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2The family of cyclic plane
quintic curves

A cyclic plane quintic curve (from now on CPQ curve) over C is a genus-6
smooth, plane, projective curve given by the equation Y 5 = f(X,Z) where
f is a homogeneous polynomial of degree 5 with distinct roots. Such a curve
has an automorphism ρ of order 5 given by (X : Y : Z) 7→ (X : z5Y : Z),
with z5 = exp(2πi/5). It fixes the points (α : 0 : β) with f(α, β) = 0, the
branch points of C.

The isomorphisms between CPQ curves are of the form

(X : Y : Z) 7→ (aX + bZ : Y : cX + dZ).

Therefore, every ordering of the branch points gives rise to an isomorphic
model with the three first branch points at (0 : 0 : 1), (1 : 0 : 1) and (1 : 0 : 0).
In that case, if we consider the patch Z 6= 0 and define the affine coordinates
x = X/Z and y = Y/Z, then a CPQ curve is determined by the x-coordinates
of the remaining branch points (λ, 0) and (µ, 0) as

y5 = x(x− 1)(x− λ)(x− µ).

We refer to this form as a Legendre-Rosenhain equation of a CPQ curve.
In this chapter we present a method that, given the period matrix of the

Jacobian of a CPQ curve, computes a numerical approximation of the equation
of the curve. We follow the general idea of the algorithm for Picard curves
presented in Chapter 1, and we highlight the similarities and differences between
both cases.

The structure of the chapter runs parallel to that of Chapter 1. In Sec-
tion 2.1, we give a formula to approximate the x-coordinates of the branch
points of a CPQ curve in terms of quotients of Riemann theta constants on its
Jacobian, see Theorem 2.1.7.
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2 The family of cyclic plane quintic curves

In Section 2.2, we show how to identify the points in the Jacobian needed
to apply said formula, such as the Riemann constant and the images by the
Abel-Jacobi map of the branch points, see Theorem 2.2.4. We also give an
inverse Jacobian algorithm for CPQ curves, that is, an algorithm that given the
Jacobian of a CPQ curve C returns the x-coordinates of the branch points of C,
see Algorithm 2.2.6.

Finally, in Section 2.3 we discuss how to obtain exact models from the ap-
proximations given by the algorithm, and we show some interesting examples
of curves obtained using it.

2.1 A Thomae-like formula

The goal of this section is to prove a result for CPQ curves analogous to
Theorem 1.2.13, that is, a formula that gives the x-coordinates of the branch
points as quotients of Riemann theta constants on the Jacobian using Siegel’s
Theorem 1.2.6. To do so, we start by identifying a family of non-special divisors.

Definition 2.1.1. Let C be a curve, and let ω be a regular differential of C.
Given a point P , a local parameter u at P and a non-negative integer n, we
define the n-th derivative of ω at P with respect to u to be the complex number

∂nuω(P ) = n! an,

for ω =
∑

k≥0 aku
k du ∈ OP (C)du ∼= C[[u]]du the series of ω at the local

ring OP (C).

Example 2.1.2. Let C be a CPQ curve with equation

y5 = x4 − 6x3 + 11x2 − 6x.

At the point P = (0, 0) the function y is a local parameter, and we can
write x as

x =
1

6
(−y5 + x4 − 6x3 + 11x2)

If we substitute this equation into itself recursively, then we obtain x as a
power series in y,

x = −1

6
y5 +

11

216
y10 − 103

3888
y15 + . . . .

Consider now the regular differential ω = dx/y2. We have

ω =
dx

y2
= (−5

6
y2 +

55

108
y7 − 515

1296
y12 + . . . )dy.
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A Thomae-like formula 2.1

Therefore, the zero derivative of ω at P with respect to y is

∂0
yω(P ) = 0,

and the second derivative of ω at P with respect to y is

∂2
yω(P ) = −5

3
.

The following proposition characterizes non-special divisors.

