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CHAPTER 4



Abstract
Objective: determine whether the most frequent mutations affecting the MAPK/ERK 
pathway contribute to vestibular schwannoma progression 

Background: sporadic vestibular schwannomas are benign tumors originating from the 
Schwann cells of the vestibular portion of the eigth cranial nerve. An important clinical 
hallmark of these tumors is their variable growth rate. Investigating vestibular schwannoma 
biology can help to clarify this variable growth rate and may offer targets for therapeutic 
treatment. A recent mutation analysis on sporadic non head and neck schwannomas 
detected BRAF mutations in around 20 % of tumors. BRAF is part of the MAPK/ERK 
pathway. MAPK/ERK activation is associated with uncontrolled cell growth. Mutated BRAF 
can function as a target to inhibit this pathway. Mutations in BRAF and other members of 
the MAPK/ERK pathway have not been investigated in sporadic vestibular schwannomas 
before. 

Methods: Tumor specimens of 48 patients surgically treated for a sporadic vestibular 
schwannoma were analyzed. An allele specific quantitative real-time PCR assay was 
performed to detect the thirteen most frequent mutations affecting BRAF, EGFR, PIK3CA, 
and KRAS. Radiologically measured tumor growth was included in the analysis to identify 
potential relationships between these mutations and tumor progression. 

Results: No activating hotspot mutations in BRAF, EGFR, PIK3CA or KRAS were detected 
in the investigated vestibular schwannomas.  

Conclusion: the thirteen most frequent mutations affecting BRAF, EGFR, PIK3CA and 
KRAS are not involved in sporadic vestibular schwannoma development. These results are 
in contrast to the recent detection of these BRAF mutations in non-head and neck 
schwannomas and are as such no explanation of the clinically observed  variable growth 
pattern.
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Introduction

