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CHAPTER 6



Abstract
Objective: to assess if BCRP is expressed in vestibular schwannomas, plexiform 
neurofibromas and MPNST

Background: peripheral nerve sheath tumors comprise a broad spectrum of neoplasms. 
Vestibular schwannomas and plexiform neurofibromas are symptomatic albeit benign, but 
a subset of the latter pre-malignant lesions will transform to malignant peripheral nerve 
sheath tumors (MPNST). Surgery and radiotherapy are the primary strategies to treat these 
tumors. Intrinsic resistance to drug therapy characterizes all three tumor subtypes. The 
breast cancer resistance protein BCRP is a transmembrane efflux transporter considered 
to play a key role in various biological barriers such as the blood brain barrier. At the same 
time it is associated with drug resistance in various tumors. Its potential role in drug resistant 
tumors of the peripheral nervous system is largely unknown..
 
Methods: immunohistochemical staining for BCRP was performed on a tissue microarray 
composed out of 22 sporadic vestibular schwannomas, 10 plexiform neurofibromas and 
18 MPNSTs. 

Results: sixteen out of twenty-two vestibular schwannomas (73%), nine out of ten plexiform 
neurofibromas (90%) and six out of eighteen MPNST (33%) expressed BCRP. 

Conclusion: BCRP is present in the vasculature of vestibular schwannomas, plexiform 
neurofibromas and MPSNT. Therefore, it may reduce the drug exposure of underlying tumor 
tissues and potentially cause failure of drug therapy.
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Introduction

