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ABSTRACT 

This paper explores the complex relationship between scientific novelty and technological 

impact.  We measure novel science as publications which make new combinations of prior 

knowledge, as reflected in new combinations of journals in their references, and trace links 

between science and technology by scientific references in patent applications.  We draw on all 

the Web of Science SCIE journal articles published in 2001 and all the patents in PATSTAT 

(October 2013 edition).  We find that the small proportion of scientific publications which score 

on novelty, particularly the 1% highly novel scientific publications in their field, are significantly 

and sizably more likely to have direct technological impact than comparable non-novel 

publications.  In addition to this superior likelihood of direct impact, novel science also has a 

higher probability for indirect technological impact, being more likely to be cited by other 

scientific publications which have technological impact.  Among the set of scientific publications 

cited at least once by patents, there are no additional significant differences in the speed or the 

intensity of the technological impact between novel and non-novel scientific prior art, but the 

technological impact from novel science is significantly broader and reaching new technology 

fields previously not impacted by its scientific discipline.  Novel science is also more likely to 

lead to patents which are themselves novel. 
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1. Introduction 

How well science and industry are interconnected and how well scientific knowledge can feed 

into technology development is nowadays recognized as crucial for the innovative performance, 

growth and competitiveness of nations (Freeman, 1987; Jaffe, 1989; Nelson, 1993).  Corporations, 

employing more open innovation strategies, are increasingly interested in leveraging public 

science as an external knowledge source for their technology development (Gambardella; 

Cockburn & Henderson, 1996; Mansfield, 1998; Laursen & Salter, 2006; Arora et al., 2015).  

From the science side, universities and public research organizations have been called upon to 

engage more actively in knowledge transfer (Dasgupta & David, 1994; Branscomb et al., 1999; 

Etzkowitz & Leydesdorff, 2000). 

Although the importance of science for technological innovation is widely acknowledged, the 

translation of science into innovation is a complex process (Bozeman, 2000; Bozeman et al., 

2015).  While many telling examples can be given where scientific discoveries have led to 

important technological breakthroughs, it is at the same time acknowledged that many good 

scientific ideas do not necessarily have high practical value and that the logics of scientific 

research and that of industrial innovation may not always be compatible (Gittelman & Kogut, 

2003).  Academic research still has to uncover what kinds of scientific contributions and which 

mechanisms and processes generate more and more effective links between science and industry. 

The technology transfer literature has investigated various institutional factors that may facilitate 

or inhibit the success of transferring university research to industrial innovation, such as 

intellectual property regimes, incentives schemes, technology transfer offices, and university 

culture (Di Gregorio & Shane, 2003; Debackere & Veugelers, 2005; Jong, 2008; Lach & 

Schankerman, 2008; Geuna & Rossi, 2011).  From the company side, the strategy and innovation 

literature has identified various mechanisms through which science contributes to company 

innovative performance (Cohen & Levinthal, 1990; Hicks, 1995; Cassiman & Veugelers, 2002; 

Fleming & Sorenson, 2004; Cassiman & Veugelers, 2006).  However, neither the technology 

transfer nor the strategy/innovation literature has investigated the intrinsic characteristics of 

scientific outputs that may explain why some scientific outputs contribute disproportionately to 

innovation. 
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In this contribution, we take the science perspective of links between science and technology and 

aim to identify the scientific contributions which are most likely to be referenced as prior art by 

patented technology inventions.  When looking at the characteristics of the science, we are 

particularly interested in novel science as prior art for patents. 

Our interest in novel science resides in its special high risk/high gain characteristic.  Scientific 

breakthroughs often require novel approaches, which at the same time, however, also face a 

higher level of uncertainty and potential resistance by incumbent paradigms.  The combinatorial 

novelty perspective views novelty coming from making new combinations of preexisting 

components (Schumpeter, 1939; Mednick, 1962; Nelson & Winter, 1982; Simonton, 2003).  

Following this perspective, Wang et al. (2017) developed a measure of novelty for individual 

scientific publications by examining whether a publication makes first-time-ever combinations of 

referenced journals, taking into account the difficulty of making such new combinations.  They 

found that novel publications, especially those that are the most novel in their field, are 

significantly more likely to become top cited in the long run.  At the same time, however, novel 

publications are also more risky, as reflected in the larger dispersion in their citation distribution.  

Furthermore, confronted with the resistance from the incumbent paradigm, novel publications are 

less likely to get published in journals with high Impact Factor, and they face a delayed 

recognition in their citation accumulation process.  In addition, the major impact of novel 

publications comes from other fields rather than their own. 

In view of their specific high gain/high risk character and their hampered scientific recognition, it 

is important to study the technological impact of novel scientific publications: (a) does their 

novelty characteristic with its potential for high scientific impact also make them more likely 

sources for technological inventions?  (b) do their high risk and delayed recognition 

characteristics observed in their scientific impact also affect their technological impact?  (c) does 

their novel character lead to technological impact across a broader set of fields and reaching new 

fields of application?  (d) does their novelty trait also spur more novel approaches in the 

technological innovations building on them? 

We draw on all journal articles published in 2001 indexed in the Clarivate Analytics Web of 

Science (WoS) Science Citation Index Expanded (SCIE) and all patents in the EPO Worldwide 

Patent Statistical Database (PATSTAT) October 2013 edition.  We find that novel scientific 
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publications are significantly more likely to have technological impact than comparable non-

novel publications from the same field.  This higher technological impact holds particularly for 

those scientific publications which belong to the 1% most novel in their field.  The premium in 

technological impact for novel scientific publications is even bigger, when correcting for their 

initial disadvantage of being published in lower impact factor journals.  In addition to this 

superior likelihood of direct impact, novel science also has a higher probability for indirect 

technological impact, being more likely to be cited by other scientific publications which have 

technological impact.  Conditional on having technology impact, compared with non-novel 

publications, novel publications do not exhibit a longer time lag to reach technological impact.  

More importantly, the technological impact of novel publications is broader and more 

unprecedented, reaching more technological fields and new fields previously not impacted by the 

scientific discipline of the focal scientific publication.  Novel science is also significantly more 

likely to impact technological inventions which are themselves making new combinations of 

technological components, but this we only find in life sciences, not in physical sciences and 

engineering. 

2. Science and technological impact 

How science contributes to technological innovation is a long-standing research question in the 

innovation literature.  To be able to trace the knowledge flow from science to technological 

innovation at a large scale, the empirical literature has been using scientific non-patent references 

(sNPRs), i.e., the references in patents to the scientific literature as relevant prior art for the 

patented inventions, following the seminal work of Narin et al. (1997). 