Sporadic vestibular schwannomas are benign tumors recapitulating the differentiation 
repertoire of the myelin-forming Schwann cells of the vestibular branch of the eighth cranial 
nerve in the internal auditory canal or the cerebellopontine angle. These tumors grow 
clinically slowly and progressively, extending into the cerebellopontine angle ultimately 
causing brainstem compression.
Therapeutic management of these tumors can be divided into three different strategies i.e. 
surgical removal, stereotactic radiotherapy or serial radiological observation, also known 
as the wait & scan policy. So far, unlike neurofibromatosis type 2-related tumors1, sporadic 
vestibular schwannomas are not pharmacotherapeutically treated. One of the clinical 
problems regarding vestibular schwannoma therapy is the large variability in growth rate 
these tumors can display. More understanding of this variable growth rate would be of great 
benefit when determining the most suitable therapeutic approach. This requires more insight 
into tumor biological factors affecting vestibular schwannoma progression. Studying the 
biology of the vestibular schwannoma not only contributes to a better understanding of its 
growth pattern, it may also help to identify potential therapeutic targets.
To date the tumor biology of sporadic vestibular schwannomas is poorly understood. An 
important factor in the development of schwannomas in general is loss of function of NF2 
(neurofibromin 2), which acts as a tumor suppressor gene2-5. Inactivation of the NF2 gene 
has been described in both neurofibromatosis type 2-related as well as sporadic vestibular 
schwannomas6-9. Reports regarding the sporadic tumors described NF2 mutations in a 
majority of cases 6-11. Nevertheless a significant proportion of sporadic vestibular 
schwannomas do not seem to harbour a proven NF2 mutation. Studies investigating the 
NF2 gene product in schwannomas, both at RNA- as well as protein level, demonstrated 
absent or decreased expression of NF2 gene products in a higher percentage of tumors 
then expected with regard to the percentage of tumors containing a proven NF2 mutation 
9,12-14. These findings suggest that in addition to mutational changes of NF2 other 
mechanisms are implicated in deregulating NF2 gene products. A study by Kino et. al.15 
demonstrated aberrant methylation of NF2 in 14 out of 23 schwannomas, both NF2-
related(n=3) as well as sporadic(n=20). A more recent study by Kullar et. al. 16 also 
investigated the role of methylation in vestibular schwannomas. They reported aberrant 
methylation of NF2 in only 10% of the investigated samples. In summary, quite some 
discrepancies between reports on the incidence of NF2 mutations, loss of NF2 gene product 
and epigenetic aberrations of NF2 exist. The combination of these discrepancies and the 
fact that no associations between aberrant NF2 expression and tumor growth have been 
demonstrated, leads to the impression that next to loss of function of NF2 other mechanisms 
are implicated in vestibular schwannoma development. 
A recent finding supporting this suggestion was reported by Serrano et al. 17 They identified 
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the presence of BRAFv600E mutations in a number of sporadic non head and neck 
schwannomas. The presence of BRAF mutations in schwannomas has been investigated 
before. Schindler et al. 18 investigated BRAFv600E mutations in 1320 nervous system tumors, 
including 14 schwannomas. None of these schwannomas contained the BRAFv600E mutation. 
Among the tumors that did harbour BRAF mutations were WHO grade II pleomorphic 
xanthoastrocytomas (42/64; 66%), pleomorphic xanthoastrocytomas with anaplasia 
(15/23;65%), WHO grade I gangliogliomas (14/77; 18%), WHO grade III anaplastic 
gangliogliomas (3/6) and pilocytic astrocytomas (9/97;9%). Alterations of BRAF in pilocytic 
astrocytomas have been described in other reports as well 19,20; Additioinal tumors of glial 
origin associated with BRAF mutations are glioblastomas 21 and oligodendroglial tumors 22, 
in both cases mutations occurred at low frequency. A relatively recent study on malignant 
peripheral nerve sheath tumors (MPNST) screened for multiple gene mutations including 
BRAF, PIK3CA and RAS 23. No BRAF or PIK3CA mutations could be identified but 2 out of 
11 sporadic MPNSTs contained mutations to the RAS gene. 
Both NF2 24-28 as well as BRAF 29 are known to be involved in the regulation of the MAPK/
ERK pathway (Figure 1). The MAPK/ERK pathway consists of a cascade of tyrosine kinase 
proteins that mediate cellular responses like cell division, differentiation and survival30,31. 
An estimated 30% of all human cancers harbour mutations related to this pathway 32 with 
mutations of  the BRAF gene being the most frequent29. A relatively recent global gene 
expression profile analysis performed by Aarhus et. al. 6 subscribes the role of this pathway 
in the pathogenesis of sporadic vestibular schwannomas. The fact that mutated BRAF and 
other members of the MAPK/ERK pathway form potential targets for pharmacological 
treatment29,33 emphasizes the relevance of investigating their involvement in vestibular 
schwannoma development. 
The goal of this study was to investigate the hypothesis that mutations affecting the MAPK/
ERK pathway, BRAFv600E in particular, play a role in the development of sporadic vestibular 
schwannomas and may even account for the subgroup of tumors exhibiting rapid tumor 
growth. 
In order to test this hypothesis we have conducted an allele specific quantitative real-time 
PCR assay with hydrolysis probes for the most frequent activating mutations related to 
MAPK/ERK pathway activation. The results of this mutation analysis were compared with 
clinical parameters such as tumor size and tumor growth rate.

Materials and Methods

Patient selection

From the vestibular schwannoma database at the Leiden University Medical Center material 
of a total of 48 out of 315 patients, operated between January 2005 and July 2011, was 
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selected. The selection consisted of patients surgically treated for a histologically proven 
primary sporadic vestibular schwannoma. Patients with a tumor exceeding 20 mm in 
diameter were operated in cooperation with the Department of Neurosurgery; no patients 
diagnosed with neurofibromatosis type 2 were included. Decision for surgical treatment 
was based on clinical symptoms (e.g. tinnitus, vertigo, hearing loss, increased cerebrospinal 
pressure and tumor size), radiologically observed tumor growth and patients’ personal 
preference.
We selected two different patient groups based on first clinical presentation. Group 1 
consisted of 30 consecutive patients with tumors smaller than 20 mm in diameter at first 
diagnosis. These patients initially enrolled into the wait and scan protocol. Surgery was 
performed only after tumor growth was observed during radiological follow up. Tumor growth 
rate was determined by comparing the maximal tumor diameter measured on two sequential 
MRI scans and is expressed in millimetres per year34. Because only patients with tumors 
of small- to moderate size were monitored over time, few patients with larger tumors were 
present in this first group. In order to study a patient cohort representing the entire spectrum 
of tumor sizes we added a second group of patients to our selection. Group 2 consisted of 

