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1The family of Picard curves

A Picard curve over C is a genus-3 smooth, plane, projective curve given
by y3 = f(x) where f is a polynomial of degree 4. Such a curve has an auto-
morphism ρ of order 3 given by (x, y) 7→ (x, z3y) with z3 = exp

(
2πi
3

)
. It fixes

the points (t, 0) with f(t) = 0, the affine branch points of C. The curve C also
has a unique point at infinity, with projective coordinates (0 : 1 : 0), which is
also fixed by the automorphism ρ.

One can check that all isomorphisms between Picard curves are of the form

(x, y) 7→ (ax+ b, cy),

see Section 7.3 in Estrada [11, Appendix I] for details. Therefore, given a
Picard curve C, every ordering of the affine branch points of C gives rise to an
isomorphic Picard curve given by an equation of the form

y3 = x(x− 1)(x− λ)(x− µ) (1.1)

with the first affine branch point at (0, 0), the second at (0, 1), the third at (0, λ)
and the forth at (0, µ). We refer to the form (1.1) as a Legendre-Rosenhain
equation of a Picard curve.

In this chapter we present a method that, given the period matrix of the
Jacobian of a Picard curve, gives a numerical approximation of the equation
of the curve. This was initially done by Koike and Weng in [16], but their
exposition presents some gaps and mistakes that we fix in this chapter, see
Remarks 1.2.14, 1.3.8, and 1.4.2.

We start by introducing some concepts needed throughout this thesis in
Section 1.1, such as principally polarized abelian variety, the Jacobian of a
curve and the Riemann-Schottky problem.
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1 The family of Picard curves

In Section 1.2 we give a formula to approximate the x-coordinates of the
affine branch points of a Picard curve in terms of theta constants on its Jacobian,
see Theorem 1.2.13.

In Section 1.3 we develop an algorithm that given the Jacobian of a Picard
curve C returns the Legendre-Rosenhain equation of C, see Algorithm 1.3.9.
The main step of the algorithm is applying the formula in Theorem 1.2.13, so
we first identify the objects needed to apply said formula, such as the Riemann
constant and the images by the Abel-Jacobi map of the affine branch points.

Finally, in Section 1.4 we characterize the polarized abelian varieties that
arise as Jacobians of Picard curves, see Proposition 1.4.1, and in Section 1.5 we
give some details on the implementation of Algorithm 1.3.9 and show examples
of curves obtained using the algorithm.

This chapter is based on joint work with Joan-Carles Lario. In particular,
Theorem 1.2.13 and the examples in Section 1.5 appeared before up to minor
corrections in Joan-Carles Lario and Anna Somoza, A note on Picard curves of
CM-type, arXiv:1611.02582 [21].

1.1 Preliminaries on abelian varieties

In this section we review some notions that will be needed throughout this
thesis. We follow classical references such as Birkenhake-Lange [2], Lang [19],
Milne [24, 25] or Mumford [30].

1.1.1 Polarized abelian varieties

An abelian variety X over a field k is a complete irreducible group variety
defined over k, and it is smooth, projective and commutative. A homomorphism
of abelian varieties is a morphism that respects the group structure. It is an
isogeny if it is surjective and the abelian varieties have the same dimension.
We say that an abelian variety is absolutely simple if it has no non-zero proper
abelian subvarieties over the algebraic closure k of k.

Given an abelian variety X defined over k, we define the Picard group of X
as the group Pic(X) of isomorphism classes of line bundles on Xk. Given a line
bundle L on Xk, we define the map

φL : X(k)→ Pic(X)

x 7→ [T ∗xL ⊗ L−1],

where Tx stands for the translation by x on Xk and [L] stands for the isomor-
phism class of L in Pic(X). The map φL is a homomorphism, see Corollary 4
in Mumford [30, Section 2.6].
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Preliminaries on abelian varieties 1.1

We define Pic0(X) as the subgroup of Pic(X) consisting of classes of line
bundles L such that the map φL is zero. It is the group of k-points of an abelian
variety over k (see Section 2.8 in Mumford [30]), we call it the dual variety of X,
and denote it by X̂.

A homomorphism of abelian varieties f : X → Y induces a map
f∗ : Pic(Y ) → Pic(X) that maps Pic0(Y ) to Pic0(X), which gives us the dual
homomorphism f̂ : Ŷ → X̂.

We define a polarization on X as an isogeny λ = φL where L is an ample line
bundle on Xl for l ⊇ k a finite separable extension of the field of definition k.
It is called principal if it is an isomorphism. We say that a polarized abelian
variety (X,λ) is defined over k if both X and λ are defined over k.

Two polarized abelian varieties (X1, λ1) and (X2, λ2) are isomorphic if there
exists an isomorphism of abelian varieties f : X1 → X2 that is compatible with
the polarizations, meaning that it satisfies λ1 = f̂ ◦ λ2 ◦ f .

Given a polarization λ : X → X̂ and an endomorphism f ∈ End(X) ⊗ Q,
we define

f ′ := λ−1 ◦ f̂ ◦ λ. (1.2)

The map · ′ : End(X)⊗Q→ End(X)⊗Q given by f 7→ f ′ is an involution
on End(X)⊗Q, and we call it the Rosati involution determined by λ.

1.1.2 Polarized abelian varieties over C and complex tori

When considering an abelian variety X defined over C, the complex mani-
fold X(C) is (complex analytically isomorphic to) a polarizable complex torus,
that is, a complex vector space V modulo a lattice Λ of full rank that admits
a Riemann form. A Riemann form is an anti-symmetric form E : V × V → R
that is R-bilinear, satisfies E(Λ,Λ) ⊆ Z, such that for u, v ∈ V we have
E(iu, v) = E(iv, u), and such that the associated hermitian form

H(u, v) = E(iu, v) + iE(u, v) (1.3)

is positive definite. A polarization of an abelian variety X defined over C de-
termines a Riemann form E on the complex torus X(C), and the determinant
of E with respect to Λ is detE = 1 if and only if the polarization is principal.
For more details on how the two are related see [19, Section 3.4].

Given a principally polarized complex torus V/Λ of dimension g, we can
choose bases e1, . . . , eg of V and λ1, . . . , λ2g of Λ. Writing the latter in terms of
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1 The family of Picard curves

the former, λi =
∑g

j=1 lj,iej , defines a g × 2g matrix over C,

Π =

l1,1 · · · · · · l1,2g
...

...
lg,1 · · · · · · lg,2g

 , (1.4)

called a big period matrix of V/Λ, and we get V/Λ ∼= Cg/ΠZ2g. Moreover, the
form E is given with respect to the basis of Λ by the matrix
ME = (E(λi, λj))ij ∈ Z2g×2g. Analogously, the form H is given with respect to
the basis of V by the matrixMH = (H(ei, ej))ij ∈ Cg×g. These matrices satisfy
the relation

MH = 2i(ΠM−1
E

tΠ)−1. (1.5)

We say that the basis (λi)i is symplectic if the matrix ME of E with respect
to that basis is (

0 1g
−1g 0

)
. (1.6)

In that case, the vectors λg+1, . . . , λ2g form a basis of V and if we choose this
basis of V , then we obtain a big period matrix of the form (Ω,1g) with Ω ∈ Cg×g
symmetric and with positive definite imaginary part. We call the matrix Ω a
period matrix , and we define the Siegel upper-half space Hg to be the set of
matrices Ω ∈ Cg×g symmetric and with positive definite imaginary part.

We say that a principally polarized complex abelian variety X has period
matrix Ω ∈ Hg if X(C) is isomorphic to Cg/(ΩZg +Zg) and the Riemann form
determined by the polarization of X is given by the matrix (1.6).

A homomorphism between complex tori is a holomorphic map f from V/Λ
to V ′/Λ′ that respects the group structure. In particular, it lifts to a C-linear
map F : V → V ′ that satisfies F (Λ) ⊆ Λ′.

