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ABSTRACT
Background
Eosinophils are a prominent cell type in the host response to helminths, and some 

evidence suggests that neutrophils might also play a role. However, little is known about 

the activation status of these granulocytes during helminth infection. 

Methods
We analysed the expression of eosinophil and neutrophil activation markers in peripheral 

blood by flow cytometry, and measured serum levels of eosinophil granule proteins in 

300 subjects residing in an area endemic for soil-transmitted helminths (STH). The data 

generated are on samples before and after 1 year of 3-monthly albendazole treatment. 

Results
Anthelmintic treatment significantly reduced the prevalence of STH. While eosinophil 

numbers were significantly higher in STH-infected subjects compared to those uninfected 

and significantly decreased following albendazole treatment, there was no effect exerted 

by the helminths on either eosinophil nor neutrophil activation. Although at baseline, 

eosinophil granule protein levels were not different between STH-infected and uninfected 

subjects, treatment significantly reduced the levels of eosinophil-derived neurotoxin (EDN) 

in those infected at baseline. 

Conclusions
These results show that besides decreasing eosinophil numbers, anthelmintic treatment 

does not significantly change the activation status of eosinophils, nor of neutrophils, and 

the only effect seen was a reduction on circulating levels of EDN.

Clinical trial registration
http://www.isrctn.com/ISRCTN75636394

INTRODUCTION
Eosinophilia is a well-known hallmark of helminth infections. While these bone marrow-

derived, innate cells reside primarily in the tissues where they can survive up to two weeks 

(1), elevated frequencies are found in peripheral blood during helminth infections and, 

to a lesser extent, in allergic diseases. Although in vitro, eosinophils have been shown to 

be able to kill helminths (2-5), their role during helminth infections remains uncertain, as 

in vivo depletion of eosinophils has shown inconclusive results regarding their protective 

efficacy (6), and helminths such as Trichinella larvae, appear to benefit from the presence of 

eosinophils (7, 8). Furthermore, eosinophils are increasingly being recognized as cells that 

contribute to tissue, metabolic and immune homeostasis (9). Adipose tissue eosinophils 

for example, play a crucial role in maintaining insulin sensitivity through the secretion of 

the cytokines IL-4 and IL-13 (10). 

Whereas increased eosinophil concentrations are characteristic of helminth infections, 

it is the activation status of these cells that drives the eosinophil mediated effects (11). 

Eosinophils can exist in different states of activation, and this is reflected by the expression 

of certain surface markers and by the increased serum levels of eosinophil-specific granule 

proteins. Upon recruitment to inflammatory sites, eosinophils alter the expression of 

a number of surface molecules that are involved in tethering, rolling along and adhesion to 

endothelial cells, followed by trans-endothelial migration into the tissue (12). The presence 

of these surface molecules (e.g. CD11b, CD35, CD69, CD66b and CD62L) on peripheral 

blood eosinophils is a useful indicator of cellular activation, during both helminth 

infections (13-15) and allergic diseases (16-19). Moreover, eosinophils respond to eotaxin, 

a chemokine responsible for eosinophil recruitment into tissues, by upregulating CD11b 

and shedding CD62L (20, 21).

Upon eosinophil degranulation, cytotoxic proteins including major basic protein (MBP), 

eosinophil cationic protein (ECP), eosinophil-derived neurotoxin (EDN) and eosinophil 

peroxidase (EPO) are released from secondary granules, and increased serum levels of 

these granule proteins are also considered to be a measure of eosinophil activation (19).

While neutrophils are known primarily for their potent anti-bacterial properties through 

the secretion of their granule proteins such as myeloperoxidase (MPO), they have also 

been shown to kill helminth larvae (22-24), and levels of MPO were significantly elevated 

in subjects infected with Strongyloides stercoralis (25) indicating that neutrophils can also 

become activated during helminth infections. Similar to eosinophils, neutrophil activation 

is associated with the upregulation of several surface molecules including CD11b, CD35, 

CD66b and the shedding of CD62L (16, 18). Although the expression of these markers and 

their upregulation or shedding in response to N-Formyl-Met-Leu-Phe (fMLF) have been 

used as a very sensitive measure of neutrophil (pre-)activation in patients with allergic 

asthma (16-18), it has never been studied in the context of helminth infections. 