A number of studies have examined the validity of using sNPRs for tracing knowledge flows 

from science to technology.  In a small scale case study of nanotechnology patents, Meyer and 

Persson (1998) found that sNPRs may not represent a direct link between the citing patent and 

the cited scientific publication, but the cited scientific publication plays a more indirect role as a 

source of relevant background information.  Tijssen et al. (2000) also noted that citations are 

primarily meant to indicate significant contributions of scientific research to elements of the 

invention.  Roach and Cohen (2013), by comparing patent and survey data, found that non-patent 

references are a better measure of knowledge flow from public research than patent references.  
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Callaert et al. (2014), based on a small number of interviews of inventors, concluded that 

although scientific references in patents should not be interpreted as direct links between science 

and technology, most scientific references in patents are considered as relevant by the inventors, 

at least as background information for the patented invention.  Similarly, Nagaoka and Yamauchi 

(2015), by comparing sNPRs in patents with survey results of Japanese inventors, confirmed that 

an sNPR does not necessarily mean that the cited scientific publication is a direct or essential 

input for the patented invention but rather indicates that the cited scientific publication serves as 

relevant background information and source of inspiration for the technological invention. 

There is a large volume of empirical studies of sNPRs taking patents as the starting point and 

comparing the quality of the patents with and without sNPRs, where patent quality is commonly 

measured by the patents’ forward citations.  For example, Fleming and Sorenson (2004) found 

that patents that cite science receive more citations from other patents, but only for relatively 

difficult inventions, that is, those seeking to combine highly coupled components.  Cassiman et 

al. (2008) found that referencing science does not significantly explain the forward citations of 

the patent, but that it is positively correlated with the scope of patents’ forward citations.  They 

also found that the linkage to science matters more at the firm level than at the invention/patent 

level. 

In comparison, much less developed is the literature taking scientific publications as the starting 

point and examining which types of scientific publications are more likely to have technological 

impact or economic value.  Prior studies taking this perspective also have used sNPRs to link 

science and technology.  For example, Narin et al. (1997) observed a rapidly growing citation 

linkage between US patents and publically funded scientific publications. Similarly, Li et al. 

(2017) found that 30% of NIH grants generated scientific publications are subsequently cited by 

patents.  Other studies have found that being cited by patents is a rare event for scientific 

publications.  For example, Winnink et al. (2013) found that only 1% of their identified 15,000 

intron-related WoS publications in the period 1986-2001 were cited by 1,284 (1984-2012) intron-

related patents. 
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Ahmadpoor and Jones (2017) examined the minimum citation distance between patented 

inventions and prior scientific advances1, using 4.8 million US patents and 32 million WoS 

research articles.  They found that about 80% of cited scientific publications (i.e., cited at least 

once by other scientific publication) eventually link forward to a future patent, but it typically 

takes 2 or 3 scientific links before this technology link is established.  Only 10% of cited 

scientific publications have a citation distance of only 1 step, i.e., being directly cited by patents.  

The citation distance varies by field: the fields closest to the patent frontier include nanoscience 

and nanotechnology, materials science and biomaterials, and computer science hardware and 

architecture, while mathematics is the most distant. 

The speed of transfer, or the time lapse between the publication year of the cited scientific 

publication and the application year of the patent citing the focal scientific publication, may also 

differ substantially between fields of technology and is likely to be shorter in emerging fields.  

While Ahmadpoor and Jones (2017) found an average time lag of 6.67 years for direct citations, 

Finardi (2011) observed an average time lag between 3 and 4 years for nanotechnology. 

In terms of what types of scientific outputs are more likely to be cited by patents, there is a high 

correlation between scientific impact and technological impact: scientific publications which are 

most cited in the scientific literature are also more likely to be cited by patents.  For example, 

Hicks et al. (2000) showed that a US publication among the top 1% most cited publications is 

nine times more likely to be cited by a US patent than a randomly chosen US publication.  This 

positive association is also confirmed by Ahmadpoor and Jones (2017) and Popp (2017). 

van Raan (2017) studied the technological impact of sleeping beauties, i.e. scientific publications 

with delayed recognition.  He found that sleeping beauties are more cited in patents than ‘normal’ 

publications.  Inventor-author self-citations occur only in a small minority of the SB-SNPRs, but 

other types of inventor-author links occur quite frequently.  Based on in-depth analysis of five 

cases of most cited sleeping beauties with sNPRs, he concluded that Sleeping Beauties SNPRs 

may deal with new topics, but this is not generally the case.  Rather, they present new approaches 

within an existing topic, which pave the way to new applications.  On time lags, van Raan and 

                                                                 

1 If a publication is directly cited by patents, then the citation distance is 1, if a publication is cited by 

another publication which is cited by patents, then the citation distance is 2, and so on. 
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Winnink (2018) found that sleeping beauties sNPRs receive their first patent citation earlier in 

recent years and that they are awakened increasingly earlier by a ‘technological prince’ rather 

than by a ‘scientific prince.’  These Sleeping Beauty findings suggest a complex connection 

between scientific novelty, delayed recognition, and technological impact. 

3. Novel science and technological impact 

In this contribution we take the science perspective of sNPRs and aim to identify which types of 

science are most likely to be referenced as prior art by patents.  The focus of our analysis is on 

novel science as potential source for impacting technology inventions: is novel science more 

likely to be a knowledge source for technological innovation?  And does the technological impact 

of novel science display a special profile different from that of non-novel science? 

Our focus on novelty comes from its high risk/high gain nature (Foster et al., 2015; Stephan et al., 

2017; Wang et al., 2017).  Novel research is more likely to deliver scientific breakthroughs: 

pushing forward the frontier of scientific knowledge and opening the door to waves of follow-on 

research.  However, novel research at the same times faces a higher level of uncertainty and is 

more likely to fail, as it explores uncharted waters.  As novel research may require further 

development in order to fully realize its potential, it may encounter delayed impact from the 

relevant scientific and technological community.  Impact may not only be delayed but also 

impeded for novel research when it disrupts, and faces resistance from, incumbent scientific or 

technological paradigms. 

Following the combinatorial novelty perspective, novelty can be viewed as the recombination of 

pre-existing knowledge components in an unprecedented fashion (Schumpeter, 1939; Mednick, 

1962; Nelson & Winter, 1982; Simonton, 2003).  Uzzi et al. (2013) operationalized this 

combinatorial novelty perspective by examining the atypicality of referenced journal pairs in a 

scientific publication.  They found that a publication which combines atypicality with 

conventionality is more likely to be highly cited in science.  In the field of biochemistry research, 

Foster et al. (2015) examined pairs of chemicals and found that research introducing new 

combinations of chemicals is more likely to become highly cited but also displays a higher 

variance in their citations, confirming their high risk/high gain character.  Boudreau et al. (2016) 
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measured the novelty of research proposals as the share of Medical Subject Headings (MeSH) 

pairs that are new and found that evaluators are systematically biased against novel proposals. 

Wang et al. (2017) operationalized the combinatorial novelty of scientific research by examining 

whether a scientific publication makes new, first-time-ever, combinations of referenced journals.  