This gives the map

ρa : Hom(V/Λ, V ′/Λ′)→ Hom(V, V ′)

f 7→ F,

the analytic representation of Hom(V/Λ, V ′/Λ′); and considering the restriction
of F to the lattice we obtain the map

ρr : Hom(V/Λ, V ′/Λ′)→ Hom(Λ,Λ′)

f 7→ F |Λ,

the rational representation.
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Preliminaries on abelian varieties 1.1

Let now Π ∈ Cg×2g and Π′ ∈ Cg′×2g′ be big period matrices of V/Λ and
V ′/Λ′ respectively. With respect to the chosen bases, the analytic representa-
tion ρa(f) is a g′ × g matrix over C, and the rational representation ρr(f) is a
2g′ × 2g matrix over Z. They are related by the equation

ρa(f)Π = Π′ρr(f). (1.7)

In the case where f : (V/Λ, E) → (V ′/Λ′, E′) is an isomorphism of prin-
cipally polarized abelian varieties we also have for all u, v ∈ Cg the equality
E(u, v) = E′(f(u), f(v)) =: f∗E′(u, v) . Assume now that the chosen bases are
symplectic, so that the abelian varieties have respectively Ω,Ω′ ∈ Hg as period
matrices. In terms of matrices, the relation f∗E′ = E becomes

tN

(
0 1g
−1g 0

)
N =

(
0 1g
−1g 0

)
, (1.8)

for N the matrix of ρr(f) with respect to symplectic bases of Λ and Λ′. We
define the symplectic group Sp2g(Z) as the group of matrices in Z2g×2g that
satisfy (1.8), so we have ρr(f) ∈ Sp2g(Z).

Let M be the transpose matrix of ρr(f) and consider the subdivision in
g × g blocks

M =

(
α β
γ δ

)
= tρr(f).

It follows from (1.7) and the symmetry of the period matrices that the matrix
of ρa(f) with respect to these bases for Λ and Λ′ is

t
(γΩ′ + δ) (1.9)

and the period matrices Ω,Ω′ are related by the equation

Ω = (αΩ′ + β)(γΩ′ + δ)−1 =: M(Ω′). (1.10)

In particular, this relation gives an action of Sp2g(Z) on Hg. For details, see
Section 8.2 in [2].

1.1.3 Jacobians and the Abel-Jacobi map

Let now C be a curve of genus g defined over a field k, that is, a smooth,
projective, geometrically irreducible algebraic curve over k of genus g. For
such a curve C, let Div(C) (respectively Div0(C)) be the set of divisors on Ck
(resp. degree-0 divisors on Ck), let Prin(C) be the set of principal divisors and
define Pic0(C) = Div0(C)/Prin(C).
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1 The family of Picard curves

To the curve C over k one can associate in a natural way a principally
polarized abelian variety of dimension g over k, its Jacobian J(C). We have
J(C)(k) = Pic0(C), and denote by λC its natural polarization. Its dimension
is equal to the genus of C. Given a point P ∈ C(k), we define the Abel-Jacobi
map with base point P as the morphism of varieties over k given by

α : C → J(C)

Q 7→ [Q− P ],
(1.11)

and we extend it additively to divisors.
Given a morphism of curves ϕ : C → C ′, let J(C) and J(C ′) be respectively

the Jacobians of C and C ′. The morphism ϕ induces the homomorphisms
ϕ∗ : Div(C) → Div(C ′) given by [P ] 7→ [ϕ(P )], and ϕ∗ : Div(C ′) → Div(C)
given by [Q] 7→

∑
P∈ϕ−1(Q) eϕ(P )[P ], where eϕ(P ) is the order at P of the

function t ◦ ϕ for t a uniformizer at Q. These homomorphisms map degree-0
divisors to degree-0 divisors and principal divisors to principal divisors, so they
induce homomorphisms ϕ∗ : Pic0(C)→ Pic0(C ′) and ϕ∗ : Pic0(C ′)→ Pic0(C).

In particular, for α, α′ the Abel-Jacobi maps with base point P ∈ C and
ϕ(P ) ∈ C ′ respectively, the diagram

C
ϕ //

α
��

C ′

α′

��
J(C)

ϕ∗ // J(C ′)

(1.12)

commutes. Conversely, an isomorphism of Jacobians determines an isomorphism
between the corresponding curves, due to the following result:

Theorem 1.1.1 (Torelli, see Milne [25, Section 12]). Let C and C ′ be curves
over an algebraically closed field k, and let α, α′ be the Abel-Jacobi maps with
base point P ∈ C, ϕ(P ) ∈ C ′ respectively. Let ϕ : J(C) → J(C ′) be an
isomorphism of principally polarized abelian varieties.
(1) There exists an isomorphism ρ : C → C ′ that satisfies ϕ = ±ρ∗.
(2) Assume that the curves have genus ≥ 2. If C is not hyperelliptic, then the

map ρ and the sign ± are uniquely determined by ϕ. If C is hyperelliptic,
then the sign can be chosen arbitrarily, and ρ is uniquely determined by ϕ
and ±.

Torelli’s Theorem implies the injectivity of the map J , the Torelli map, from
the set of curves of genus g over k up to isomorphism to the set of isomorphism
classes of principally polarized abelian varieties of dimension g over k. This
motivates the Riemann-Schottky problem.

The Riemann-Schottky problem. Describe the image of J .
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Preliminaries on abelian varieties 1.2

Our goal throughout this chapter is to give an inverse Jacobian algorithm
restricted to the family P of Picard curves. We present Algorithm 1.3.9 which,
givenX ∈ J(P), determines a curve C withX ∼= J(C). Moreover, in Section 1.4
we also give a characterization of the absolutely simple principally polarized
abelian varieties in J(P).

Proposition 1.1.2. Every Picard curve is non-hyperelliptic, that is, the canon-
ical map C → P2 is an embedding.

Proof. One computes that a basis of regular differentials for a Picard curve is(
dx

y2
,
xdx

y2
,
dx

y

)
.

It follows that the canonical map is the embedding (x : y : 1) : C → P2.

1.1.4 Jacobians and the Abel-Jacobi map over C

For a curve C defined over C, its Jacobian is also defined over C and therefore
isomorphic to a principally polarized complex torus. We now construct this torus
explicitly, as in Birkenhake-Lange [2, Section 11.1].

Let H0(ωC) be the complex vector space of regular differentials of C, and
let H0(ωC)∗ denote its dual. The homology H1(C,Z) of C injects into H0(ωC)∗

via the map H1(C,Z)→ H0(ωC)∗ given by γ 7→ (ω 7→
∫
γ ω), where the integral

is taken for a representative of the class γ ∈ H1(C,Z).
The image of H1(C,Z) in H0(ωC)∗ is a lattice of rank 2g in a complex vector

space of dimension g. The Jacobian of C is isomorphic to the g-dimensional
complex torus given by the quotient H0(ωC)∗/H1(C,Z), and the Riemann form
is given by the oriented intersection paring on H1(C,Z).

Theorem 1.1.3. (Abel-Jacobi, see [2, Theorem 11.1.3]) Let C be a curve and
let P ∈ C. The map

C → H0(ωC)∗/H1(C,Z),

Q 7→
{
ω 7→

∫ Q

P
ω

} (1.13)

induces a canonical isomorphism Pic0(C)→ H0(ωC)∗/H1(C,Z), which does not
depend on P .

When we identify J(C) with H0(ωC)∗/H1(C,Z), the map (1.13) is the Abel-
Jacobi map with base point P as in (1.11).
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1 The family of Picard curves

1.2 A Thomae-like formula

In this section we present a formula that gives the x-coordinates of the affine
branch points of a Picard curve C given by a Legendre-Rosenhain equation
as a quotient of Riemann theta functions evaluated at certain points of the
Jacobian J(C). We start by defining these functions.

