cells. In addition, CRB3 is localized in the
ellipsoid region at the interface between inner and outer segments. In the outer
plexiform layer, CRB3 is localized to the dendrites of rod bipolar cells and in vascular
pericytes (Figure 4) (18,50).

CRB proteins are conserved among species and have both overlapping and
compensatory roles and functions (50). In the human retina, CRB1 is located at
the subapical region in both Miiller glial and photoreceptor cells, whereas CRB2
is located exclusively at the subapical region in Miiller glial cells. CRB1, CRB2, and
CRB3A are all present in the inner segments of photoreceptors in specific, delimited
patterns. Surprisingly, the mouse retina has the opposite localization pattern at
the subapical region (Figure 3B) (48,51). In zebrafish, Crb1 is not present at the
subapical regions of photoreceptors and Miller glial cells; instead, two isoforms of
Crb2—Crb2A and Crb2B—are present (Figure 3B) (52). Interestingly, when human
CRB2 is expressed selectively in mouse photoreceptors that lack endogenous
Crb2, it also localizes to the tip of inner segments, presumably at striated ciliary
rootlets. In contrast, when expressed in mouse photoreceptors and Miiller glial
cells, human CRB2 localizes to the subapical region (50). Previous studies showed
that in both zebrafish and mice, Crb2 plays a role in determining the segment length
of photoreceptors (53,54). Moreover, CRB proteins may play complementary roles
in photoreceptor inner segments. For example, in Drosophila myosin V is essential
for transporting rhodopsin, and CRB stabilizes myosin V in order to mediate this
transport (55).
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Cone or Rod Miiller glial cell 1
Photoreceptor

Cadherin e

Generic Crumbs Complex

@@ CrbD @@
CRED Crb2) (o) D)

Human Mouse Zebrafish

Figure 3. Model of the CRB complex in the retina in general, as well as in the human, mouse, and
zebrafish retina. (A) General structure of the retina, which is composed of seven cell types: Muller
glial cells (orange), bipolar cells (dark blue), horizontal cells (green), amacrine cells (yellow), retinal
ganglion cells (purple), rods (light blue), and cones (red). The cell types are depicted over an image
of a mouse section embedded in Technovit resin. The Crumbs complex is localized at the subapical
region (SAR) above the adherens junction (AJ) between photoreceptors, between Miller glial cells,
and between photoreceptor and Miiller glial cells. At the right, the proteins that comprise the Crumbs
complex and adherens junctions are shown schematically. (B) Model depicting CRB protein localization
in photoreceptors and Miiller glial cells in the human, mouse, and zebrafish retina.
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Figure 4. Model depicting the localization of CRB1, CRB2, and CRB3 proteins in retinal cells and
structures. CRB1, detected using the intracellular CRB1 antibody (dark red) and extracellular CRB1
antibody (light red), is present in both Mdller glia cells (MGC) and photoreceptor cells at the subapical
region (SAR) above the adherens junctions (AJ, shown in the inset). CRB2 (blue) is present in MGCs at
the SAR above the AJ. CRB3 (green) is present at the SAR in MGCs and photoreceptors. CRB3 is also
present in the ellipsoid region of the inner segment, in the dendrites of rod bipolar (BP) cells, and in
pericytes (P) in the blood vessels (BV). See the text for further details.
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Moving From Animal Models To The Laboratory Dish