In addition, they weight the number of new combinations by the difficulty of doing so, where 

difficulty is measured by how many “common friends” the newly-paired journals have in terms 

of co-citations.  They found that novel scientific publications have a higher variance in their 

scientific impact performance, confirming their high risk profile.  In addition, they are less likely 

to be published in journals with high impact factors and have a lower chance of being a top 1% 

highly cited publication in the first few years after publications, showing delayed scientific 

impact.  However, these publications have a significantly higher chance to eventually become 

highly cited publications in the long run.  In addition, they are also more likely to have a larger 

indirect impact, that is, being more likely to be cited by other highly cited publications.  All these 

findings confirm the high risk/high gain nature and delayed impact of novel science. 

In view of their potential for high scientific impact, despite their higher risk and delayed impact, 

we ask the question whether novel scientific articles can also be expected to contribute 

disproportionally to new technological and industrial possibilities that build on scientific novelty.  

Is novel science a prime candidate for serving as a source of inspiration for technological 

inventions?  Or does their higher risk profile make them less likely candidates as source for 

technological inventions?  And does novel science, because of its novel high risk profile, face 

similar impediments in its diffusion in the technological community, like it does in the scientific 

community, resulting in a slower process to be picked up by the technological community, 

compared with non-novel science?  Furthermore, in view of its high impact on follow-on 

scientific progress, novel science may be a source for technological inventions, indirectly, when 

these follow-on scientific contributions impact technology inventions.  Finally, novelty in science 

may be a source for novelty in technology development.  Novel science may be particularly 

relevant for impacting technological inventions in application fields which are new to its field of 

science or impacting technological inventions that are themselves novel in using first-time-ever 

combinations of technological components. 
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4. Data and methodology 

To address our research questions we link information on scientific publications with patent 

information.  Our unit of analysis is a scientific publication.  Our publication dataset consists of 

all journal articles published in 2001 and indexed in the Clarivate Analytics Web of Science 

(WoS) Science Citation Index Expanded (SCIE), covering all natural sciences and engineering 

disciplines, i.e., 175 WoS subject categories indexed in SCIE.  We do not consider social 

sciences, humanities, or arts because research in these fields are less likely to be sources for 

technological innovation.  We exclude publications that have fewer than two references for which 

our novelty measure cannot be constructed.  Publications with more than one subject category (up 

to six subject categories) are counted multiple times2.  The final dataset has 631,624 unique 

publications and 982,093 observations. 

We trace the technological impact of the sampled publications by citations that they receive from 

patents.  The patent dataset we use consists of all the European Patent Office (EPO), United 

States Patent and Trademark Office (USPTO), and World Intellectual Property Organization 

(WIPO) patents in the EPO Worldwide Patent Statistical Database (PATSTAT) October 2013 

edition.  To link a publication to its citing patents, we match WoS publications to the non-patent-

references (NPRs) listed on the front page of the patent document.  It is still in discussion 

whether the references on the front page of the patent or the references in patent full text are a 

better indicator of knowledge flow from science to the patented invention (Nagaoka & 

Yamauchi, 2015).  However, references in patent full texts are unstructured and difficult to 

identify.  We follow the current state of art and only analyze front-page references.  Specifically, 

we rely on a supervised machine-learning algorithm developed by Magerman et al. (2010) and 

Callaert et al. (2012), which (a) first classifies whether a non-patent reference is scientific (e.g., 

journal and conference proceeding publications) or non-scientific (e.g., news items, trade 

magazines, databases), with a testing accuracy rate of 92%, and (b) subsequently parses the 

strings of identified scientific NPRs and matches them to publication records in the WoS 

database.  

                                                                 

2 We check the robustness of our findings by (1) only analyzing publications with a single subject 

category or (2) reassigning publications with multiple subject categories and those in the category of 

“Multidisciplinary Sciences” to the majority subject category of their references. 
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As dependent variables for each sampled scientific publication, we consider not only its 

probability of having a technological impact (i.e., being cited by patents, directly or indirectly) 

but also a number of other characteristics of its technological impact, for example, intensity (i.e., 

the number of patent citations), scope (i.e., the number of citing technological fields), and being 

cited by novel patents.  Details of dependent variables are reported in the results section. 

The focal explanatory variable is scientific novelty.  Following the combinatorial novelty 

perspective and its operationalization developed by Wang et al. (2017), we measure the novelty 

of a scientific publication as the number of new journal pairs in its references, weighted by the 

cosine similarity between the newly-paired journals. 

𝑁𝑜𝑣𝑒𝑙𝑡𝑦 = ∑ (1 − 𝐶𝑂𝑆𝑖,𝑗)
𝐽𝑖−𝐽𝑗 𝑝𝑎𝑖𝑟 𝑖𝑠 𝑛𝑒𝑤

    

As the occurrence of novelty is highly discipline specific3 and the distribution of the novelty 

measure is highly skewed4, we use a categorical novelty variable, NOV CAT: (1) non-novel, if a 

publication has no new journal combinations, (2) moderately novel, if a publication makes at 

least one new combination but has a novelty score lower than the top 1% of its WoS subject 

category, and (3) highly novel, if a publication has a novelty score among the top 1% of its WoS 

subject category.  89% publications in our sample are in the first category, 10% in the second 

category.  By construction, 1% of the publications are classified as highly novel, and there are no 

field differences in the rate of being highly novelty. 

To correctly identify the association between scientific novelty and technological impact, it is 

important to control for other potential confounders that may influence both scientific novelty 

and technological impact.  This holds first and foremost for the quality of the scientific 

publication, as the prior literature has identified that more highly cited publications are more 

likely to be referenced in technological inventions (Hicks et al., 2000; Ahmadpoor & Jones, 

2017; Popp, 2017) and that novelty is positively related to scientific citations (Uzzi et al., 2013; 

                                                                 

3 The Life Sciences score relatively higher on our novelty indicator, especially Neurosciences, 

Pharmacology and Biology & Biochemistry.  The Physical Sciences score relatively lower on novelty, 

especially Space Sciences and Physics.   
4 Only 11% of publications in our sample make new journal combinations. 
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Foster et al., 2015; Wang et al., 2017).  We therefore control for the number of citations received 

by the focal publication from other scientific publications up till 2013. 

We also control for the impact factor of the journal in which the focal publication is published.  

Prestigious journals are more visible and therefore may facilitate the diffusion of the scientific 

discovery in the technology community.  At the same time, previous research has shown that 

novel research is less likely to be published in high impact factor journals (Wang et al., 2017), 

which in turn might impede the technological impact of novel science. 

In addition, we control for the number of backward references of the focal scientific publication 

and its number of authors, which have been observed to be correlated with novelty (Uzzi et al., 

2013; Lee et al., 2015; Wang et al., 2018), as well as technological impact (Popp, 2017). 

