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Tumor Biology of Vestibular Schwannoma:
A Review of Experimental Data on the Determinants
of Tumor Genesis and Growth Characteristics

CHAPTER 2



Abstract
Objective: provide an overview of the literature on vestibular schwannoma biology with 
special attention to tumor behavior and targeted therapy.

Background: vestibular schwannomas are benign tumors originating from the eighth cranial 
nerve and arise due to inactivation of the NF2 gene and its product merlin. Unraveling the 
biology of these tumors helps to clarify their growth pattern and is essential in identifying 
therapeutic targets.

Methods: PubMed search for English language articles on vestibular schwannoma biology 
from 1994 till 2014.

Results: activation of merlin and its role in cell signaling seem key aspects of vestibular 
schwannoma biology. Merlin is regulated by proteins like CD44, Rac and myosin 
phosphatase targeting subunit 1 (MYPT1). The tumor suppressive functions of merlin are 
related to receptor tyrosine kinases, such as the platelet-derived growth factor receptor 
(PDGFR) and vascular endothelial growth factor receptor (VEGF). Merlin mediates the 
Hippo pathway and acts within the nucleus by binding E3 ubiquiting ligase CRL4DCAF1. 
Angiogenesis is an important mechanism responsible for the progression of these tumors 
and is affected by processes like hypoxia and inflammation. Inhibiting angiogenesis by 
targeting VEGF seems to be the most successful pharmacological strategy but additional 
therapeutic options are emerging. 

Conclusion: over the years the knowledge on vestibular schwannoma biology has 
significantly increased. Future research should focus on identifying new therapeutic targets 
by investigating vestibular schwannoma (epi)genetics, merlin function and tumor behavior. 
Besides identifying novel targets, testing new combinations of existing treatment strategies 
can further improve vestibular schwannoma therapy.
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Introduction

Sporadic vestibular schwannomas (VS) are benign tumors recapitulating the differentiation 
repertoire of the myelin-forming Schwann cells of the vestibular branch of the eighth cranial 
nerve. Vestibular schwannomas derive within the internal auditory canal, often extending 
into the cerebellopontine angle. Associated symptoms are hearing loss, tinnitus and vertigo. 
Large tumors can cause paralysis of adjacent cranial nerves and brainstem compression. 
The majority of vestibular schwannomas occur as unilateral sporadic tumors(>90%)1.  
Bilateral tumors are pathognomonic for the hereditary disorder neurofibrosis type 2 (NF2). 
In this review we discuss both but mainly focus on the sporadic tumors. Recent years the 
incidence of vestibular schwannomas has increased to approximately 20 per million people 
per year 2-4. This is probably a consequence of the increased application of magnetic 
resonance imaging (MRI) scanning resulting in the identification of more subclinical cases.   
Therapeutic management of vestibular schwannomas comprises three strategies i.e. 
microsurgery, radiotherapy or serial radiological observation. So far pharmacological 
treatment options are scarce 5-7. An important aspect determining the most suitable therapy 
is growth rate. Some tumors remain stable for years while others grow relatively fast (Figure 
1.) The biological background of this phenotypical heterogeneity is largely unknown. This 
review provides an overview of the literature on vestibular schwannoma biology with special 
attention to tumor behaviour and targeted therapy. 

Figure 1. Sequential T1-weighted gadolinium enhanced magnetic resonance imaging scans of a fast-growing sporadic 
VS. This tumor more than doubled in volume from 4.25 ml (A) to 11.75 ml (B) in less than 10 months causing 
compression of the brainstem. 
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NF2 gene 

An essential contribution to the understanding of vestibular schwannoma biology was the 
isolation of the neurofibromatosis type-2 gene (NF2) 8,9. NF2 encodes for the tumor 
suppressor protein merlin. This gene is located on chromosome 22q12 and contains 17 
exons. Loss of functional merlin is essential in schwannoma pathogenesis 10. Heterozygous 
germline inactivating mutations affecting NF2 cause the autosomal dominant disorder 
neurofibrosis type-2 and biallelic somatic mutations of NF2 are found in sporadic vestibular 
schwannomas 11. 