Recent analyses of mammalian models of CRBI1-linked retinal diseases provided
key insight into the role of CRB proteins in the retina. A variety of models are now
available for studying the function of both mutant Crb1 and mutant Crb2 (Figure
5). These models mimic the diverse phenotypes and severities observed in patients
with CRBI1-linked retinal dystrophies, including LCA, early-onset RP, telangiectasia,
and mild retinopathies (17,18,48,54,56). These models have also provided clues
to the cellular and molecular mechanisms that underlie the downstream actions
of CRB1 and CRB2 (17,57,58). Models that mimic mild retinopathies include the
Crb1-knockout (Crbi*°) mouse, the Crb1®**"/- knock-in mouse, the naturally
occurring Crb1™ mouse, and the Miiller glial cell-specific Crb2*M¢ knockout mouse
(27,48,59,60). All these models have several features in common, including loss of
integrity at the subapical region-adherens junctions at the outer limiting membrane,
displaced photoreceptors in the subretinal space, and focal upregulation of glial
fibrillary acidic protein (GFAP). Crb2f"¢ and Crb2%mPk¢ cell-specific knockout mice
(which lack Crb2 in retinal progenitor and photoreceptor cells, respectively) and
Crb1*°Crb2tov-fP¢ double-knockout mice (which lack Crb1 and have a 50% reduction
in Crb2 levels) develop an early-onset RP phenotype (17,27,54,58). The BN-J rat
(a mutant line of Brown Norway rat with a mutation in Crb1) develops an early-
onset RP phenotype and telangiectasia (56). These more severe rodent models
develop photoreceptor half-rosettes in the outer nuclear layer and relatively early-
onset photoreceptor degeneration. The double-knockout Crb1*°Crb2%%*¢ mouse
(which lacks both Crb1 and Crb2 in retinal progenitor cells) develops LCA; the
double-knockout Crb1*’"TCrb2R*¢ mouse (which lacks one allele of Crb1 and both
alleles of Crb2 in retinal progenitor cells) also develops LCA (17). These models are
characterized by an early-onset severe reduction in retinal activity (measured using
electroretinography), a loss of photoreceptor inner and outer segment layers, a loss
of the outer plexiform layer, fusion between the outer and inner nuclear layers, and
ectopic retinal cells in all nuclear layers.

These three phenotypically distinct sets of mutant CRB models highlight the
important role that CRB proteins play in various cell types throughout life (Figure
5). These models also illustrate that the total amounts of CRB proteins expressed
in various cell types can strongly influence the severity of the phenotype (18,61).
For example, a mild decrease in CRB levels leads to a relatively milder form of
retinopathy, whereas greater reductions in CRB1 and CRB2 lead to early-onset
RP; finally, a complete lack of CRB1 and CRB2 leads to LCA. These reductions in
CRB levels also lead to variations in morphological onset: postnatally, late or
early embryonically respectively. In turn, this correlates to the duration of the
therapeutic window. Currently, the most suitable models for use in preclinical
studies are the mouse models that develop early-onset RP, as these models most
closely mimic human retinopathies with early-onset retinal degeneration. Whether
the neurodevelopmental retinal disorganization present in LCA can be improved
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using gene therapy—and whether retinal organization can be restored by restoring
CRB levels—is currently unknown. The therapeutic window for preventing the
phenotype in mouse models of CRB1-associated LCA suggests that in utero
application is needed for introducing gene therapy vectors. In order to demonstrate
proof-of-concept with respect to this neurodevelopment-based phenotype, viral
vectors will require further development, for example using specific promoters
and/or AAV serotypes. This approach would facilitate the targeting and expression
of CRB proteins during retinal development and maturation.

Therapeutic Window
Long Short
Leber’s Congenital Amaurosis|
CrbIXoCrb2Rr
('".b‘{.k'” Il'.ft!_"rb‘_'-_‘,' ARPC

ITuOAIqUU

Retinitis Pigmentosa
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Figure 5. Overview of CRB animal models, showing the duration of the putative therapeutic
window, total Crb1 and Crb2 levels, phenotype severity, and timing of morphological onset. Based
on this multidimensional pattern, the various models can be grouped into models that develop mild
retinopathies, early-onset retinitis pigmentosa, or Leber’s congenital amaurosis.

The animal models discussed above have provided valuable mechanistic and
phenotypic insights while providing a robust platform for testing gene therapy
strategies. However, the ability to differentiate human adult stem cells in vitro in
order to generate “retina-in-a-dish” and “retinal disease-in-a-dish” models has
created several exciting new opportunities. First, these models provide a viable
alternative to animal models for addressing basic mechanistic questions regarding
ocular morphogenesis, for example by modulating gene expression in optic vesicles
from patient-derived induced pluripotent stem cells (iPSCs) (62). Second, assays
to measure transgene expression and biological activity can be developed using
knockout iPSC-derived retinas (63). Third, these models can be used both to test
gene-editing strategies and for high-throughput drug screening. Finally, these
models can serve as a source of transplantable material for cell therapy strategies.
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In all of these applications, the material used will be based on human cells and
is disease-specific. Many studies using rodent and/or primate models have shown
that photoreceptor cell transplantation is a feasible strategy for improving retinal
function (64-68). Recently, donor-host cytoplasmic exchange was highlighted as
a major pathway used by transplanted photoreceptors alongside the classically
depicted processes of migration and integration. Because this transfer of cytoplasmic
material between donor and host photoreceptors is not due to classic cell fusion or
facilitated uptake from the extracellular matrix, it may represent a new therapeutic
strategy for use in retinal disease (69,70,71).