We include WoS subject category dummies, so that our estimated coefficients cover within-field 

differences: we only compare the technological impact of novel and non-novel publications in the 

same scientific field but not across fields.  Furthermore, we explore field heterogeneities by 

testing whether our findings are universal across all scientific fields or only apply for certain 

fields.  Specifically, we distinguish between (a) life sciences and (b) physical sciences & 

engineering and analyze them separately. 

Because of coverage biases and differences in referencing behavior across patent offices, for 

example, the reference list of USPTO patents is generated by both inventors and examiners and 

tend to be longer, while EPO patent references are only from examiners and tend to be shorter.  

In addition, patent citations tend to be localized, i.e., a US patent is more likely to cite US 

publications than European publications.  To account for these systematic differences, we add 

three geographic dummies: whether a scientific publication has a (1) US, (2) EPO member state, 

or (3) Japanese affiliation.  To further control for the differences in patent offices, we also check 

robustness of our results using only USPTO or only EPO patent data. 
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5. Results 

5.1. Descriptive statistics 

Descriptive statistics in Table 1 give some first indications that novel scientific publications, 

especially highly novel ones, are more likely to have a technological impact than non-novel 

publications.  While on average about 11% of our sampled SCIE publications in 2001 are cited 

by patents filed up to 2013, this probability is 16% for highly novel publications (NOV CAT3) 

and 14% for moderately novel publications (NOV CAT2). 

Insert Table 1 here 

We expect that novel science is more likely to have not only a direct but also an indirect 

technological impact.  This is confirmed by the descriptive statistics: the probabilities of being 

indirectly cited by patents through other scientific publications are 41% and 44% for moderately- 

and highly-novel publications, respectively, compared with 32% for non-novel publications. 

Within the set of scientific publications that are directly cited by patents, the descriptive statistics 

show that, compared with non-novel publications, moderately novel publications (but not highly 

novel publications) receive their first patent citation earlier.  Highly novel publications (but not 

moderately novel publications) receive more patent citations.  Both moderately and highly novel 

publications are cited in a broader set of technological fields, are more likely to be cited in 

technological domains which have never cited the scientific discipline of the focal publication 

before, and are more likely to be cited by novel patents. 

We also observe considerable differences between patent offices.  When restricting to USPTO 

patents only, the average rate of being cited by patents is 8%, and for EPO it is only 4%.  Within 

the set of publications being directly cited by patent, the average number of patent citations is 3.5 

when restricting to USPTO patents only and 1.7 for EPO.  However, the observed association 

between scientific novelty and various aspects of technological impact is consistent regardless of 

the choice of patent offices. 
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5.2. Direct and indirect technological impact 

In the next step we run a set of econometric analyses controlling for scientific field effects and 

other potential confounders as described supra.  First, we estimate a series of Probit models 

(Table 2 Column 1-4) where the dependent variable is whether a 2001 scientific publication in 

natural sciences and engineering is directly cited by patents filed up to 2013.  Table 2 confirms a 

positive association between scientific novelty and direct technological impact.  The positive 

effect of scientific novelty on direct technological impact is sizeable (Column 4): calculated at 

the mean level of other variables, the probability of being cited by patents is 43% higher for 

highly novel publications and 22% higher for moderately novel publications, compared with non-

novel publications within the same field (Figure 1A). 

Insert Table 2 here 

Insert Figure 1 here 

The results also suggest a consistently positive association between direct technological impact 

and scientific impact as measured by the number of scientific citations (Column 3 & 4) and 

journal impact factor (Column 2 & 4), in line with previous literature.  More interestingly, 

comparing Column 2 and 4 suggests that additionally controlling for the number of scientific 

citations decreases the positive coefficients of novelty on direct technological impact.  Scientific 

impact therefore mediates the positive effect of scientific novelty on technological impact.  But it 

does so only partly, with the coefficients for novelty remaining sizable in Column 4.  This 

suggests that the reason why novel research is more relevant and useful for technological 

inventions compared to non-novel research has to be found over and beyond its scientific quality. 

Furthermore, comparing Column 3 and 4 suggests that additionally controlling for the journal 

impact factor increases the coefficients of scientific novelty on technological impact.  This is 

reminiscent of the bias from high impact factor journals against novel science as reported in 

Wang et al. (2017).  The comparison suggests that even for publications with the same number of 

scientific citations, additionally controlling for the journal impact factor (i.e., correcting the bias 

of higher impact factor journals against highly novel research) would increase the size of the 

positive novelty effect on direct technological impact, meaning that the bias in high impact factor 
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journals against novel science hampers the technological impact of novel science.  Without such 

bias, highly novel science would have an even greater likelihood for technological impact. 

In addition, we investigate the indirect technological impact, that is, how likely are follow-on 

publications building on the focal original publication cited by patents.  To this end, we estimate 

whether novel scientific publications are more likely to be cited by future publications which are 

themselves cited by patents.  Table 2 Columns 5-8 provide consistent evidence that novel 

publications have a higher indirect technological impact, regardless whether controlling for the 

number of scientific citations or journal impact factor.  Furthermore, the size of the novelty effect 

on indirect technological impact is also sizable but less pronounced than the novelty effect on 

direct technological impact.  The probability of being indirectly cited by patents is 15% higher 

for highly novel publications and 8% higher for moderately novel publication, compared with 

comparable non-novel publications (Table 2 Column 8 and Figure 1B).  Like for the direct 

technological impact, controlling for the scientific citations reduces the coefficient for novelty, 

while controlling for journal impact factor increases the coefficient for novelty.    

5.3. Characteristics of technological impact 

The observed strong positive association between scientific novelty and the existence of a direct 

and indirect technological impact raises the question whether, within the set of publications 

directly cited by patents, novel science still differs from non-novel science in the nature of its 

technological impact.  To this end, we restrict the econometric analysis to the set of publications 

that are directly cited by patents and further scrutinize various aspects of their technological 

impact. 

Insert Table 3 here 

Insert Figure 2 here 

We first look at the time lag.  As prior literature has documented a delayed recognition for novel 

science in the scientific community (Wang et al., 2017), it is important to investigate whether this 

delayed citation/diffusion process for novel science also appears in the technological domain, that 

is, whether novel science needs a longer time before being picked by technological inventions, 

compared with comparable non-novel science.  Table 3 Column 1 estimates the effect of 
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scientific novelty on the time lag between the publication year of the scientific publication and 

the application year of the first patent citing the focal scientific publication.  We find that the 

technological impact of novel science does not face a significant delay compared with non-novel 

publications.  On the contrary, even after taking into account that highly cited and high impact 

factor journal publications have a shorted time lag for technological impact, novel publications 

take less time to receive their first patent citation than non-novel publications, but this difference 

is only significant for moderately novel science.  The coefficient for highly novel is larger than 

that of moderately novel but is insignificant, because of a much smaller number of observations 

for highly novel publications.  This finding suggests that, different from what can be observed in 

the scientific community, in the technology domain novel science does not face any resistant 

from existing paradigm nor takes a longer time to be incorporated in to follow-on R&D than 

comparable non-novel science.   