Proposition 2.1.3 (Siegel [44, pg. 154]). Let C be a curve and let ω1, . . . , ωg
be a basis of regular differentials of C.

Given a point P and a positive integer nP , consider the g × nP matrix
W (P, nP ) given by the first nP derivatives of the differentials relative to a local
parameter u at the point, that is

W (P, nP ) =
(
∂juωi(P )

)
1≤i≤g

0≤j≤nP−1
∈ Cg×nP .

Given D =
∑
nPP an effective degree-g divisor, we define the g × g matrix

W (D) as the concatenation of the matrices W (P, nP ) for the points P in D.
The divisor D is non-special if and only if the matrixW (D) is invertible.
In order to apply this result to the case of CPQ curves we need to choose a

basis of regular differentials.

Proposition 2.1.4. Let l be a prime and let C be a curve given by an equation

Y l = F (X,Z) =
l∏

i=1

(αiX − βiZ)

such that all the branch points Pi = (βi : 0 : αi) for i = 1, . . . , l are distinct.
Let g be the genus of C, which satisfies g = 1

2(l− 1)(l− 2). Consider the affine
coordinates x = X/Z and y = Y/Z. The differentials(

xiyjdx

yl−1
: i, j ≥ 0, i+ j ≤ l − 3

)
form a basis of the space of holomorphic differentials H0(ωC) of C.

Proof. Following [8, Section 2.9], we define the Newton polygon N (C) of a
plane curve C given by the equation G(x, y) = 0 as the convex hull of all points
(i, j) ∈ Z2 for which the coefficient of xiyj in G is non-zero.

For each interior integer point (i, j) ∈ N (C), one may construct a differential

ω =
xi−1yj−1dx

∂yG(x, y)
.
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2 The family of cyclic plane quintic curves

We obtain g differentials, and they are all holomorphic and linearly independent
(see [8, paragraph after Equation (2.52)]).

In the case at hand we have G(x, y) = yl − F (x, 1), hence the Newton
polygon N (C) is contained in the triangle T of vertices (0, l), (l, 0) and (0, 0)
and contains all the interior points of T . The result follows.

Corollary 2.1.5. Given a CPQ curve C, the differentials(
dx

y4
,
xdx

y4
,
x2dx

y4
,
dx

y3
,
xdx

y3
,
dx

y2

)
form a basis of the space of holomorphic differentials H0(ωC).

This result allows us to prove that our chosen divisors are non-special.

Proposition 2.1.6. Let C be a CPQ curve and let B be the set of branch points
of the curve C. Let P,Q,R ∈ B be distinct. Then the divisor P + 2Q + 3R is
non-special.

Proof. Consider the basis of differentials in Corollary 2.1.5 and compute the
matrix W (P + 2Q+ 3R) as defined in Proposition 2.1.3. One checks that it has
maximal rank, hence by Proposition 2.1.3 the divisor is non-special.

We can now state a formula that gives the x-coordinates of the branch points
of a CPQ curve in terms of quotients of Riemann theta constants.

Theorem 2.1.7. Let C be a CPQ curve over C given by a Legendre-Rosenhain
equation

Y 5 = X(X − Z)(X − λZ)(X − µZ)Z,

and consider the points Pt = (t : 0 : 1) for t ∈ {0, 1, λ, µ} and P∞ = (1 : 0 : 0).
Let J(C) be the Jacobian of C with period matrix Ω ∈ H6, let α be the Abel-
Jacobi map with base point P∞, let ∆ be the Riemann constant with respect
to α, and let {η, ν} = {λ, µ}. We have

η = εη

(
θ[P̃1 + 2P̃η + 3P̃ν − P̃0 − ∆̃](Ω)

θ[P̃1 + 2P̃η + 3P̃ν − ∆̃](Ω)

θ[2P̃1 + P̃η + 3P̃ν − ∆̃](Ω)

θ[2P̃1 + P̃η + 3P̃ν − P̃0 − ∆̃](Ω)

)5

,

where εη = exp(10πi((P̃η − P̃1)1(P̃0)2)) .