Of course, despite their advantages these in vitro models have several possible
shortcomings. For example, the in vitro retina-in-a-dish model lacks the full
macroscopic environment of the entire organism. In addition, these techniques are
time-consuming and costly, including the need to generate knockout and/or patient
iPSCs which then need to differentiate and mature to form functional retina-like
or diseased retina-like structures. Generating retina-like organoids from human
embryonic stem cells and iPSCs is relatively autonomous, although neural induction
requires the addition of extrinsic factors such as B-27 and N-2 supplements.
However, providing additional factors such as retinoic acid and Notch inhibitors can
accelerate neuronal development and maturation (72). The use of in vitro disease
models using human iPSCs has begun to overtake the use of human embryonic
stem cells, due in large part to ethical concerns and technical issues (73). It is also
interesting to note that the in vitro model mimics well the in vivodevelopment.
Mouse optic vesicles develop a fully layered neural retina in just a few weeks; in
contrast, human optic vesicles take at least 180 days to develop a neural retina
with yet immature photoreceptor segments (74). Therefore, mouse iPSC-derived
retinas may be applicable for more basic, high-throughput initial testing, although
differences in retinal photoreceptor composition between species should be
considered. A more recent method developed for differentiating cells is the self-
formed ectodermal autonomous multi-zone. This method mimics the development
of the entire eye by differentiating cells into four principal zones to recreate the
retinal pigment epithelium, retina, lens, and ocular surface ectoderm (75). This
method may be more suitable for cell-based correction and transplantation, as well
as for use in patients with a disease that involves multiple ocular tissues.

Personalized Medicine: Still Not Yet The Ideal Situation

The development of a proof-of-concept therapy for a gene linked to a retinal disease
will likely be driven by technological advances that lead to a more streamlined
approach in order to realize “personalized medicine.” The recent advent of gene-
editing and gene-replacement strategies, improved cell targeting, the ability to
package genes into delivery vectors, and in vitro models has certainly helped reduce
the time needed to obtain the first proof-of-concept results for other gene-linked
retinal diseases. Over the past several years, the development of “retinal disease-in-
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a-dish” modeling approaches has led to a highly robust and widely used treatment
development pipeline that spans from patient identification to therapy. Several
groups are now focusing their efforts on improving this pipeline further in order to
streamline the in vitro process, providing several important advantages. First, new,
less invasive sources of human iPSCs become available, providing more efficient
generation of these iPSCs. In practical terms, this means that iPSCs can be obtained
from blood, urine, and dermal pulp samples, as an alternative to skin biopsies; this
is particularly beneficial in children (76-79). Second, patient phenotyping can be
improved through the use of disease models and transcriptomics, providing greater
insightinto the underlying pathway dynamics. Third, optimal human retinal-disease-
in-a-dish procedures allow improved treatment paradigms for the patient (80,81).
Lastly, this approach allows researchers to develop strategies designed to correct
point mutations and exon insertions in both dividing and non-dividing neurons
using CRISPR/Cas9-based editing (82,83).

In a typical clinical situation, patients are identified, screened, and given a
diagnosis only after retinal degeneration has already begun. Thus, the optimal
therapeutic window may have already closed by this time (Figure 6A). Delaying
diagnosis can affect the therapeutic window, reducing the efficacy of potential gene
therapies, ultimately reducing patient outcome. In this respect, other therapeutic
strategies such as cell transplantation, optogenetics, and the use of a retinal
prosthesis might be more applicable. In the future, this will hopefully become less
of an issue as we understand better the pathophysiology of retinal diseases and as
treatment platforms become routine practice. In the ideal scenario, a patient with
a putative hereditary retinal disease will seek out an ophthalmologist in order to
obtain a diagnosis and genetic screening before the onset of vision loss. In addition,
the use of in vitro “retinal disease-in-a-dish” approaches—in which the cultured
retina is physiologically stressed—will likely lead to earlier identification of the
retinal phenotype in prospective patients, ultimately providing a more structured
approach to developing and implementing gene therapies (Figure 6B). After clinical
studies using degenerated retinas demonstrate therapeutic efficacy, this early-stage
planning may also increase the rate of success by providing treatment at the optimal
time during disease progression.