We also assess the intensity of technological impact, that is, how many patents cite the focal 

scientific publication.  Table 3 Column 2 and Figure 2B confirm a positive association between 

scientific novelty and the intensity of technological impact, which is however small and weakly 

significant: conditional on being cited by patents, highly novel publications receive 

approximately 8% patent citations than non-novel ones, while there is no significant difference 

between moderately- and non-novel publications. 

Insert Figure 3 here 

We further examine whether the technological impact of novel science reaches a larger set of 

technological domains.  Since novel science is observed to have a more transdisciplinary 

scientific impact (Wang et al., 2017), we also expect a broader impact in the technology space.  

For one scientific publication, we measure its scope of technological impact by the number of 

IPC groups (at 6-digit level) of its citing patents.  In addition to the complete set of controls 

reported before, we control for the number of patent citations, since publications cited by more 

patents are by chance more likely to be cited in more technological fields.  There is a positive, 

albeit weak, association between scientific novelty and the number of patent citations.  The 

results show that the technological impact of novel science reaches a broader set of technological 

fields compared with that of comparable non-novel publications.  Table 3 Column 3 and Figure 
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3A show that, conditional on being cited by patents, highly novel publications are cited in 3% 

more IPC groups and moderately novel publications 1% more. 

A more intriguing characteristic is the “newness” of technological impact.  Is novel science more 

likely to have impact in technology fields which are new to its scientific discipline?  We expect a 

positive answer to this question, as novel science introduces new approaches, which may open 

new areas of applications, not only for scientific research but also for technology inventions.  To 

test this hypothesis, we examine whether a scientific publication is cited in a technological field 

(i.e., IPC group) which has never cited the scientific discipline (i.e., WoS subject category) of the 

focal publication before.  Results reported in Table 3 Column 4 and Figure 3B provide strong 

evidence supporting this hypothesis.  The premium for novel science to be cited in new 

technological fields is substantial:  conditional on being cited by patents and compared with 

comparable non-novel publications, the probability of being cited in new technological fields is 

52% and 20% higher for highly- and moderately-novel publications, respectively.   

5.4. From novel science to novel technology 

A final question we address is whether novel science is more likely to impact technology 

inventions that are themselves exhibiting a high level of novelty.  For identifying novel patents, 

we follow Verhoeven et al. (2016), who characterize three types of novelty in patented 

inventions:  (1) Novelty in scientific knowledge origins: A patent is identified as having novelty 

in scientific knowledge origins if it cites a scientific domain (i.e., WoS subject category) that has 

never been cited before by its technology class (i.e., IPC group at 6-digit level); (2) Novelty in 

technological knowledge origins: A patent is identified as having novelty in technological 

knowledge origins if it cites a technology class (i.e., IPC group) that has never been cited before 

by its technology class (IPC group); and (3) Novelty in recombination: A patent is identified as 

having novelty in recombination when it contains at least one pair of technology classes (i.e., IPC 

groups) that were previously unconnected. 

Insert Figure 4 here 

Econometric results reported in Table 3 Columns 5-7 and correspondingly Figure 4A-C confirm a 

positive relationship between scientific novelty and all three types of technological novelty.  
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First, novel publications display a sizeable advantage over comparable non-novel publications in 

being cited by patents with novelty in scientific knowledge origins:  highly novel publications 

have a 27% higher chance of being cited by patents with novelty in scientific origins, and 

moderately novel publications a 17% higher chance (Table 3 Column 5 and Figure 4A).  This 

result confirms the previous results regarding the newness of technological impact (Table 3 

Column 4 and Figure 3B).  Second, highly- and moderately-novel publications are 12% and 6% 

respectively more likely than comparable non-novel publications to be cited by patents with 

novelty in technological knowledge origins (Table 3 Column 6 and Figure 4B).  This premium 

for novel science is significant but less pronounced than the premium of being cited by patents 

with novel scientific knowledge origin.  Finally, highly- and moderately-novel publications are 

respectively 21% and 15% more likely to be cited by patents with novelty in recombination, 

compared with non-novel publications, ceteris paribus.  These effects are very sizable.  The 

results therefore confirm that novel science is particularly significant in impacting technology 

inventions which themselves have novel recombination features.   

5.5. Scientific field heterogeneity 

As we can expect important differences between scientific disciplines in how research is 

conducted and how scientific knowledge feeds into technological innovation, we include in the 

econometric analysis controls for scientific field (i.e., WoS subject categories dummies).  We 

thus account for field differences in the likelihood and nature of being cited by patents.  In other 

words, we estimate and test whether and how novel papers are more likely to be cited by patents 

compared with non-novel papers in the same field.  To further test whether the reported 

relationships between scientific novelty and technological impact are field-specific, we run the 

analyses separately for (1) life sciences (including medical sciences) and (2) physical sciences & 

engineering.  Results are reported in Table 4 and 5.5 

Although our main result on a higher direct technological impact for novel science is robust in 

both subsamples, we do observe some interesting field differences.  First, while moderately novel 

                                                                 

5 We obtained similar results when further (a) distinguishing between medical sciences (more applied part) 

and the rest within life science and (b) distinguishing between computer sciences & engineering and the 

rest in physical sciences and engineering.  These results are not reported and are available upon request 

from the authors. 
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papers have a higher indirect technological impact than non-novel publications in both life 

sciences and physical sciences & engineering, highly novel publications appear to have a higher 

indirect technological impact only in physical sciences & engineering but not in life sciences.  

This finding is consistent with a shorter distance between scientific research and technological 

inventions in life sciences, as also found in Ahmadpoor and Jones (2017).  Second, novel 

publications have a broader technological impact reaching more technological domains than non-

novel publications, only in physical sciences & engineering but not in life sciences.  Third, novel 

publications are more likely to be cited by novel patents in life sciences but not in physical 

sciences & engineering. 

Insert Table 4 here 

Insert Table 5 here 

5.6. Robustness tests 

We run a series of further robustness tests (details available upon request from the authors).  For 

studying the scope and newness of the technological impact (Table 3 Columns 3 and 4), we 

operationalize the technological field by IPC subclasses at the 4 digit rather than the 6 digit level.  

Results are robust with the novelty effects even more pronounced. 

All our econometric analyses include geographic dummies to account for the differences between 

patent offices.  We additionally test the robustness of our findings by replicating all analyses 

using (1) USPTO patents only and (2) EPO patents only.  All results are robust in both 

subsamples, except that (a) the weakly positive effect of scientific novelty on the number of 

patent citations in the total sample become insignificant in both subsamples; (b) the positive 

effect of scientific novelty on the number of citing IPC groups become insignificant when using 

USPTO patents only; and (c) the positive effects of scientific novelty on being cited by patents 

with novel technological knowledge origins and on being cited by patents with novel 

recombination become insignificant when using EPO patents only. 

