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Abstract
Motivation: Developing a robust and performant data analysis workflow that integrates all necessary 
components whilst still being able to scale over multiple compute nodes is a challenging task. We 
introduce a generic method based on the microservice architecture, where software tools are 
encapsulated as Docker containers that can be connected into scientific workflows and executed 
using the Kubernetes container orchestrator. 
Results: We developed a virtual research environment which facilitates rapid integration of new tools 
and developing scalable and interoperable workflows for performing metabolomics data analysis. The 
environment  can be launched on-demand on cloud resources and desktop computers. IT-expertise 
requirements on the user side are kept to a minimum, and workflows can be re-used effortlessly by 
any novice user. We validate our method in the field of metabolomics on two mass spectrometry, one 
nuclear magnetic resonance spectroscopy and one fluxomics study. We showed that the method 
scales dynamically with increasing availability of computational resources. We demonstrated that the 
method facilitates interoperability using integration of the major software suites resulting in a turn-key 
workflow encompassing all steps for mass-spectrometry-based metabolomics including 
preprocessing, statistics, and identification. Microservices is a generic methodology that can serve 
any scientific discipline and opens up for new types of large-scale integrative science.
Availability and Implementation: The PhenoMeNal consortium maintains a web portal 
(https://portal.phenomenal-h2020.eu) providing a GUI for launching the virtual research environment. 
The GitHub repository https://github.com/phnmnl/ hosts the source code of all projects.
Contact: ola.spjuth@farmbio.uu.se 
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction 
Biology is becoming data-intensive as high throughput experiments in 

genomics or metabolomics are rapidly generating data sets of massive 
volume and complexity (Marx, 2013; Schadt et al., 2010), posing a 
fundamental challenge on large scale data analytics. 

Currently, the most common large-scale computational infrastructures 
in science are shared High-Performance Computing (HPC) systems. 
Such systems are usually designed primarily to support computationally 
intensive batch jobs – e.g., for the simulation of physical processes – and 
are managed by specialized system administrators. This model leads to 
rigid constraints on the way these resources can be used. For instance, 
the installation of software must undergo approval and may be restricted, 
which contrasts with the needs in the analysis where a multitude of 
software components of various versions – and their dependencies – are 
needed, and where these need to be continuously updated. 

Cloud computing offers a compelling alternative to shared HPC 
systems, with the possibility to instantiate and configure on-demand 
resources such as virtual computers, networks, and storage, together with 
operating systems and software tools. Users only pay for the time the 
virtual resources are used, and when they are no longer needed they can 

be released and incur no further costs for usage or ownership. For 
scientists, this constitutes a shift from owning computer hardware, to 
starting up Infrastructure-as-a-Service (IaaS) nodes with virtual 
machines on cloud resources, with the explicit need to then install all 
necessary software for the analysis which in many cases constitutes a 
demanding and time-consuming task (Langmead and Nellore, 2018). 
Along with infrastructure provisioning, software provisioning – i.e., 
installing and configuring software for users – has also advanced. 
Consider, for instance, containerization (Silver, 2017), which allows 
entire applications with their dependencies to be packaged, shipped and 
run on a computer but isolated from one another in a way analogous to 
virtual machines, yet much more efficiently. Containers are more 
compact, and since they share the same operating system kernel, they are 
fast to start and stop and incur little overhead in execution. These traits 
make them an ideal solution to implement lightweight microservices, a 
software engineering methodology in which complex applications are 
divided into a collection of smaller, loosely coupled components that 
communicate over a network (Newman, 2015). Microservices share 
many properties with traditional always-on web services found on the 
Internet, but microservices are generally smaller, portable and can be 
started on-demand within a separate computing environment. Another 
important feature of microservices is that they have a technology-
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agnostic communication protocol, and hence can serve as building 
blocks that can be combined and reused in multiple ways (da Veiga 
Leprevost et al., 2017). 

Microservices are highly suitable to run in elastic cloud environments 
that can dynamically grow or shrink on demand, enabling applications to 
be scaled-up by simply starting multiple parallel instances of the same 
service. However, to achieve effective scalability a system needs to be 
appropriately sectioned into microservice components and the data to be 
exchanged between the microservices needs to be defined for maximum 
efficiency– both being challenging tasks.