In this study, we assessed the effect of helminth infections on the activation status and 

responsiveness of both eosinophils and neutrophils. Although previous work has shown 
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that helminth infections are associated with increased eosinophil activation by assessing 

either activation markers (13-15) or eosinophil granule proteins (11, 25-28), these studies 

often had a cross-sectional design, a relatively small sample size, and did not assess 

eosinophil responsiveness. To this end, we measured the expression of eosinophil and 

neutrophil activation markers by flow cytometry,  both ex vivo and after in vitro stimulation, 

in subjects infected with soil-transmitted helminths (STH), before and after 1 year of 

anthelmintic treatment. In addition, serum levels of eosinophil granule proteins were 

assessed. This study is part of a large cluster-randomized, placebo-controlled trial (29) 

and therefore the first placebo-controlled trial investigating the effect of helminths on 

granulocyte activation.

METHODS
Study design
This report describes a nested study within the SugarSPIN trial (29), a household-based 

cluster-randomized double-blind trial that was conducted in Nangapanda, Ende district 

of Flores Island (East Nusa Tenggara), Indonesia. After randomisation, all study subjects 

received either a single tablet of albendazole (400 mg) or matching placebo (tablets from 

PT Indopharma Pharmaceutical, Bandung, Indonesia) for three consecutive days under 

direct supervision from the research team members. This treatment regimen was given 

every three months for a total of four rounds (maximum of 12 tablets in total), between 

May 2014 and February 2015. 

Although the study was aimed at subjects aged 16 and above, all subjects in the study 

area, except children below 2 years of age and pregnant women, were included in 

the trial to avoid cross-contamination between household members. Subjects aged 16 

and above underwent clinical and laboratory examination, excluding subjects with active 

treatment for diabetes mellitus and serious concomitant diseases. Written informed 

consent was obtained from participants prior to the study. The study was approved by 

the ethics committee of the Faculty of Medicine, Universitas Indonesia (FKUI) (ref: 549/

H2·F1/ETIK/2013), and filed by the ethics committee of Leiden University Medical Center 

(LUMC), the Netherlands. The trial is registered as a clinical trial (Ref: ISRCTN75636394).

Study population
The randomization for the total study was based on 752 households comprising 

3698 individuals, resulting in 1825 (377 houses) and 1741 (375 houses) subjects in 

the placebo and albendazole group, respectively (Supplementary Figure S1). An additional 

randomization was performed on the 2406 subjects aged 16 and above, in order to study 

immune mechanisms in more detail (29). For this subgroup, we aimed to select one 

subject per household and stratified by age group (16-36 years, 36-56 years, and >56 

years) to ensure that sufficient numbers of all groups were represented. Randomization 

was based on households. This resulted in a total of 300 subjects who were included for 

immunological studies (152 subjects on placebo and 148 subjects in albendazole group) 

and randomly selected, paired samples from 195 subjects were subsequently used for flow  

cytometric analysis. 

We also collected venous blood of 9 healthy volunteers which had not been exposed 

to helminth infections, hereafter referred to as “Europeans”. We used the whole blood 

samples for flow cytometric analysis to assess granulocyte phenotype and response in 

naïve subjects.

Parasitological examination
Fresh stool samples were frozen at -20°C in the field centre and subsequently at -80°C 

at the Department of Parasitology of FKUI. Stool DNA isolation and real-time PCR were 

performed pairwise (baseline and follow-up). DNA isolation from stool was performed as 

described elsewhere (30, 31). Multiplex real-time polymerase chain reaction (PCR) was 

performed to simultaneously detect the presence of hookworm (Ancylostoma duodenale, 

Necator americanus), Ascaris lumbricoides, Trichuris trichiura, and Strongyloides stercoralis, 

using a method described previously (30). Stool samples were considered positive by PCR 

when cycle threshold (Ct) values were <50. Since the prevalence of S. stercoralis at baseline 

appeared to be very low (1.4% (4/284)), this species was not included in the analysis.

Sample collection
Blood samples were collected and processed as previously described (29, 32). Briefly, from 

each subject 3 polystyrene tubes containing 200 μL of heparinised venous blood were 

pre-incubated for 5 minutes in a 37°C waterbath, followed by a 5 minute-stimulation at 

37°C with fMLF (10−5 M; Sigma, Saint Louis, MO, USA) or eotaxin (10−7 M; R&D systems, 

Abingdon, UK) or left unstimulated. While both Indonesian and European blood samples 

were stimulated with fMLF, stimulation with eotaxin was only applied to Indonesian 

samples. Subsequently, 4 mL of FACS lysing solution (BD Biosciences) was added and 

after an incubation period of 15 minutes at room temperature, cells were washed with 

RPMI 1640 containing 10% heat-inactivated foetal calf serum (FCS) and resuspended in 

RPMI 1640 containing 10% FCS and 10% dimethyl sulfoxyde (DMSO). Cryovials containing 

the cell suspension were placed at -80°C for a minimum of 4 hours, followed by storage in 

liquid nitrogen until analysis. 