Proof. Let ω be the basis of holomorphic differentials for which J(C) has period
matrix Ω. The divisor of the function x is div(x) = 5P0 − 5P∞. Then, in order
to apply Corollary 1.2.10 for φ = x and P = P∞, we choose five times the zero
path from P∞ to itself; the path γ1 from P∞ to P0 that for a1 = P̃0 satisfies∫

γ1

ω = Ω(a1)1 + (a1)2 ∈ C6;
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The inverse Jacobian algorithm 2.2

and, for k = 2, . . . , 5, some paths γk from P∞ to P0 that satisfy

5∑
k=1

∫
γk

ω = 0 in C6.

For k = 2, . . . , 5 we denote by ak be the element in R12 that satisfies∫
γk

ω = Ω(ak)1 + (ak)2.

By Corollary 1.2.10, given an effective divisor D of degree 6 we have

φ(D) = E′
5∏

k=1

θ[D̃ − ak − ∆̃](Ω)

θ[D̃ − ∆̃](Ω)
(2.1)

for some constant E′ independent of D.
Consider now the divisors Dη = P1 + 2Pη + 3Pν and D1 = 2P1 + Pη + 3Pν ,

which are general because of Proposition 2.1.6, and divide the corresponding
equalities given by (2.1). We obtain

η =
φ(Pη)

φ(P1)
=
φ(Dη)

φ(D1)
(2.2)

=
5∏

k=0

(
θ[P̃1 + 2P̃η + 3P̃ν − ak − ∆̃](Ω)

θ[P̃1 + 2P̃η + 3P̃ν − ∆̃](Ω)

θ[2P̃1 + P̃η + 3P̃ν − ∆̃](Ω)

θ[2P̃1 + P̃η + 3P̃ν − ak − ∆̃](Ω)

)
.

The result then follows from applying the quasi-periodicity property of the Rie-
mann theta constants to the equation (2.2), as we did in the proof of Theo-
rem 1.2.13.

2.2 The inverse Jacobian algorithm

The end goal of this section is to provide an algorithm that, given a period
matrix of the Jacobian of a CPQ curve and the rational representation of its in-
duced automorphism ρ∗, returns a numerical approximation of the x-coordinates
of the branch points of C.

The main step in the algorithm is based on Theorem 2.1.7. To apply that
theorem we need to identify the Riemann constant of C with respect to an
Abel-Jacobi map α with a branch point as base point and the image by α of
the branch points on J(C).

We start by characterizing the Riemann constant of a CPQ curve.
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2 The family of cyclic plane quintic curves

Corollary 2.2.1. Let C be a CPQ curve, let ρ be the automorphism given by
(x, y) 7→ (x, z5y). Let α be an Abel-Jacobi map with a branch point as base
point. The Riemann constant with respect to α is the only point ∆ ∈ J(C)
with
(1) ∆ ∈ J(C)[2], and
(2) tρr(ρ∗)[∆] = ∆.

Proof. Let P0 ∈ B be the base point of the Abel-Jacobi map α. By Proposi-
tion 1.2.4 the Riemann constant satisfies 2∆ = α(κ) for κ a canonical divisor.
Since we have

div

(
(x− x(P0))2dx

y4

)
= 10P0,

we conclude that ∆ is a 2-torsion point, that is, the point ∆ satisfies (1). More-
over, by Proposition 1.3.4 we have ∆ = ρr(ρ∗)[∆

′] for ∆′ the Riemann constant
with respect to ρ(P0). But since P0 is fixed by ρ, the point ∆ satisfies (2).