Definition 1.2.1. The Riemann theta function is the function θ : Cg×Hg → C
given by

θ(z,Ω) =
∑
n∈Zg

exp(πintΩn+ 2πintz).

Theorem 1.2.2 (Riemann’s Vanishing Theorem, see [29, Corollary 3.6]). Let C
be a curve over C of genus g, let J(C) be the Jacobian of C with period matrix
Ω ∈ Hg and let α be an Abel-Jacobi map of C. There is an element ∆ ∈ J(C),
called a Riemann constant with respect to α, such that the function θ( · ,Ω)
vanishes at z ∈ Cg if and only if there exist Q1, . . . , Qg−1 ∈ C that satisfy

z ≡ α(Q1 + · · ·+Qg−1)−∆ mod ΩZg + Zg.

Next we prove that ∆ is actually unique up to the choice of a base point for
the Abel-Jacobi map α. We will use the following lemma.

Lemma 1.2.3. Let Ω ∈ Hg and let Θ ⊆ Cg/(ΩZg + Zg) be the subset defined
by θ(z,Ω) = 0. Then the map

Cg/(ΩZg + Zg)→ {e+ Θ : e ∈ Cg/(ΩZg + Zg)}
x 7→ {z ∈ Cg/(ΩZg + Zg) : θ(z − x,Ω) = 0} = x+ Θ

is injective.

Proof. See the proof of Theorem II.3.10(b) in Mumford [29].

Proposition 1.2.4. Let C be a curve over C of genus g, let J(C) be the
Jacobian of C with period matrix Ω ∈ Hg, and let α be the Abel-Jacobi map
with base point P ∈ C. The Riemann constant ∆ with respect to α is uniquely
determined by Theorem 1.2.2 and satisfies

2∆ = α(κ)

for κ a canonical divisor of C.

Proof. For the first part of the statement, let ∆1,∆2 ∈ J(C) satisfy Theo-
rem 1.2.2, that is, the equality Θ = α(Symg−1C)−∆i. We have

Θ = α(Symg−1C)−∆1 = α(Symg−1C)−∆2 + ∆2 −∆1 = Θ + (∆2 −∆1)
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A Thomae-like formula 1.2

thus it follows from Lemma 1.2.3 that ∆2 − ∆1 is zero, hence the Riemann
constant is unique.

For the second part, consider an effective divisor D =
∑g−1

i=1 Pi for Pi ∈ C.
By the Riemann-Roch Theorem, there exist g−1 points Q1, . . . , Qg−1 in C that
satisfy

κ−D ∼
g−1∑
i=1

Qi,

or equivalently, α(κ−D) = α(
∑g−1

i=1 Qi). We get

α(κ)− α(Symg−1C) ⊆ α(Symg−1C).

If we consider the translation −α(Symg−1C) ⊆ α(Symg−1C)−α(κ) and apply
to it the bijection on J(C) that maps a point x to −x, then we obtain

α(Symg−1C) ⊆ −α(Symg−1C) + α(κ),

hence the equality holds.
Observe now that the Riemann theta function is symmetric in z via the

map n 7→ −n. In consequence the set Θ is symmetric, and we obtain

α(Symg−1C)−∆ = −α(Symg−1C) + ∆ = α(Symg−1C)− α(κ) + ∆.

We conclude by the uniqueness of the Riemann constant that ∆ satisfies the
equality ∆ = α(κ)−∆ and the result follows.

Next we introduce a theorem of Siegel that relates the values of a function
on a curve C at a non-special divisor with a quotient of Riemann theta functions
evaluated at some points in the Jacobian.

Definition 1.2.5. We say that an effective divisor D of degree g is special if
there exists a regular differential ω with div(ω) ≥ D. Otherwise we call them
non-special (called general in Siegel [44, pg. 154]).

Theorem 1.2.6 (Theorem 11.3 in Siegel [44]). Let C be a curve of genus g
over C, and let φ be a function on C with

div(φ) =

m∑
i=1

Ai −
m∑
i=1

Bi.

Let P ∈ C and let ω be a basis of H0(ωC) for which the Jacobian J(C) has
period matrix Ω ∈ Hg. Let ∆ be the Riemann constant with respect to the
Abel-Jacobi α map with base point P .
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1 The family of Picard curves

Choose paths from the base point P to Ai and Bi that satisfy
m∑
i=1

∫ Ai

P
ω =

m∑
i=1

∫ Bi

P
ω.

Then, given an effective non-special divisor D = P1 + · · · + Pg of degree g
that satisfies Pj /∈ {Ai, Bi : 1 ≤ i ≤ m}, one has

φ(D) := φ(P1) . . . φ(Pg) = E
m∏
i=1

θ(
∑g

j=1

∫ Pj
P ω −

∫ Ai
P ω −∆,Ω)

θ(
∑g

j=1

∫ Pj
P ω −

∫ Bi
P ω −∆,Ω)

,

where E ∈ C× is independent of D, and the integrals from P to Pj take the
same paths both in the numerator and the denominator.

Observe that the integrals at which we are evaluating the Riemann theta
functions are representatives of the image by the Abel-Jacobi map of C with
base point P of the points in the divisor, see Section 1.1.4.

But if a point in J(C) is a torsion point, then we can write it as a rational
vector with respect to the basis of the lattice. In fact, the bijection

· : J(C)→ R2g/Z2g

Ωx1 + x2 7→ (x1, x2)

maps the m-torsion of J(C) to 1
mZ2g/Z2g.

In this section we are interested in computing the x-coordinates of the affine
branch points of a Picard curve C, so we will choose non-special divisors sup-
ported on these points. Note that for every affine branch point P of a Picard
curve, we have div(x − x(P )) = 3P − 3(0 : 1 : 0), so the image of P via the
Abel-Jacobi map with base point (0 : 1 : 0) is a 3-torsion point.

Therefore, it is convenient for us to rewrite Theorem 1.2.6 in terms of the
following modification of the Riemann theta function:

Definition 1.2.7. The Riemann theta function with (real) characteristic
x = (x1, x2) ∈ R2g is the function θ[x] : Cg ×Hg → C given by

θ[x](z,Ω) =
∑
n∈Zg

exp(πi t(n+ x1)Ω(n+ x1) + 2πi t(n+ x1)(z + x2)). (1.14)

It is a translate of the Riemann theta function as in Definition 1.2.1 times an
exponential factor:

θ[x](z,Ω) = exp(πixt1Ωx1 + 2πixt1(z + x2))θ(z + Ωx1 + x2,Ω). (1.15)

A Riemann theta constant is a Riemann theta function evaluated at z = 0. For
notational convenience, we denote it by θ[x](Ω) := θ[x](0,Ω).

18



A Thomae-like formula 1.2

Proposition 1.2.8 (Mumford [29, pg. 123]). The Riemann theta constants
satisfy the following properties:
(1) They are symmetric with respect to x, that is

θ[x](Ω) = θ[−x](Ω) . (1.16)

(2) They are quasi-periodic, meaning that for m = (m1,m2) ∈ Z2g one has

θ[x+m](Ω) = exp(2πix1m2)θ[x](Ω) . (1.17)

Note that, due to the quasi-periodicity of the Riemann theta constants, the
domain for the characteristics is R2g, rather than R2g/Z2g. Therefore we fix a
representative for such elements. We define the map ·̃ : R2g/Z2g → [0, 1)2g that
maps a class in R2g/Z2g to its representative with entries in [0, 1).

For convenience, if the domain is clear we denote any composition of the
maps

C
α // J(C)

· // R2g/Z2g ·̃ // [0, 1)2g

by the last one. For example, for P ∈ C we write P̃ instead of α̃(P ). Moreover,
given a divisor D =

∑
nPP we define D̃ :=

∑
nP P̃ ∈ R2g.

Warning 1.2.9. Note that with our definition of D̃, for most divisors D we
have D̃ 6= α̃(D).