Flow cytometry of granulocyte surface markers
While flow cytometric analysis of the samples was randomly divided over multiple 

measurement days, all samples belonging to one individual were thawed, stained 

and measured pairwise (baseline and follow-up) on the same day. After thawing, cells 

were washed in RPMI 1640 containing 10% FCS and resuspended in FACS buffer (PBS 

supplemented with 0.5% BSA and 2 mM EDTA). Cells were counted using microscopy and 

500.000 white blood cells were stained for 30 minutes at 4°C with anti-CD35-FITC (E11, 
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Biolegend), anti-CD66b-PerCP/Cy5.5 (G10F5, Biolegend), anti-CD193-PE (5e, Biolegend), 

anti-CD16-PE/CF594 (3G8, BD Biosciences), anti-CD69-PE/Cy5 (FN50, Biolegend), 

anti-CD274-PE/Cy7 (MIH1, eBioscience), anti-CD3/CD19/CD20/CD56-APC (UCHT1, 

HIB19, 2H7, 5.1H11, Biolegend), anti-CD11b-APC/eF780 (ICRF44, eBioscience), anti-

CD203c-BV421 (NP4D6, Biolegend), anti-CD14-BV510 (M5E2, Biolegend), anti-CD62L-

BV605 (DREG-56, BD Biosciences). Antibody dilutions can be found in Supplementary  

Table S1. For each antibody, a fluorescence-minus-one (FMO) control sample was included 

using pooled cells from different subjects. Cells were acquired on a LSR Fortessa flow 

cytometer (BD Biosciences) and before each measurement a performance run was 

conducted with cytometer setup and tracking (CS&T) beads (BD Biosciences). Data was 

analysed in FlowJo software (version 9.9.3) and median fluorescence intensity (MFI) data 

are displayed. Representative gating schemes to select eosinophil and neutrophils are 

shown in Supplementary Figure S2. As all cells of each sample were acquired, the absolute 

number of eosinophils and neutrophils which was analysed, would differ per sample.

After gating all leukocyte populations (eosinophils, neutrophils, basophils, monocytes, 

lymphocytes), percentages of eosinophils and neutrophils were calculated relative 

to the total amount of white blood cells. The absolute eosinophil count (AEC) reflects 

the number of eosinophils in 200 µl blood, and was calculated using the proportion of 

eosinophils and the white blood cell count after thawing. 

As described previously (32), the detection of CD62L on eosinophils was impaired as 

a result of fixation and this marker was therefore not included in the analysis as activation 

marker for eosinophils. 

Serum eosinophil granule proteins
The serum concentrations of eosinophil granule proteins, MBP, ECP, EDN and EPO were 

measured in a suspension array assay in multiplex as previously described (33). As the levels 

of EPO were below the limit of detection of 6 ng/ml in every sample, this protein was 

excluded from analysis. Eosinophil granule proteins were measured in the total subgroup 

selected for immunological studies (300 and 258 subjects at baseline and follow up, 

respectively). In 5/558 samples, one of the proteins could not be detected while in 1/558 

samples, neither MBP, ECP, nor EDN could be detected. 

Statistical analysis
For continuous variables, normally distributed data were presented as mean and standard 

deviation, while non-normally distributed data (eosinophil count, total IgE, eosinophil 

granule proteins and eosinophil activation markers) were presented as geometric mean 

and 95% confidence interval, and log-transformed for analyses. Categorical data such as 

infection prevalence were expressed as proportions. Comparisons between STH-infected 

and uninfected subjects at baseline were performed with Student’s t test. Comparisons 

between Indonesian STH-infected, Indonesian uninfected and European subjects were 

performed with ANOVA followed by Tukey’s multiple comparisons test. ANOVA followed 

by a Dunnett’s multiple comparison test was used to test granulocyte counts after 

stratifying subjects by helminth species. To determine the relationship between serum 

levels of eosinophil granular proteins and eosinophil counts Spearman’s rank correlation 

was used. Paired t tests were performed to assess the responsiveness of granulocytes to 

eotaxin or fMLF. P values < .05 were considered statistically significant.

The effect of anthelmintic treatment on eosinophil counts, eosinophil granule proteins 

and eosinophil activation markers was assessed using an intention-to-treat approach, 

applying mixed models to account for the correlation within households. Two random 

effects were used: to model clustering within households a random household specific 

intercept was used and to model correlation within subjects random subject-specific 

intercept was used. Parameter estimates for treatment effect and 95% CIs were reported. 