Merlin Structure and Activation

Merlin is a cytoskeletal protein encoded by the NF2 gene. It shows similarity to the ERM 
proteins, ezrin, radixin and moesin. These proteins play an important role in linking the actin 
cytoskeleton with plasma membranes 12. “Merlin” is an acronym for “Moesin-Ezrin-Radixin-
like Protein”. Merlin consists of an relatively conserved N-terminal FERM (Four-point-one, 
ezrin, radixin, moesin) domain followed by a coil-coil domain and a Carboxyl-terminal 
domain 13 (Figure 2).  

The FERM domain is a membrane-binding module resembling the domain of the ERM 
proteins except for the C-terminal domain which lacks an actin-binding motif 14-16. Instead, 
merlin directly binds actin with residues in the glutathione S-transferase N-terminal domain 
17 or indirectly in association with II-spectrin or fodrin 18.
Merlin exists in an open and closed state. Dephosphorylation of merlin causes the protein 
to close. The closed conformation of merlin is the active tumor suppressor 19-21. Promitogenic 
signals initiated by membrane-bound integrins and receptor tyrosine kinases are transduced 
by the signalling protein Rac which in turn activates p21-activated kinase (PAK) 22,23. 
Activated PAK phosphorylates merlin at amino acid serine 518 19,24,25. This phosphorylation 
induces an open conformation of merlin, thereby inhibiting its tumor suppressor function. 
In addition to PAK merlin is also phosphorylated by protein kinase A (PKA)26. PKA mediated 
phosphorylation not only takes place at serine 518 but serine 10 as well 27. The effect of 
phosphorylation at serine 10 is not entirely clear but it is suggested to induce changes of 
the actin cytoskeleton. 
Conversely to Rac, engagement of cadherins or loss of mitogenic signalling inactivates 
PAK, leading to increased levels of closed, activated merlin 22. In accordance with these 
observations, inactivation of merlin leads to loss of contact inhibition 28,29 and accelerated 
progression of the cell cycle 30. By combining signals from cadherins and integrins merlin 
mediates cell cycle progression. 
Another regulator of merlin is CD44, a transmembrane hyaluronic acid receptor involved 
in cell adhesion, matrix adhesion and cell migration 31. Merlin mediates contact inhibition 
dependent cell growth by its interaction with CD44. Through these interactions merlin and 
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CD44 may function as a switch controlling cell growth arrest or proliferation 32,33. Merlin can 
also be activated by myosin phosphatase targeting subunit 1 (MYPT1). This protein 
dephosphorylates merlin at amino acid serine 518 20,34. The concept of MYPT1 mediated 
activation of merlin is supported by the observation that CPI-17 (protein kinase C-potentiated 
phosphatase inhibitor of 17 kDa), a cellular inhibitor of MYPT1, causes loss of function of 
merlin 34. Figure 3 provides an overview of various interactions involved in merlin regulation. 

Merlin’s role in cell signalling 

Contact mediated inhibition is an important mechanism regulating cell growth. The tumor 
suppressive role of merlin seems largely affect by contact inhibition 23,32,35,36. Identifying 
cellular pathways in which merlin participates may provide targets for treatment. Examples 
of targeted therapy are tyrosine kinase inhibitors, which have been successfully employed 
for solid neoplasms like gastrointestinal stromal tumors as well as leukemia’s37,38. Tyrosine 
kinases are enzymes involved in the activation of numerous cell signalling cascades, when 
inhibited they can slow down or arrest tumor progression. It is because of developments 
like these that a significant proportion of schwannoma related research is now devoted to 
clarifying the function of merlin and the cell signalling pathways it affects. To maintain 
comprehensibility only the most well-established interactions will be discussed.

Figure 2. Merlin structure. Merlin has three structural sections: the N-terminal FERM domain followed by a coil-coil 
domain and a Carboxyl-terminal domain. Dephosphorylation of merlin at amino acid Serine 518 causes the protein 
to fold and become active
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Merlin’s tumor suppressor function is linked to the integrin mediated Rac pathway, which 
is involved in actin remodelling, cell cycle control, transcription and apoptosis. Shaw et al. 
19 were the first to describe this association. They demonstrated merlin’s ability to negatively 
regulate Rac, this was confirmed by additional studies 23,39. A downstream target of Rac is 
PAK, the kinase responsible for the activation of merlin. The interaction between merlin, 
Rac and PAK suggests a positive feedback loop between merlin and PAK.

