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Abstract

Motivation: Developing a robust and performant data analysis workflow that integrates all necessary
components whilst still being able to scale over multiple compute nodes is a challenging task. We
introduce a generic method based on the microservice architecture, where software tools are
encapsulated as Docker containers that can be connected into scientific workflows and executed
using the Kubernetes container orchestrator.

Results: We developed a virtual research environment which facilitates rapid integration of new tools
and developing scalable and interoperable workflows for performing metabolomics data analysis. The
environment can be launched on-demand on cloud resources and desktop computers. IT-expertise
requirements on the user side are kept to a minimum, and workflows can be re-used effortlessly by
any novice user. We validate our method in the field of metabolomics on two mass spectrometry, one
nuclear magnetic resonance spectroscopy and one fluxomics study. We showed that the method
scales dynamically with increasing availability of computational resources. We demonstrated that the
method facilitates interoperability using integration of the major software suites resulting in a turn-key
workflow encompassing all steps for mass-spectrometry-based metabolomics including
preprocessing, statistics, and identification. Microservices is a generic methodology that can serve
any scientific discipline and opens up for new types of large-scale integrative science.

Availability and Implementation: The PhenoMeNal consortium maintains a web portal
(https://portal.phenomenal-h2020.eu) providing a GUI for launching the virtual research environment.

The GitHub repository https://github.com/phnmnl/ hosts the source code of all projects.

Contact: ola.spjuth@farmbio.uu.se

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Biology is becoming data-intensive as high throughput experiments in
genomics or metabolomics are rapidly generating data sets of massive
volume and complexity (Marx, 2013; Schadt e al., 2010), posing a
fundamental challenge on large scale data analytics.

Currently, the most common large-scale computational infrastructures
in science are shared High-Performance Computing (HPC) systems.
Such systems are usually designed primarily to support computationally
intensive batch jobs — e.g., for the simulation of physical processes — and
are managed by specialized system administrators. This model leads to
rigid constraints on the way these resources can be used. For instance,
the installation of software must undergo approval and may be restricted,
which contrasts with the needs in the analysis where a multitude of
software components of various versions — and their dependencies — are
needed, and where these need to be continuously updated.

Cloud computing offers a compelling alternative to shared HPC
systems, with the possibility to instantiate and configure on-demand
resources such as virtual computers, networks, and storage, together with
operating systems and software tools. Users only pay for the time the
virtual resources are used, and when they are no longer needed they can

be released and incur no further costs for usage or ownership. For
scientists, this constitutes a shift from owning computer hardware, to
starting up Infrastructure-as-a-Service (laaS) nodes with virtual
machines on cloud resources, with the explicit need to then install all
necessary software for the analysis which in many cases constitutes a
demanding and time-consuming task (Langmead and Nellore, 2018).
Along with infrastructure provisioning, software provisioning — i.e.,
installing and configuring software for users — has also advanced.
Consider, for instance, containerization (Silver, 2017), which allows
entire applications with their dependencies to be packaged, shipped and
run on a computer but isolated from one another in a way analogous to
virtual machines, yet much more efficiently. Containers are more
compact, and since they share the same operating system kernel, they are
fast to start and stop and incur little overhead in execution. These traits
make them an ideal solution to implement lightweight microservices, a
software engineering methodology in which complex applications are
divided into a collection of smaller, loosely coupled components that
communicate over a network (Newman, 2015). Microservices share
many properties with traditional always-on web services found on the
Internet, but microservices are generally smaller, portable and can be
started on-demand within a separate computing environment. Another
important feature of microservices is that they have a technology-
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agnostic communication protocol, and hence can serve as building
blocks that can be combined and reused in multiple ways (da Veiga
Leprevost et al., 2017).

Microservices are highly suitable to run in elastic cloud environments
that can dynamically grow or shrink on demand, enabling applications to
be scaled-up by simply starting multiple parallel instances of the same
service. However, to achieve effective scalability a system needs to be
appropriately sectioned into microservice components and the data to be
exchanged between the microservices needs to be defined for maximum
efficiency— both being challenging tasks.