The reported p values were obtained using a likelihood ratio test comparing the model 

with and without the treatment effect. For the binary outcome (helminth infection status), 

a logistic model was used with random household effects and random subject effects. All 

models were fitted using the lme4 package (R software). 

RESULTS
Study population
At baseline, 300 subjects were included for immunological studies (152 subjects 

and 148 subjects in the placebo and the albendazole group respectively)  

(Supplementary Figure S1). The loss to follow up was 14% which was mainly due to 

movement out of the village. Baseline characteristics of the study participants are shown in 

Table 1, while details of a subset of the study population (n=195), used to study granulocyte 

activation markers by flow cytometry can be found in Supplementary Table S1. 

At baseline 59.2% (168/284) of the individuals were infected with one or more helminth 

species, with hookworm infection being the most prevalent. In all subjects treated with 

albendazole in the SugarSPIN trial, the prevalence of helminth infection was 55.4% before, 

and 11.3% after treatment (30). Similar to this result, we observed that albendazole 

treatment reduced the percentage of subjects with any helminth (55.9% (80/143) to 9.2% 

(11/120) in the albendazole arm vs 62.4% (88/141) to 51.2% (62/121) in the placebo arm,  

P < .0001). The highest reduction was seen for hookworm, followed by A. lumbricoides 

and T. trichiura infection (Supplementary Figure S3).

Granulocyte counts in peripheral blood
At baseline, the frequency of eosinophils in whole blood was significantly higher in 

infected subjects compared to non-infected subjects (Geomean (95% CI), STH+ 7.0 

(6.3-7.8)% vs STH- 5.5 (4.7-6.5)%, P = .01) (Figure 1A). Irrespective of coinfection with 

other helminths, subjects infected with hookworm showed the highest eosinophil counts 

(7.9 (6.9-8.9)%) (Figure 1A). As observed in the whole SugarSPIN trial (34), anthelmintic 
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treatment effectively reduced eosinophil counts, especially in those infected with 

helminths at baseline (Estimated treatment effect (95% CI), -0.187 (-0.258 – -0.117),  

P = .01) (Figure 1C). Neutrophil counts did not differ between uninfected and infected 

subjects at baseline (P = 0.59, Figure 1B). Interestingly, albendazole treatment significantly 

increased the frequency of neutrophils in peripheral blood in those who were infected 

with helminths at baseline (0.041 (0.017 – 0.066), P < .01)  (Figure 1D). While Europeans 

exhibited significantly lower eosinophil frequencies (Geomean (95% CI), 1.9 (0.9-3.7)%) 

compared to Indonesians, irrespective of current helminth infections, similar frequencies 

of neutrophils were observed (53 (45-62)%). 

Eosinophil activation status and responsiveness
At baseline, the intensity of the eosinophil activation markers CD11b, CD35, CD66b and 

CD69 was similar in STH-infected and uninfected subjects (Table 2). Albendazole treatment 

did not influence the expression of these markers (Table 3). Neither at community level, 

nor when analysing subjects with helminth infection as baseline. The comparison with 

Europeans revealed a lower intensity of CD35 in Indonesian subjects, both STH-infected 

and uninfected, while other markers did not differ (Table 2).

Whole blood stimulated with eotaxin or fMLF was used to assess the responsiveness 

of eosinophils. The intensity of CD11b, CD35, CD66b and CD69 on eotaxin- or fMLF-

stimulated eosinophils did not differ between uninfected subjects and those infected with 

helminths at baseline (Supplementary Figure S4 A-B). Moreover, albendazole treatment did 

not affect the responsiveness (data not shown). Interestingly, not all individuals responded 

to eotaxin or fMLF by upregulating the activation markers. In half of the subjects, there 
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Figure 1. Granulocyte counts. Percentage of eosinophils (A) and neutrophils (B) relative to 
the total number of white blood cells (WBC). Counts at baseline are shown displaying geomeans 
and corresponding 95% confidence intervals (STH- n=73, STH+ n=118, Al+ n=42, Hw+ n=81, Tt+ 
n=61). The effect of anthelmintic treatment eosinophil (C) and neutrophil (D) counts is displayed with 
the corresponding 95% confidence intervals (n=195). Differences between STH- and STH+ subjects 
were tested with Student’s t test. Differences between STH-, Al+, Hw+ and Tt+ subjects were tested 
with ANOVA followed by a Dunnett’s multiple comparison test. Treatment effect was assessed using 
mixed models (see Methods). *P <.05; **P <.01; n.s. not significant; STH Soil-transmitted helminths; 
Al A. lumbricoides; Hw Hookworm; Tt T. trichuria. 

Table 2. Expression of granulocyte activation markers at baseline.