Retinal Gene Therapy and CRISPR/Cas9

In recent years, gene therapy has been used successfully to demonstrate the
viability of providing therapeutic—albeit transient—benefits. Current clinical trials
for the RPE65, REP1, and CNGA3 genes have revealed both the effectiveness and
limitations associated with retinal gene therapy, including the timing, injection
method, and transduction coverage (https://clinicaltrials.gov; 84-87). However,
these limitations do not necessarily suggest that gene therapy will not be able
to halt the degenerative process, except perhaps at a much later stage in the
disease (88-91). These technical limitations will likely require a more technological
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advance than simply reinventing the wheel. While gene-augmentation therapies 1
are currently the most used and most validated strategy, gene editing—in which

the faulty gene is replaced with a healthy copy—is potentially more appropriate, as

it corrects the specific genetic defect within the endogenous gene. In recent years,

the CRISPR/Cas9 approach has largely replaced previous gene-editing methods,
including transcription activator-like effector nucleases and zinc finger nucleases,

and several research groups are currently competing to establish proof-of-concept

in the retina.
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Figure 6. Proposed therapeutic timeline for treating retinal diseases. (A) With current approaches,
the optimal therapeutic window is missed in most patients. Typically, an ophthalmologist becomes
involved—and treatment paradigms are initiated—only after the onset of retinal degeneration and
vision loss. (B) Under ideal conditions, a patient at risk for developing an inherited retinal degeneration
will be identified well before disease onset and the start of vision loss. This will enable the clinician to
intervene within the therapeutic window, providing a well-planned, personalized intervention.

CRISPR/Cas9is a bacterial defense system in which Clustered Regularly Interspaced
Short Palindromic Repeats (CRISPR) allow the identification of previously invaded
viruses. Upon binding with a Cas (CRISPR-associated) protein, the resulting complex
then drives the cleavage of DNA in the invading virus. Artificially synthesized guide
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RNA can be used together with a Cas protein to induce double-strand breaks in
the target gene. Despite its growing popularity, however, the CRISPR/Cas9 system
is not perfect, as the guide RNA can bind to similar sites outside of the targeted
gene, potentially leading to unspecified and unintended mutations, thus limiting
both its research value and clinical potential (92). Nevertheless, CRISPR/Cas9 has
been used to correct defects in several genes, including genes linked to Duchenne
muscular dystrophy, metabolic liver disease, and hemophilia B (93-97). Correcting
a point mutation requires that the Cas9 protein, guide RNA, and donor template
for recombination are introduced together into the same cells. This strategy has
been used successfully in patient-specific iPSCs to repair a point mutation in the
RPGR gene associated with X-linked retinitis pigmentosa (82). However, to apply
this strategy in vivo currently requires a double-AAV delivery system, with one AAV
containing Cas9 and the other AAV containing the guide RNA and donor template;
thus, packaging everything into a single delivery vector is the next challenge (98).
Another major—albeit recently solved—drawback associated with this method is
that it must be used in dividing cells. Of course, early treatment of the diseased
retina would be ideal, but ethically this will likely not become possible until safety
and regulatory hurdles are overcome. In this respect, obtaining proof-of-concept in
both in utero-treated mouse models and in vitro iPS-derived human disease models
may help facilitate this process. Proof-of-concept has already been demonstrated
for genomic editing in non-dividing photoreceptors using in vivo CRISPR/Cas9-
mediated homology-independent targeted integration. Using the Royal College
of Surgeons (RCS) rat model of retinitis pigmentosa, the authors showed both an
improved morphological outcome and an improved electroretinography response
(83). With respect to developing a cell therapeutic approach for use in later stages
of degeneration, CRISPR/Cas is a potentially viable method, particularly with the off-
target effects being minimized using more specific guide RNAs and an array of other,
recently discovered endonucleases such as Cpfl (99-101). In summary, at least for
the foreseeable future, complete gene replacement using gene-augmentation
strategies appears to be the most viable and validated therapeutic strategy for
inherited retinal degenerations.

