

Inverse Jacobian and related topics for certain superelliptic curves Somoza Henares, A.

Citation

Somoza Henares, A. (2019, March 28). *Inverse Jacobian and related topics for certain superelliptic curves*. Retrieved from https://hdl.handle.net/1887/70564

Version: Not Applicable (or Unknown)

License: Leiden University Non-exclusive license

Downloaded from: https://hdl.handle.net/1887/70564

 ${f Note:}$ To cite this publication please use the final published version (if applicable).

Cover Page

Universiteit Leiden

The handle http://hdl.handle.net/1887/70564 holds various files of this Leiden University dissertation.

Author: Somoza Henares, A.

Title: Inverse Jacobian and related topics for certain superelliptic curves

Issue Date: 2019-03-28

Stellingen

behorend bij het proefschrift

Inverse Jacobian and related topics for certain superelliptic curves

- 1. The Picard curve $y^3 = x^4 x$ satisfies the generalized Sato-Tate conjecture.
- 2. There exist exactly 4 cyclic plane quintic curves defined over \mathbb{Q} whose Jacobians have complex multiplication (CM) by a maximal order.
- 3. There is an algorithm that, given the period matrix of a Picard curve, returns a numerical approximation of the defining equation of the curve.
- 4. There is an analogous algorithm for cyclic plane quintic curves.

The following definitions are used in Propositions 5 and 6. We define a principally polarized $\mathbb{Z}[\zeta_5]$ -lattice to be a pair (\mathcal{M},T) with \mathcal{M} a free $\mathbb{Z}[\zeta_5]$ -module of rank 3 and $T: \mathcal{M} \times \mathcal{M} \to \mathbb{Q}(\zeta_5)$ an antihermitian form such that the alternating \mathbb{Z} -bilinear form $E = \operatorname{tr}_{\mathbb{Q}(\zeta_5)/\mathbb{Q}} \circ T: \mathcal{M} \times \mathcal{M} \to \mathbb{Q}$ satisfies $E(\mathcal{M},\mathcal{M}) \subset \mathbb{Z}$ and has determinant 1.

Let $\phi_1, \phi_2 : \mathbb{Q}(\zeta_5) \to \mathbb{C}$ be the embeddings given by $\phi_i(\zeta_5) = \exp(2\pi i/5)^i$. The *signature* of T is the integer pair $\operatorname{sign}(T) = (r_1, r_2)$ with $0 \le r_1, r_2 \le 3$ if for every $\nu = 1, 2$ there exists an invertible matrix $W_{\nu} \in \mathbb{C}^{3 \times 3}$ that satisfies

$$\phi_{\nu}(T) = {}^{t}\overline{W_{\nu}} \begin{pmatrix} i\mathbf{1}_{r_{\nu}} & 0\\ 0 & -i\mathbf{1}_{3-r_{\nu}} \end{pmatrix} W_{\nu}.$$

We also define the fractional $\mathbb{Z}[\zeta_5]$ -ideal

$$[\mathbb{Z}[\zeta_5]^3/\mathcal{M}] = (\det(\alpha) : \alpha \in \mathbb{Q}(\zeta_5)^{3\times 3} \text{ such that } \alpha \mathbb{Z}[\zeta_5]^3 \subseteq \mathcal{M}).$$

5. Every principally polarized $\mathbb{Z}[\zeta_5]$ -lattice (\mathcal{M}, T) satisfies

$$N_{K/K_+}([\mathbb{Z}[\zeta_5]^3/\mathcal{M}]) = (\det(\delta T)^{-1})\mathbb{Z}[\zeta_5^4 + \zeta_5].$$

6. There is a unique isomorphism class of principally polarized $\mathbb{Z}[\zeta_5]$ -lattices (\mathcal{M}, T) with $\operatorname{sign}(T) = (3, 2)$.

In Propositions 7 and 8, we refer as the fractional approximation R_f of a polynomial $f \in \mathbb{F}_q[x]$ given by

$$f(x) = \left(\dots\left((a_0x + a_1)^{q-2} + a_2\right)^{q-2} \dots + a_n\right)^{q-2} + a_{n+1} \tag{*}$$

to the rational function $R_f(x) = \frac{\alpha x + \beta}{\gamma x + \delta}$ with matrix form

$$\begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} = \begin{pmatrix} a_{n+1} & 1 \\ 1 & 0 \end{pmatrix} \cdots \begin{pmatrix} a_2 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} a_0 & a_1 \\ 0 & 1 \end{pmatrix} \in \mathbb{F}_q^{2 \times 2}.$$

- 7. Let $f \in \mathbb{F}_q[x]$ be as in (\star) , and let $c \in \mathbb{F}_q^{\times}$ and $1 \leq k < q-1$ be such that both $x \mapsto f(x)$ and $x \mapsto f(x) + cx^k$ are bijections from \mathbb{F}_q to \mathbb{F}_q . Suppose that the fractional approximation R_f of f satisfies $\gamma \neq 0$ and $\delta = 0$. If k + 1 and q 1 are coprime, then $k \geq (q n)/(n + 3)$ holds.
- 8. Consider the polynomial $f=(((x+a)^{q-2}+b)^{q-2}+c)^{q-2}$ with f(0)=0 and $a(b^2+4)\neq 0$. Let $R_f^{(m)}$ be the fractional approximation of the mth iterate of f. Then we have $R_f^{(m)}(x)=x$ if and only if b is a root of the polynomial

$$A_m(T) = \sum_{j=0}^{\lfloor \frac{m-1}{2} \rfloor} {m-j-1 \choose j} T^{m-2j-1} .$$

In particular we have $\operatorname{ord}(R_f) = \min\{m : A_m(b) = 0\}.$

- 9. When a publication contains computational results, it is a good habit to share the implementation, preferably using only open source software.
- 10. In the situation of Proposition 9, writing that it is available upon request does not count as sharing.

Propositions 1 and 3 are based on joint work with Lario. Propositions 7 and 8 are based on joint work with Anbar, Oduzak, Patel, Quoos and Topuzoğlu.