STH- (n=73) STH+ (n=118) EU (n=9)

Eosinophils

CD11b 1444 (1337-1559) 1376 (1297-1459) 1700 (1551-1864)
CD35 3269 (3144-3435) 3254 (3150-3360) 3915 (3688-4155)a,b

CD66b 2100 (2031-2172) 2055 (2004-2108) 2046 (1825-2295)
CD69 783 (735-834) 772 (737-809) 677 (632-725)

Neutrophils

CD11b 1151 (1107-1196) 1172 (1141-1203) 1387 (1238-1554)a,b

CD35 1571 (1457-1695) 1618 (1519-1722) 1413 (1101-1816)
CD66b 581 (553-609) 592 (568-617) 590 (532-654)
CD62L 748 (676-827) 788 (726-856) 1358 (1262-1462)a,b

Geomean of MFI and corresponding 95% confidence intervals are shown. a P <.05 analysed using ANOVA Tukey 
statistical test for comparison with Indonesian STH- subjects. b P <.05 analysed using ANOVA Tukey statistical 
test for comparison with Indonesian STH+ subjects. STH soil-transmitted helminths.

Table 1. Baseline characteristics of the study population.

n Placebo n Albendazole

Age (mean in years, SD) 151 46.7 (13.4) 148 46.2 (16.2)
Sex (female, n, %) 151 100 (66.2) 148 86 (58.1)
BMI (kg/m2) (mean, SD) 149 23.1 (4.2) 147 22.5 (4.2)
Total IgE (IU/mL) (GM, 95% CI) 150 663 (506-870) 148 672 (514-878)
Eosinophil count* (GM, 95% CI) 148 5.5 (4.9-6.2) 146 6.1 (5.5-6.8)
MBP (ng/mL) (GM, 95% CI) 150 978 (859-1154) 147 969 (830-1132)
ECP (ng/mL) (GM, 95% CI) 150 908 (756-1124) 147 935 (786-1111)
EDN (ng/mL) (GM, 95% CI) 149 346 (295-408) 147 380 (326-442)
Helminth infection by PCR (n,%) 141 88 (62.4) 143 80 (55.9)
A. lumbricoides 141 36 (25.5) 143 22 (15.4)
Hookworm 141 62 (44.0) 143 53 (37.1)
T. trichuris 141 50 (35.5) 143 36 (25.2)

*Determined by using a Giemsa-stained peripheral thin blood smear. Abbreviations: BMI body mass index; ECP 
eosinophil cationic protein; EDN eosinophil-derived neurotoxin; GM geometric mean; IgE immunoglobulin; MBP 
major basic protein; PCR polymerase chain reaction; SD standard deviation.
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was an increase in the MFI of the activation markers whereas in the other half the MFI of 

markers decreased after stimulation (Supplementary Figure S4 C-D). Of note, in those 

who had a low intensity of markers before stimulation, the expression of the markers 

went up whereas the opposite was seen in subjects who had a high marker expression 

(Supplementary Figure S4 C-D). However, this observation could not be associated with 

the infection status, since in both infected and uninfected subjects the same was seen. In 

Europeans, most subjects responded to fMLF by upregulating the activation markers, also 

reflected in a stronger responsiveness (Supplementary Figures S4 B).

Neutrophil activation status and responsiveness
We found no difference in the expression levels of neutrophil activation markers (CD11b, 

CD35, CD66b, CD62L) between STH-infected and uninfected subjects at baseline  

(Table 2), and treatment did not alter the intensity of these markers (Table 3). When compared 

to Europeans, levels of both CD11b and CD62L were lower in Indonesians, irrespective of 

their current infection status (Table 2). Although neutrophils strongly responded to fMLF 

by upregulating CD11b, CD35 and CD66b, while shedding CD62L, the responsiveness 

was similar in all subjects, irrespective of their helminth infection status (Supplementary  

Table 3. The effect of anthelmintic treatment on granulocyte activation markers.

All (n=195) STH- (n=73) STH+ (n=118)