To prove that it is the only point that satisfies (1) and (2), assume that
there exist ∆1,∆2 ∈ J(C) that satisfy (1) and (2). By (2) we have

∆1 −∆2 = tρr(ρ∗)[∆
1]− tρr(ρ∗)[∆

2] = ρr(ρ∗)
−1(∆1 −∆2),

thus ∆1−∆2 is an element of J(C)[1−ρ4
∗] ⊆ J(C)[5]. But by (1), the difference

∆1 −∆2 is also a 2-torsion point, hence we conclude ∆1 −∆2 = 0.

Next we are interested in identifying the images of the branch points in the
Jacobian. We aim to state a theorem analogous to Theorem 1.3.6 for CPQ
curves, hence we start by studying the (1− ρ∗)-torsion of the Jacobian.

Proposition 2.2.2. Let l be a prime, let C be a curve given by an equation

Y l = F (X,Z) =

l∏
i=1

(αiX − βiZ)

such that all the branch points Pi = (βi : 0 : αi) for i = 1, . . . , l are distinct,
and let B be the set of branch points. Let ρ be the automorphism of C given
by ρ(X : Y : Z) = (X : zlY : Z) with zl = exp(2πi/l). We have

J(C)[1− ρ∗] = 〈[Pi − Pl] : 1 ≤ i < l〉,

where all the points [Pi − Pl] are distinct and satisfy
∑l−1

i=1[Pi − Pl] = 0.

One of the steps in the proof is to compute #J(C)[1 − ρ∗] = deg(1 − ρ∗).
To do so, we use the following lemma.
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The inverse Jacobian algorithm 2.2

Lemma 2.2.3 (Birkenhake-Lange [2, Section 5.1]). Let X = V/Λ be an abelian
variety over C, and let f ∈ End(X) be an endomorphism with characteristic
polynomial P rf (t) := det(t idΛ−ρr(f)). Then for all n ∈ Z we have

deg(n− f) = P rf (n).

Proof of Proposition 2.2.2. Let B = {Pi : 1 ≤ i ≤ l} be the set of branch points
of C, define the group D := {D ∈ Div0(C) : Supp(D) ⊆ B} ∼= Zl−1, and
consider the map

Ψ : D → Pic0(C)[1− ρ∗] = J(C)[1− ρ∗],
D 7→ [D].

We start by computing the kernel of Ψ. Let D ∈ D be a principal divisor,
say D = div(h). Then h satisfies

div(h ◦ ρ) = ρ∗D = D = div(h),

so we get h ◦ ρ = c · h for some c ∈ C×. Actually, we obtain c = zml for
some m ∈ Z/lZ.

Consider now x = X/Z and y = Y/Z, define the function

g =
Y

αlX − βlZ
=

y

αlx− βl
,

and note that it satisfies gm ◦ ρ = zml g
m and div(g) =

∑
P∈B P − lPl ∈ D.

It follows that the function h/gm ∈ C(x)[y]/(yl − F (x, 1)) satisfies

h

gm
◦ ρ =

h

gm
,

so that we actually have h/gm ∈ C(x) and we can write h = gmf for some
function f ∈ C(x) whose divisor is also in D.

Since the function f only depends on x, the morphism f : C → P1 factors
through C/〈ρ〉. Thus the divisor of f is the pullback by π : C → C/〈ρ〉 of a
function f ′ on P1 of degree l and which is ramified at the branch points of C.

We conclude

D = div(h) = m div(g) + π∗ div(f ′) = m div(g) + l ·D′ for some D′ ∈ D,

and therefore we obtain

ker Ψ ⊆ lD + Zdiv(g). (2.3)
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2 The family of cyclic plane quintic curves

Clearly we have div(g) ∈ ker Ψ. Moreover, for k = 1, . . . , l, the function

φk =
αkX − βkZ
αlX − βlZ

has divisor div φk = lPk − lPl, so we obtain lD ⊆ ker Ψ; and the equality in
(2.3) holds.