We can now rewrite Theorem 1.2.6 in terms of Riemann theta constants:

Corollary 1.2.10. With the notation in Theorem 1.2.6, let ai (resp. bi) be the
element in R2g that satisfies

∫ Ai
P ω = Ω(ai)1+(ai)2 (resp.

∫ Bi
P ω = Ω(bi)1+(bi)2).

We obtain

φ(D) = E′
m∏
i=1

θ
[∑g

j=1 P̃j − ai − ∆̃
]

(Ω)

θ
[∑g

j=1 P̃j − bi − ∆̃
]

(Ω)
,

where E′ ∈ C× is also independent of D.

Proof. Observe that the exponential factor in (1.15) for Riemann theta con-
stants (that is, z = 0) can be written as exp(πiB(x, x)) where B is the sym-
metric bilinear form given by

B(u, v) = tu

(
Ω 1g
1g 0

)
v.

Let Q(u) = B(u, u) and let c =
(∑g

j=1 P̃j

)
− ∆̃. For j = 1, . . . , g let xj = P̃j

and choose a path from P to Pj that satisfies
∫ Pj
P ω = Ω(xj)1 + (xj)2 ∈ Cg.
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1 The family of Picard curves

Let E′ ∈ C× be defined by

E
m∏
i=1

θ
((∑g

j=1

∫ Pj
P ω

)
−
∫ Ai
P ω −∆,Ω

)
θ
((∑g

j=1

∫ Pj
P ω

)
−
∫ Bi
P ω −∆,Ω

) = E′
m∏
i=1

θ
[(∑g

j=1 P̃j

)
− ai − ∆̃

]
(Ω)

θ
[(∑g

j=1 P̃j

)
− bi − ∆̃

]
(Ω)

.

We want to prove that E′ does not depend on D =
∑g

j=1 Pj . By (1.15) we
get

E

E′
= exp

(
πi

m∑
i=1

(Q(c− ai)−Q(c− bi))

)
,

so it suffices to show that
∑m

i=1(Q(c− ai)−Q(c− bi)) does not depend on D.
We have

m∑
i=1

(Q(c− ai)−Q(c− bi)) =
m∑
i=1

(Q(ai)−Q(bi)− 2B(c, ai − bi))

=
m∑
i=1

Q (ai)−
m∑
i=1

Q (bi)− 2B

(
c,

m∑
i=1

(ai − bi)

)
,

but we know
m∑
i=1

∫ Ai

P
ω =

m∑
i=1

∫ Bi

P
ω.

so in terms of characteristics we obtain
∑m

i=1(ai − bi) = 0 and then it follows
that

m∑
i=1

(Q(c− ai)−Q(c− bi)) =
m∑
i=1

Q (ai)−
m∑
i=1

Q (bi)

does not depend on D.

Lemma 1.2.11. Let C be a Picard curve over C given by a Legendre-Rosenhain
equation, and denote P0 = (0, 0) and P∞ = (0 : 1 : 0). Let α be the Abel-
Jacobi map with base point P∞, let Ω ∈ H3 be a period matrix of J(C) and
let ∆ ∈ J(C) be the Riemann constant with respect to α. Then, for every
effective non-special divisor D = R1 + R2 + R3 of degree 3 with Ri 6= P0, P∞,
we have

x(R1)x(R2)x(R3) = E′ ε(D)

(
θ[D̃ − P̃0 − ∆̃](Ω)

θ[D̃ − ∆̃](Ω)

)3

,

with ε(D) = exp(6πi(D̃ − P̃0 − ∆̃)1(P̃0)2) and E′ ∈ C× independent of D.
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Proof. Let ω be the basis of holomorphic differentials for which J(C) has period
matrix Ω. The divisor of the function x on C is div(x) = 3P0 − 3P∞, so in
order to apply Corollary 1.2.10 for φ = x and P = P∞, we choose three times
the zero path from P∞ to itself, the path γ1 from P∞ to P0 that for a1 = P̃0

satisfies ∫
γ1

ω = Ω(a1)1 + (a1)2 ∈ C3,

and paths γ2, γ3 from P∞ to P0 that satisfy

3∑
k=1

∫
γk

ω = 0 in C3. (1.18)

Let a2, a3 be the elements in R6 that satisfy∫
γk

ω = Ω(ak)1 + (ak)2 for k = 2, 3.

Then, by Corollary 1.2.10, we have

φ(D) = E′
3∏

k=1

θ[D̃ − ak − ∆̃](Ω)

θ[D̃ − ∆̃](Ω)
(1.19)

for some constant E′ ∈ C× independent of D. Note that for k = 1, 2, 3 we have

P0 = (ak modZ6),

so the differences ai − aj for i 6= j are integer vectors. Applying the quasi-
periodicity property (1.17), equation (1.19) becomes

φ(D) = E′
exp(2πi(D̃ − P̃0 − ∆̃)1(a1 − a2 + a1 − a3)2) θ[D̃ − P̃0 − ∆̃](Ω)3

θ[D̃ − ∆̃](Ω)3
.

But it follows from (1.18) that the sum a1 + a2 + a3 is zero, so we obtain
a1 − a2 + a1 − a3 = 3a1 = 3P̃0 and the statement follows.

The final piece is to choose the right divisors and prove that they are
non-special.

Lemma 1.2.12 (Koike-Weng [16, pg. 506]). Let C be a Picard curve and let B
be the set of affine branch points of C. If P,Q ∈ B are distinct, then the
divisor P + 2Q is non-special.

Now we have all the components to give a formula for the x-coordinates
of the affine branch points of a Picard curve given by a Legendre-Rosenhain
equation in terms of quotients of Riemann theta constants.
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1 The family of Picard curves

Theorem 1.2.13. Let C be a Picard curve over C given by the Legendre-
Rosenhain equation y3 = x(x− 1)(x−λ)(x−µ), let Ω ∈ H6 be a period matrix
of the Jacobian J(C), let α be the Abel-Jacobi map with base point (0 : 1 : 0),
and let ∆ be the Riemann constant with respect to α. Let Pt = (t, 0) for
t ∈ {0, 1, λ, µ} and let η ∈ {λ, µ}. Then we have

η = εη

(
θ[P̃1 + 2P̃η − P̃0 − ∆̃](Ω)

θ[2P̃1 + P̃η − P̃0 − ∆̃](Ω)

)3

, (1.20)

with εη = exp(6πi((P̃η − P̃1)1(P̃0)2 + (P̃1 + 2P̃η − ∆̃)1(2∆̃− 3(P̃1 + P̃η))2)).

Proof. We apply Lemma 1.2.11 to the divisorsD1 = P1+2Pη andD2 = 2P1+Pη,
which are non-special by Lemma 1.2.12. We get

η =
x(P1)x(Pη)

2

x(P1)2x(Pη)
=

E′ε(D1)

(
θ[P̃1 + 2P̃η − P̃0 − ∆̃](Ω)

θ[P̃1 + 2P̃η − ∆̃](Ω)

)3

E′ε(D2)

(
θ[2P̃1 + P̃η − P̃0 − ∆̃](Ω)

θ[2P̃1 + P̃η − ∆̃](Ω)

)3

=
ε(D1)

ε(D2)

(
θ[P̃1 + 2P̃η − P̃0 − ∆̃](Ω)

θ[P̃1 + 2P̃η − ∆̃](Ω)

θ[2P̃1 + P̃η − ∆̃](Ω)

θ[2P̃1 + P̃η − P̃0 − ∆̃](Ω)

)3

.