Eosinophils Estimated treatment effect (95% CI), p value

CD11b 0.024 (-0.010-0.058), 
p=0.18

0.012 (-0.045-0.069), 
p=0.69

0.039 (-0.005-0.082), 
p=0.09

CD35 0.009 (-0.006-0.024), 
p=0.23

0.008 (-0.018-0.034), 
p=0.54

0.015 (-0.004-0.034), 
p=0.13

CD66b 0.003 (-0.008-0.014), 
p=0.55

0.004 (-0.016-0.024), 
p=0.73

0.007 (-0.007-0.020), 
p=0.32

CD69 -0.016 (-0.038-0.007), 
p=0.19

-0.029 (-0.067-0.009), 
p=0.14

0.003 (-0.026-0.031), 
p=0.86

Neutrophils

CD11b 0.003 (-0.018-0.023), 
p=0.81

0.021 (-0.014-0.055), 
p=0.25

-0.007 (-0.032-0.018), 
p=0.60

CD35 -0.010 (-0.041-0.021), 
p=0.53

0.001 (-0.058-0.061), 
p=0.96

-0.010 (-0.045-0.025), 
p=0.59

CD66b 0.015 (-0.002-0.032), 
p=0.09

0.023 (-0.006-0.052), 
p=0.12

0.010 (-0.012-0.032), 
p=0.39

CD62L 0.029 (-0.029-0.087), 
p=0.33

0.053 (-0.041-0.146), 
p=0.27

-0.009 (-0.082-0.065), 
p=0.82

Treatment effect was assessed using mixed models (see Methods). Estimated treatment effects are displayed 
with the corresponding 95% confidence intervals. P values were obtained using a likelihood ratio test comparing 
the model with and without the treatment effect. STH soil-transmitted helminths.

Figure S5). Albendazole treatment did not affect neutrophil responsiveness (data not 

shown). When neutrophils in Europeans were considered, the responsiveness was more 

marked compared to Indonesians (Supplementary Figure S5). 

Eosinophil granule proteins
Serum levels of MBP, ECP and EDN were similar in STH-infected and uninfected 

subjects at baseline (Geomean, (95% CI), MBP, STH+ 979 (864-1156) ng/ml vs STH- 910 

(766-1063) ng/ml, P = .52; ECP, STH+ 892 (748-1077) ng/ml vs STH- 920 (764-1129)  

ng/ml, P = .82; EDN, STH+ 362 (313-423) ng/ml vs STH- 353 (297-419) ng/ml, P = .83)  

(Figure 2A). No relation was found between protein concentrations and different 

helminth species or the total number of helminth species a subject was infected with 

(data not shown). Levels of EDN correlated with absolute eosinophil counts (AEC) 

at baseline (r=0.54, P < .01), however, the correlation coefficient for MBP, although 

statistically significant, was weak (MBP: r = 0.27, P < .01) and when considering ECP no 

correlation could be found with eosinophil counts (ECP: r = 0.03, P = .69) (Supplementary  

Figure S6). Albendazole treatment decreased the level of MBP (Estimated treatment effect 

(95% CI), -0.070 (-0.124 – -0.015), P = .01) and EDN (-0.060 (-0.121 – 0.0002), P = .05), 
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whereas the level of ECP did not change (0.006 (-0.078-0.090), P = .93) at community 

level (Figure 2B). When analysing those infected with helminths at baseline, EDN levels 

significantly decreased after treatment (-0.093 (-0.172 – -0.013), P = .02). 

DISCUSSION
Eosinophil numbers are associated with helminth infections. We hypothesized that not only 

eosinophil numbers, but also their activation status would be affected by the presence of 

helminths. As a measure of activation, a range of activation markers in peripheral blood 

eosinophils and neutrophils were assessed, as well as the responsiveness to stimulation. 

In addition, circulating levels of eosinophil granule proteins were measured as a marker 

for the activation status of eosinophils, not only in blood but also in tissues. This study 

was nested within a cluster-randomized, double-blind placebo-controlled trial, conducted 

in a rural area in Indonesia (29). To our knowledge, this is the first placebo-controlled trial 

studying the effect of helminth infections on granulocyte activation and derives strength 

from its design and large sample size. 

Although the number of eosinophils was higher in STH-infected compared to uninfected 

subjects and decreased significantly after albendazole treatment, the intensities of 

eosinophil, as well as neutrophil, activation markers were not affected by helminths and 

did not change upon anthelmintic treatment. This is in contrast to what has been reported 

(11, 13-15, 25-28). Previously, Mawhorter et al. showed an elevated percentage of CD69, 

CD66 and CD81 positive eosinophils in 18 subjects recruited in the USA, infected with one 

or more species of seven helminths, and found CD66 to be decreased in the five subjects 

that were followed after short term anthelmintic treatment (13). In a study conducted 

in Brazil, the observation that the frequency of CD23+ eosinophils was increased while  

that of CD62L+ cells was decreased in subjects infected with Schistosoma mansoni, 

led to the conclusion that eosinophils were chronically activated during infection (15). 