Figure 1. NF2 involvement in the MAPK/ERK pathway. NF2 becomes active through dephosphorylation. 
Dephosphorylated NF2 binds to a transmembrane receptor (TMR). NF2 then blocks the activation of Ras and Rac 
thereby inhibiting phosphorylation of Raf and MEK by PAK. NF2 also inhibits signaling from constitutively active RAS. 
(Cell signaling model as adopted from Morrison H. et al Cancer Res 2007;67:520-527)
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18 consecutive patients with large tumors, exceeding 30 mm in size at initial diagnoses. 
Because patients with large tumors are operated shortly after diagnosis, no radiological 
follow up on tumor growth rate is available for these patients. 
All tumor samples were handled in a coded fashion and all procedures were performed 
according to the ethical guidelines of the Code for Proper Secondary Use of Human Tissue 
in The Netherlands (Dutch Federation of Medical Scientific Societies). 

DNA isolation

DNA was extracted from formalin fixed paraffin embedded tumor blocks. To ensure the 
tumor samples contained sufficient amounts of tumor cells (> 70%) H&E-stained slides of 
all samples were evaluated on percentage of tumor cells in relation to non-neoplastic cells. 
In one case microdissection was required in order to obtain an adequate percentage of 
tumor cells. DNA was extracted from 10 μm sections of paraffin-embedded tissue and 
subsequently purified using a NucleoSpin® Tissue Kit (Macherey-Nagel, Düren, Germany). 
For DNA quantification a UV/VIS spectrometry analysis with a NanoDrop ND-1000 
spectrometer (Thermo scientific®, New York, New York) was performed. 

BRAF, EGFR, PIK3CA and KRAS mutation analysis

Exact details regarding the allele specific quantitative real-time PCR (qPCR) with hydrolysis 
probes (Applied Biosystems, Nieuwerkerk a/d IJsel, NL) that was conducted have been 
described before35. In short, the assay contained mutation specific hydrolysis probes for 
the detection of one BRAF, two EGFR, three PIK3CA and seven KRAS mutations (table 
1.). The BRAFv600E mutation included in this assay accounts for more than 90% of all BRAF 
mutations described in human cancer 36. The deletion of exon 19 and the point mutation in 
exon 21 at nucleotide 2573 of chromosome 7 account for approximately 90% of all mutations 
affecting EGFR 37. For KRAS 95% of all activating mutations are located in exon 1 (codons 
12 and 13) 38. The hotspot mutations of PIK3CA included in this analysis cover approximately 
80% of all mutations to this gene 39. 
All qPCR reactions were performed on a sealed LightCycler 480 multiwell Plate 384 (Roche 
Applied Science) in a LightCycler 480 Multiwell system (Roche diagnostics). For quality 
assessment the quantification cycle (Cq) was taken into account. Samples with Cq values 
exceeding 35 in the wild-type channel were rejected and excluded from further analysis. 
The endpoint fluorescence ratio Rm/Rwt was calculated to determine the presence or absence 
of a mutation. In case the Rm/Rwt ratio exceeded 0.7 a sample was considered positive for 
that specific mutation. An Rm/Rwt ratio smaller than 0.3 indicated the mutation was absent. 
Allele specific quantitative real-time PCR is a reliable and sensitive technique for the detection 
of mutations in BRAF, EGFR, PIK3CA and KRAS and has been validated in several studies 
investigating different types of tumors 35,40-45. This technique is also part of the routine mutation 
detection protocol deployed by the Molecular Diagnostics department in our hospital. 
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Results 

A total of 48 patients, 21 (44%) male and 27 (56%) female were studied. Patient age ranged 
from 21 to 81 years with an average of 53.2 (SD ± 11.9) years. In patient group 1 tumor 
size varied from 7 to 49 mm (mean 16.4 ± 9.8) and tumor growth rate varied from -1.3 to 
33.9 millimetres per year (mean 4.1 ± 6.1). Tumor size in patient group 2 varied from 30 to 
46 millimetres (mean 36.3 ± 5.3) Tumor size in the total patient selection varied from 7 to 
49 millimetres (mean 23.8 ± 12.8). As expected, tumor size in group 2 was significantly 
larger than tumor size in group 1. No other significant differences existed between the two 
groups. Exact details on statistical analysis and patient characteristics of clinical data are 
listed in table 2 and table 3 respectively. 