(1.21)

In order to simplify the formula we apply the symmetry (1.16) and quasi-
periodicity (1.17) of the Riemann theta constants to obtain

θ[D̃2 − ∆̃](Ω) = θ[−D̃2 + ∆̃](Ω)

= θ[D̃1 − ∆̃ + (2∆̃ + 3(P̃1 + P̃η))](Ω)

= exp
(

2πi(D̃1 − ∆̃)1(2∆̃− 3(P̃1 + P̃η))2

)
θ[D̃1 − ∆̃](Ω)

so that the formula (1.21) becomes

η = εη

(
θ[P̃1 + 2P̃η − P̃0 − ∆̃](Ω)

θ[2P̃1 + P̃η − P̃0 − ∆̃](Ω)

)3

,

with

εη =
ε(D1)

ε(D2)
exp(2πi(D̃1 − ∆̃)1(2∆̃− 3(P̃1 + P̃η))2)3

=
exp(6πi(P̃1 + 2P̃η − P̃0 − ∆̃)1(P̃0)2)

exp(6πi(2P̃1 + P̃η − P̃0 − ∆̃)1(P̃0)2)
exp(6πi(D̃1 − ∆̃)1(2∆̃− 3(P̃1 + P̃η))2)

= exp(6πi((P̃η − P̃1)1(P̃0)2 + (P̃1 + 2P̃η − ∆̃)1(2∆̃− 3(P̃1 + P̃η))2))

as desired.
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The inverse Jacobian algorithm 1.3

Remark 1.2.14. Compare the formula for η given in Theorem 1.2.13 with
the ones given by Koike-Weng [16, Eq. 9]. The formulas in [16] are the same
as (1.20) replacing εη by 1, hence in general they do not hold due to the absence
of the precise root of unity.

However, if we follow the original work by Picard [35, p. 131] where he
constructs the period matrix of a Picard curve given by a Legendre-Rosenhain
equation in a specific way (see also Shiga [38, Proposition I-3]), then we obtain
that the factors ελ and εµ are 1, so in that case the formulas in [16] remain
correct.

But if Ω is not specifically constructed in that way, then we have to either
be lucky (and get ελ = εµ = 1) or use the formula for εη.

1.3 The inverse Jacobian algorithm

In this section we present an algorithm that, given the period matrix of the
Jacobian of a Picard curve C and the rational representation of the automor-
phism ρ∗ induced by ρ(x, y) = (x, z3y), returns a numerical approximation of
the x-coordinates of the affine branch points of C.

The main step of the algorithm uses Theorem 1.2.13. To apply that theorem
we need to know the Riemann constant of C with respect to the Abel-Jacobi
map α with base point (0 : 1 : 0) and the image by α of the affine branch points
on J(C).

We start by characterizing the Riemann constant of a Picard curve. We will
do so by using both its uniqueness and the fact that the base point for α is fixed
by the automorphism ρ.

First we show how a change of symplectic bases affects a Riemann theta
function with characteristics.

Definition 1.3.1. For M =

(
α β
γ δ

)
∈ Sp2g(Z) and c ∈ R2g we define

M [c] := tM−1c+
1

2

(
(γ tδ)0

(α tβ)0

)
,

where X0 stands for the diagonal of the matrix X.
Note that the class N [c] modZ2g depends only on the class of c modZ2g,

so we denote it by N [c modZ2g]. Moreover, for x ∈ J(C) we denote the point
that satisfies the equality N [x] = N [x] by N [x] ∈ J(C) .

Proposition 1.3.2 (Proposition 8.6.1 in Birkenhake-Lange [2]). For a period
matrix Ω ∈ Hg, a characteristic c ∈ R2g and a symplectic matrix

M =

(
α β
γ δ

)
∈ Sp2g(Z),
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1 The family of Picard curves

there exists a function κ(M,Ω, c, ·) : Cg → C× that satisfies for all v ∈ Cg the
equality

θ[M [c]](
t
(γΩ + δ)−1v,M(Ω)) = κ(M,Ω, c, v)θ[c](v,Ω).

Remark 1.3.3. The factor κ(M,Ω, c, v) ∈ C× is given explicitly in Birkenhake-
Lange [2, Proposition 8.6.1].

Proposition 1.3.4. Let C,C ′ be curves with equal genus g, let ϕ : C → C ′

be an isomorphism of curves, and let ϕ∗ : J(C) → J(C ′) be the induced iso-
morphism on the Jacobians with period matrices Ω,Ω′ ∈ Hg respectively. De-
fine N := tρr(ϕ∗). Let P ∈ C, let α be the Abel-Jacobi map with base point P ,
and let α′ be the Abel-Jacobi map with base point ϕ(P ).

Let also ∆ (resp. ∆′) be the Riemann constant of C (resp. C ′) with respect
to α (resp. α′). The Riemann constants satisfy

N [∆′] = ∆.

Proof. Recall that, given a curve C and an Abel-Jacobi map α of C, the Rie-
mann constant ∆ is determined by Theorem 1.2.2, hence it satisfies

α(Symg−1C) =
{
x ∈ J(C) : θ[−∆̃](x,Ω) = 0

}
. (1.22)

To prove the proposition, we will use that the Riemann constant is uniquely
defined by (1.22) (see Proposition 1.2.4). We start by applying the isomor-
phism ϕ−1

∗ to both sides of (1.22) in the case of the curve C ′. We obtain

ϕ−1
∗ α′(Symg−1C ′) =

{
y ∈ J(C) : θ[−∆̃′](ϕ∗(y),Ω′) = 0

}
. (1.23)

Consider the subdivision in g × g blocks of the transpose of ρr(ϕ∗)

N =

(
α β
γ δ

)
∈ Sp2g(Z),

and recall that then the analytical representation of ϕ∗ is t(γΩ+δ) and the period
matrices satisfy the equality N(Ω′) = Ω, see (1.9) and (1.10) respectively.

Let y0 ∈ Cg be a representative of y ∈ J(C), that is, an element satisfying
y = (y0 mod ΩZg+Zg), thus also ϕ∗(y) = (t(γΩ + δ)y0 mod Ω′Zg+Zg). Then,
by the theta transformation formula by N given in Proposition 1.3.2, we get

θ[−∆̃′](t(γΩ + δ)y0,Ω
′) =

= κ(N,Ω′,∆′, t(γΩ + δ)y0)−1θ[−N [∆̃′]](
t
(γΩ + δ)−1 t(γΩ + δ)y0, N(Ω′))

= κ(N,Ω′,∆′, t(γΩ + δ)y0)−1θ[−N [∆̃′]](y0,Ω).
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The inverse Jacobian algorithm 1.3

Recall that by definition of ϕ∗ we have ϕ∗ ◦α = α′ ◦ϕ. Therefore we obtain

ϕ−1
∗ α′(Symg−1C ′) = α(Symg−1C),

and the equality of sets (1.23) becomes

α(Symg−1C) =
{
y ∈ J(C) : θ[−N [∆̃′]](y,Ω) = 0

}
.

We conclude N [∆′] = ∆ by the uniqueness of the Riemann constant.

Now we can characterize the Riemann constant of a Picard curve with re-
spect to the Abel-Jacobi map with base point (0 : 1 : 0).

Corollary 1.3.5. Let C be a Picard curve, let ρ be the automorphism of C
given by (x, y) 7→ (x, z3y). The Riemann constant with respect to the Abel-
Jacobi map with base point P∞ = (0 : 1 : 0) is the only point ∆ ∈ J(C)
with
(1) ∆ ∈ J(C)[2], and
(2) tρr(ρ∗)[∆] = ∆.

Proof. By Proposition 1.2.4 we have 2∆ = α(κ) for κ a canonical divisor, and
the computation div(dx/y2) = 4P∞ shows α(κ) = 0, which proves (1). More-
over, since P∞ is fixed by ρ, we obtain by Proposition 1.3.4 that the point ∆
satisfies (2).

To prove that it is the only point that satisfies (1) and (2), assume that
there exist ∆1,∆2 ∈ J(C) that satisfy (1) and (2). By (2) we have

∆1 −∆2 = tρr(ρ∗)[∆
1]− tρr(ρ∗)[∆

2] = ρr(ρ∗)
−1(∆1 −∆2),

thus ∆1−∆2 is an element of J(C)[1−ρ2
∗] ⊆ J(C)[3]. But by (1), the difference

∆1 −∆2 is also a 2-torsion point, hence we conclude ∆1 −∆2 = 0.