One of the omics fields that faces challenges by data growth is
metabolomics which measures the occurrence, concentrations and
changes of small molecules (metabolites) in organisms, organs, tissues,
cells and cellular compartments. Metabolite abundances are assayed in
the context of environmental or dietary changes, disease or other
conditions (Nicholson and Wilson, 2003). Metabolomics is, as most
other omics technologies, characterized by the use of high-throughput
experiments performed using a variety of spectroscopic methods such as
Mass Spectrometry (MS) and Nuclear Magnetic Resonance (NMR) that
produce large amounts of data (Montenegro-Burke et al., 2017). With
increasing data size and number of samples, the analysis process
becomes intractable for desktop computers due to requirements on
compute cores, memory, storage etc. As a result, large-scale computing
infrastructures have become important components in scientific projects
(Liew et al., 2016). Moreover, making use of such complex computing
resources in an analysis workflow presents its own challenges, including
achieving efficient job parallelism and scheduling as well as error
handling (Suplatov ef al., 2016). In addition, configuring the necessary
software tools and chaining them together into a complete re-runnable
analysis workflow commonly requires substantial IT-expertise, while
creating portable and fault-tolerant workflows with a robust audit trail is
even more difficult. Metabolomics has already benefited from cloud-
based systems enabling the users certain preprocessing and main
downstream analysis on e.g. MS data. Examples of such systems are
XCMS ONLINE (Warth et al., 2017), MetaboAnalyst (Xia et al. 2012)
,Chorus (chorusproject.org) and The Metabolomics Workbench (Sud et
al., 2016) (www.metabolomicsworkbench.org) which provide tools that

scale with computational demands.

In this manuscript, we present a method that uses components for data
analysis encapsulated as microservices and connected into computational
workflows to provide complete, ready-to-run, reproducible data analysis
solutions that can be easily deployed on desktop computers as well as
public and private clouds. Our work contrasts to previously reported
research  environments, sometimes termed Virtual Research
Environments (Candela et al. 2013; Allan 2009), Scientific Gateways
(Lawrence et al., 2015) and Virtual Labs (Waldrop, 2013), in that it
encompasses the complete setup of the computational infrastructure and
frameworks to run analysis in a wide range of environments; however
our approach requires virtually no involvement in the setup and no
special IT skills from the user. The methodology provides a framework
for rapid and efficient integration of new tools and developing scalable,
and interoperable workflows, supporting multiple workflow engines such
as Galaxy (Goecks et al., 2010) and Luigi
(https:/github.com/spotify/luigi). ~We validate the method on four

metabolomics studies and show that it enables scalable and interoperable
data analysis.

2 Methods

2.1 Microservices

A detailed description of the methods is present in supplementary
method S1. Briefly, in order to construct a microservice architecture for
metabolomics we used Docker (Merkel, 2014)
(https://www.docker.com/) containers to encapsulate software tools.
Tools are developed as open source and are available in a public

repository such as GitHub (https://github.com/), and the PhenoMeNal
project containers are built and tested on a Jenkins continuous integration
(CI) server (http:/phenomenal-h2020.eu/jenkins/). Containers are
assembled in different branches using the git versioning system. Builds
originating from the development branch of each container repository
give rise to container images tagged as ‘development’; builds coming

from the master branches result in release images. In order for a
container be pushed to the container registry, it must pass a testing
criteria which is defined by the developer of the tool. All published
containers are thus available for download and can be used in any
microservice architecture. Data is exchanged between services by
passing references to a shared local file system. The CI system
constitutes a key part of the methodology, as it ensures that containers
are continuously successfully packaged, versioned, tested and that
adequate reporting measures are in place to handle any errors in this
process over time.

2.2 Virtual Research Environment (VRE)

We developed a Virtual Research Environment (VRE) which uses
Kubernetes (https:/kubernetes.io/) for orchestration of the containers,
including initialisation and scaling of jobs based on containers,
abstractions to file system access for running containers, exposure of
services, as well as rescheduling of failed jobs and long running services.
Kubernetes was chosen over other frameworks such as Docker Swarm
because of its larger momentum and that it is more widely used in
production environments. Docker also provides Kubernetes as part of
their Enterprise solutions (and even now the community ones). To enable
convenient instantiation of a complete virtual infrastructure, we
developed KubeNow (https://github.com/kubenow/KubeNow)
(Capuccini et al. 2018) which includes instantiation of compute nodes,
shared file system storage, networks, configure DNS, operating system,

container implementation and orchestration tools, including Kubernetes,
on a local computer or server. In order to deploy applications, we used
two main classes of services: long-lasting services, and compute jobs.
Long-lasting services were used for applications such as the user
interface whereas compute jobs were used to perform temporary
functions in data processing. The VRE includes Galaxy, Luigi workflow
engine and Jupyter notebook as user-facing services. In the PhenoMeNal
CI system, the VRE is instantiated and tested on all supported cloud
providers nightly in order to ensure a working system over time.