One of the omics fields that faces challenges by data growth is 
metabolomics which measures the occurrence, concentrations and 
changes of small molecules (metabolites) in organisms, organs, tissues, 
cells and cellular compartments. Metabolite abundances are assayed in 
the context of environmental or dietary changes, disease or other 
conditions (Nicholson and Wilson, 2003). Metabolomics is, as most 
other omics technologies, characterized by the use of high-throughput 
experiments performed using a variety of spectroscopic methods such as 
Mass Spectrometry (MS) and Nuclear Magnetic Resonance (NMR) that 
produce large amounts of data (Montenegro-Burke et al., 2017). With 
increasing data size and number of samples, the analysis process 
becomes intractable for desktop computers due to requirements on 
compute cores, memory, storage etc. As a result, large-scale computing 
infrastructures have become important components in scientific projects 
(Liew et al., 2016). Moreover, making use of such complex computing 
resources in an analysis workflow presents its own challenges, including 
achieving efficient job parallelism and scheduling as well as error 
handling (Suplatov et al., 2016). In addition, configuring the necessary 
software tools and chaining them together into a complete re-runnable 
analysis workflow commonly requires substantial IT-expertise, while 
creating portable and fault-tolerant workflows with a robust audit trail is 
even more difficult. Metabolomics has already benefited from cloud-
based systems enabling the users certain preprocessing and main 
downstream analysis on e.g. MS data. Examples of such systems are  
XCMS ONLINE (Warth et al., 2017), MetaboAnalyst (Xia et al. 2012) 
,Chorus (chorusproject.org) and The Metabolomics Workbench (Sud et 
al., 2016) (www.metabolomicsworkbench.org) which provide tools that 
scale with computational demands. 

In this manuscript, we present a method that uses components for data 
analysis encapsulated as microservices and connected into computational 
workflows to provide complete, ready-to-run, reproducible data analysis 
solutions that can be easily deployed on desktop computers as well as 
public and private clouds. Our work contrasts to previously reported 
research environments, sometimes termed Virtual Research 
Environments (Candela et al. 2013; Allan 2009), Scientific Gateways 
(Lawrence et al., 2015) and Virtual Labs (Waldrop, 2013), in that it 
encompasses the complete setup of the computational infrastructure and 
frameworks to run analysis in a wide range of environments; however 
our approach requires virtually no involvement in the setup and no 
special IT skills from the user. The methodology provides a framework 
for rapid and efficient integration of new tools and developing scalable, 
and interoperable workflows, supporting multiple workflow engines such 
as Galaxy (Goecks et al., 2010) and Luigi 
(https://github.com/spotify/luigi).  We validate the method on four 
metabolomics studies and show that it enables scalable and interoperable 
data analysis.

2 Methods

2.1 Microservices
A detailed description of the methods is present in supplementary 
method S1. Briefly, in order to construct a microservice architecture for 
metabolomics we used Docker (Merkel, 2014) 
(https://www.docker.com/) containers to encapsulate software tools. 
Tools are developed as open source and are available in a public 
repository such as GitHub (https://github.com/), and the PhenoMeNal 
project containers are built and tested on a Jenkins continuous integration 
(CI) server (http://phenomenal-h2020.eu/jenkins/). Containers are 
assembled in different branches using the git versioning system. Builds 
originating from the development branch of each container repository 
give rise to container images tagged as ‘development’; builds coming 
from the master branches result in release images. In order for a 
container be pushed to the container registry, it must pass a testing 
criteria which is defined by the developer of the tool. All published 
containers are thus available for download and can be used in any 
microservice architecture. Data is exchanged between services by 
passing references to a shared local file system. The CI system 
constitutes a key part of the methodology, as it ensures that containers 
are continuously successfully packaged, versioned, tested and that 
adequate reporting measures are in place to handle any errors in this 
process over time.

2.2 Virtual Research Environment (VRE)
We developed a Virtual Research Environment (VRE) which uses 
Kubernetes (https://kubernetes.io/) for orchestration of the containers, 
including initialisation and scaling of jobs based on containers, 
abstractions to file system access for running containers, exposure of 
services, as well as rescheduling of failed jobs and long running services. 
Kubernetes was chosen over other frameworks such as Docker Swarm 
because of its larger momentum and that it is more widely used in 
production environments. Docker also provides Kubernetes as part of 
their Enterprise solutions (and even now the community ones). To enable 
convenient instantiation of a complete virtual infrastructure, we 
developed KubeNow (https://github.com/kubenow/KubeNow) 
(Capuccini et al. 2018) which includes instantiation of compute nodes, 
shared file system storage, networks, configure DNS, operating system, 
container implementation and orchestration tools, including Kubernetes, 
on a local computer or server. In order to deploy applications, we used 
two main classes of services: long-lasting services, and compute jobs. 
Long-lasting services were used for applications such as the user 
interface whereas compute jobs were used to perform temporary 
functions in data processing. The VRE includes Galaxy, Luigi workflow 
engine and Jupyter notebook as user-facing services. In the PhenoMeNal 
CI system, the VRE is instantiated and tested on all supported cloud 
providers nightly in order to ensure a working system over time.