Merlin has been proposed to suppress proliferation by inhibiting receptor tyrosine kinases 
(RTKs) including the ErbB receptors, the platelet-derived growth factor receptor (PDGFR), 
the insulin-like growth factor 1 receptor (IGF1R) and the vascular endothelial growth factor 
(VEGF) receptor 28,35,40-42. This is confirmed by the fact that proteins of the oncogenic Ras/
Raf/MEK/ERK and PI3K/AKT pathways, which are downstream of these RTKs, are strongly 
activated in merlin deficient schwannoma cell models 43,44. 
Merlin seems to act as a negative regulator of the mammalian target of rapamycin complex 
1 (mTORC1), a kinase complex that regulates cell growth, cell proliferation, cell motility and 
cell survival 45. mTORC1 seems activated in merlin deficient meningioma cells 46. This is 

Figure. 3. Merlin activation. Cell-to-cell adhesions and CD44 activate MYPT1, which dephosphorylates merlin resulting 
in a closed and active protein conformation. Conversely, integrins and receptor tyrosine kinases activate Pak, which 
phosphorylates merlin, inducing an open and inactivated confirmation.
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supported by the correlation between loss of merlin and mTORC1 activation observed in 
mesothelioma cell lines 30. The significance of mTORC1 as an effector of merlin is 
emphasized by the fact that the mTOR kinase inhibitor, Torin 1, could successfully block 
mTORC1 and AKT in merlin deficient meningioma cells leading to inhibited cell proliferation47. 
See figure 4 for an overview of kinases affected by merlin. 
Merlin also mediates the Hippo pathway. This pathway controls organ size through regulation 
of cell proliferation and apoptosis. Mutations affecting this pathway are associated with 
different types of cancer 48. A study investigating Hippo signalling in Drosophila showed that 
merlin is required for cell proliferation arrest and apoptosis 49. This observation is supported 
by studies on meningioma cell lines and primary meningioma tumors which demonstrated 
that merlin suppresses the oncoprotein YAP (Yes-associated protein), a member of the 
Hippo pathway capable of stimulating cell proliferation 50,51. 
Most of merlin’s interactions take place around the plasma membrane. A recent study 
showed that merlin also accumulates in the nucleus where it binds the E3 ubiquitin ligase 
CRL4DCAF1 blocking its activity 52-54. CRL4DCAF1 has been implicated to induce an elaborate 
oncogenic program of gene expression 55. Interactions between merlin and CRL4DCAF1 seem 
to be essential for tumor suppression by merlin. 

Figure 4. Merlin signalling. Merlin is proposed to suppress proliferation by inhibiting several receptor tyrosine kinases 
and their downstream signalling pathways. 
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NF2 mutations in sporadic VS

To date, the genetic profile of vestibular schwannomas has not been fully characterized. 
The only consistent genetic alteration is inactivation of the NF2 gene. Multiple mutation 
analyses screening for NF2 mutations in sporadic vestibular schwannomas have been 
described. Reports on the number of tumors containing a proven NF2 mutation range from 
15 to 84% (table 1). Most mutations are small deletions and point mutations 56-61, resulting 
in truncated proteins. A significant proportion of vestibular schwannomas did not harbour 
a proven NF2 mutation. Studies investigating the NF2 gene product, both at RNA- as well 
as protein level, demonstrated decreased expression of NF2 gene products in a much 
higher percentage of tumors then expected with regard to the percentage of tumors 
containing an NF2 mutation 10,62-65. This difference could be explained by the involvement 
of other (epi)genetic changes that cause down-regulation of NF2 expression. Another reason 
could be the fact that the utilized mutation detection methods were not sensitive enough. 
A possible factor impairing the sensitivity of these analyses is contamination of tumor tissue 
with for instance tumor invading cells of the intratumoral infiltrate. This theory is supported 
by our findings regarding the presence of tumor infiltrating macrophages in vestibular 
schwannomas 66,67.
Epigenetic alterations are involved in the development of many tumors 71,72. Hypermethylation 
of CpG Islands in the promoter region leading to gene silencing is an important epigenetic 
mechanism causing tumor suppressor inactivation 73. Aberrant methylation of NF2 has been 
investigated in several studies. Kino et. al.74 analysed 23 vestibular schwannomas and 
demonstrated aberrant methylation of NF2 in 14 tumors, suggesting it as an alternative 
pathway of NF2 inactivation. Gonzalez-Gomez 75 et. al. reported hypermethylation of NF2 
in just 6 out of 31 sporadic schwannomas. An even lower percentage was reported by Kullar 
et al.68. They found aberrant methylation of NF2 in 4 out of 40 sporadic vestibular 
schwannomas. Finally Lee et. al.69 investigated 30 vestibular schwannomas and found no 
aberrant methylation at all. The results of these studies vary considerably and do not provide 
a sufficient explanation for the subpopulation of vestibular schwannomas lacking a proven 
NF2 mutation. 