2.3 Demonstrators

We validated our method in the field of metabolomics using four
demonstrators. Demonstrators 1 and 2 showcase scalability and
interoperability of our microservice-based architecture whereas
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Demonstrators 3 and 4 exemplify flexibility to account for new
application domains, showing the architecture is domain-agnostic.

Demonstrator 1: Scalability of microservices in a cloud environment.
The objective of this analysis was to demonstrate the computational
scalability of an existing workflow on a large dataset (Metabolomics data
have been deposited to the EMBL-EBI MetaboLights database (Haug et
al. 2013) with the identifier MTBLS233 (Ranninger et al. 2016). The
complete dataset can be accessed here
https://www.ebi.ac.uk/metabolightsyMTBLS233).  The
includes 528 mass spectrometry samples from whole cell lysates of
human renal proximal tubule cells that were pre-processed through a
five-step workflow (consisting of peak picking, feature finding, linking,
file filtering and exporting) using the OpenMS software (Sturm et al.,
2008). This preprocessing workflow was reimplemented using Docker

experiment

containers and run using the Luigi workflow engine. Scalability of
concurrent running tools (on 40 Luigi workers, each worker receives
tasks from the scheduler and executes them) was measured using weak
scaling efficiency (WSE), where the workload assigned to each worker
stays constant and additional workers are used to solve a larger total
problem.

Demonstrator 2: Interoperability of microservices. The objective of this
analysis was to demonstrate interoperability as well as to present a real-
world scenario in which patients’ data are processed using a
microservices-based platform. We used a dataset consisting of 37 clinical
cerebrospinal fluid (CSF) samples including thirteen relapsing-remitting
multiple sclerosis (RRMS) patients and 14 secondary progressive
multiple sclerosis (SPMS) patients as well as 10 non-multiple sclerosis
controls. 26 quality controls (19 blank and 7 dilution series samples)
were also added to the experiment. In addition, 8 pooled CSF samples
containing MS/MS data were included in the experiment for improving
identification (Metabolomics data have been deposited to the EMBL-EBI
MetaboLights database with the identifier MTBLS558 (Kultima et al.
2018). The complete dataset can be accessed  here
https://www.ebi.ac.uk/metabolights/ MTBLS558)). The samples were
processed and analysed on the Galaxy platform (Goecks et al., 2010),
running in a VRE behind the Uppsala University Hospital firewall to be
compliant with local ELSI (Ethics, Legal, Social implications)
regulations.

Demonstrator 3: 1D NMR-analysis workflow. The purpose of this
demonstrator was to highlight the fact that the microservice architecture
is indeed domain-agnostic and is not limited to a particular assay
technology. This NMR-based metabolomics study was originally
performed by Salek et al.(Salek et al., 2007) on urine of type 2 diabetes
mellitus (T2DM) patients and controls (Metabolomics data have been
deposited to the EMBL-EBI MetaboLights database with the identifier
MTBLS1 (Salek and Griffin. 2012). The complete dataset can be
accessed here https:/www.ebi.ac.uk/metabolightsy MTBLS1). In total,
132 samples (48 T2DM and 84 controls) were processed using a Galaxy
workflow performing conversion, preprocessing, multivariate data
analysis and result visualization.

Demonstrator 4: Start-to-end fluxomics workflow. The purpose of this
demonstrator was to show the integrated use of separately developed
tools covering subsequent steps of the study of metabolic fluxes based on
BC stable isotope-resolved metabolomics (SIRM)(Niedenfithr et al.,
2015; King et al., 2015; Buescher et al., 2015). Here we implemented
the analysis of flux distributions in HUVEC cells under hypoxia

(Metabolomics data have been deposited to the EMBL-EBI
MetaboLights database with the identifier MTBLS412 (Jayaraman et al.
2017).  The
https://www.ebi.ac.uk/metabolights/ MTBLS412), from raw mass spectra

complete  dataset can be  accessed here
contained in netCDF files, using a workflow implemented in Galaxy
including reading and extraction of the data, correcting the evaluated
mass spectra for natural isotopes and computing steady-state distribution
of 13C label as function of steady-state flux distribution.