However, this conflicted with a lower frequency of CD69+ eosinophils, indicating little 

early activation of eosinophils (15). In another study in Brazil, Fujiwara et al. demonstrated 

a highly activated state of eosinophils in subjects infected with hookworms compared to 

uninfected individuals (14). None of these studies, in contrast to ours, included uninfected 

subjects from the endemic regions. Moreover, they included a relatively small number 

of study subjects (varying from 23 to 35 individuals), and perhaps more importantly, 

the antibody staining was directly performed on fresh blood. As we were limited by 

the infrastructure at the field study site with no direct access to a flow cytometer, we 

developed a method to analyse granulocyte activation markers in cryopreserved, fixed 

whole blood (32). As previously described, it was observed that marker intensities varied 

when comparing fresh and fixed granulocytes, most likely due to intracellular staining 

and increased eosinophil autofluorescence as a consequence of fixation (32). However, 

we showed that the responsiveness to stimuli could still be clearly measured after 

fixation. Nevertheless, it is possible that the use of fresh cells allows smaller differences  

to be detected. 

By taking along European subjects, we could compare the results with naïve eosinophils 

and neutrophils from individuals with lower exposure to microorganisms and helminths. 

The eosinophils from Indonesians had a lower expression of the activation marker CD35 

and a lower responsiveness to fMLF. With respect to neutrophils, there was an interesting 

observation that both CD62L and CD11b showed a lower expression in Indonesians. While 

lower CD11b on neutrophils from Indonesians would indicate a lower activation status of 

these cells, the lower expression of CD62L, which is shed by activated neutrophils, would 

suggest a higher activation status of neutrophils in Indonesians, contradicting the CD11b 

data. However, the loss of CD62L has also been associated with aged neutrophils (35) 

and therefore, it is possible that in Indonesia, the higher exposure of the granulocytes to 

microbes or inflammation, results in more aged granulocytes with lower responsiveness. 

Indeed, this is supported by the lower activation of neutrophils from Indonesian subjects 

by fMLF compared to the response of neutrophils from Europeans. However, future studies 

are needed to clarify this further. 

Whereas the expression of activation markers was assessed in circulating eosinophils, 

mature eosinophils are predominantly tissue dwelling cells and serum levels of eosinophil 

granule proteins are thought to be an indirect measure of degranulation in the tissues. 

MBP, being stored in the core of secondary granules is the most abundant protein and 

its release is toxic to helminths (1). EDN and ECP, also known as RNase 2 and RNase 3 

respectively, both have ribonuclease activity and can be found in the granule matrix (1). 

Whereas ECP is cytotoxic to helminth larvae, EDN seems to be less efficient in killing 

helminths (2). In contrast to our hypothesis, we observed no differences in the levels of 

eosinophil granule proteins between helminth infected and uninfected subjects. It should 

be noted that the study area was highly endemic for STH infections (36) and perhaps 

exposure to an environment contaminated with parasite eggs or infective larvae can lead 

to altered eosinophil homeostasis and maturity/activation, thereby masking the potential 

difference between currently infected and uninfected subjects. 

Elevated eosinophil cationic protein levels have previously been described in subjects 

infected with filaria (Onchocerca volvulus (26), Loa Loa (37), Wuchereria bancrofti (26)), 

soil-transmitted helminths (A. lumbricoides (27), hookworm (27), and S. stercoralis (25)) 

and S. mansoni (26, 28). Whereas most studies had a cross-sectional design, two reports 

described a significant decline in granular protein levels in subjects infected with S. 

mansoni or S. stercoralis, respectively, after anthelmintic treatment, indicating a decrease 

in eosinophil degranulation (25, 28). In our study, albendazole treatment significantly 

decreased EDN levels in subjects that were infected at baseline, whereas the levels of 

MBP and ECP did not change. Out of the three proteins, EDN also showed the strongest 

correlation with the number of eosinophils at baseline and therefore its decrease is likely 

to reflect the decrease in eosinophil numbers after treatment.

The aim of this study was to investigate the effect of soil-transmitted helminths on 

granulocyte activation. Based on our results, we can conclude that helminths affect 

eosinophil numbers in the circulation, but the activation status and responsiveness of 
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these cells is similar between infected and uninfected subjects, and was not influenced 

by anthelmintic treatment. The same applies to neutrophils. However, this study should 

be repeated in an endemic setting with access to a flow cytometer that would allow 

the analysis of fresh granulocytes to assess activation of these cells, as fixing cells might 

not allow subtle differences to be detected between helminth infected and uninfected or 