Global gene expression profiling of sporadic vestibular schwannomas 

Global gene expression profiling experiments provide powerful methods to analyse the 
expression pattern of a large panel of genes. Welling et al. 76 were one of the first to perform 
a cDNA microarray analysis on vestibular schwannomas. They studied 7 tumors and 
identified several deregulated genes. Among the up-regulated genes were osteonectin 
(SPARC), an angiogenesis mediator, and RhoB GTPase, which is important in cell signaling. 
Among the down-regulated genes was LUCA-15 which is related to apoptosis. Ezrin, a 
relative of merlin, was also down-regulated in a majority of tumors. This studies’ main 
limitation was the small number of samples, making statistical analysis difficult.
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A microarray analysis by Cayé-Thomasen et al. 77 investigated 16 vestibular schwannomas 
and compared their gene expression pattern with 3 vestibular nerves. An interesting up-
regulated gene was platelet-derived growth factor D which is involved in cell cycle regulation. 
PTEN (phosphatase and tensin homolog deleted on chromosome 10), a tumor suppressor 
gene and major regulator of the PI3K/AKT pathway, was also up-regulated. The authors 
suggested PTEN up-regulation as compensatory for the lack of merlin inhibition. Comparison 
of the results of Cayé-Thomasen et al. and Welling et al. revealed an association related 
to SPARC. Welling et al found this gene to be up-regulated while the scavenger receptor 
stabilin-1, involved in SPARC degradation, was up-regulated in the analysis by Cayé-
Thomasen et al. Subsequently Aarhus et al. 59 demonstrated up-regulation of SPARC as 
well, emphasizing the role of this gene in vestibular schwannoma biology.
Another finding of Aarhus et al. was the down-regulation of tumor suppressor gene CAV1, 
suggesting that loss of CAV1 participates in vestibular schwannoma formation. Additionally 
they performed a network and pathway analysis which indicated the ERK pathway as the 
central core linking the differentially expressed genes.  
Coinciding results were reported in a microarray analysis by Torres-Martin et al. 70 They 
postulated that down regulation of CAV1 in schwannomas leads to deregulation of MET, a 
tyrosine kinase receptor involved in cellular mechanisms like proliferation, motility and 
migration. Table 2 provides an overview of these data. 
An important consideration when interpreting the results of these expression profiling studies 
is the issue of the control tissue. Most studies used peripheral nerve tissue. Peripheral 
nerves predominantly contain axons surrounded by Schwann cells whereas tumor tissue 
mainly consists of schwannoma cells. This proportional discrepancy in tissue type can 
cause non-tumor-related differential cDNA expression which may obscure the actual results. 

Table 1. NF2 mutations in sporadic vestibular schwannomas 

Author (ref.nr.) Year NF2 mutation rate

Irving et al. 58 1994 13 out of 85 (15%) 

Sainz et al.10 1994 17 out of 26 (65%) 

Welling et al. 56 1996 19 out of 29 (66%)

Jacoby et al. 57 1996 41 out of 49 (84%) 

Hadfield et al. 61 2010 65 out of 98 (66%) 

Aarhus et al. 59 2010 19 out of 25 (76%) 

Kullar et al. 68 2010 12 out of 40 (30%) 

Lee et al. 69 2012 16 out of 30 (53%) 