2.4 Availability and Implementation

The  PhenoMeNal
(https://portal.phenomenal-h2020.eu) providing a GUI for launching
VREs using KubeNow (Capuccini et al., 2018) on a selection of the
largest public cloud providers, including Amazon Web Services,
Microsoft Azure and Google Cloud Platform, or on private OpenStack-

consortium  maintains a  web  portal

based installations. The Wiki containing documentation is also hosted on
GitHub https://github.com/phnmnl/phenomenal-h2020/wiki. The
PhenoMeNal Portal can be reached at https://portal.phenomenal-
h2020.eu. The public instance of Galaxy is accessible at
https://public.phenomenal-h2020.cu. The containers provisioned by
PhenoMeNal comprise tools built as open source software that are
available in a public repository such as GitHub, and are subject to
continuous integration testing. The containers that satisfy testing criteria
are pushed to a public container repository, and containers that are
included in stable VRE releases are also pushed to Biocontainers (da
Veiga Leprevost et al, 2017). The GitHub repository
https://github.com/phnmnl/ hosts the source code of all development
projects. Source code and documentation are available under the terms of
the Apache 2.0 license. Integrated open source projects are available
under the respective licensing terms. The Demonstrators can be obtained
from: Demonstrator 1: https:/github.com/phnmnl/MTBLS233-Jupyter;
Demonstrator 2: https://public.phenomenal-
h2020.eu/u/phenoadmin/w/metabolomics-lcmsms-processing-
quantification-annotation-identification-and-statistics-1; Demonstrator 3:
https://public.phenomenal-h2020.eu/u/phenoadmin/w/metabolomics-
nmr-rnmr1d-metabolights-data-processing-and-plot; Demonstrator 4:
https://public.phenomenal-h2020.eu/u/phenoadmin/w/fluxomics-
stationary-13c-ms-iso2flux-with-visualization

3 Results

We developed a VRE based on a microservices architecture
encapsulating a large suite of software tools for performing
metabolomics data analysis (See Table S1). Scientists can interact with
the microservices programmatically via an Application Programming
Interface (API) or via a web-based graphical user interface (GUI), as
illustrated in Figure 1. To connect microservices into computational
workflows, the two frameworks Galaxy (Goecks et al., 2010) and Luigi
(https://github.com/spotify/luigi) were adapted to execute jobs on
Kubernetes. Galaxy is a web-based interface for individual tools and

allows users to share workflows, analysis histories and result data sets.
Luigi on the other hand focuses on scheduled execution, monitoring,
visualization and the implicit dependency resolution of tasks (Leipzig,
2017). These basic infrastructure services, together with the Jupyter
notebook (Kluyver et al., 2016) interactive programming environment,
are deployed as long-running services in the VRE, whereas the other
analysis tools are deployed as transient compute jobs to be used on-
demand. System and client applications were developed for launching
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the VRE on desktop computers, public and private cloud providers,
automating all steps required to instantiate the virtual infrastructures.

Fig 1. Overview of the components in a microservices-based framework. Complex
applications are divided into smaller, focused and well-defined (micro-) services. These
services are independently deployable and can communicate with each other, which
allows to couple them into complex task pipelines, i.e. data processing workflows. The
user can interact with the framework programmatically via an Application Program
Interface (API) or via a graphical user interface (GUI) to construct or run workflows of
different services, which are executed independently. Multiple instances of services can
be launched to execute tasks in parallel, which effectively can be used to scale analysis
over multiple compute nodes. When run in an elastic cloud environment, virtual resources

can be added or removed depending on the computational requirements.

Demonstrator 1: Scalability of microservices in a cloud environment
The Diagram of scalability-testing on the metabolomics dataset is
illustrated in Figure 2. The analysis resulted to WSE of 88% with an
execution time of approximately four hours (online methods, Figure S2),
compared with the ideal case of 100% where linear scaling is achieved if
the run time stays constant while the workload is increased. In addition,
the final result of the workflow (online methods, Figure S3) was
identical to that presented by the original MTBLS233 study (Ranninger
et al., 2016) in negative ionization mode. However, in the positive
ionization mode, one m/z feature was found in a different group (m/z
range 400-1000) than it was originally reported by Ranninger et al. (m/z

A B

™

v
1.00 ~—
File 1 File 44 T ———

4
Bl

Weak Scaling Efficiency
° o
& a

0.00
a0

20 30
Number of workers

Jupyter interactive environment

@&

range 200-400).