BRAF, EGFR, PIK3CA and KRAS mutation analysis

In none of the 48 investigated patients mutations affecting BRAF, EGFR, PIK3CA or KRAS 
were detected (see Figure 2 for an example of the qPCR results). All assays for BRAF, 
PIK3CA and KRAS gave Cq values <35. In four cases the Cq values of the EGFR assay 
exceeded 35 making interpretation of the endpoint fluorescence ratio for these samples 
less reliable, however indications for the presence of a mutation in these cases were 
unlikely.

Table 1. analyzed mutations 

Gene DNA mutation Protein modification

KRAS c.34G>A p.G12S

c.34G>C p.G12R

c.34G>T p.G12C

c.35G>A p.G12D

c.35G>C p.G12A

c.35G>T p.G12V

c.38G>A p.G13D

EGFR c.2573T>G P.L858R

deletion exon 19 deletion

BRAF c.1799T>A p.V600E

PIK3CA c.1624G>A p.E542K

c,1633G>A p.E545K

  c.3140A>G p.H1047R
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Table 2. statistical analysis of clinical data 

Clinical parameter Total Group 1 Group 2 P

age, year 53,2 ± 11,9 55,4 ± 11,2 49,3 ± 12,2 0,85†

female, % 56 56 56 0,94‡

size 23,8 ±  12,8 16,4 ± 9,8 36,3 ± 5,3 <0.00001†

growth, mm/year - 4,1 ± 6,1 - -

P: † t-test and ‡ chi-squared; ± indicate SD

Table 3a. patient characteristics and qPCR results of smaller tumors 

Sample Sex Age (yr) Size (mm) Growth
mm/yr

KRAS EGFR BRAF PIK3CA

Group 1 
L3716 M 69 17,6 -1,3 WT WT WT WT

L3717 F 67 12,9 2,7 WT WT WT WT

L3718 M 46 9,9 3,5 WT WT WT WT

L3719 F 60 11,6 2,1 WT WT WT WT

L3720 M 48 17,3 0,6 WT WT WT WT

L3721 M 60 6,8 0,5 WT WT WT WT

L3722 M 53 12,7 3,4 WT WT WT WT

L3723 M 53 19,7 0 WT LS WT WT

L3724 F 34 10,7 4,5 WT WT WT WT

L3725 F 62 15,1 2,6 WT WT WT WT

L3727 F 46 9 1,5 WT LS WT WT

L3728 M 56 13,7 3 WT WT WT WT

L3729 M 52 16,8 4,4 WT LS WT WT

L3730 F 65 11,3 2,8 WT WT WT WT

L3731 F 81 45,9 5,8 WT WT WT WT

L3732 F 69 13,2 8,4 WT WT WT WT

L3734 M 35 24,8 5,1 WT WT WT WT

L3735 F 41 8,3 0 WT WT WT WT

L3736 F 69 24,3 4,2 WT WT WT WT

L3737 M 59 14,2 3,1 WT WT WT WT

L3738 F 60 10,8 2,6 WT WT WT WT

L3739 M 61 9,2 1,8 WT WT WT WT

L3740 F 52 14,6 9,4 WT WT WT WT

L3741 F 71 24,8 2,9 WT WT WT WT

L3742 F 54 12 4,3 WT WT WT WT

L3743 F 38 11,1 3,5 WT WT WT WT

L3744 M 46 7,9 0 WT WT WT WT

L3745 F 56 5,6 5,6 WT WT WT WT

L3746 M 46 49,3 33,9 WT WT WT WT

L3747 F 53 15,4 2,7 WT WT WT WT
WT: wild type signal , LS : Low signal.
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Figure 2. Example of qPCR results for the BRAF assay.

Table 3b. patient characteristics and qPCR results of larger tumors 

Sample Sex Age (yr) Size (mm) Growth
mm/yr

KRAS EGFR BRAF PIK3CA

L3611 F 39 43 - WT WT WT WT

L3749 F 59 32 - WT WT WT WT

L3613 M 49 36 - WT WT WT WT

L3618 F 49 46 - WT WT WT WT

L3752 M 30 35 - WT WT WT WT

L3753 F 48 3 - WT WT WT WT

L3754 M 51 39 - WT WT WT WT

L3755 F 61 34 - WT WT WT WT

L3756 M 58 43 - WT WT WT WT

L3757 M 65 37 - WT WT WT WT

L3758 F 58 38 - WT WT WT WT

L3759 M 47 30 - WT WT WT WT

L3760 F 21 38 - WT WT WT WT

L3761 F 30 45 - WT LS WT WT

L3762 M 60 30 - WT WT WT WT

L3751 M 60 30 - WT WT WT WT

L3750 F 53 33 - WT WT WT WT

L3748 F 50 35 - WT WT WT WT
WT: wild type signal , LS : Low signal.
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Discussion