Peripheral nerve sheath tumors (PNST) are relatively common neoplasm’s that comprise 
a broad spectrum of different subtypes. Most of these tumors are histologically benign such 
as schwannomas and neurofibromas 1,2. Next to these benign tumors there is a subset of 
malignant lesions like the malignant peripheral nerve sheath tumors (MPNST) 3,4. 
Neurofibromas, MPNST and schwannomas are examples of PNST that occur either 
sporadically or as part of hereditary neurocutaneous diseases like neurofibromatosis type 
I (NF1) and neurofibromatosis type II (NF2) respectively. Both these disorders seem to 
result from the inactivation of a classic tumor suppressor gene. Neurofibromas and MPNST 
show loss of NF1 expression.  The NF1 gene is located on chromosome 17q11.2. and 
encodes the tumor suppressor protein neurofibromin 5. NF1 is caused by germline mutations 
in NF1 but there are also mosaic forms of this disease6.  MPNST or plexiform neurofibromas 
without other symptoms of NF1, i.e. sproradic tumors, are probably caused by somatic 
mosaicism for an NF1 mutation. A similar situation is seen in NF2. NF2 is caused by biallilec 
inactivation of the NF2 gene, located on chromosome 22q11,  which encodes the tumor 
suppressor protein merlin7. Bilateral vestibular schwannomas are pathognomonic for this 
rare disease. However, most vestibular schwannomas occur as sporadic unilateral tumors8.
Schwannomas occur in a wide range of anatomical sites, including the subcutaneous tissues 
of the distal extremities and the head and neck region. Schwannomas in the head and neck 
region have a predilection to derive from the vestibular portion of the eighth cranial nerve, 
better known as vestibular schwannomas (VS). Schwannomas are neoplastic proliferations 
that exclusively comprise Shwann cells while neurofibromas contain multiple cell types 
such as perineurial cells, fibroblasts and to a lesser extent Schwann cells 1,9-11 There are 
two types of neurofibromas: dermal and plexiform. Plexiform neurofibromas are strongly 
related to NF1, affecting 20% to 40% of patients suffering from this condition12,13. These 
tumors often occur in the head, skull base, or neck but also manifest themselves on the 
trunk and limbs. Plexiform neurofibromas have the potential to transform into MPNST. 
However, not all MPNST develop from pre-existing neurofibromas, as approximately half 
of all MPNST arise sporadically without a known precursor14. 
These different types of tumors require different types of therapy. To date surgical excision 
is the only effective treatment for plexiform neurofibromas, but recent literature demonstrated 
that targets for pharmacological treatment are emerging15,16.  Therapeutic management of 
(vestibular) schwannomas consist of surgery or radiotherapy and pharmacological treatment 
options were recently tested as well 17. Although there are promising results in individual 
NF2 patients treated with targeted therapy there are also reports indicating drug resistance 
in these tumors18. A similar situation exists in MPNST. The triad of surgery, radiotherapy 
and multi-agent chemotherapy is applied to these tumors as well. Despite promising reports 
on for instance (neoadjuvant) doxorubicin-ifosfamide treatment regimens, these tumors are 
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often characterized by a highly aggressive behavior and resistance to multidrug therapy, 
resulting in poor long-term survival rates 19-21. In short, despite the different therapies that 
are applied to these PNST one of their common dominators is the fact that they show a 
certain degree of drug resistance. 
Acquired and/or innate drug resistance of tumor cells is a common phenomenon and a 
major hurdle to effective chemotherapeutic intervention. An important mechanism 
contributing to drug resistance concerns the expression of ATP binding cassette (ABC) 
transporter proteins that are capable of extruding drugs from tumors22.  These energy-
dependent transmembrane proteins transport a wide range of substrates, including many 
anticancer drugs, across cell membranes 23-27. So far 49 genes have been identified to 
encode for members of the ABC transporter family 28, but only a subset of these is involved 
in drug resistance. Of these drug transporters ABCB1 (P-gp) and ABCG2 (BCRP) are the 
most extensively studied. They were first discovered in tumor cells29,30, but are also 
expressed at the apical membranes of epithelial cells in biological barrier tissues such as 
in the intestines, kidneys and liver and have an important role in the clearance of xenobiotics 
from the body 23. In addition, they are expressed in specialized endothelial cells that form 
the blood-brain, blood-testis and blood-placenta barriers where they help to limit the 
exposure of the underlying tissues (brain, testis and fetus) to xenobiotics 31-33. Besides efflux 
transporters, these specialized endothelial cells also present other barrier properties, such 
as tight junctions and lack of fenestrations that limit para-cellular entry of drugs. In the brain, 
the surrounding glial cells (astrocytes, pericytes) govern the expression of these barrier 
markers in these endothelial cells. The blood-brain barrier (BBB) may thereby “protect” 
tumor cells that reside within the central nervous system 34.Similar to the situation in the 
brain, tumors originating from the peripheral nerve sheath may be protected by the so called 
blood-nerve-barrier (BNB). Our hypothesis is that the blood-nerve-barrier might hinder drugs 
from reaching their target cells in peripheral nerve sheath tumors, thereby contributing to 
drug resistance (Figure 1).  
The three tumor types we included in this analysis were selected because all of them 
originate from the peripheral nerve sheath and, as mentioned earlier,  each of them are 
characterized by some form of drug resistance. The BNB is located in microvasculature of 
the endoneurium and the inner most layers of the perineurium35 and there are reports that, 
analogous to the situation at the BBB, the BNB contains members of the ABC transporter 
family such as BCRP and P-gb 36,37. Apart from the concept of protection by the BNB, these 
tumors may also be drug resistant because the tumor cells themselves express ABC drug 
transporters. Since its discovery, BCRP expression has been observed in several types of 
tumors 38-47 and elevated expression levels of this transporter have been correlated with 
poor prognosis in a number of studies 48-50. Moreover, the expression of BCRP in tumor 
cells has been associated with a rare subset of so-called cancer stem cells, similar to the 
expression of BCRP in normal stem cells 51,52. Consequently, the expression of BCRP both 
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in tumor blood vessels or in tumor cells can mediate drug resistance. 
The aim of this study was to assess the presence and localization of BCRP in peripheral 
nerve sheath tumors. We investigated the expression pattern of BCRP in twenty-two 
sporadic vestibular schwannomas, ten plexiform neurofibromas and eighteen MPNST using 
an immunohistochemical assay performed on a tissue microarray (TMA) composed of these 
tumors. We used TMA technology because it provides the advantage of simultaneously 
analyzing a large panel of tumors with a high degree of experimental standardization53. Is 
has also been shown that the clinico-pathological findings obtained by this technique are 
highly representative of their donor tissues54L.</author><author>Nocito, A.</
author><author>Moch, H.</author><author>Sauter, G.</author></authors></
contributors><auth-address>Institute of Pathology, University of Basel, 4003 Basel, 
Switzerland.</auth-address><titles><title>Tissue microarray (TMA. The results of our 
analysis show that BCRP is expressed in all three of these tumor types. This observation 
indicates that BCRP might reduce drug accumulation in these peripheral nerve sheath 
tumors thus creating a hurdle to effective drug treatment. 