The dataset consists of 631,624 unique publications and 982,093 observations, where 

publications with multiple WoS subject categories are counted multiple times.  We tested two 

alternative approaches: (1) excluding publications with multiple subject categories from the 
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analysis and (2) reassigning papers with multiple subject categories and papers in the category of 

“Multidisciplinary Sciences” to the majority subject category of their references.  Our main 

results on the higher likelihood of direct and indirect technological impact for scientific novelty 

remain, as the results on no time lag and the new pathways for technological impact.  The size 

and direction of the results on the number of citing classes and the likelihood to impact 

combinatorial novel patents are similar, but loose significance for the highly novel publications. 

In addition, basic and applied research might have different propensities of being cited by 

patents.  This might bias our results, to the extent that basicness is correlated with the novelty 

measure and insufficiently captured by our field fixed effects.  To address this concern, we 

additionally control for the basicness level, using the CHI journal classification scheme (Noma, 

1986; Hamilton, 2003), for the subset of publication covered in this classification scheme.  All 

our findings are robust. 

6. Conclusion 

This paper adds to our understanding of the interplay between science and technology, by taking 

the science perspective of industry science links and examining what types of science is most 

likely to have a technological impact, in particular, whether novel science is more likely to have a 

technological impact and displays a distinct impact profile compared with non-novel science. 

Drawing on all the WoS SCIE journal articles published in 2001 and all the patents in PATSTAT 

(October 2013 edition), we examine the relationship between scientific novelty and technological 

impact, tracing technological impact of individual scientific publications through their citations in 

patents.  We find that a handful of scientific publications which score on novelty (about 11%) are 

significantly more likely to have a technological impact, in particular the top 1% highly novel 

scientific publications in their field.  The technological impact premium of novel science is 

sizeable: the probability of being cited by patents is 43% higher for highly novel publications 

than comparable non-novel publications in the same field, and 22% higher for moderately novel 

publications.  The technological impact premium for novel scientific publications remains 

substantial even when we control for their higher scientific impact, suggesting that the superior 

technological impact of novel publications arises from factors beyond their high scientific quality 

and value.  The technological impact premium for novel publications is even bigger when 
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correcting for their disadvantage of being  less likely to be published in high impact factor 

journals.  Without such bias, novel publications would have a greater technological impact. 

In addition to their superior direct technological impact, novel publications also have a higher 

indirect technological impact, being more likely to be cited by other scientific publications which 

are cited by patents.  The probability of being indirectly cited by a patent is 15% higher for highly 

novel publications and 8% higher for moderately novel publications than comparable non-novel 

publications. 

Within the set of scientific publications that are directly cited by patents, novel publications do 

not display a significantly longer delay in technological impact, unlike in the scientific 

community, where their impact was found to be significantly delayed.  Conditional on being cited 

by patents, there is no consistent evidence that novel publications are cited more often than 

comparable non-novel publications.  However, novel publications do have a broader 

technological impact, covering more diverse technological fields.  More importantly, novel 

publications stand out because of the unprecedented nature of their technology impact, i.e., 

reaching technology fields previously not impacted by the scientific fields of the novel 

publications.  In addition, novel publications are more likely to be cited by patents which 

themselves show a high level of novelty.  Although the observed effects all control for field 

effects and although our main result on a higher direct technological impact for novel science is 

robust across fields,   there are nevertheless some interesting differences between scientific 

disciplines.  For example, while novel publications are more likely to be cited by patents both 

directly and indirectly in physical sciences & engineering, in life sciences there is only a 

significant direct impact, consistent with a shorter distance between scientific research and 

technological development. 

These findings speak to the policy push for more active technology transfer.  Science, as a self-

governed system of work organization, is structured to encourage novel contributions to the 

common stock of scientific knowledge (Merton, 1973; Whitley, 1984; Stephan, 1996).  Our 

findings show that novel science also has a higher, broader, and unprecedented technological 

impact, suggesting that the pursuit of scientific novelty does not conflict with the policy goal of 

higher economic value. 
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At the same time, these results also contribute to the discussion in science policy that funding 

agencies and their expert panels are increasingly risk-averse, favoring relatively safe projects at 

the expense of more risky projects that explore new and untested approaches (Boudreau et al., 

2016; Stephan et al., 2017; Wang et al., 2018).  The concern in these discussions is that being too 

risk-averse harms the long-term progress of science, as novelty is an important source of 

scientific breakthrough advancing the scientific frontier.  This paper provides evidence for further 

reasons to support (or not bias against) novel science, namely because of its greater technological 

impact.  As there is an increasing pressure on science to be economically and socially relevant, 

our findings suggest that scientific novelty should be encouraged (or at least not discouraged) not 

only for the sake of scientific progress but also for its greater contribution to technological 

development.  Any bias in the current science system against novelty, will not only imperil 

scientific progress but also hinder and delay technological development.  As not only novel 

publications themselves are significant knowledge sources for technology, but also their follow-

on publications, improving the visibility and recognition of novel scientific research within the 

scientific community will facilitate the diffusion and utilization of scientific knowledge in the 

technology domain.  A particular pathway that should be cleared is any bias by higher impact 

factor journals for novel publications, as these not only delay scientific recognition for novel 

research, but also significantly impede technological impact. 

In order to better understand industry science links, we need more studies uncovering intrinsic 

characteristics of science that are particularly useful for technological innovation.  Other 

characteristics of science beyond its novelty need to be investigated, such as its interdisciplinary 

nature, its basicness, or whether it is starting a new emerging field.  Considering the important 

differences between scientific disciplines (e.g., how research is conducted, how novelty is 

generated, and how scientific knowledge feeds into technology), it is important to do more in-

depth studies within specific scientific disciplines to gain a better understanding of the 

relationship between scientific novelty and technological impact.  In addition, the characteristics 

of the technologies that use novel science should be further examined.  Future research should 

also explore how the pathway from novel science to technological inventions unfolds differently 

from that of non-novel science.  Does a successful translation of novel science require a shorter 

cognitive, geographic, or social distance compared to non-novel science?  Are inventor-author 

links more critical for translating novelty science into technology?  Does novel science require 
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more shared understandings, stronger social ties and shorter network distances to be successfully 

translated to technology?  Is geographic proximity more important when translating novel science 

to technology?  These are but a few of the interesting further research questions brought about by 

this paper. 
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Table 1.  Descriptive statistics. 