Altogether we obtain Im Ψ ∼= D/ ker Ψ ∼= (Z/lZ)l−1/〈(1, . . . , 1)〉, so Im Ψ
has ll−2 elements.

Since the minimal polynomial of the automorphism ρ∗ is the cyclotomic
polynomial

∏l−1
k=1(x − zkl ) ∈ Q[x], which is irreducible, and its characteristic

polynomial has degree 2g = (l − 1)(l − 2), we get

P rf (t) =

l−1∏
k=1

(x− zkl )l−2 ∈ Q[x].

Then by Lemma 2.2.3 we obtain

deg(1− ρ∗) =

l−1∏
k=1

(1− zkl )l−2 = ll−2.

It follows that J(C)[1−ρ∗] has ll−2 elements, so we conclude that Ψ is surjective
and the result follows.

We can now prove the theorem that allows us to identify the image of the
branch points in the Jacobian.

Theorem 2.2.4. Let J(C) be the Jacobian of a CPQ curve C with period
matrix Ω ∈ H6, let ρ∗ be the automorphism on J(C) induced by the curve
automorphism ρ(x, y) = (x, z5y) and let B be the set of branch points of C.
Let ∆ be the only point in J(C)[2] that satisfies ρr(ρ∗)[∆] = ∆ and define

Θ5 := {x ∈ J(C)[1− ρ∗] : θ[x+ ∆](Ω) = 0} .

Then there exists a subset T ⊆ J(C) of four elements such that:
(i) the sum

∑
x∈T x is zero,

(ii) T is a set of generators of J(C)[1− ρ∗], and
(iii) the set O(T ) := {

∑
x∈T axx : a ∈ Z4

≥0,
∑

x∈T ax ≤ 5} satisfies

O(T ) = Θ5.

Furthermore, for every such subset there exists κ ∈ F×5 and Q ∈ B for which T
satisfies

T = {κ[P −Q] : P ∈ B\{Q}}.
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The inverse Jacobian algorithm 2.2

Proof. Let Q ∈ B and let SQ denote the set {[P −Q] : P ∈ B\{Q}}
We start by proving that SQ satisfies (i)–(iii), and then we prove so for

κSQ with κ ∈ F×5 . Finally we prove that the sets κSQ as κ ranges over F×5
and Q over B are the only 4-element sets in J(C) that satisfy (i)–(iii). We
assume without loss of generality that Q is an affine point (because no statement
depends on the model).

That SQ satisfies (i) follows from

div

(
y

x− x(Q)

)
=
∑
P∈B

P − 5Q.

That SQ satisfies (ii) follows from Proposition 2.2.2.
Next we prove that SQ satisfies (iii). Let α be the Abel-Jacobi map with

a branch point P ′ ∈ B as base point so by Corollary 2.2.1 the point ∆ is the
Riemann constant with respect to α.

Given Q1, . . . , Q5 ∈ B, we have α(Q1 + · · · + Q5) ∈ Θ5 by the Riemann
Vanishing Theorem 1.2.2. We also have 5α(Q) = 0, since the divisor of the
function (x− x(Q))/(x− x(P ′)) is 5Q− 5P ′. Therefore we write

α(Q1 −Q) + · · ·+ α(Q5 −Q) = α(Q1 + · · ·+Q5) ∈ Θ5,

which by definition of O(SQ) implies

O(SQ) ⊆ Θ5. (2.4)

To prove that it is actually an equality, we show that the sets have the same
cardinality.

First we give a lower-bound for #Θ5 via computing #O(SQ). Given a
sequence T = (t1, t2, t3, t4) such that the set {t1, t2, t3, t4} has 4 elements and
satisfies (i)–(ii), we define the map γ[T ] : F3

5 → J(C)[1− ρ∗] that maps r ∈ F3
5

to the sum
∑3

i=1 riti ∈ J(C)[1− ρ∗]. Note that γ[T ] is a bijection.
Let e1, e2, e3 be the standard basis vectors of F3

5, and let e4 = −e1− e2− e3,
so for i = 1, . . . , 4 we have γ[T ](ei) = ti. Consider

O0 =

{
4∑
i=1

aiei : a ∈ Z4
≥0,

4∑
i=1

ai ≤ 5

}
⊆ F3

5.

