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INTRODUCTION

Given an elliptic curve E over C, there exists a lattice A C C such that
the group E(C) of complex points on E' is isomorphic to the complex analytic
group C/A. This link between elliptic curves and one-dimensional complex tori
is called the Uniformization Theorem, and one can explicitly find the curve
corresponding to a given lattice with the Weierstrass o-function, its derivative,
and the Eisenstein series.

Similarly, given an algebraic curve C' of genus g, one associates to it a prin-
cipally polarized abelian variety J(C), the Jacobian of C. Over C, the Jaco-
bian J(C') is isomorphic to a g-dimensional complex torus C9/A for a lattice A
of full rank in CY.

This determines a map J from the set My of isomorphism classes of algebraic
curves of genus g to the set A, of principally polarized abelian varieties of
dimension ¢, and one may wonder if there exists an explicit inverse to this map,
as in the case of elliptic curves. We call this the inverse Jacobian problem.

This problem has been solved for curves of genus 2 [37, 50] and genus 3
[1, 9, 16, 21, 48, 52, 53|. However, for genus g > 4 there is the additional
obstruction that not all principally polarized abelian varieties are Jacobians of
curves, hence in order to solve the inverse Jacobian problem one needs to study
the image by J of My in A,. The problem of describing J(My) is known as the
Riemann-Schottky problem. .

In this thesis we treat these two problems for two families of superelliptic
curves, that is, curves of the form y* = Hézl(x — ;). We focus on the family
of Picard curves, with (k,l) = (3,4) and genus 3, where we solve the inverse
Jacobian problem, and the family of cyclic plane quintic curves (CPQ curves),
with (k,1) = (5,5) and genus 6, where we solve both problems.

In Chapter 1 we first introduce some background on abelian varieties, Jaco-
bians of curves, and Riemann theta constants, and then we present an inverse
Jacobian algorithm for Picard curves. Note that Picard curves have genus 3,
hence there is no obstruction to the inverse Jacobian problem.

Since Picard curves are plane quartic curves, the inverse Jacobian problem
for Picard curves could be solved using the formulas for plane quartics given
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in [52], but focusing on a smaller family of curves allows us to present a more
efficient solution for the family of interest.

This was originally done by Koike and Weng in [16], but their exposition
presents some mistakes that we address and correct here. This chapter is based
on joint work with Joan-Carles Lario, see also [21].

In Chapter 2 we present an inverse Jacobian algorithm for CPQ curves. We
follow a strategy analogous to the one in Chapter 1 for the case of Picard curves.

In Chapter 3 we address the Riemann-Schottky problem for CPQ curves,
that is, we characterize the principally polarized abelian varieties that are Ja-
cobians of CPQ curves. First we use a generalization of the classical theory of
complex multiplication due to Shimura [39] to study how the existence of the au-
tomorphism of CPQ curves (z,y) — (x,exp(27i/5)y) affects the structure of the
Jacobians. Then we solve a class number one problem for higher-dimensional
Hermitian lattices over Z[(5], which is key to solving the Riemann-Schottky
problem for CPQ curves.

Finally, in Chapter 4 we present one application for the above algorithms:
constructing curves such that their Jacobians have complex multiplication. This
has previously been done for genus 2 |51, 47| and genus 3 [1, 13, 16, 21, 53|. Here
we extend the methods of Kiliger [12] to determine a complete list of CM-fields
whose ring of integers occurs as the endomorphism ring over C of the Jacobian
of a CPQ curve defined over Q.

In particular, this allows us to list conjectural models for all CPQ curves
over Q whose Jacobians have the maximal order of a degree-12 CM-field as
endomorphism ring over C. Our list contains the correct number of curves,
which are defined over Q and numerically correct up to high precision.