Next, we identify the images on J(C) of the affine branch points of C.

Theorem 1.3.6. Let J(C) be the Jacobian of a Picard curve C, let ρ∗ be the
automorphism of J(C) induced by the curve automorphism ρ(x, y) = (x, z3y).
Let B be the set of affine branch points of C, let α be the Abel-Jacobi map with
base point P∞ = (0 : 1 : 0), let ∆ be the Riemann constant with respect to α
and define

Θ3 := {x ∈ J(C)[1− ρ∗] : θ[x+ ∆](Ω) = 0} .

Then α(B) and −α(B) are the only subsets T ⊆ J(C) of four elements such
that:
(i) the sum

∑
x∈T x is zero,

(ii) T is a set of generators of J(C)[1− ρ∗], and
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1 The family of Picard curves

(iii) the set O(T ) := {
∑

x∈T axx : a ∈ Z4
≥0,
∑

x∈T ax ≤ 2} satisfies

O(T ) = Θ3.

Proof. We first show that α(B) and −α(B) satisfy (i)–(iii), and then we prove
that these are the only possibilities.

That α(B) satisfies (i) follows from div(y) =
∑

P∈B P − 4P∞. That α(B)
satisfies (ii) is proven by Koike and Weng in [16, Remark 8]. Next we prove
that α(B) satisfies (iii). On the one hand, given Q1, Q2 ∈ B ∪ {P∞} we have
α(Q1 + Q2) ∈ Θ3 by Riemann’s Vanishing Theorem 1.2.2, and since we have
α(P∞) = 0, this implies{∑

P∈B
aPα(P ) : a ∈ ZB≥0,

∑
P∈B

aP ≤ 2

}
⊆ Θ3.

On the other hand let x ∈ Θ3. Since x satisfies θ[x + ∆](Ω) = 0, by
Riemann’s Vanishing Theorem 1.2.2 there exist Q1, Q2 ∈ C such that we have
x = α(Q1 +Q2). Moreover, since x is a (1− ρ∗)-torsion point, we get

α(Q1 +Q2) = ρ∗(α(Q1 +Q2)) = α(ρ(Q1) + ρ(Q2)),

hence there exists a function h on C such that div(h) = ρ(Q1)+ρ(Q2)−Q1−Q2.
We conclude that h is constant, since otherwise it has degree at most 2, hence
the curve would be hyperelliptic, contradicting Proposition 1.1.2. Therefore we
have ρ(Q1) + ρ(Q2) = Q1 + Q2, but since ρ has order 3, the cardinality of the
orbit of Qi has length 3 or 1, thus we obtain ρ(Qi) = Qi. Therefore Q1 and Q2

are branch points, so the other inclusion holds.
It is clear that −α(B) satisfies (i) and (ii). To see that it satisfies (iii), it is

enough to prove that Θ3 is invariant under the map x 7→ −x. But this follows
from the symmetry θ[−x](Ω) = θ[x](Ω) of the Riemann theta constants.

Next we prove that α(B) and −α(B) are, in fact, all the subsets that sat-
isfy (i)–(iii).

Let B denote an ordering of α(B). Given a sequence T = (t1, t2, t3, t4)
in J(C)4 such that the set {t1, t2, t3, t4} has 4 elements and satisfies (i)–(iii), we
define the map γ[T ] : F3

3 → J(C)[1− ρ∗] given by r 7→
∑3

i=1 riti. By Remark 8
in Koike-Weng [16] we have #J(C)[1 − ρ∗] ∼= (Z/3Z)3, thus it follows from (i)
and (ii) that γ[T ] is a bijection.

Consider the diagram

F3
3

M(T ) //

γ[T ] %%

F3
3

γ[B]yy
J(C)[1− ρ∗]
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where M(T ) is the unique invertible matrix in F3×3
3 that makes the diagram

commutative. Note that choosing a matrix M(T ) determines T uniquely.
Let e1, e2, e3 be the standard basis vectors of F3

3, and let e4 = −e1− e2− e3,
so for i = 1, . . . , 4 we have γ[T ](ei) = ti. Consider

O0 =

{
4∑
i=1

aiei : a ∈ Z4
≥0,

4∑
i=1

ai ≤ 2

}
⊆ F3

3.

One can check #O0 = 15, and moreover we have γ[T ](O0) = O({t1, t2, t3, t4}).
If the set of elements of T satisfies (iii), then we have

γ[T ](O0) = O({t1, t2, t3, t4}) = Θ3 = γ[B](O0),

and thus O0 is stable under M(T ).
We checked with SageMath [49] that there are exactly 48 invertible matrices

in F3×3
3 that map O0 to itself. Since a matrix M(T ) determines T uniquely,

there are 48 sequences T ∈ J(C)4 that satisfy (i)–(iii). However, if we vary σ in
the symmetric group of 4 letters and s ∈ {±1}, then sσ(B) gives 48 sequences,
which are different. We conclude that α(B) and −α(B) are the only subsets
of J(C) with 4 elements that satisfy (i)–(iii).

From the proof above we obtain the following result.

Corollary 1.3.7. With the notation in Theorem 1.3.6, we get

#Θ3 = 15.

Remark 1.3.8. With Theorem 1.3.6, we make precise the idea hinted at Corol-
lary 11 in Koike-Weng [16]. There, they claim the existence of a 4-element set
that satisfies (i) and (ii), prove that α(B) does satisfy (i) and (ii), and assume
without further comments that when one finds such a set, it is α(B).

This is problematic not only because they disregard the case where the set
is −α(B) but specially because they do not consider (iii) at all, but there exist
4-element sets in J(C) that satisfy (i) and (ii) which are not α(B) or even −α(B).

In fact, there are # GL3(F3) = 11232 possible sequences T ∈ J(C)4 that
satisfy (i) and (ii), hence the probability of finding one that corresponds to a
permutation of B is 1/468 ≈ 0.002.

We have now all the tools to state the algorithm.

Algorithm 1.3.9
Input: The Jacobian of a Picard curve C, given by a period matrix Ω ∈ H3, and

ρ∗ the automorphism on the Jacobian induced by the curve automorphism
ρ(x, y) = (x, z3y), given by its rational representation N ∈ Z6×6.
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1 The family of Picard curves

Output: The complex values λ and µ in a Legendre-Rosenhain equation
y3 = x(x− 1)(x− λ)(x− µ) of the Picard curve C.

1. Let D be the unique solution of N [D] = D in 1
2Z

6/Z6.
2. Compute the set

Θ3 =

{
x ∈ 1

3
Z6/Z6 : Nx = x and θ[x+D](Ω) = 0

}
of cardinality 15.

3. Let T = {t1, t2, t3, t4} ⊆ Θ3 be a 4-element set that satisfies
i.
∑4

i=1 t = 0,
ii. {t1, t2, t3} are linearly independent, and
iii. {

∑4
i=1 aiti : (ai)i ∈ Z4

≥0,
∑4

i=1 ai ≤ 3} = Θ3.
4. Compute

ελ = exp(6πi((t̃3 − t̃2)1(t̃1)2 + (t̃2 + 2t̃3 − D̃)1(2D̃ − 3(t̃2 + t̃3))2)),

εµ = exp(6πi((t̃4 − t̃2)1(t̃1)2 + (t̃2 + 2t̃4 − D̃)1(2D̃ − 3(t̃2 + t̃4))2)),

and

λ = ελ

(
θ[t̃2 + 2t̃3 − t̃1 − D̃](Ω)

θ[2t̃2 + t̃3 − t̃1 − D̃](Ω)

)3

,

µ = εµ

(
θ[t̃2 + 2t̃4 − t̃1 − D̃](Ω)

θ[2t̃2 + t̃4 − t̃1 − D̃](Ω)

)3

.