Lassaletta et al. 60 2013 25 out of 51 (49%)

Zhang et al.65 2013 50 out of 145 (35%)

Torres-Martin 70 2013 23 out of 31 (74%)

Epigenetic alterations of NF2 
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Angiogenesis and the role of the tumor microenvironment

Although vestibular schwannomas are relatively slow-growing neoplasms they still require 
angiogenesis to progress beyond a certain size 78. Multiple angiogenesis stimulating factors 
have been identified; the best established is vascular endothelial growth factor (VEGF). 
VEGF is expressed by vestibular schwannoma cells 79-82 and several studies have correlated 
the degree of VEGF expression with clinical parameters such as tumor growth 79,81, tumor 
volume 83 and microvessel-density 83. VEGF expression can be induced by hypoxia in 
response to the production of HIF-1alpha (Hypoxia inducible factor 1alpha) 84,85. Diensthuber 
et al. 86 studied HIF-1alpha in sporadic vestibular schwannomas and demonstrated a relation 
between HIF-1alpha expression and cell proliferation. Next to hypoxia there are other 
microenvironmental factors regulating angiogenesis and tumor progression. Moller et. al. 
investigated matrix metalloproteinase-9 (MMP-9), an enzyme involved in migration and 
invasion of endothelial cells during angiogenesis. They studied 37 sporadic vestibular 
schwannomas and demonstrated a correlation between MMP-9 expression and tumor 
growth 87. Inflammation is also capable of influencing tumor behavior. Macrophages form 
the major determinants of intratumoral inflammation. These so called tumor associated 
macrophages are associated with angiogenesis, cell growth and down-regulation of the 
immune response 88. We performed a study on 68 sporadic 89vestibular schwannomas and 
found a correlation between the expression of CD68 positive macrophages, tumor size and 
angiogenesis 66. In a subsequent study we were able to support the concept of inflammation 
mediated tumor progression by linking macrophage expression to tumor growth 67. The 
active role of inflammation in vestibular schwannomas is denoted by the presence of the 
enzyme COX-2. 90 COX-2 is expressed at sites of inflammation and effects angiogenesis 
91. Vestibular schwannomas with higher proliferation rates show higher COX-2 expression90. 
Vestibular schwannoma angiogenesis also seems to be stimulated by the down-regulation 
of the antiangiogenic factor semaphoring 3F (SEMA3F)7. A study by Wong et al.92 

Table 2. global gene expression 

Series (refnr.) Gene Function Regulation status 

Welling et.al. 76 SPARC angiogenesis up-regulated 

RhoB GTPase promotion of cellular functions  
related to cancerous cells 

up-regulated 

LUCA-15 apoptosis down-regulated 

Cayé-Thomassen et.al 77 PDGFD cell growth and division up-regulated 

PTEN tumor supressor up-regulated 

Stabilin-1 degradation of SPARC up-regulated 

Aarhus et.al. 59 SPARC angiongenesis up-regulated 

CAV1 tumor supressor down-regulated 

Torres-Martin et.al. 70 CAV1 tumor supressor down-regulated 
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demonstrated the ability of merlin to up-regulate SEMA3F through Rac1 thereby decreasing 
angiogenesis. All together these studies support the importance of angiogenesis in vestibular 
schwannoma development, making it an interesting target for pharmacotherapeutic 
treatment. 