Fig 2. Diagram of scalability-testing on a metabolomics dataset (MetaboLights ID:
MTBLS233) in Demonstrator 1 to illustrate the scalability of a microservice
approach. A) The preprocessing workflow is composed of 5 OpenMS tasks that were run
in parallel over the 12 groups in the dataset using the Luigi workflow system. The first
two tasks, peak picking (528 tasks) and feature finding (528 tasks), are trivially
parallelizable, hence they were run concurrently for each sample. The subsequent feature
linking task needs to process all of the samples in a group at the same time, therefore 12
of these tasks were run in parallel. In order to maximize the parallelism, each feature
linker container (microservice) was run on 2 CPUs. Feature linking produces a single file
for each group, that can be processed independently by the last two tasks: file filter (12
tasks) and text exporter (12 tasks), resulting in total of 1092 tasks. The downstream
analysis consisted of 6 tasks that were carried out in a Jupyter Notebook. Briefly, the
output of preprocessing steps was imported into R and the unstable signals were filtered
out. The missing values were imputed and the resulting number of features were plotted.
B) The weak scaling efficiency plot for Demonstrator 1. Given the full MTBLS233
dataset, the preprocessing was run on 40 Luigi workers. Then for 1/4, 2/4, 3/4 of
MTBLS233, the analysis was run again on 10, 20 and 30 workers respectively. For each
run, we measured the processing time T10, T20, T30 and T40, and we computed the
WSEn = T10/Tn for n = 10, 20, 30, 40. The WSE plot shows scalability up to 40 CPUs,
where we achieved ~88% scaling efficiency. The running time for the full dataset (a total

of 1092 tasks) on 40 workers was ~4 hours.

Demonstrator 2: Interoperability of microservices

We developed a start to end workflow for pre-processing and statistical
analysis of LC-MS metabolomics data (Figure 3). The workflow allows
seamless integration of six major metabolomics data analysis
components (26 steps) each was already implemented in independent
software suites: noise reduction and filtering (OpenMS (Rost et al.,
2016)), quantification, alignment and matching (XCMS (Smith et al.,
20006)), filtering of biological non-relevant signals (R), annotation of
signals (CAMERA (Kuhl ef al., 2012)), identification (MetFrag (Wolf et
al., 2010)), statistics (Workflow4Metabolomics (Giacomoni et al.,
2015)). The result of the workflow (multivariate analysis) showed a clear
difference in the metabolic constitution between the three disease groups
of RRMS, SPMS and non-multiple sclerosis controls (Figure 4A). In
addition, the univariate analysis resulted in a total of three metabolites
being significantly altered (p<0.05) between multiple sclerosis subtypes
and control samples, namely alanyltryptophan and indoleacetic acid with
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higher and linoleoyl ethanolamide with lower abundance in both RRMS
and SPMS compared to controls (Figure 4B).

Fig 3. Overview of the workflow used to process multiple-sclerosis samples in
Demonstrator 2, where a workflow was composed of the microservices using the Galaxy
system. The data was centroided and limited to a specific mass over charge (m/z) range
using OpenMS tools. The mass traces quantification and retention time correction was
done via XCMS(Smith et al., 2006). Unstable signals were filtered out based on the blank
and dilution series samples using an in-house function (implemented in R). Annotation of
the peaks was performed using CAMERA (Kuhl et al., 2012). To perform the metabolite
identification, the tandem spectra from the MS/MS samples in mzML format were
extracted using MSnbase and passed to MetFrag. The MetFrag scores were converted to
g-values using Passatutto software. The result of identification and quantification were
used in “Multivariate” and “Univariate” containers from
Workflow4Metabolomics(Giacomoni et al., 2015) to perform Partial Least Squares

Discriminant Analysis (PLS-DA)(Thévenot et al., 2015).
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Fig 4. The results from analysis of multiple sclerosis data in Demonstrator 2,
presenting new scientifically useful biomedical knowledge. A) The PLS-DA results
suggest that the metabolite distribution in the RRMS and SPMS samples are different to
controls. B) Three metabolites were identified as differentially regulated between multiple
sclerosis subtypes and control samples, namely Alanyltryptophan and Indoleacetic acid

with higher and Linoleoyl ethanolamide with lower abundance in both RRMS and SPMS

compared to controls. Abbr., RRMS: relapsing-remitting multiple sclerosis, SPMS:

secondary progressive multiple sclerosis.