before and after treatment. 
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Supplementary Figure S3. The effect of albendazole treatment on the prevalence of soil-transmitted 
helminths. Percentage of helminth-infected subjects at baseline and following treatment, in placebo 
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Supplementary Figure S4. Eosinophil responsiveness to eotaxin and fMLF. Median fluorescent 
intensity (MFI) of CD11b, CD35, CD66b and CD69 of eosinophils left unstimulated (-) and after 
stimulation with eotaxin (A, C) or fMLF (B, D). Indonesian subjects were either stratified by helminth 
infection (A,B; STH- (n=73) vs STH+ (n=118)) or by responsiveness (C,D; ΔMFI <0 vs ΔMFI >0). 
Europeans were not included in D, as most responded to fMLF. Geomeans and corresponding 95% 
confidence intervals are shown. Differences between before and after stimulation were tested with 
paired t tests. Differences between ΔMFI <0 and ΔMFI >0 before stimulation were tested by unpaired 
t tests. *P <.05; **P <.01; n.s. not significant; STH Soil-transmitted helminths.
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Supplementary Figure S5. Neutrophil responsiveness. Median fluorescent intensity (MFI) of CD11b, 
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and corresponding 95% confidence intervals are shown. Differences between before and after 
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Supplementary Figure S6. Association between eosinophil granule proteins and eosinophil counts. 
Major basic protein (MBP), eosinophil cationic protein (ECP) and eosinophil derived neurotoxin (EDN) 
concentrations in serum at baseline and their association with absolute eosinophil counts (AEC). 
Spearman’s rank correlation was used for statistical analysis (n=195). 

Supplementary table S1. Antibody panel used for flow cytometry

Fluorochrome Specificity Clone Vendor Cat.no. Dilution
Stock conc. 
(µg/mL)

FITC CD35 E11 Biolegend 333404 300x 200
PerCP-Cy5.5 CD66b G10F5 Biolegend 305107 100x 50
PE CD193 5e8 Biolegend 310705 100x 100
PE-CF594 CD16 3G8 BD Biosciences 562320 4000x 100
PE-Cy5 CD69 FN50 Biolegend 310907 50x 20
PE-Cy7 CD274 MIH1 eBioscience 25-5983-41 80x 50
APC CD3, CD19, 

CD20, CD56
UCHT1, HIB19, 
2H7, 5.1H11

Biolegend 363601 150x 5, 6.25, 
1.5, 17.5

APC-eF780 CD11b ICRF44 eBioscience 47-0118-41 100x 50
BV421 CD203c NP4D6 Biolegend 324611 100x 25
BV510 CD14 M5E2 Biolegend 301841 100x 150
BV605 CD62L DREG-56 BD Biosciences 562720 100x 50

Supplementary table S2. Baseline characteristics of a subset of the study population, used to study 
granulocyte activation markers by flow cytometry.

n Placebo n Albendazole

Age (mean in years, SD) 94 48.6 (12.4) 101 47.4 (15.6)
Sex (female, n, %) 94 64 (68.1) 101 58 (57.4)
BMI (kg/m2) (mean, SD) 93 23.3 (4.2) 100 22.5 (4.4)
Total IgE (IU/mL) (GM, 95% CI) 94 547 (376-794) 101 572 (410-797)
Eosinophil count (GM, 95% CI) 94 6.3 (5.6-7.1) 101 6.5 (5.6-7.5)
MBP (ng/mL) (GM, 95% CI) 93 816 (691-1010) 101 966 (814-1146)
ECP (ng/mL) (GM, 95% CI) 93 758 (610-981) 101 836 (698-1000)
EDN (ng/mL) (GM, 95% CI) 92 403 (238-352) 101 376 (316-448)
Eosinophil activation markers

	 CD11b (GM, 95% CI)

	 CD35

	 CD66b

	 CD69

94

94

94

94

1451 (1362-1547)

3270 (3155-3391)

2103 (2047-2160)

791 (752-833)

101

101

101

101

1366 (1276-1462)

3267 (3147-3391)

2046 (1988-2105)

762 (723-804)
Neutrophil activation markers

	 CD11b (GM, 95% CI)

	 CD35

	 CD66b

	 CD62L

94

94

94

94

1188 (1155-1222)

1679 (1107-1181)

601 (576-628)

747 (678-823)

101

101

101

101

1143 (1107-1181)

1532 (1436-1635)

577 (552-602)

794 (729-864)
Helminth infection by PCR (n,%) 91 63 (69.2) 100 55 (55.0)
	 A. lumbricoides 91 26 (28.6) 100 16 (16.0)
	 Hookworm 91 44 (48.4) 100 37 (37.0)
	 T. trichuris 91 34 (37.4) 100 27 (27.0)

Abbreviations: BMI body mass index; ECP eosinophil cationic protein; EDN eosinophil-derived neurotoxin; 
GM geometric mean; IgE immunoglobulin; MBP major basic protein; PCR polymerase chain reaction;  
SD standard deviation.