  ALL NOV 

CAT1 

NOV 

CAT2 

NOV 

CAT3 

1 # publications 982,093 871,753 100,600 9,740 

2 % publications cited by patent 10.66% 10.24% 13.75% 16.28% 

3 % publications cited by patent (USPTO) 8.01% 7.71% 10.20% 12.72% 

4 % publications cited by patent (EPO) 4.46% 4.24% 6.16% 6.52% 

5 % publications indirectly cited by patent 32.62% 31.54% 40.82% 44.30% 

6 % publications indirectly cited by patent (USPTO) 24.82% 24.03% 30.69% 35.29% 

7 % publications indirectly cited by patent (EPO) 20.64% 19.80% 27.06% 29.90% 

8 # publications cited by patent 104,728 89,311 13,831 1,586 

9 Average years of time lag in technological impact 3.37 3.38 3.35 3.38 

10 Average number of patent citations 3.92 3.92 3.88 4.36 

11 Average number of citing IPC groups (6-digit level) 7.19 7.10 7.65 8.03 

12 % publications cited in new IPC group (6-digit level) 10.09% 9.85% 11.12% 15.08% 

13 % publications cited by novel patents in recombination 8.11% 8.00% 8.44% 11.14% 

14 % publications cited by novel patents in technological origin 26.16% 26.06% 26.21% 31.70% 

15 % publications cited by novel patents in scientific origin 15.02% 14.69% 16.53% 20.56% 

Statistics for the number of 2001 publications, % publications cited by patents, and % publications indirectly cited by 

patents (through other publications), that is, row 1-7, are based on all journal articles in Web of Science-Science 

Citation Index Expanded (SCIE), while all the other statistics are based on the subset of these publications which are 

cited by patent.  Data sourced from Clarivate Analytics Web of Science Core Collection and EPO Worldwide Patent 

Statistical Database (October 2013 edition). 
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Table 2.  Direct and indirect technological impact. 

 Directly cited by patents 

Probit 

Indirectly cited by patents 

Probit 

 (1) (2) (3) (4) (5) (6) (7) (8) 

NOV CAT2 0.092*** 

(0.006) 

0.125*** 

(0.006) 

0.093*** 

(0.006) 

0.105*** 

(0.006) 

0.052*** 

(0.005) 

0.097*** 

(0.005) 

0.046*** 

(0.005) 

0.062*** 

(0.005) 

NOV CAT3 0.171*** 

(0.017) 

0.237*** 

(0.017) 

0.169*** 

(0.017) 

0.192*** 

(0.017) 

0.088*** 

(0.014) 

0.189*** 

(0.014) 

0.081*** 

(0.015) 

0.116*** 

(0.015) 

JIF (ln)  0.491*** 

(0.004) 

 0.163*** 

(0.005) 

 0.841*** 

(0.004) 

 0.293*** 

(0.004) 

Scientific 

citations (ln) 

  0.355*** 

(0.002) 

0.328*** 

(0.002) 

  0.664*** 

(0.002) 

0.622*** 

(0.002) 

Pubs 630697 630697 589667 589667 631617 631617 590556 590556 

Obs 981081 981081 921193 921193 982081 982081 922141 922141 

Pseudo R2 0.113 0.135 0.172 0.174 0.168 0.216 0.316 0.320 

*** p<.001, ** p<.01, * p<.05, + p<.10.  Control variables (the number of authors (ln), whether internationally 

coauthored, the number of references (ln), whether have US affiliations, whether have EPO member state affiliations, 

whether have Japanese affiliations, and WoS subject category dummies) are incorporated in all regressions but not 

reported.  Robust standard errors in parentheses.  Data sourced from Clarivate Analytics Web of Science Core 

Collection and EPO Worldwide Patent Statistical Database (October 2013 edition). 
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Table 3.  Characteristics of technological impact. 

 (1) (2) (3) (4) (5) (6) (7) 

 Years of 

time lag 

 

 

OLS 

# citing 

patents 

 

 

Poisson 

# citing 

IPC6s 

 

 

Poisson 

Cited in 

new IPC6 

 

 

Probit 

Cited by 

novel 

patents 

(sci) 

Probit 

Cited by 

novel 

patents 

(tech) 

Probit 

Cited by 

novel 

patents 

(comb) 

Probit 

NOV CAT2 -0.082** 

(0.026) 

0.009 

(0.017) 

0.012+ 

(0.007) 

0.098*** 

(0.017) 

0.095*** 

(0.016) 

0.041** 

(0.014) 

0.070*** 

(0.019) 

NOV CAT3 -0.105 

(0.071) 

0.079+ 

(0.044) 

0.031+ 

(0.017) 

0.228*** 

(0.043) 

0.148*** 

(0.040) 

0.086* 

(0.038) 

0.096* 

(0.049) 

JIF (ln) -0.259*** 

(0.020) 

-0.001 

(0.019) 

0.016** 

(0.005) 

-0.265*** 

(0.014) 

-0.113*** 

(0.012) 

-0.098*** 

(0.011) 

-0.095*** 

(0.015) 

Scientific 

citations (ln) 

-0.082*** 

(0.008) 

0.321*** 

(0.013) 

0.045*** 

(0.002) 

0.035*** 

(0.006) 

0.055*** 

(0.005) 

0.040*** 

(0.005) 

0.074*** 

(0.006) 

Patent 

citations (ln) 

  0.594*** 

(0.003) 

0.383*** 

(0.007) 

0.481*** 

(0.006) 

0.664*** 

(0.006) 

0.461*** 

(0.007) 

Pubs 63726 63726 63667 63663 60893 60893 60838 

Obs 103378 103378 103289 103282 98752 98757 98668 

(Pseudo) R2 0.036 0.093 0.364 0.157 0.133 0.180 0.157 

*** p<.001, ** p<.01, * p<.05, + p<.10.  Control variables (the number of authors (ln), whether internationally 

coauthored, the number of references (ln), whether have US affiliations, whether have EPO member state affiliations, 

whether have Japanese affiliations, and WoS subject category dummies) are incorporated in all regressions but not 

reported.  Robust standard errors in parentheses.  Data sourced from Clarivate Analytics Web of Science Core 

Collection and EPO Worldwide Patent Statistical Database (October 2013 edition). 
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Table 4.  Life sciences 

 (1) (2) (3) (4) (5) (6) (7) (8) (9) 

 Directly cited 

by patents 

Probit 

Indirectly 

cited by 

patents 

Probit 

Years of time 

lag 

 

OLS 

# citing 

patents 

 

Poisson 

# citing 

IPC6s 

 

Poisson 

Cited in new 

IPC6 

 

Probit 

Cited by 

novel patents 

(sci) 

Probit 

Cited by 

novel patents 

(tech) 

Probit 

Cited by 

novel patents 

(comb) 

Probit 

NOV CAT2 0.091*** 

(0.007) 

0.021** 

(0.006) 

-0.102** 

(0.030) 

0.016 

(0.020) 

-0.003 

(0.008) 

0.104*** 

(0.022) 

0.099*** 

(0.019) 

0.054** 

(0.017) 

0.065** 

(0.024) 

NOV CAT3 0.158*** 

(0.023) 

-0.016 

(0.021) 

-0.022 

(0.097) 

0.085 

(0.053) 

-0.007 

(0.023) 