2.3 Demonstrators
We validated our method in the field of metabolomics using four 
demonstrators. Demonstrators 1 and 2 showcase scalability and 
interoperability of our microservice-based architecture whereas 
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Demonstrators 3 and 4 exemplify flexibility to account for new 
application domains,  showing the architecture is domain-agnostic.

Demonstrator 1: Scalability of microservices in a cloud environment. 
The objective of this analysis was to demonstrate the computational 
scalability of an existing workflow on a large dataset (Metabolomics data 
have been deposited to the EMBL-EBI MetaboLights database (Haug et 
al. 2013) with the identifier MTBLS233 (Ranninger et al. 2016). The 
complete dataset can be accessed here 
https://www.ebi.ac.uk/metabolights/MTBLS233). The experiment 
includes 528 mass spectrometry samples from whole cell lysates of 
human renal proximal tubule cells that were pre-processed through a 
five-step workflow (consisting of peak picking, feature finding, linking, 
file filtering and exporting) using the OpenMS software (Sturm et al., 
2008). This preprocessing workflow was reimplemented using Docker 
containers and run using the Luigi workflow engine. Scalability of 
concurrent running tools (on 40 Luigi workers, each worker receives 
tasks from the scheduler and executes them) was measured using weak 
scaling efficiency (WSE), where the workload assigned to each worker 
stays constant and additional workers are used to solve a larger total 
problem.

Demonstrator 2: Interoperability of microservices. The objective of this 
analysis was to demonstrate interoperability as well as to present a real-
world scenario in which patients’ data are processed using a 
microservices-based platform. We used a dataset consisting of 37 clinical 
cerebrospinal fluid (CSF) samples including thirteen relapsing-remitting 
multiple sclerosis (RRMS) patients and 14 secondary progressive 
multiple sclerosis (SPMS) patients as well as 10 non-multiple sclerosis 
controls. 26 quality controls (19 blank and 7 dilution series samples) 
were also added to the experiment. In addition, 8 pooled CSF samples 
containing MS/MS data were included in the experiment for improving 
identification (Metabolomics data have been deposited to the EMBL-EBI 
MetaboLights database with the identifier MTBLS558 (Kultima et al. 
2018). The complete dataset can be accessed here 
https://www.ebi.ac.uk/metabolights/MTBLS558)). The samples were 
processed and analysed on the Galaxy platform (Goecks et al., 2010), 
running in a VRE behind the Uppsala University Hospital firewall to be 
compliant with local ELSI (Ethics, Legal, Social implications) 
regulations. 

Demonstrator 3: 1D NMR-analysis workflow. The purpose of this 
demonstrator was to highlight the fact that the microservice architecture 
is indeed domain-agnostic and is not limited to a particular assay 
technology. This NMR-based metabolomics study was originally 
performed by Salek et al.(Salek et al., 2007) on urine of type 2 diabetes 
mellitus (T2DM) patients and controls (Metabolomics data have been 
deposited to the EMBL-EBI MetaboLights database with the identifier 
MTBLS1 (Salek and Griffin. 2012). The complete dataset can be 
accessed here https://www.ebi.ac.uk/metabolights/MTBLS1). In total, 
132 samples (48 T2DM and 84 controls) were processed using a Galaxy 
workflow performing conversion, preprocessing,  multivariate data 
analysis and result visualization.

Demonstrator 4: Start-to-end fluxomics workflow. The purpose of this 
demonstrator was to show the integrated use of separately developed 
tools covering subsequent steps of the study of metabolic fluxes based on 
13C stable isotope-resolved metabolomics (SIRM)(Niedenführ et al., 
2015; King et al., 2015; Buescher et al., 2015). Here we implemented 
the analysis of flux distributions in HUVEC cells under hypoxia 

(Metabolomics data have been deposited to the EMBL-EBI 
MetaboLights database with the identifier MTBLS412 (Jayaraman et al. 
2017). The complete dataset can be accessed here 
https://www.ebi.ac.uk/metabolights/MTBLS412), from raw mass spectra 
contained in netCDF files, using a workflow implemented in Galaxy 
including reading and extraction of the data, correcting the evaluated 
mass spectra for natural isotopes and computing steady-state distribution 
of 13C label as function of steady-state flux distribution. 