Demonstrators 3 and 4: Domain agnosticity (NMR and fluxomics
workflows)

We developed a workflow for analysis of 1D NMR data. The workflow
consisted of automatic downloading NMR vendor data (and metadata)
from MetaboLights database followed by format standardisation, spectral
processing and statistical analysis. We processed a NMR dataset
(demonstrator 3) resulting to quantification of a total of 726 features
which were used to perform Orthogonal Projections to Latent Structures
Discriminant Analysis (OPLS-DA). This resulted in a clear separation
between T2DM and controls (Figure 5), similar to that of previous
findings (Salek et al, 2007). Lastly, we designed a workflow for
analyzing metabolite metabolic fluxes. The workflow integrated four
main steps including data extraction, data correction, calculation of flux
distribution and visualisation. Using this workflow (Figure 6), we
achieved detailed description of the magnitudes of the fluxes through the
reactions accounting for glycolysis and pentose phosphate pathway.

a
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Import from open source
MetaboLights (nmrML) b
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fabetes mellitus
ADG10003u 178
i ADG10003u_072

T T T T T T
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Fig 5. Overview of the NMR workflow in Demonstrator 3. The raw NMR data and
experimental metadata (ISATab) was automatically imported from the Metabolights
database and converted to open source nmrML format. The preprocessing was performed

using the rnmr1d package part of nmrprocflow (Jacob et al., 2017) tools. All study factors
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were imported from MetaboLights and were fed to the multivariate node to perform an
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Fig 6. Overview of the workflow for fluxomics, with Ramid, Midcor, Iso2Flux and
Escher-fluxomics tools supporting subsequent steps of the analysis. The example
refers to HUVEC cells incubated in the presence of [1,2-'*C,]glucose and label (**C)
propagation to glycogen, RNA ribose and lactate measured by mass spectrometry. Ramid
reads the raw netCDF files, corrects baseline and extracts the peak intensities. The
resulting peak intensities are corrected (natural abundance, overlapping peaks) by Midcor,
which provides isotopologue abundances. Isotopologue abundances, together with a
model description (SBML model, tracing data, constraints), are used by Iso2Flux to
provide flux distributions through glycolysis and pentose-phosphate pathways, which are
shown as numerical values associated to a metabolic scheme of the model by the Escher-

fluxomics tool.

Discussion

Implementing the different tools and processing steps of a data analysis
workflow as separate services that are made available over a network
was in the spotlight in the early 2000’s (Foster, 2005) as service-oriented
architectures (SOA) in science. At that time, web services were
commonly deployed on physical hardware and exposed and consumed
publicly over the internet. However, it soon became evident that this
architecture did not fulfill its promises as it was hard to scale from a
computational and maintainability perspective. In addition, the web
services were not portable and mirroring them was complicated (if at all
possible). Furthermore, API changes and frequent services outage made
it frustrating to connect them into functioning computational workflows.
Ultimately, the ability to replicate an analysis on local and remote
hardware (such as a computer cluster) was very difficult due to
heterogeneity in the computing environments.

At first sight microservices might seem similar to above mentioned SOA
web services, but microservices can with great benefit be executed in
virtual environments (abstracting over OS and hardware architectures) in
such a way that they are only instantiated and executed on-demand, and
then terminated when they are no longer needed. This makes such virtual
environments inherently portable and they can be launched on demand
on different platforms (e.g., a laptop, a powerful physical server or an
elastic cloud environment). A key aspect is that workflows of
microservices are still executed identically, agnostic of the underlying
hardware platform. Container-based microservices provide a wide

flexibility in terms of versioning, allowing the execution of newer and
older versions of each container as needed for reproducibility. Since all
software dependencies are encompassed within the container, which is
versioned, the risk of workflow failure due to API changes is minimized.
An orchestration framework such as Kubernetes further allows for
managing errors in execution and transparently handles the restarting of
services. Hence, technology has caught up with service-oriented science,
and microservices have taken the methodology to the next level,
alleviating many of the previous problems related to scalability,
portability and interoperability of software tools. This is advantageous in
the context of omics analysis, which produces multidimensional data sets
reaching beyond gigabytes, on into terabytes, leading to ever-increasing
demand on processing performance (Marx, 2013; Schadt et al., 2010).
However, containerization does not address how services communicate
with each other, but this has to be implemented inside the container
itself. Traditional web services addressed this by standardizing the
messaging protocol and public-facing interfaces (e.g. SOAP and WSDL)
(Stockinger et al., 2008), while in a containerized environment
Representational State Transfer (REST) (Fielding and Taylor, 2000) or
passing files by reference to a shared file system is more common. In
Demonstrator 1, we showed that microservices enable highly efficient
and scalable data analyses by executing individual modules in parallel,
and that they effectively harmonize with on-demand elasticity of the
cloud computing paradigm. The reached scaling efficiency of ~88%
indicates remarkable performance achieved on generic cloud providers.
Furthermore, although our results in positive ionization model was
slightly different to that of Ranninger et al. (Ranninger et al., 2016), the
results of our analysis were replicable regardless of the platform used to
perform the computations..