One can check #O0 = 101, and moreover we have γ[T ](O0) = O({t1, . . . , t4}).
In particular, we obtain #O(SQ) = 101 and thus by (2.4) we get

#Θ5 ≥ 101. (2.5)

Next we give an upper-bound for #Θ5. By Proposition 2.1.6 the divisors
3P + 2Q+ R with P,Q,R distinct branch points are non-special, that is, they
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2 The family of cyclic plane quintic curves

satisfy degD = g and dimL(κ − D) = 0. Therefore by the Riemann-Roch
Theorem they are the only effective divisor in their class. In particular, if P,Q,R
are different from P ′ then we have α(3P +2Q+R) 6= α(Q1 + · · ·+Q5) for every
Q1, . . . , Q5 ∈ C, so by Riemann’s Vanishing Theorem 1.2.2 we obtain that
θ[3P + 2Q+R−∆](Ω) is non-zero.

There are 24 such divisors with {P,Q,R} 63 P ′, which in turn determine
24 distinct divisor classes, hence we conclude

# {x ∈ J(C)[1− ρ∗] : θ[x+ ∆](Ω) 6= 0} ≥ 24. (2.6)

Since by Proposition 2.2.2 we have #J(C)[1−ρ∗] = 125, it follows that both
(2.5) and (2.6) are equalities and therefore SQ satisfies (iii).

Next we consider the sets κSQ with κ ∈ F×5 . It is clear that κSQ also satisfies
(i)–(ii). We checked with Magma [3] that O0 is invariant under the map x 7→ κx
for κ ∈ F×5 , and we have the equality

γ[κT ](O0) = γ[T ](κO),

so it follows that (iii) also holds for κSQ.
Finally, we prove that the 4-element sets κSQ for κ ∈ F×5 and Q ∈ B are

the only 4-element sets in J(C) that satisfy (i)–(iii). To do so, let B denote
an ordering of SP ′ = α(B)\{0}, consider a sequence T = (t1, t2, t3, t4) ∈ J(C)4

such that the set {t1, t2, t3, t4} has 4 elements and satisfies (i)–(iii), and let γ[T ]
be the bijection defined above. Consider the diagram

F3
5

M(T ) //

γ[T ] %%

F3
5

γ[B]yy
J(C)[1− ρ∗]

where M(T ) is the unique invertible matrix in F3×3
5 that makes the diagram

commutative. Note that choosing a matrix M(T ) determines T uniquely.
If the set of elements of T satisfies (iii), then we get

γ[T ](O0) = O({t1, t2, t3, t4}) = Θ5 = γ[B](O0),

and thus O0 is stable under M(T ).
We checked with Magma [3] that there are exactly 480 invertible matrices

in F3×3
5 that mapO0 to itself. Since a matrixM(T ) determines T uniquely, there

are 480 sequences T ∈ J(C)4 that satisfy (i)–(iii). However, if we vary κ ∈ F×5 ,
the point Q ∈ B, and the labeling of the elements in SQ we get 480 sequences,
and they are different by the equality in (2.3), see proof of Proposition 2.2.2.
We conclude that κSQ for κ ∈ F×5 and Q ∈ B are the only 4-element subsets of
J(C) that satisfy (i)–(iii).
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The inverse Jacobian algorithm 2.2

From the proof above we obtain the following result.

Corollary 2.2.5. With the notation in Theorem 1.3.6, we get

#Θ5 = 101.

We have now all the tools to give the inverse Jacobian algorithm.