Is Targeting CRB a Feasible Gene Therapy Approach?

The feasibility of using a CRB-based gene therapy approach seems to depend upon
the ability to restore pre-disease levels of CRB expression in order to sufficiently
stop the degeneration process. However, unlike other therapies, this approach may
not be as simple as replacing one gene for a similar gene, nor as simple as targeting
the gene replacement to a single cell type. Although the CRB1 gene was first
linked to retinal disease back in in 1999, it took 16 years to obtain the first in vivo
proof-of-concept for CRB1-based gene therapy. This long interval was due in part
to several factors, including: (i) the sheer size of the CRB gene sequences, which
limited their ability to be packaged in AAV vectors, (ii) the need to engineer vectors
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with codon optimization, and (iii) the need to develop minimal promoters in order
to express CRB proteins in Miiller glial cells and photoreceptors (102). Expressing
the human CRB1 gene in mutant Crb1 mouse models—but not in wild-type mice—
led to an adverse immune response (50). It is possible that some CRB1 mutations
lead to nonsense-mediated mRNA decay, leaving these patients immunologically
susceptible to the expression of recombinant human CRB1 protein. In these patients,
T cells primed against the human wild-type CRB1 protein would be activated by
the new CRB1 epitopes on the surface of antigen-presenting cells, inducing an
immunogenic response. To circumvent this problem, the most structurally similar
CRB member—CRB2—was expressed at near physiological levels. Expressing
human CRB2 in the retina of mice expressing normal levels of the mouse homologs
had no discernible detrimental effects. Importantly, overexpressing human CRB2
in photoreceptors and Miller glial cells with reduced levels of endogenous Crb2
and Crbl expression improved both cell morphology and retinal activity, and
the human CRB2 protein was expressed at the appropriate subapical regions;
interestingly, expressing human CRB2 in only one cell type had no effect. This
supports our finding that adequate levels of CRB protein in only a single cell type
is insufficient for maintaining retinal integrity (Figure 7) (50). It is also important
to ensure that the CRB2 protein is localized correctly at the subapical region when
expressed in both photoreceptors and Miller glial cells. When expressed only in
photoreceptors, CRB2 localized at the tip of the inner segments at higher levels
than in the subapical region (50). This highlights the need for CRB to be expressed in
both Miiller glial cells and photoreceptors and to localize correctly to the subapical
region, thereby promoting the maintenance of adherens junctions via the cadherin-
catenin complex. In addition, this underscores our current lack of knowledge
regarding the physiological relevance of CRB homomeric and perhaps heteromeric
interactions via their extracellular domains. Although these CRB-mediated cell-cell
interactions are poorly understood in mammals, homomeric interactions between
Crb2 extracellular domains in zebrafish photoreceptors have been suggested to
promote cell-cell adhesion (52). In summary, although Miiller glial cell-Miiller glial
cell interactions and photoreceptor-photoreceptor interactions alone are likely not
sufficient for maintaining retinal structure and function in patients with CRB1-linked
mutations, Miiller glial cell-photoreceptor interactions may be sufficient.

This brings us to the clinically relevant question. Given that the human retina
contains significant levels of CRB2 in Miiller glial cells, would CRB2-mediated gene
therapy specifically targeted at photoreceptors be sufficient to rescue function in
patients, or will the levels of CRB2 in Miiller glial cells also need to be increased? As
discussed above, the levels of functional CRB1 protein are reduced in Miiller glial
cells and photoreceptors in patients with mutations in the CRB1 gene. The question
remains, will increasing CRB2 expression in photoreceptors be sufficient to restore
the properties of CRB-CRB-mediated Miiller glial-photoreceptor interactions as
in healthy persons, and will this mimic the CRB2-CRB2-mediated Miiller glial cell-
photoreceptor interactions observed in retinal CRB1-deficient mice and zebrafish
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(which develop late-onset retinal degeneration and no retinal degeneration,
respectively). This train of thought gives rise to reservations regarding moving
forward with human CRBI1-directed therapy targeted to both cell types (although
this strategy might be a viable option for a specific subset of patients who lack T
cells directed against CRB1). Given the high levels of both structural and functional
overlap between CRB1 and CRB2, as well as the apparent need to express CRB
proteinsin both photoreceptors and Miiller glial cells in order to maintain a functional
retina, we believe that human CRB2-mediated gene therapy may represent a safe
and viable treatment for fighting blindness due to mutations in CRBI1.