In addition to the fundamental demand for high performance, the
increased throughput and complexity of omics experiments has led to a
large number of sophisticated computational tools (Berger et al., 2013),
which in turn necessitates integrative workflow engines (Di Tommaso et
al. 2017; Atkinson et al. 2017; Liew et al. 2016). In order to integrate
new tools in such workflow engines, compatibility of the target
environment, tools and APIs needs to be considered (Di Tommaso et al.,
2017). Containerization facilitates this by providing a platform-
independent virtual environment for developing and running the
individual tools. However, the problem of compatibility between
tools/APIs and data formats remains and needs to be tackled by
international consortia (e-g=—strietly—adhering—toFAIR Data—Prineiples
Wilkinsen—et-al5—2016))= Our methodology the currently non-trivial
task of instantiating the complete microservice environment through a
web portal that allows for convenient deployment of the VRE on public
cloud providers. Moreover, using this web portal, microservices and
VREs can be deployed on a trusted private cloud instance or a local
physical server on an internal network, such as within a hospital
network, allowing for levels of isolation and avoiding transfer of data
across untrusted networks which often are requirements in the analysis of
sensitive data. This was exemplified in Demonstrator 2, where a
complete start-to-end workflow was run on the Galaxy platform on a
secure server at Uppsala University Hospital, Sweden, leading to the
identification of novel disease fingerprints in the CSF metabolome of
RRMS and SPMS patients. It is worth mentioning that the selected
metabolites were part of the tryptophan metabolism (alanyltryptophan
and indoleacetic acid) and endocannabinoids (linoleoyl ethanolamide),
both of which have been previously implicated in multiple sclerosis
(Lovelace et al., 2016; Lim et al, 2017; Amirkhani et al., 2005;
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Centonze et al., 2007; Zamberletti et al., 2012; Baker and Pryce, 2008).
However, since the cross-validated predictive performance (Q2Y =
0.286) is not much higher than some of the models generated after
random permutation of the response (Figure 4A), the quality of the
model needs to be confirmed in a future study on an independent cohort
of larger size.

The microservice architecture is domain-agnostic and not limited to a
particular assay technology, i.e. mass spectrometry. This was showcased
in Demonstrator 3 and 4, where an automated 1D NMR workflow and
calculation of flux distributions (derived from the application of stable
isotope resolved metabolomics) were performed. In Demonstrator 3, we
showed that the pattern of the metabolite expression is different between
type 2 diabetic and healthy controls, and that a large number of
metabolites contribute to such separation. In Demonstrator 4, we showed
a high rate of glycolysis in cells cultured in hypoxia, which is consistent
with the one expected for endothelial cells (Iyer et al., 1998) and with
how these cells maintain energy in low oxygen environments and
without oxidative phosphorylation (Eelen et al., 2015; Polet and Feron,
2013). These two examples further show that complex workflows can be
applied with minimal effort on other studies (i.e. simply by providing a
MetaboLights accession number), leading to the capability to re-analyze
data and compare the results with the original publication findings.
Furthermore, it demonstrates the value of standardised dataset
descriptions such as nmrML (Schober ef al., 2017) and ISA format
(Rocca-Serra et al., 2016; Sansone et al., 2012) for representing NMR
based studies, as well as the potential of the VRE to foster
reproducibility. Furthermore, the data processing steps are trackable and
replicable as each container/tool is versioned for a specific release and
data processing steps and the corresponding parameters are taken care of
by the workflow engine. In addition, the cli KubeNow is using speciffic
pinned versions of all dependant software and all versions of software is
stored in the user config dir created by the init-command. The specific
version of KubeNow used is saved in user config directory.