2.4 Availability and Implementation 
The PhenoMeNal consortium maintains a web portal 
(https://portal.phenomenal-h2020.eu) providing a GUI for launching 
VREs using KubeNow (Capuccini et al., 2018) on a selection of the 
largest public cloud providers, including Amazon Web Services, 
Microsoft Azure and Google Cloud Platform, or on private OpenStack-
based installations. The Wiki containing documentation is also hosted on 
GitHub https://github.com/phnmnl/phenomenal-h2020/wiki. The 
PhenoMeNal Portal can be reached at https://portal.phenomenal-
h2020.eu. The public instance of Galaxy is accessible at 
https://public.phenomenal-h2020.eu. The containers provisioned by 
PhenoMeNal comprise tools built as open source software that are 
available in a public repository such as GitHub, and are subject to 
continuous integration testing. The containers that satisfy testing criteria 
are pushed to a public container repository, and containers that are 
included in stable VRE releases are also pushed to Biocontainers (da 
Veiga Leprevost et al., 2017). The GitHub repository 
https://github.com/phnmnl/ hosts the source code of all development 
projects. Source code and documentation are available under the terms of 
the Apache 2.0 license. Integrated open source projects are available 
under the respective licensing terms. The Demonstrators can be obtained 
from: Demonstrator 1: https://github.com/phnmnl/MTBLS233-Jupyter; 
Demonstrator 2: https://public.phenomenal-
h2020.eu/u/phenoadmin/w/metabolomics-lcmsms-processing-
quantification-annotation-identification-and-statistics-1; Demonstrator 3: 
https://public.phenomenal-h2020.eu/u/phenoadmin/w/metabolomics-
nmr-rnmr1d-metabolights-data-processing-and-plot; Demonstrator 4: 
https://public.phenomenal-h2020.eu/u/phenoadmin/w/fluxomics-
stationary-13c-ms-iso2flux-with-visualization

3 Results
We developed a VRE based on a microservices architecture 
encapsulating a large suite of software tools for performing 
metabolomics data analysis (See Table S1). Scientists can interact with 
the microservices programmatically via an Application Programming 
Interface (API) or via a web-based graphical user interface (GUI), as 
illustrated in Figure 1. To connect microservices into computational 
workflows, the two frameworks Galaxy (Goecks et al., 2010) and Luigi 
(https://github.com/spotify/luigi) were adapted to execute jobs on 
Kubernetes. Galaxy is a web-based interface for individual tools and 
allows users to share workflows, analysis histories and result data sets. 
Luigi on the other hand focuses on scheduled execution, monitoring, 
visualization and the implicit dependency resolution of tasks (Leipzig, 
2017). These basic infrastructure services, together with the Jupyter 
notebook (Kluyver et al., 2016) interactive programming environment, 
are deployed as long-running services in the VRE, whereas the other 
analysis tools are deployed as transient compute jobs to be used on-
demand. System and client applications were developed for launching 
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the VRE on desktop computers, public and private cloud providers, 
automating all steps required to instantiate the virtual infrastructures. 

Fig 1. Overview of the components in a microservices-based framework. Complex 

applications are divided into smaller, focused and well-defined (micro-) services. These 

services are independently deployable and can communicate with each other, which 

allows to couple them into complex task pipelines, i.e. data processing workflows. The 

user can interact with the framework programmatically via an Application Program 

Interface (API) or via a graphical user interface (GUI) to construct or run workflows of 

different services, which are executed independently. Multiple instances of services can 

be launched to execute tasks in parallel, which effectively can be used to scale analysis 

over multiple compute nodes. When run in an elastic cloud environment, virtual resources 

can be added or removed depending on the computational requirements.

Demonstrator 1: Scalability of microservices in a cloud environment
The Diagram of scalability-testing on the metabolomics dataset is 
illustrated in Figure 2. The analysis resulted to WSE of 88% with an 
execution time of approximately four hours (online methods, Figure S2), 
compared with the ideal case of 100% where linear scaling is achieved if 
the run time stays constant while the workload is increased. In addition, 
the final result of the workflow (online methods, Figure S3) was 
identical to that presented by the original MTBLS233 study (Ranninger 
et al., 2016) in negative ionization mode. However, in the positive 
ionization mode, one m/z feature was found in a different group (m/z 
range 400-1000) than it was originally reported by Ranninger et al. (m/z 

range 200-400).