Results

The results from this immunohistochemical, tissue micro array based study indicate the 
presence of BCRP in the microvascular endothelium of MPNST, plexiform neurofibromas 
and vestibular schwannomas (Figure 2). Six out of the eighteen MPNST samples showed 
vascular BCRP expression. Two of the positive specimens were NF1 related and the other 
four were sporadic tumors. Tumor cells were negative for BCRP. One of the studied MPNSTs 
was a recurrent tumor and matched with another specimen in this study. In both cases, the 
vasculature of these samples was BCRP negative. None of the MPNST patients received 

Figure 1. A mechanistic figure of the proposed function of BCRP and P-gb at the blood-nerve-barrier. 
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chemotherapy prior to resection. The vasculature of nine out of ten plexiform neurofibroma 
samples was BCRP positive as well as the vasculature of sixteen of the twenty-two 
schwannomas. Two separate plexiform neurofibroma samples originated from the same 
NF1 patient and both these tumors had BCRP positive vasculature.  Unfortunately, the 
analyzability of some of the MPNST tumor specimens on the TMA slide was impaired due 
to necrosis. We found that in four out of eighteen MPNST cases one or two specimens 
showed intrinsic tumor necrosis making them unsuitable for microscopic analysis. 
Nevertheless, at least one of the three specimens of these tumors contained representative 
tumor tissue. Therefore it was still possible to perform  adequate microscopic analysis on 
tissue from all the tumors in the analysis. Of these four MPNST one was scored positive 
for BCRP and the other three were scored negative.

Discussion

Present treatment of peripheral nerve sheath tumors is mainly a surgical matter. The 
unraveling of the underlying molecular pathologies and the ongoing development of new 
therapeutic agents may provide potentially effective drugs as an alternative- or concomitant 
therapeutic strategy. Unfortunately, however, the occurrence of innate or acquired drug 
resistance of tumors is a common event. Drug resistance is a frequently encountered 
problem in MPNST, but it is also observed in benign or precursor lesions. Multidrug 
resistance is a complex phenomenon and frequently multifactorial. One important reason 
is impaired drug delivery to the target tissues because of the expression of drug efflux 

Figure 2. Immunohistochemistry images showing clear BCRP and CD31 positivity in the microvascular epithelium 
of MPNST(A and B), plexiform neurofibroma (C and D) and vestibular schwannoma (E and F) respectively. Images 
G and H show a CD31 positive yet BCRP negative sample of a vestibular schwannoma.
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proteins in the (micro)vasculature of tumor tissues or because of expression of these 
proteins by tumor cells themselves. In central nervous system (CNS) tissues, the restricted 
entry is due to drug transporters located at the interface between the blood and the brain 
(the BBB). A similar situation may be present at the interface between blood and peripheral 
nerves, but this has not been well established yet. The most extensively studied efflux 
transporters of the BBB are P-gp (ABCB1) 55 and BCRP (ABCG2) 56. Together, these two 
efflux transporters team up to restrict the CNS penetration of a wide range of substrates 
including many potentially useful drugs 56-59. In this study, we have investigated the 
expression of BCRP in tumors of the peripheral nervous system. Based on our results it is 
not entirely clear if the vascular BCRP expression we observed in a selection of the 
investigated tumors is a specific characteristic of these tumors, or if it is a remaining part 
of the blood-nerve-barrier. Dahin et al 60 identified BCRP expression in retinal nerve fibers 
suggesting that BCRP is part of the blood-nerve-barrier that protects retinal nerve fibers 
from injury by removing intracellular toxins and xenobiotics. A contradictory observation 
was made by Huang et al 61 . They investigated BCRP and P-gp in peripheral nerves using 
a tissue distribution assay on rats but did not find a difference in drug distribution between 
wild type- or BCRP/P-gp knock out rats. However, in the Huang study the Abcg2 KO had 
little effect on the brain distribution of known BCRP substrate drugs and these findings are 
at odds with other ABC KO studies and have not been replicated independently 
since.37,62,63Furthermore, they are in stark contrast with multi drug resistance observed in 
clinical studies in NF1 patients with known P-gp and/or BCRP substrate drugs.15,16,64-