In this study we report on the results of an allele specific quantitative real-time PCR assay 
for the most frequent activating mutations of BRAF, EGFR, PIK3CA and KRAS in 48 
sporadic vestibular schwannomas. The allele specific quantitative real-time hydrolysis probe 
PCR assay that was conducted is a reliable and highly sensitive technique for the detection 
of mutational hotspots in the BRAF, EGFR, PIK3CA and KRAS genes. 
Using this technique no mutations could be demonstrated. The fact that no mutations were 
found in this cohort of 48 tumors suggests that hotspot activating mutations of BRAF, EGFR, 
PIK3CA and KRAS do not play a significant role in sporadic vestibular schwannoma 
pathogenesis. This outcome supports the results by Shindler et al. but remains in contrast 
with the findings of Serrano et. al. 17. They detected BRAF mutations in 3 out of 16 
investigated sporadic non head and neck schwannomas. The origin of the schwannomas 
investigated by Schindler et al was not specified but maybe analogous to the situation in 
the uveal melanomas, which in contrast to cutaneous melanomas very rarely contain BRAF 
mutations 46,47, there is a location dependency for BRAF mutations in sporadic schwannomas 
as well. So far the biological mechanisms responsible for this apparent location dependent 
incidence of BRAF mutations remain unclear. 
Next to BRAF, EGFR has been analysed in earlier studies on schwannoma pathogenesis 
as well. An immunohistochemical study on 22 vestibular schwannomas by Sturgis et al. 48 
demonstrated positivity for EGFR in three fourths of their samples. Prayson et al. investigated 
EGFR via immunohistochemistry and fluorescent in situ hybridization but was not able to 
detect any EGFR expression or amplification 49. The later study combined with our results 
indicate that if EGFR is upregulated in schwannomas this probably is not caused by changes 
to the gene itself  but more likely a result of diminished inhibition by its upstream regulator 
NF2 50. 
To date the genetic profile of vestibular schwannomas has not been fully characterized.  As 
mentioned before, the major genetic alteration involved in sporadic vestibular schwannoma 
genesis is inactivation of the NF2 gene. However, there seems to be a subpopulation of 
tumors without a proven NF2 mutation6-8,11. One explanation for this subpopulation might 
be the involvement of genes other then NF2 but so far no clear evidence proving the 
presence of such genes has been provided. Another explanation could be that the mutation 
detection techniques that have been used were simply not sensitive enough. Even the most 
extensive mutation assays did not cover the entire NF2 gene 51. Other factors that may 
have reduced the sensitivity of these tests are contamination of tumor tissue or epigenetic 
processes like aberrant methylation 15,52. 
Recent developments in DNA sequencing technologies like “next-generation sequencing”53 
make analysis of the entire NF2 gene, including epigenenomic assays 54, possible and 
might offer solutions to clarify this matter. If indeed all sporadic vestibular schwannomas 
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arise by inactivation of NF2 and no other genetic alterations play a major role in vestibular 
schwannoma biology the question remains which other mechanisms are responsible for 
these tumors’ phenotypical variability. 
In this context we have recently performed a pilot study which focussed on the intratumoral 
microenvironment of the vestibular schwannoma and its role in tumor growth55. In this study 
we detected CD68 positive macrophages in a majority of tumors; the expression rate of 
these macrophages correlated with the degree of tumor vascularisation and with clinical 
markers of tumor growth. The importance of the intratumoral inflammatory microenvironment 
has been established in several types of cancer 56 and might be an important biological 
mechanism affecting tumor growth of the vestibular schwannoma as well. 
In summary we conclude that the most frequent mutations affecting BRAF, EGFR, PIK3CA 
and KRAS do not play a major role in sporadic vestibular schwannoma biology. So far no 
genes other than NF2 have been proven to be associated with this type of tumor. Whether 
the variable growth pattern of sporadic vestibular schwannomas is based on a specific 
genetic background or other biological mechanisms such as the intratumoral 
microenvironment remains to be established.

Source of Funding and conflict of interest statement: departmental grant, the authors 
declare there is no conflict of interest concerning materials or methods used in this study 
or the findings specified in this paper.
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