Targeted therapy

As mentioned in previous paragraphs the increasing biological knowledge on vestibular 
schwannomas helps to identify targets for therapy. Next to angiogenesis other targets are 
emerging. Various components of the cell signalling pathways affected by merlin, like the 
receptor tyrosine kinases IGF1R, EGFR and PDGF, might also form targets for therapy. 
These growth factors are normally supressed by merlin but can be inhibited pharmacologically 
as well. 
Current research on targeted therapy for vestibular schwannomas primarily focuses on the 
neurofibrosis type 2 related tumors. This paragraph discusses the latest developments 
regarding these pharmacotherapeutic options.
The angiogenesis inhibiting drug bevacizumab is an anti-VEGF antibody approved by the 
U.S. Food and Drug Administration for the treatment of several types of cancer. Plotkin et 
al. 7 were the first to investigate the effect of bevacizumab in NF2 patients. They 
demonstrated tumor shrinkage and mild hearing improvement in 9 out of 10 subjects. 
Mautner et al. 5 reported similar results. The effect of anti-VEGF therapy was also confirmed 
by Wong et al. 6. They showed that angiogenesis inhibitors bevacizumab or vandetanib 
decreased vascularisation and growth rate of schwannoma xenografts in mice. Finally, a 
retrospective study on 31 NF2 patients demonstrated hearing improvement and tumor 
shrinkage with bevacizumab in more than 50% of the patients 93. It should be noted that 
sustainable tumor control requires long term treatment with bevacizumab 94. Because side 
effects of bevacizumab include hypertension, disrupted blood coagulation, embolism and 
kidney complications great caution should be exercised before starting therapy. 
Another way to inhibit angiogenesis is by blocking the platelet-derived growth factor (PDGF) 
pathway. Besides having a proangiogenic function PDGF serves as a mitogen for Schwann 
and schwannoma cells. Therefore PDGF inhibitors have a direct effect on the schwannoma 
cells themselves as well. A drug capable of inactivating this pathway is imatinib mesylate 
(Glivec) 37,95. The possibility that PDGF serves as a target for vestibular schwannoma 
treatment was first suggested by Altuna et al. 37,96. They demonstrated that vestibular 
schwannomas express the PDGF Receptor-β and showed the ability of imatinib to alter cell 
cycle distribution and induce apoptosis in the vestibular schwannoma cell line HEI193. They 
additionally demonstrated that imatinib inhibited cell proliferation in HEI193 and in primary 
vestibular schwannomas cells. Yener et al. 97 confirmed the growth inhibitory effect of imatinib. 
They conducted angiogenesis assays on vestibular schwannomas. Imatinib proved to be 
effective in reducing the angiogenic activity. Ammoun et al. 98 compared imatinib with the 



CHAPTER 2

32

more potent PDGFR receptor inhibitor nilotinib (Tasigna). They found nilotinib to effectively 
inhibit proliferation of vestibular schwannoma cells at concentrations 6-10 times lower than 
imatinib. Additionally they demonstrated that a combination of nilotinib with selumetinib 
(AZD6244), a MAPK kinase inhibitor, even further inhibited cell proliferation. 
Apart from antiangiogenic therapies other therapeutic agents have been tested. Lapatinib 
is a dual EGFR/ErbB2 inhibitor. In vitro studies have demonstrated that this drug achieves 
inhibition of cell proliferation in vestibular schwannoma cell cultures and it induces apoptosis 
in the HEI193 cell line 100,101. This effect was endorsed by a phase II trial testing volume and 
hearing responses in NF2 patients. Results showed ≥15% tumor volume decrease in 4 out 
of 17 patients. Hearing was monitored in 13 patients, 4 of which experienced an improvement 
in pure tone average of at least 10 dB 107. 
The recently developed histone deacetylase inhibitor AR42 capable of blocking the PI3K/
AKT pathway proved to be a potent growth inhibitor of schwannoma- and meningeoma 
cells 103. Targeting PDK1, which is a crucial activator of this pathway, can also inhibit AKT 
signalling in schwannoma cells 108 Yet another tyrosine kinase inhibitor tested for vestibular 
schwannoma therapy is erlotinib. It acts through HER-1/EGFR inhibition. Erlotinib showed 
to inhibit growth of vestibular schwannoma xenografts in nude mice 109. Subsequent tests 
on the efficacy of erlotinib in 11 vestibular schwannoma patients 99 showed no radiographic 
or hearing responses but some patients did experience prolonged stable disease.
FRAX597 is an inhibitor of PAK, the kinase responsible for the phosphorylation of merlin 
(Figure 3).  Licciulli et al. 104 found it to reduce proliferation in schwannoma cell lines and 
impair tumor development in an NF2 mouse model. Giovannini et al. showed that targeting 
the mTORC1 pathway with rapamycin (Sirolimus) leads to antagonization of tumorgenesis. 
This observation was made in in vitro as well as in vivo schwannoma models. They even 
seemed to induce tumor growth arrest in an NF2 patient 105 It should be noted that these 
observations are opposed by results of a trial describing no tumor resonse in 9 patients 
treated with mTOR inhibitor everolimus 102

Finally there is the remarkable observation that plain aspirin is also associated with halted 
growth of vestibular schwannomas106. It is suggested that the COX2 inhibiting effect of 
aspirin dampens the pathologic immune response and its tumour promoting stimuli resulting 
in halted tumor progression. Table 3 provides an overview of target therapy tested for 
vestibular schwannomas. 

