Inverse Jacobian and related topics for certain superelliptic curves Somoza Henares, A.

Citation

Somoza Henares, A. (2019, March 28). Inverse Jacobian and related topics for certain superelliptic curves. Retrieved from https://hdl.handle.net/1887/70564

Version:	Not Applicable (or Unknown)
License:	Leiden University Non-exclusive license
Downloaded from:	$\underline{\text { https://hdl.handle.net/1887/70564 }}$

Note: To cite this publication please use the final published version (if applicable).

Universiteit Leiden

The handle http://hdl.handle.net/1887/70564 holds various files of this Leiden University dissertation.

Author: Somoza Henares, A.
Title: Inverse Jacobian and related topics for certain superelliptic curves
Issue Date: 2019-03-28

Stellingen

behorend bij het proefschrift
Inverse Jacobian and related topics for certain superelliptic curves

1. The Picard curve $y^{3}=x^{4}-x$ satisfies the generalized Sato-Tate conjecture.
2. There exist exactly 4 cyclic plane quintic curves defined over \mathbb{Q} whose Jacobians have complex multiplication (CM) by a maximal order.
3. There is an algorithm that, given the period matrix of a Picard curve, returns a numerical approximation of the defining equation of the curve.
4. There is an analogous algorithm for cyclic plane quintic curves.

The following definitions are used in Propositions 5 and 6 . We define a principally polarized $\mathbb{Z}\left[\zeta_{5}\right]$-lattice to be a pair (\mathcal{M}, T) with \mathcal{M} a free $\mathbb{Z}\left[\zeta_{5}\right]$-module of rank 3 and $T: \mathcal{M} \times \mathcal{M} \rightarrow \mathbb{Q}\left(\zeta_{5}\right)$ an antihermitian form such that the alternating \mathbb{Z}-bilinear form $E=\operatorname{tr}_{\mathbb{Q}\left(\zeta_{5}\right) / \mathbb{Q}} \circ T: \mathcal{M} \times \mathcal{M} \rightarrow \mathbb{Q}$ satisfies $E(\mathcal{M}, \mathcal{M}) \subset \mathbb{Z}$ and has determinant 1 .

Let $\phi_{1}, \phi_{2}: \mathbb{Q}\left(\zeta_{5}\right) \rightarrow \mathbb{C}$ be the embeddings given by $\phi_{i}\left(\zeta_{5}\right)=\exp (2 \pi i / 5)^{i}$.
The signature of T is the integer pair $\operatorname{sign}(T)=\left(r_{1}, r_{2}\right)$ with $0 \leq r_{1}, r_{2} \leq 3$ if for every $\nu=1,2$ there exists an invertible matrix $W_{\nu} \in \mathbb{C}^{3 \times 3}$ that satisfies

$$
\phi_{\nu}(T)={ }^{t} \overline{W_{\nu}}\left(\begin{array}{cc}
i \mathbf{1}_{r_{\nu}} & 0 \\
0 & -i \mathbf{1}_{3-r_{\nu}}
\end{array}\right) W_{\nu} .
$$

We also define the fractional $\mathbb{Z}\left[\zeta_{5}\right]$-ideal

$$
\left[\mathbb{Z}\left[\zeta_{5}\right]^{3} / \mathcal{M}\right]=\left(\operatorname{det}(\alpha): \alpha \in \mathbb{Q}\left(\zeta_{5}\right)^{3 \times 3} \text { such that } \alpha \mathbb{Z}\left[\zeta_{5}\right]^{3} \subseteq \mathcal{M}\right) .
$$

5. Every principally polarized $\mathbb{Z}\left[\zeta_{5}\right]$-lattice (\mathcal{M}, T) satisfies

$$
\mathrm{N}_{K / K_{+}}\left(\left[\mathbb{Z}\left[\zeta_{5}\right]^{3} / \mathcal{M}\right]\right)=\left(\operatorname{det}(\delta T)^{-1}\right) \mathbb{Z}\left[\zeta_{5}^{4}+\zeta_{5}\right] .
$$

6. There is a unique isomorphism class of principally polarized $\mathbb{Z}\left[\zeta_{5}\right]$-lattices (\mathcal{M}, T) with $\operatorname{sign}(T)=(3,2)$.

In Propositions 7 and 8 , we refer as the fractional approximation R_{f} of a polynomial $f \in \mathbb{F}_{q}[x]$ given by

$$
f(x)=\left(\ldots\left(\left(a_{0} x+a_{1}\right)^{q-2}+a_{2}\right)^{q-2} \cdots+a_{n}\right)^{q-2}+a_{n+1}
$$

to the rational function $R_{f}(x)=\frac{\alpha x+\beta}{\gamma x+\delta}$ with matrix form

$$
\left(\begin{array}{ll}
\alpha & \beta \\
\gamma & \delta
\end{array}\right)=\left(\begin{array}{cc}
a_{n+1} & 1 \\
1 & 0
\end{array}\right) \cdots\left(\begin{array}{cc}
a_{2} & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{cc}
a_{0} & a_{1} \\
0 & 1
\end{array}\right) \in \mathbb{F}_{q}^{2 \times 2}
$$

7. Let $f \in \mathbb{F}_{q}[x]$ be as in (\star), and let $c \in \mathbb{F}_{q}^{\times}$and $1 \leq k<q-1$ be such that both $x \mapsto f(x)$ and $x \mapsto f(x)+c x^{k}$ are bijections from \mathbb{F}_{q} to \mathbb{F}_{q}. Suppose that the fractional approximation R_{f} of f satisfies $\gamma \neq 0$ and $\delta=0$. If $k+1$ and $q-1$ are coprime, then $k \geq(q-n) /(n+3)$ holds.
8. Consider the polynomial $f=\left(\left((x+a)^{q-2}+b\right)^{q-2}+c\right)^{q-2}$ with $f(0)=0$ and $a\left(b^{2}+4\right) \neq 0$. Let $R_{f}^{(m)}$ be the fractional approximation of the m th iterate of f. Then we have $R_{f}^{(m)}(x)=x$ if and only if b is a root of the polynomial

$$
A_{m}(T)=\sum_{j=0}^{\left\lfloor\frac{m-1}{2}\right\rfloor}\binom{m-j-1}{j} T^{m-2 j-1}
$$

In particular we have $\operatorname{ord}\left(R_{f}\right)=\min \left\{m: A_{m}(b)=0\right\}$.
9. When a publication contains computational results, it is a good habit to share the implementation, preferably using only open source software.
10. In the situation of Proposition 9, writing that it is available upon request does not count as sharing.

Propositions 1 and 3 are based on joint work with Lario. Propositions 7 and 8 are based on joint work with Anbar, Oduzak, Patel, Quoos and Topuzoğlu.