AAV9-GRKI-CRB AAVI9-CMV-CRB
subretinal subretinal

ShH10Y-CMV-CRB
intravitreal

Figure 7. Schematic depiction of CRB-mediated gene therapy strategies. Targeted delivery of CRB
exclusively to either the Mdller glial cells (MGC) or photoreceptors (PRC) provides no therapeutic
benefit (left and middle panels, respectively); in contrast, delivering CRB to both MGCs and PRCs (right
panel) elicits a response. Intravitreal applied ShH10Y-CMV-CRB drives CRB expression in the subapical
region (SAR) of MGCs, whereas subretinal applied AAV9-GRK1-CRB drives expression at the SAR of
photoreceptors. In contrast, subretinal applied AAV9-CMV-CRB drives expression at the SAR of both
cell types.
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Future Developments

Thanks to the array of mouse models currently available for addressing questions
regarding CRB function and protein interactions, together with the proof-of-
concept showing the feasibility of gene therapy, we now have a number of tools at
our disposal to help launch CRB-mediated therapy into preclinical trials, ideally in
the near future. Moreover, several cutting-edge methods and techniques are now
available, including: (i) CRISPR/Cas9, to correct specific point mutations in patients;
and (ii) the ability to differentiate human iPSCs in order to generate humanized
retinal models for investigating the pathways that underlie retinal disease, to test
vector-mediated gene therapies using potency assays, and to serve as a viable source
of transplant tissue. Together, these powerful new technologies will accelerate the
field toward developing treatment options and addressing fundamental questions.
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1.2 AIM AND OUTLINE OF THIS THESIS

Chapter 1 reviews the CRB protein complex of the retina and gives an overview
of the available CRB animal models which mimic CRB1-linked retinal dystrophies.
Also, it discusses the potential of using stem cell-based models, namely retinal
organoids, as alternatives to animal models. Lastly, the chapter considers the use of
gene-editing and gene-augmentation as therapeutic strategies for inherited retinal
dystrophies.

To investigate the physiological role of CRB in the mouse retina we employed
cell type-specific Cre mouse lines for ablation of the Crb genes in progenitor
cells, immature photoreceptor cells and Miller Glial cells (Chapters 2, 3 and 4,
respectively). We analysed four animal models mimicking a CRB1-Leber congenital
amaurosis (LCA)-like phenotype in retinal progenitor cells (Crb1¥/WTCrb24f*¢ and
Crb1°Crb2%7¢; Chapter 2), in immature photoreceptor cells (Crb1 °Crb24mPRS,
Chapter 3), in immature Miiller glial cells (Crb1*°Crb22V¢; Chapter 4). Furthermore
we analysed one mouse model mimicking a CRBI1-retinitis pigmentosa (RP)-like
phenotype (Crb1*°Crb2towimPkc; Chapter 4). The four CRBI1-LCA-like phenotype
mouse models all had disruptions at the outer limiting membrane and abnormal
retinal lamination with ectopic localization of mitotic progenitors, cycling cells,
and immature photoreceptors. Additionally, these models exhibited transiently
thickened retina with the intermingling of nuclei of the ONL and INL, and ectopic
retinal cells in the ganglion cell layer.

Chapter 2 focuses on the Crb1¥"TCrb2**¢ and Crb1*°Crb2%*"¢ mouse models
in which both alleles of Crb2 are disrupted in retinal progenitor cells, on genetic
backgrounds with either reduced levels of or lacking Crb1, respectively. The Crb1%%
WTCrb2%%*¢ had a less severe morphological phenotype than the Crb1°Crb2%"¢ which
is the most severe model exhibiting a CRB1-LCA-like phenotype. Analysis of the
Crb1°Crb2%*¢ highlighted that CRB1 and CRB2 are required to prevent overgrowth
of the retina. These retinas had an increase in mitotic progenitors and cycling cells
subsequently leading to an increase in late-born cells types. CRB1 and CRB2 have
a role in regulating critical proliferative signalling pathways such as Notch1, Hippo/
YAP, and Kaiso/p120-catenin.