While microservices are not confined to metabolomics and generally
applicable to a large variety of applications, there are some important
implications and limitations of the method. Firstly, tools need to be
containerized in order to operate in the environment. This is however not
particularly complex, and an increasing number of developers provide
containerized versions of their tools on public container repositories such
as Dockerhub or Biocontainers (da Veiga Leprevost et al., 2017).
Secondly, uploading data to a cloud-based system can take a
considerable amount of time, and having to re-do this every time a VRE
is instantiated can be time-consuming. This can be alleviated by using
persistent storage on a cloud resource, but the availability of such storage
varies between different cloud providers. Further, the storage system can
become a bottleneck when many services try to access a shared storage.
We observe that using a distributed storage system with multiple storage
nodes can drastically increase performance, and the PhenoMeNal VRE
comes with a distributed storage system by default. When using a
workflow system to orchestrate the microservices, stability and
scalability are inherently dependent on the workflow system’s job
runner. Workflow execution is dependent on the underlying workflow
engine, and we observed that a large number of outputs can make the
Galaxy engine unresponsive, whereas the Luigi engine did not have
these shortcomings. With clouds and microservices maturing, workflow
systems will need to evolve and further embrace the new possibilities of
these infrastructures. It is important to note that microservices do not
overcome the incompatibility between tools with respect to using

different data formats, and code resolving such incompatibility is still
needed. However, using a shared platform makes such bridging
components easier to maintain and makes them reusable. There remains
great challenges in establishing interoperable and agreed-upon standards
and data formats that are widely accepted and implemented by tools, as
well as achieving complete support for the FAIR principles (Wilkinson
et al., 2016). Further, not all research can be easily pipelined, for
example exploratory research might be better carried out in an ad-hoc
manner than with workflows and the overhead this implies. A Jupyter
Notebook as used in in Demonstrator 1 or embedded in Galaxy (Griining
et al., 2017) constitutes a promising way to make use of microservices
for interactive analysis. The serverless architecture, also called Functions
as a Service (FaaS) architecture, is an interesting methodology when
deployed with microservices as it allow developers to execute code in
response to events without managing the underlying infrastructure. .
While serverless technologies have irrupted strongly in areas of software
engineering closer to web development, this doesn’t mean that their
usage can be easily transferred to scientific workloads. This is due to the
far more complex network of dependencies that scientific software will
have compared to web applications, where large applications can be
managed for instance through npm package resolutions only. On
scientific software solutions one will commonly find dependencies in
different programming languages, different underlying libraries and even
sometimes on different incompatible versions of the same frameworks.
This level of complexity is not resolvable today through server less
approaches and requires more isolated approaches based on containers,
such as the one presented here.

In summary, we showed that microservices allow for efficient horizontal
scaling of analyses on multiple computational nodes, enabling the
processing of large data sets. By applying a number of data (mzML
(Martens et al, 2011), nmrML) and metadata standards (ISA
serialisations for study descriptions (Rocca-Serra et al., 2016; Sansone et
al., 2012)), we also demonstrated a high level of interoperability in the
context of metabolomics, by providing completely automated start-to-
end analysis workflows for mass spectrometry and NMR data. In
addition, many of the state-of-the-art tools such as components of XCMS
ONLINE (Warth et al., 2017) and MetaboAnalyst (Xia et al. 2012) can
be incorporated in the workflows, providing more refined workflows.
The ability to instantiate VREs close to large datasets, such as on local
servers within a hospital for Demonstrator 2, makes it possible to use the
VRE on sensitive data that is not allowed to leave the current
environment for ELSI reasons. While the current PhenoMeNal VRE
implementation uses Docker for software containers and Kubernetes for
container orchestration, the microservice methodology is general and not
restricted to these frameworks. Likewise, the choice of Luigi and Galaxy
was here used to demonstrate the capabilities of workflow management
microservices in cloud environments. In fact, our microservice
architecture supports other major workflow engines such as Nextflow
(Di Tommaso et al., 2017) or Snakemake (Koster and Rahmann, 2012).
Hence it is possible to use any of such workflow engines in our VRE and
still produce reproducible results. In addition, despite some of our
workflows were novel in the context of metabolomics (e.g. Demonstrator
2) and can be readily applied on other datasets, their main contribution in
this work is to showcase scalability and interoperability of the
microservices methodology. Finally, we emphasise that the presented
methodology goes beyond metabolomics and can be applied to virtually
any field, lowering the barriers for taking advantage of cloud
infrastructures and opening up for large-scale integrative science.
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