Algorithm 2.2.6
Input: The Jacobian of a CPQ curve C, given by a period matrix Ω ∈ H6, and

ρ∗ the automorphism on the Jacobian induced by the curve automorphism
ρ(x, y) = (x, z5y), given by its rational representation N ∈ Z12×12.

Output: Two pairs (l,m) of which at least one is the pair (λ, µ) in a Legendre-
Rosenhain equation y5 = x(x− 1)(x− λ)(x− µ) of the CPQ curve C.

1. Let D be the unique solution of N [D] = D in 1
2Z

12/Z12.
2. Compute

Θ5 =

{
1

5
Z12/Z12 : Nx = x and θ[x+D](Ω) = 0

}
.

3. Let X = {x1, x2, x3, x4} ⊆ Θ5 be a 4-element set that satisfies
i.
∑

x∈X x = 0,
ii. {x1, x2, x3} are linearly independent, and
iii. {

∑
x∈X axx : a ∈ ZX≥0,

∑
x∈X ax ≤ 5} = Θ5.

4. For each T = {t1, t2, t3, t4} ∈ {X, 2X} compute

εl = exp(10πi((t̃3 − t̃2)1(t̃1)2)),

εm = exp(10πi((t̃4 − t̃2)1(t̃1)2),

and

lT = εl

(
θ[t̃2 + 2t̃3 + 3t̃4 − t̃1 − D̃](Ω)

θ[t̃2 + 2t̃3 + 3t̃4 − D̃](Ω)

θ[2t̃2 + t̃3 + 3t̃4 − D̃](Ω)

θ[2t̃2 + t̃3 + 3t̃4 − t̃1 − D̃](Ω)

)5

,

mT = εm

(
θ[t̃2 + 2t̃4 + 3t̃3 − t̃1 − D̃](Ω)

θ[t̃2 + 2t̃4 + 3t̃3 − D̃](Ω)

θ[2t̃2 + t̃4 + 3t̃3 − D̃](Ω)

θ[2t̃2 + t̃4 + 3t̃3 − t̃1 − D̃](Ω)

)5

.

5. Return (lX ,mX) and (l2X ,m2X).

Warning 2.2.7. As we already saw in the case of Picard curves, Algorithm 2.2.6
is a mathematical algorithm but, since it involves infinite sums, complex num-
bers and exponentials, it cannot be run on a Turing machine or a physical
computer. To do so one needs to truncate the sum on the Riemann theta con-
stants, approximate complex numbers and keep track of the error propagation,
see Section 1.5 for more details on how to do that.
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2 The family of cyclic plane quintic curves

After applying the algorithm, we obtain two candidates for the approxima-
tions of λ and µ. One may then use an algorithm to check which results are
correct.

Let (l,m) be one of the pairs from the output, let C be the associated
Legendre-Rosenhain equation and let Ω′ ∈ H6 satisfy J(C) ∼= C6/Ω′Z6 +Z6. If
the pair (l,m) is an approximation of (λ, µ), then there exists an isomorphism
between C6/ΩZ6 + Z6 and C6/Ω′Z6 + Z6.

One could find such an isomorphism using methods like the numerical com-
putation of homomorphisms in Costa-Mascot-Sijsling-Voight [7].

Remark 2.2.8. In all the cases where we have applied Algorithm 2.2.6 (see
Section 2.3), both pairs (lX ,mX) and (l2X ,m2X) yielded isomorphic curves.

Proof of Algorithm 2.2.6. Let B be the set of branch points of C. By Theo-
rem 2.2.4, the set X in Step 3 is equal to {κ[P − P∞] : P ∈ B\{P∞}} for a cer-
tain κ ∈ F×5 and P∞ ∈ B. We assume without loss of generality P∞ = (1 : 0 : 0),
and that C is given by a Legendre-Rosenhain equation. Let α be the Abel-Jacobi
map with base point P∞. Then we obtain

α(B)\{0} ∈ {X, 2X,−X,−2X}.