5. Return λ and µ.

Warning 1.3.10. Algorithm 1.3.9 is a mathematical algorithm, but, because
it involves infinite sums, complex numbers and exponentials, it cannot be run
on a Turing machine or a physical computer. To do so one needs to truncate
the sum on the Riemann theta constants, approximate complex numbers and
keep track of the error propagation. For more details on how to do this see
Section 1.5.

Proof of Algorithm 1.3.9. Let ∆ ∈ J(C) be the Riemann constant with respect
to P∞ = (0 : 1 : 0) and let B be the set of affine branch points of C. By
Corollary 1.3.5, the point ∆ is the only one that satisfies N [∆] = ∆ and is a
2-torsion point, that is, it satisfies ∆ ∈ 1

2Z
6/Z6. We conclude D = ∆.

By Theorem 1.3.6, the sequence (t1, t2, t3, t4) is an ordering of either α(B)
or −α(B). In the former case, the values λ, µ obtained in Step 4 are the
x-coordinates of the affine branch points different from (0, 0) and (0, 1). A
quasi-periodicity argument similar to those in the proofs of Lemma 1.2.11 or
Theorem 1.2.13 yields that in the latter case that holds too.
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As a consequence of the proof we obtain the following result.

Corollary 1.3.11. If the automorphism given in the input of Algorithm 1.3.9
is ρ2
∗, then the output is also correct.

Proof. Note that the automorphism in the input only plays a role in Steps 1
and 2 of Algorithm 1.3.9, to determine the Riemann constant and the
(1− ρ∗)-torsion points in J(C).

Note that both ρ and ρ2 fix the branch points on C. Therefore, by Propo-
sition 1.3.4 the Riemann constant satisfies tρr(ρ

2
∗)[∆] = ∆. It follows that,

for M =
t
ρr(ρ

2
∗), the characteristic D in Step 1 satisfies M [D] = D. We also

get {
x ∈ 1

3
Z6/Z6 : Mx = N2x = x and θ[x+D](Ω) = 0

}
= Θ3.

1.4 The Torelli locus of Picard curves

In the previous section we have seen how to reconstruct a Picard curve from
its Jacobian. The following theorem characterizes the abelian varieties that
arise as the Jacobian of a Picard curve. It is a variation of Lemma 1 in [16], see
Remark 1.4.2.

Proposition 1.4.1 (based on work of Koike-Weng and Estrada). Let X be
a simple principally polarized abelian variety of dimension 3 defined over an
algebraically closed field k. If X has an automorphism ϕ of order 3, then we
have X ∈ J(P). Furthermore, for the curve automorphism ρ(x, y) = (x, z3y),
we get 〈ϕ〉 = 〈ρ∗〉

Proof. Let X be a simple principally polarized abelian variety of dimension 3
with an automorphism ϕ of order 3. By Oort-Ueno [33], every simple principally
polarized abelian variety of dimension ≤ 3 over an algebraically closed field is
the Jacobian of a curve, so let C be a curve with X ∼= J(C).

By Torelli’s Theorem 1.1.1, there is some non-trivial automorphism ν of C
that satisfies ϕ = ±ν∗. Then the automorphism η = ν4 satisfies η∗ = (ν4)∗ =
(±ν)4

∗ = ϕ4 = ϕ, hence by the uniqueness in Torelli’s Theorem 1.1.1 we obtain
that η has order 3.

We conclude that the automorphism η has order 3, so the degree of the
map π : C → C/〈η〉 is also 3, and by the Riemann-Hurwitz formula one obtains
that C/〈η〉 has either genus 0 or 1. But X is simple, so the curve C/〈η〉 is
isomorphic to P1 and π has 5 ramification points.

Then k(C)/k(C/〈η〉) is a Kummer extension of degree 3, hence C is given by
an equation of the form y3 = h(x). By Lemma 7.3 in Estrada [11, Appendix I],
we obtain a model for C given by y3 = f(x) where f has degree 4 and distinct
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roots and η is either the automorphism ρ given by (x, y) 7→ (x, z3y) or its
square.

Remark 1.4.2. While the idea behind the proof is the same in Proposition 1.4.1
and in [16, Lemma 1], the assumptions in [16] are in a way more restrictive,
as Koike and Weng focus on maximal CM Picard curves (see page 33 for a
definition). Moreover, the proof in [16] has a gap, which is fixed exactly by our
reference to Estrada [11, Appendix I].

It follows from Proposition 1.4.1 that one can think of the input in Algo-
rithm 1.3.9 as just a principally polarized abelian threefold with an order-3
automorphism.

1.5 Implementation and some CM examples

In this section we give some indications on how to implement Algorithm 1.3.9
so that it can run in a physical computer. In practice, in the implementa-
tion [45] we truncate the sums of the Riemann theta constants at some hyper-
cube [−B,B]3 ⊆ Z3 and use high precision floating point numbers and several
checks through the implementation to make sure that the output is coherent.

If one of the checks fails or the final computation does not make sense, then
we run the algorithm again for a larger bound B ∈ Z. Alternatively, one could
use interval arithmetic to keep track of the error propagation.

We use the following algorithm to truncate the Riemann theta constants:

Algorithm 1.5.1
Input: A real number b ∈ (0, 1), a period matrix Ω ∈ Hg to arbitrary precision,

and a characteristic c ∈ ([0, 1) ∩Q)2g.
Output: An approximation θb[c](Ω) of θ[c](Ω) that satisfies

|θ[c](Ω)− θb[c](Ω)| < b.

1. Compute B ∈ Z that satisfies

B >

√
− ln b+ g ln(1− e−πλ(Ω))− (g + 1) ln 2− ln g

πλ(Ω)
,

where λ(Ω) is the smallest eigenvalue of the imaginary part of Ω.
2. Let b′ = (2B + 1)−gb/2 and for n ∈ [−B,B]g compute xn that satisfies

| exp(πi t(n+ c1)Ω(n+ c1) + 2πi t(n+ c1)c2)− xn| < b′.

3. Return θb[c](Ω) =
∑

n∈[−B,B]g xn.
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Proof. We will bound |θb[c](Ω)− θ[c](Ω)|. Let X and Y be respectively the real
and imaginary part of Ω, so that we write Ω = X + iY . Every term in the sum
θ[c](Ω) consists of an oscillatory factor F with |F | = 1 and a real exponential
factor, hence we obtain

| exp(πi t(n+ c1)Ω(n+ c1) + 2πi t(n+ c1)c2)| = exp(−π t(n+ c1)Y (n+ c1))

but since Y is symmetric and positive definite we get

| exp(πi t(n+ c1)Ω(n+ c1) + 2πi t(n+ c1)c2)| ≤ exp(−πλ(Ω)||n+ c1||2),

and, for Q = exp(−πλ(Ω)) we have

|θ[c](Ω)− θb[c](Ω)|

≤ (2B + 1)gb′ +
∑

n∈Zg\[−B,B]g

| exp(πi t(n+ c1)Ω(n+ c1) + 2πi t(n+ c1)c2)|

≤ b

2
+

∑
n∈Zg\[−B,B]g

Q||n+c1||2

Note that for n ∈ Z and c ∈ [0, 1) we have

(n+ c)2 ≥

{
n2 if n ≥ 0,

(n+ 1)2 if n ≤ −1.
(1.24)

Then, in order to bound the sum above, we deal with each “quadrant” of Zg
separately. Using the lowerbound in (1.24) we obtain that the sum at each
“quadrant” is bounded by ∑

n1≥B

∑
n2≥0

· · ·
∑
ng≥0

g∏
j=1

Qn
2
j ,

and we obtain

|θ[c](Ω)− θb[c](Ω)| ≤ b

2
+ 2gg

∑
n1≥B

∑
n2≥0

· · ·
∑
ng≥0

g∏
j=1

Qn
2
j

≤ b

2
+ 2gg

∑
n1≥B

Qn
2
1

∑
n2≥0

Qn
2
2

 · · ·
∑
ng≥0

Qn
2
g

 .