Future prospects

To date a wide range of potential therapeutic targets for vestibular schwannoma treatment 
has been studied. Most drugs seem to induce an antiangiogenic or cytostatic response. An 
actual cytotoxic effect resulting in apoptosis has also been observed, for example with drugs 
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targeting EGFR and PDGF. By simultaneously targeting EGFR and ErbB2 actual tumour 
shrinkage could be accomplished in a number of NF2 patients. This outcome emphasizes 
the potential effect of combining different therapies. The ideal would be a therapeutic 
regimen of drugs tailored to the gene- or protein expression pattern within each individual 
tumour. Such an approach would require analysis of tumour tissue, which is virtually 
impossible in non-surgically treated patients, but could be applied in a subgroup of patients 
suffering from tumour recurrence after surgery. The knowledge of having a good treatment 
alternative after surgery may also lessen the need for radical tumour extirpation, allowing 
more limited surgery with less morbidity.
Combining drugs with radiotherapy, a treatment approach already applied for different types 
of cancer, is another strategy worth considering. A recent study combing a c-Jun N-terminal 
kinase (JNK) inhibitor with gamma radiation110 shows that the combination of these 
therapeutic strategies can be successful in vestibular schwannomas as well. Altogether 
these emerging therapeutic targets will help to further reduce the need for surgical 
intervention.

Table 3. Summary of research on targeted therapy 

Drug Target Author (ref. nr.) Main results 

Bevacizumab VEGF Plotkin et al. 7 Tumor shrinkage and mild hearing improvement in 9 out 
of 10 patients.

Plotkin et al.93 Tumor shrinkage in >50% of 31 analysed patients 

Mautner et al. 5 >40% tumor shrinkage in 2 out of 2 patients. 

Wong et al. 6 Mouse model showing decrease of tumor vasculature 
after bevacizumab. Tumor growth decreased and the 
survival of treated mice extended by 50%. 

Erlotinib EGFR Plotkin et al.99 No radiographic or hearing response in 11 patients.  

Imatinib PDGF Altuna et al. 96 In vitro study demonstrating apoptosis and inhibition of 
cell proliferation

Yener et al. 97 In vitro study demonstrating reduction of angiogenesis in 
tissue specimens of NF-2 related as well as sporadic 
tumors. 

Lapatinib EGFR/ErbB2 Ahmad et al. 100 In vitro study demonstrating decrease of cell growth and 
proliferation in vestibular schwannoma cell cultures. 

Ammoun et al. 101 In vitro study demonstrating decreased proliferation in a 
human schwannoma model 

Karajannis et al. 102 Phase II trial demonstrating hearing an volume responses 
in lapatinib treated NF2 patients 

AR42 PI3K/AKT Bush et.al.103 Growth inhibition of schwannoma cells 

FRAX597 PAK Licciulli et al.104 In vitro study displaying reduced schwannoma cell 
proliferation and an in vivo experiment indicating 
impairment of tumor development. 

Rapamycin mTORC1 Giovannini105 Tumor growth arrest in one NF2 patient

Aspirin COX-2 Kandatil et. al.106 Inverse association between aspirin use and tumor growth 
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Conclusion

During the past years there has been a tremendous increase in knowledge of vestibular 
schwannoma biology. The mechanisms through which merlin carries out its functions are 
gradually elucidated. This process goes hand in hand with the identification of novel 
therapeutic targets. Up till now targeting angiogenesis seems the most successful 
pharmacological strategy but additional therapeutic options are emerging. Other tumor 
biological issues that deserve to be part of future research are the processes responsible 
for the variable growth pattern of these tumors, the discrepancies regarding the occurrence 
of (epi) genetic changes to NF2, and the potential involvement of additional genes and 
signalling pathways.
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