In Chapter 3 we analysed Crb1*°Crb2'""mPR¢ and Crb1*°Crb24™PR¢ mouse models
in which we disrupted in immature photoreceptors a single allele or both alleles
of Crb2, respectively, on a genetic background lacking Crb1. The Crb1%°Crb2tow-mPRC
model mimicked a severe CRB1-RP-like phenotype mostly restricted to the inferior
retina. The Crb1*°Crb24m™PR¢ model mimicked a CRB1-LCA-like phenotype with the
superior retina showing a more severe phenotype than the inferior retina. Despite an
increase in mitotic progenitors, the Crb1¥°Crb24™R¢ did not exhibit retinal overgrowth
as in the Crb1°Crb2%*C retina. Taken together, the data in chapter 3 shows that
CRB2 levels in immature photoreceptors play a modulating role in determining the
severities of CRB1 retinal dystrophies in mice and that they determine the superior-
inferior symmetry of the developing retina. Furthermore, it highlights the need for
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physiological levels of CRB proteins in adjacent photoreceptors and Miiller glial cells.

The work described in Chapter 4 reports a study of Crb1¥°Crb2° mouse retinas in
which we disrupted both alleles of Crb2 in Miiller glial cells, on a genetic background
lacking Crb1, leading to a strong peripheral to central retinal degeneration. Taken
together with previous findings this work strongly indicates an overlap of function
for CRB1 and CRB2 in mouse Miiller glial cells and further highlights the role of
CRB2 as a modulating factor of CRB1. Furthermore, in Chapter 4, we identified the
localisation of CRB1 and CRB2 proteins at the outer limiting membrane in Miiller
glial cells and photoreceptors in two non-human primate species. These studies
together suggest the presence of compensatory mechanisms between CRB1 and
CRB2 in Miiller glial cells and perhaps also photoreceptors.

In Chapter 5 and 6 we describe the development of gene and cell therapy-
based strategies. In Chapter 5 we developed gene therapy strategies using adeno-
associated viral (AAVs) gene therapy vectors with different promoter combinations
and injections techniques. These combined strategies allowed us to express either
CRB1 or CRB2 in either photoreceptors, or Miiller Glial cells, or both cell types
together in CRB1-RP-like mouse models. We found that CRB2, but not CRB1, lead to
arescue in the CRB1-RP-like models. CRB proteins are required at adequate levels in
both photoreceptors and Miiller Glial cells for functional and morphological rescue.
In Chapter 6.1 we identified NTPDase2 as a suitable cell surface marker for enriching
Miiller Glial cells from both immature and mature mouse retina using Fluorescence-
Activated Cell Sorting (FACS). In Chapter 6.2 we subretinal-transplanted these
fluorescence-labelled sorted Miiller glial cells into degenerating retina.

Chapter 7 describes a study on the roles of CRB proteins in the developing human
retina by analysis of human fetal retina and human Induced Pluripotent Stem Cell
(iPSC)-derived retinal organoids. We found that CRB2 was the predominant protein
in human fetal radial glial progenitor cells in the first-trimester retina, whereas CRB1
gets expressed from the second trimester coinciding with the birth of photoreceptors
and Miiller Glial cells. This tissue expression pattern is recapitulated in young versus
old human iPSC-derived retinal organoids. CRB2 is additionally found expressed in
human fetal retinal pigment epithelium and human iPSC-derived retinal pigment
epithelium. Moreover, in Chapter 7, we used both human donor retinal explants
and human iPSC-derived retinal organoids to test the specificity of different AAV
serotypes to target photoreceptor cells and Miiller glial cells. Additionally, our
studies highlighted a possible important role for photoreceptor segments in the
uptake of various serotypes of AAV.

Chapter 8 provides a general discussion of this thesis and future perspectives of
the role that apical polarity plays in human retinogenesis and disease. Additionally,
Chapter 9.1 Appendix | includes the methodology used for the differentiation of
human iPSCs to retinal organoids and their use for transgene expression assays, as
put to use in Chapter 7. Lastly, Chapter 9.2 Appendix Il includes the Nederlandse
samenvatting, abbreviations, list of publications and curriculum vitae of the author
of this thesis and acknowledgements.
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