66Similarly, prior studies in MPNST confirmed the presence of drug resistant sarcoma stem 
cells67,68 and the P-gp and BCRP efflux pumps47,50,69,70, while drug trials in MPNST patients 
have not improved outcomes50,71 Our findings provide a rationale to further study the 
hypothesis that endothelial BCRP expression may be part of the reason why drug therapy 
of PNST often fails 47. If this hypothesis is correct it could mean that inhibition of BCRP may 
aid in rendering these tumors more susceptible to drug therapy.  A potential strategy to 
achieve this is to co-administer elacridar, a potent, selective inhibitor of both P-gp and BCRP 
with molecularly targeted drugs to enhance drug levels in diseased neural tissues and 
improve outcomes as has been observed in animal models of other pump-protected 
diseases 34,72-82.
In conclusion, our results demonstrate the expression of BCRP in the vascular endothelium 
in a substantial fraction of MPNST, plexiform neurofibromas and sporadic vestibular 
schwannomas. Similar to CNS tumors, the presence of BCRP, and perhaps other members 
of the ABC efflux transporter family, may reduce the drug exposure of underlying tumor 
tissues and mediate resistance to drug therapy.
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Methods

Patients 

The cases included in this study were retrospectively selected from the files of the bone- and 
soft tissue tumor database at the department of Pathology of the Leiden University Medical 
Center, Leiden the Netherlands. Tumor specimens were obtained from patients surgically 
treated for their tumors between January 1999 and December 2012. Formalin-fixed paraffin-
embedded samples of twenty-two sporadic vestibular schwannomas, ten plexiform 
neurofibromas and eighteen MPNST were selected. Of these selected tumors two separate 
plexiform neurofibromas originated from the same patient and one MPNST was a recurrence 
of a primary tumor included in this analysis as well. Surgery was performed at the departments 
of Neurosurgery, Otolaryngology, Orthopedic surgery and General surgery of the Leiden 
University Medical Center. In each case the diagnosis was made according to the WHO 
classification of soft tissue tumors 83. All tumor samples were handled in a coded fashion and 
all procedures were performed according to the ethical guidelines of the Code for Proper 
Secondary Use of Human Tissue in The Netherlands (Dutch Federation of Medical Scientific 
Societies). Additional clinicopathological data are shown in table one. 

Tissue microarray (TMA) preparation

Preparation of the TMAs was performed at the department of pathology of the Leiden 
University Medical Center. TMAs were constructed from 1mm cores of all tumor samples 
using a TMA Master (3DHISTECH Ltd, Budapest, Hungary). Per tumor three randomly 
selected cores were included in the TMA in order to compensate for intra-tumoral 
heterogeneity. Normal colon, tonsil, placenta, prostate and spleen tissue together with 
mamma carcinoma were used to serve as internal controls and points of orientation. In line 
with data provided by the manufacturer we found high BCRP expression in placenta and 
low expression in colon tissue. 

Immunohistochemistry (IHC)

Immunohistochemical reactions were performed according to standard laboratory methods 
84. In brief, heat-induced antigen retrieval was performed after dewaxing and rehydration, 
followed by blocking of endogenous peroxidase with 3% H2O2 in methanol. Incubation with 
the primary antibodies BCRP (Abcam; ab24115) and CD31 (Abcam; ab28364) was 
overnight. Subsequently, CD31 sections were conjugated with Labelled Polymer-HRPAnti-
Rabbit Envision (DakoCytomation; K4005) while conjugation of the BCRP sections was 
performed with Goat-α-Rat-Bio (Santa Cruz; SC-2041) and Streptavidin/HRP 
(DakoCytomation; P0397) respectively. Visualization was carried out with a diaminobenzidine 
solution. All washing procedures were conducted in phosphate-buffered saline. Slides were 
counterstained with haematoxylin. 
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Table 1. patient characteristics 