Let ∆ ∈ J(C) be the Riemann constant ∆ with respect to P∞. By Corol-
lary 2.2.1, the Riemann constant ∆ is the only point in J(C) that is a 2-torsion
point, hence satisfies ∆ ∈ 1

2Z
12/Z12, and also satisfies N [∆] = ∆. We conclude

D = ∆ and by Theorem 2.1.7, the pair (lT ,mT ) as in Step 6 is the pair (λ, µ)
for some T ∈ {X, 2X,−X,−2X}.

Furthermore, since the Riemann theta constants are symmetric and quasi-
periodic, the values of l and m do not change if we replace t̃i by −t̃i, thus we
only need to consider T ∈ {X, 2X}, which completes the proof.

As a consequence of the proof we obtain the following result.

Corollary 2.2.9. If the automorphism given in the input on Algorithm 2.2.6
is ρk∗ for some k ∈ {2, 3, 4}, then the output is also correct.

Proof. Note that the automorphism in the input only plays a role in Steps 1
and 2 of Algorithm 1.3.9, to determine the Riemann constant and the
(1− ρ∗)-torsion points in J(C).

Let k ∈ {2, 3, 4} and let α be an Abel-Jacobi map with a branch point as base
point. Note that ρk fixes the branch points on C. Therefore, by Proposition 1.3.4
the Riemann constant with respect to α satisfies tρr(ρk∗)[∆] = ∆. It follows that,
for M =

t
ρr(ρ

k
∗), the characteristic D in Step 1 satisfies M [D] = D. We also

get {
x ∈ 1

5
Z12/Z12 : Mx = Nkx = x and θ[x+D](Ω) = 0

}
= Θ5.
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Some CM examples 2.3

2.3 Some CM examples

As in the Picard case (see Section 1.5), after numerically approximating the
x-coordinates of the branch points of a CPQ curve with Algorithm 2.2.6, we
obtain a polynomial

f(x) = x(x− 1)(x− λ)(x− µ) ∈ C[x]

up to some precision. However, the curve may actually be isomorphic to
y5 = h(x) for a certain polynomial h over a number field.

In this case, in order to find h from f we use the invariants of quintic binary
forms, recognize them as algebraic numbers and reconstruct h from the exact
invariants. This was originally done by Clebsch in [6] and recently implemented
by Noordsij in [32, 31].

Note that in order to be able to recognize the invariants as algebraic numbers
we have to compute λ and µ with enough precision.

Next we include a list of CPQ curves computed with our algorithm. Anal-
ogously to what we saw for Picard curves in Section 1.5, we define a maximal
CM CPQ curve as a CPQ curve such that its Jacobian has endomorphism ring
isomorphic to the maximal order of a degree-12 number field K. We will see
in Chapter 4 that K contains a primitive 5th root of unity ζ5 ∈ K, and is
determined by a totally real cubic field K0 that satisfies K = K0(ζ5).

For details on how to obtain period matrices for the Jacobians of maximal
CM CPQ curves and the corresponding automorphism from the field K see
Section 4.1.

Using Algorithm 2.2.6 we computed numerical approximations of some max-
imal CM curves. Here we present the resulting CPQ curves which are numeri-
cally close (and conjecturally equal) to the maximal CM curves. In Chapter 4
we will see that, in particular, this list contains conjectural models for all CPQ
curves defined over Q with maximal CM over C.

We obtained the following curves:

(1) y5 = x4 − 24x3 + 3x2 + x with K0 defined by x3 − 3x− 1.
(2) y5 = x4 − 7x2 + 7x with K0 defined by x3 − x2 − 2x+ 1.
(3) y5 = x4 − 390x2 + 13000x+ 257725 with K0 defined by x3 − x2 − 4x− 1.
(4) y5 = x4 + 1290x2 + 35000x+ 228525 with K0 defined by x3 − 12x− 14.
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