(1.25)
If we now apply the bound∑

m≥M
Qm

2 ≤
∑

m≥M2

Qm =
QM

2

1−Q
if |Q| < 1
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to (1.25), then we obtain

|θ[c](Ω)− θb[c](Ω)| ≤ b

2
+ 2gg

QB
2

(1−Q)g
,

which for B as in the statement implies |θ[c](Ω)− θb[c](Ω)| < b.

Then one replaces Step 2 in Algorithm 1.3.9 by the following substeps:
i. For b = 2−5 compute

Θ3,b =

{
x ∈ 1

3
Z6/Z6 : Nx = x and θb[x+D](Ω) < b

}
.

ii. If Θ3,b has more than 15 points, then square b and repeat steps i and ii.

By Algorithm 1.5.1 we have

Θ3 ⊆ Θ3,b,

and for small enough b > 0 we obtain the equality. By Corollary 1.3.7, we obtain
#Θ3,b = 15 in a finite number of steps.

For efficiency, we would like the smallest eigenvalue of the imaginary part
of Ω to be as big as possible, due to its role in the computation of B in Al-
gorithm 1.5.1. Since the isomorphism class of a principally polarized abelian
variety only depends on the orbit of Ω under the action of Sp2g(Z), this can be
achieved by choosing a representative in a certain fundamental domain of Hg.
For this we use the implementation due to Kılıçer–Streng [14] of Algorithm 2
in Labrande-Thomé [18, Section 4.1] on our period matrix before applying Al-
gorithm 1.3.9.

Remark 1.5.2. This was enough to obtain the examples given in this sec-
tion, but it might take too long for other cases. Alternatively, one could use
Labrande’s method [17], which computes Riemann theta functions with charac-
teristics in quasi-linear time.

After numerically approximating the x-coordinates of the branch points of
a Picard curve with Algorithm 1.3.9, we obtain a polynomial

f(x) = x(x− 1)(x− λ)(x− µ) ∈ C[x]

up to some precision, while maybe the curve is actually isomorphic to y3 = h(x)
for a certain polynomial h over a number field.

Given the quartic polynomial

p(x) = x4 + g2x
2 + g3x+ g4 with g2 6= 0
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we define the absolute invariants of p as

j1 =
g2

3

g3
2

, j2 =
g4

g2
2

.

In order to find h from f we compute the absolute invariants of C by com-
puting j1 and j2 for an isomorphic curve of the form y3 = x4 + g2x

2 + g3x+ g4.
We then recognize j1 and j2 as algebraic numbers and reconstruct h from the
exact absolute invariants, obtaining

y3 = h(x) = x4 + j1x
2 + j2

1x+ j2
1j2.

Note that in order to be able to recognize j1 and j2 as algebraic numbers we
have to compute λ and µ with enough precision.

Next we include a list of Picard curves computed with our algorithm. We
define a maximal CM Picard curve as a Picard curve such that its Jacobian has
endomorphism ring isomorphic to the maximal order of a sextic number field K.
Since ρ∗ is an automorphism of order 3, the field K contains a primitive 3rd root
of unity ζ3 ∈ K. In fact, the fieldK is determined by a totally real cubic fieldK0

that satisfies K = K0(ζ3).
In Section 4.1 we explain how to obtain, for a given sextic field K = K0(ζ3),

a complete list of period matrices of principally polarized abelian varieties with
endomorphism ring isomorphic to OK , together with the rational representation
of the corresponding order-3 automorphism ϕ.

Using Algorithm 1.3.9 on the resulting list of pairs (Ω, N), we computed
numerical approximations of some maximal CM curves. Here we present the
resulting Picard curves which are numerically close (and conjecturally equal) to
the maximal CM curves. In Chapter 4 we will see that, in particular, this list
contains conjectural models for all Picard curves defined over Q with maximal
CM over C. The curves (1)–(5) also appear in [16, Section 6.1].

We obtained the following curves:

(1) y3 = x4 − x, with K0 defined by ν3 − 3ν − 1.
(2) y3 = x4 − 2 · 72 x2 + 23 · 72 x− 73, with K0 defined by ν3 − ν2 − 2ν + 1.
(3) y3 = x4 − 2 · 72 · 13x2 + 23 · 5 · 13 · 47x − 52 · 132 · 31, with K0 defined by
ν3 − ν2 − 4ν − 1.
(4) y3 = x4 − 2 · 7 · 31 · 73x2 + 211 · 31 · 47x− 7 · 312 · 11593, with K0 defined
by ν3 + ν2 − 10ν − 8.
(5) y3 = x4− 2 · 7 · 432 · 223x2 + 27 · 11 · 41 · 432 · 59x− 112 · 433 · 419 · 431, with
K0 defined by ν3 − ν2 − 14ν − 8.
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(6) y3 = x4 − 2 · 32 · 52 · 72 x2 + 29 · 72 · 71x− 32 · 5 · 73 · 2621, with K0 defined
by ν3 − 21ν − 28.
(7) y3 = x4 − 22 · 32 · 72 · 37x2 + 5 · 72 · 149 · 257x− 2 · 32 · 52 · 73 · 2683, with
K0 defined by ν3 − 21ν + 35.
(8) y3 = x4−2 ·32 ·52 ·7 ·11 ·13x2 +27 ·11 ·13 ·59 ·149x−32 ·5 ·7 ·132 ·17 ·17669,
with K0 defined by ν3 − 39ν + 26.
(9) For K0 defined by ν3 − ν2 − 6ν + 7, and w3 = 19,

y3 = x4 + (10w2− 2w− 70)x2 + (96w2− 7w− 496)x+ (235w2− 215w− 1101).

(10) For K0 defined by ν3 − ν2 − 12ν − 11, and w3 = 37,

y3 = x4 + (−2366w2 + 490w + 24626)x2 + (−257958w2 − 686928w

+ 5152928)x+ (1226851w2 − 56922233w + 176054907).

(11) For K0 defined by ν3 − 109ν − 436, and w3 = 109,

y3 = x4 +
(
1115888872w2 − 4007074778w − 6321528472

)
x2

+
(
−39141169182336w2 + 294349080537984w − 512926132238464

)
x

+ 816342009554519305w2 − 9276324622428605048w

+ 25684086855493144296.

(12) For K0 defined by ν3 − ν2 − 42ν − 80, and w3 = 127,

y3 = x4 +
(
−92075757704w2 + 319193013538w + 721950578888

)
x2

+
(
− 49404281036538240w2 − 182817463505393280w+

2167183294305193600
)
x+ 21690511027003736433025w2−

118803029086722205449800w + 49134882128483485627800.

(13) For K0 defined by v3 − 61v − 183, we have four curves. The first one is
defined over Q.

y3 = x4 − 2 · 3 · 7 · 612 · 1289x2 + 23 · 37 · 11 · 41 · 53 · 612 x

− 32 · 7 · 112 · 613 · 419 · 4663

y3 = x4 +
(
89264v2 − 547484v − 4059720

)
x2 +

(
− 29558196v2 + 49526073v

+ 772138494
)
x+ 88325678v2 − 16281030326v − 72348132021

(14) For K0 defined by v3 − v2 − 22v − 5, similarly one gets:

y3 = x4 + 2 · 7 · 67 · 179x2 + 23 · 33 · 5 · 67 · 137x+ 52 · 7 · 672 · 71 · 89

y3 = x4 +
(
12222v2 − 263088v − 1290744

)
x2 +

(
− 19721880v2 + 232016400v

+ 1277237160
)
x+ 11453819175v2 − 62791404525v − 447679991475 .
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