Specimen Tumor Type Sex Age (yrs.) Tumor Localisation Brcp 

L1399 NF1 MPNST F 16 upper leg, right positive

L4304 NF1 MPNST F 29 second thoracic vertebra, left negative 

L4309 NF1 MPNST F 15 mandible angle, right positive

L4326 NF1 MPNST F 27 flank region, left negative 

L1537 sporadic MPNST* M 22 back, middle  negative 

L1448 sporadic MPNST M 51 inguinal region, left negative 

L1219 sporadic MPNST F 35 gluteus region, right negative 

L1503 sporadic MPNST F 58 upper leg, right negative 

L1509 sporadic MPNST M 17 upper arm, left negative 

L1867 sporadic MPNST M 57 upper leg, left negative 

L2056 sporadic MPNST M 24 inguinal region, left positive

L2170 sporadic MPNST M 22 brachial plexus, left negative 

L4303 sporadic MPNST F 41 brachial plexus, left positive

L4320 sporadic MPNST M 22 back, middle  negative 

L4322 sporadic MPNST F 48 brachial plexus, left negative 

L4325 sporadic MPNST F 35 fifth cervical vertebra, left negative 

L4327 sporadic MPNST M 68 retroauricular region, right positive

L4328 sporadic MPNST V 26 fifth cervical vertebra, left positive

L4305 NF 1plexiform neurofibroma F 33 foot, right negative 

L4321 NF1 plexiform neurofibroma M 23 skin of neck, left positive

L4330 NF1 plexiform neurofibroma V 42 supraclavicular region, right positive

L4331 NF1 plexiform neurofibroma M 30 upper leg, right positive

L4332 NF1 plexiform neurofibroma** M 30 occipital region, middle positive

L4333 NF1 plexiform neurofibroma M 24 cheek, left positive

L4335 NF1 plexiform neurofibroma F 31 neck region, left positive

L4302 sporadic plexiform neurofibroma F 27 median nerve left positive

L4329 sporadic plexiform neurofibroma V 26 axilla, right positive

L4334 sporadic plexiform neurofibroma F 51 femoral nerve, right positive

L1493 sporadic schwannoma F 39 cerebellopontine angle, right positive

L3580 sporadic schwannoma M 58 cerebellopontine angle, right negative 

L3583 sporadic schwannoma M 47 cerebellopontine angle, left positive

L3586 sporadic schwannoma F 48 cerebellopontine angle, right negative 

L3590 sporadic schwannoma M 43 cerebellopontine angle, right positive

L3593 sporadic schwannoma F 53 cerebellopontine angle, left positive

L3604 sporadic schwannoma F 43 cerebellopontine angle, right positive

L4306 sporadic schwannoma M 69 cerebellopontine angle, left positive

L4307 sporadic schwannoma F 57 cerebellopontine angle, right positive

L4308 sporadic schwannoma M 73 cerebellopontine angle, right positive

see next page >>
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Microscopic analysis

After staining the TMA was scanned using a Pannoramic MIDI Digital Slide Scanner 
(3DHISTECH Ltd, Budapest, Hungary). Analysis of the digital slides took place with 
Pannoramic Viewer software version 1.15.3. Scoring was performed by two observers who 
were unaware of the clinico-pathological data. Staining of tumor specimens was classified 
as either positive or negative. Differently assessed cases were discussed to reach consistent 
scoring results. 

Specimen Tumor Type Sex Age (yrs.) Tumor Localisation Brcp 

L4310 sporadic schwannoma F 59 cerebellopontine angle, right positive

L4311 sporadic schwannoma F 56 cerebellopontine angle, left positive

L4312 sporadic schwannoma F 56 cerebellopontine angle, left positive

L4313 sporadic schwannoma M 43 cerebellopontine angle, right negative 

L4314 sporadic schwannoma F 59 cerebellopontine angle, left positive

L4315 sporadic schwannoma F 61 cerebellopontine angle, right positive

L4316 sporadic schwannoma F 67 cerebellopontine angle, left positive

L4317 sporadic schwannoma F 50 cerebellopontine angle, left positive

L4318 sporadic schwannoma M 55 cerebellopontine angle, left negative 

L4319 sporadic schwannoma F 72 cerebellopontine angle, right positive

L4323 sporadic schwannoma M 62 cerebellopontine angle, right negative 

L4324 sporadic schwannoma F 54 cerebellopontine angle left negative 

* recurrent tumor from specimen L4325; ** separate tumor from the same patient as L4331

Abbrevations

ABC ATP binding cassette 
ABCB1 ATP-binding cassette sub-family B member 1
ABCG2 ATP-binding cassette sub-family G member 2
BBB Blood-brain-barrier
BCRP Breast Cancer Resistance Protein
BNB Blood-nerve-barrier
MPNST Malignant peripheral nerve sheath tumors 
NF 1 Neurofibromatosis type I 
NF 2 Neurofibromatosis type II
P-gb permeability glycoprotein
PNST Peripheral nerve sheath tumors 
TMA Tissue micro array
VS Vestibular schwannomas

Table 1. Continued
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