0.209** 

(0.063) 

0.216*** 

(0.055) 

0.161** 

(0.051) 

0.104 

(0.072) 

JIF (ln) 0.166*** 

(0.006) 

0.326*** 

(0.005) 

-0.232*** 

(0.024) 

0.045* 

(0.021) 

0.028*** 

(0.006) 

-0.220*** 

(0.018) 

-0.107*** 

(0.016) 

-0.108*** 

(0.014) 

-0.133*** 

(0.020) 

Scientific  

citations (ln) 

0.315*** 

(0.003) 

0.628*** 

(0.003) 

-0.042*** 

(0.012) 

0.289*** 

(0.018) 

0.030*** 

(0.003) 

0.028** 

(0.008) 

0.039*** 

(0.007) 

0.025*** 

(0.007) 

0.052*** 

(0.009) 

Patent 

citations (ln) 

    0.579*** 

(0.004) 

0.371*** 

(0.009) 

0.477*** 

(0.008) 

0.671*** 

(0.008) 

0.453*** 

(0.010) 

Obs 487715 488488 62955 62955 62905 62902 60009 60009 59992 

(Pseudo) R2 0.154 0.314 0.026 0.067 0.324 0.131 0.113 0.160 0.120 

*** p<.001, ** p<.01, * p<.05, + p<.10.  Control variables (the number of authors (ln), whether internationally coauthored, the number of references (ln), whether 

have US affiliations, whether have EPO member state affiliations, whether have Japanese affiliations, and WoS subject category dummies) are incorporated in all 

regressions but not reported.  Robust standard errors in parentheses.  Data sourced from Clarivate Analytics Web of Science Core Collection and EPO Worldwide 

Patent Statistical Database (October 2013 edition). 
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Table 5.  Physical sciences & engineering 

 (1) (2) (3) (4) (5) (6) (7) (8) (9) 

 Directly cited 

by patents 

Probit 

Indirectly 

cited by 

patents 

Probit 

Years of time 

lag 

 

OLS 

# citing 

patents 

 

Poisson 

# citing 

IPC6s 

 

Poisson 

Cited in new 

IPC6 

 

Probit 

Cited by 

novel patents 

(sci) 

Probit 

Cited by 

novel patents 

(tech) 

Probit 

Cited by 

novel patents 

(comb) 

Probit 

NOV CAT2 0.126*** 

(0.011) 

0.134*** 

(0.009) 

-0.049 

(0.045) 

0.037 

(0.028) 

0.047*** 

(0.013) 

0.072** 

(0.028) 

0.088** 

(0.026) 

0.017 

(0.024) 

0.023 

(0.030) 

NOV CAT3 0.237*** 

(0.026) 

0.268*** 

(0.023) 

-0.197+ 

(0.101) 

0.057 

(0.066) 

0.063* 

(0.026) 

0.255*** 

(0.058) 

0.049 

(0.056) 

0.003 

(0.054) 

0.062 

(0.064) 

JIF (ln) 0.181*** 

(0.009) 

0.213*** 

(0.008) 

-0.438*** 

(0.036) 

-0.089* 

(0.036) 

0.004 

(0.011) 

-0.323*** 

(0.024) 

-0.097*** 

(0.022) 

-0.045* 

(0.020) 

-0.037 

(0.024) 

Scientific  

citations (ln) 

0.344*** 

(0.003) 

0.629*** 

(0.003) 

-0.114*** 

(0.012) 

0.297*** 

(0.013) 

0.062*** 

(0.003) 

0.036*** 

(0.007) 

0.064*** 

(0.007) 

0.052*** 

(0.007) 

0.085*** 

(0.008) 

Patent 

citations (ln) 

    0.621*** 

(0.005) 

0.390*** 

(0.009) 

0.482*** 

(0.009) 

0.655*** 

(0.009) 

0.464*** 

(0.010) 

Obs 434511 434527 42307 42307 42269 42267 40554 40563 40501 

(Pseudo) R2 0.196 0.301 0.048 0.089 0.401 0.144 0.125 0.163 0.136 

*** p<.001, ** p<.01, * p<.05, + p<.10.  Control variables (the number of authors (ln), whether internationally coauthored, the number of references (ln), whether 

have US affiliations, whether have EPO member state affiliations, whether have Japanese affiliations, and WoS subject category dummies) are incorporated in all 

regressions but not reported.  Robust standard errors in parentheses.  Data sourced from Clarivate Analytics Web of Science Core Collection and EPO Worldwide 

Patent Statistical Database (October 2013 edition). 
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Figure 1.  Novel publications are more likely to be cited by patents, directly and indirectly.  (A) estimated probability of being directly cited by patents, 

based on the regression reported in Table 2 column 4.  (B) estimated probability of being indirectly cited by patents, through another publication, based on the 

regression reported in Table 2 column 8.  Estimated values are for an average paper (i.e., taking all other independent variables at their means) in different novel 

classes.  The vertical bars represent the 95% confidence interval.  Data sourced from Clarivate Analytics Web of Science Core Collection and EPO Worldwide 

Patent Statistical Database (October 2013 edition). 
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Figure 2.  There are no significant differences in the speed or the intensity of patent citations between novel and non-novel publications.  (A) estimated 

time lag between publication year and application year of the first patent citing the focal publication, based on Table 3 column 1.  (B) estimated number of patent 

citations (or the number of citing patents), based on the regression reported in Table 3 column 2.  Estimated values are for an average paper (i.e., taking all other 

independent variables at their means) in different novel classes.  The vertical bars represent the 95% confidence interval.  Data sourced from Clarivate Analytics 

Web of Science Core Collection and EPO Worldwide Patent Statistical Database (October 2013 edition). 
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Figure 3.  The technological impact from novel science is significantly broader and reaching new technology fields previously non-impacted by its 

scientific discipline.  (A) estimated number of IPC groups (6-digit level) in which the focal publication is cited, based on the regression reported in Table 3 

column 3.  (B) estimated probability of being cited in IPC groups which has never referenced the WoS subject category of the focal publication before, based on 

the regression reported in Table 3 column 4.  Estimated values are for an average paper (i.e., taking all other independent variables at their means) in different 

novel classes.  The vertical bars represent the 95% confidence interval.  Data sourced from Clarivate Analytics Web of Science Core Collection and EPO 

Worldwide Patent Statistical Database (October 2013 edition). 
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Figure 4.  Novel publications are more likely to lead to novel patents.  (A)-(C) estimated probability of being cited by novel patents with new scientific 

knowledge origin, new technological knowledge origins, and new recombination, based on the regression reported in Table 3 column 5-7, respectively.  Estimated 

values are for an average paper (i.e., taking all other independent variables at their means) in different novel classes.  The vertical bars represent the 95% 

confidence interval.  Data sourced from Clarivate Analytics Web of Science Core Collection and EPO Worldwide Patent Statistical Database (October 2013 

edition). 
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