Fig 2. Diagram of scalability-testing on a metabolomics dataset (MetaboLights ID: 

MTBLS233) in Demonstrator 1 to illustrate the scalability of a microservice 

approach. A) The preprocessing workflow is composed of 5 OpenMS tasks that were run 

in parallel over the 12 groups in the dataset using the Luigi workflow system. The first 

two tasks, peak picking (528 tasks) and feature finding (528 tasks), are trivially 

parallelizable, hence they were run concurrently for each sample. The subsequent feature 

linking task needs to process all of the samples in a group at the same time, therefore 12 

of these tasks were run in parallel. In order to maximize the parallelism, each feature 

linker container (microservice) was run on 2 CPUs. Feature linking produces a single file 

for each group, that can be processed independently by the last two tasks: file filter (12 

tasks) and text exporter (12 tasks), resulting in total of 1092 tasks. The downstream 

analysis consisted of 6 tasks that were carried out in a Jupyter Notebook. Briefly, the 

output of preprocessing steps was imported into R and the unstable signals were filtered 

out. The missing values were imputed and the resulting number of features were plotted. 

B) The weak scaling efficiency plot for Demonstrator 1. Given the full MTBLS233 

dataset, the preprocessing was run on 40 Luigi workers. Then for 1/4, 2/4, 3/4 of 

MTBLS233, the analysis was run again on 10, 20 and 30 workers respectively. For each 

run, we measured the processing time T10, T20, T30 and T40, and we computed the 

WSEn = T10/Tn for n = 10, 20, 30, 40. The WSE plot shows scalability up to 40 CPUs, 

where we achieved ~88% scaling efficiency. The running time for the full dataset (a total 

of 1092 tasks) on 40 workers was ~4 hours.

Demonstrator 2: Interoperability of microservices
We developed a start to end workflow for pre-processing and statistical 
analysis of LC-MS metabolomics data (Figure 3). The workflow allows 
seamless integration of six major metabolomics data analysis 
components (26 steps) each was already implemented in independent 
software suites: noise reduction and filtering (OpenMS (Rost et al., 
2016)), quantification, alignment and matching (XCMS (Smith et al., 
2006)), filtering of biological non-relevant signals (R), annotation of 
signals (CAMERA (Kuhl et al., 2012)), identification (MetFrag (Wolf et 
al., 2010)), statistics (Workflow4Metabolomics (Giacomoni et al., 
2015)). The result of the workflow (multivariate analysis) showed a clear 
difference in the metabolic constitution between the three disease groups 
of RRMS, SPMS and non-multiple sclerosis controls (Figure 4A). In 
addition, the univariate analysis resulted in a total of three metabolites 
being significantly altered (p<0.05) between multiple sclerosis subtypes 
and control samples, namely alanyltryptophan and indoleacetic acid with 
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higher and linoleoyl ethanolamide with lower abundance in both RRMS 
and SPMS compared to controls (Figure 4B).

Fig 3. Overview of the workflow used to process multiple-sclerosis samples in 

Demonstrator 2, where a workflow was composed of the microservices using the Galaxy 

system. The data was centroided and limited to a specific mass over charge (m/z) range 

using OpenMS tools. The mass traces quantification and retention time correction was 

done via XCMS(Smith et al., 2006). Unstable signals were filtered out based on the blank 

and dilution series samples using an in-house function (implemented in R). Annotation of 

the peaks was performed using CAMERA (Kuhl et al., 2012). To perform the metabolite 

identification, the tandem spectra from the MS/MS samples in mzML format were 

extracted using MSnbase and passed to MetFrag. The MetFrag scores were converted to 

q-values using Passatutto software. The result of identification and quantification were 

used in “Multivariate” and “Univariate” containers from 

Workflow4Metabolomics(Giacomoni et al., 2015) to perform Partial Least Squares 

Discriminant Analysis (PLS-DA)(Thévenot et al., 2015).

Fig 4. The results from analysis of multiple sclerosis data in Demonstrator 2, 

presenting new scientifically useful biomedical knowledge. A) The PLS-DA results 

suggest that the metabolite distribution in the RRMS and SPMS samples are different to 

controls. B) Three metabolites were identified as differentially regulated between multiple 

sclerosis subtypes and control samples, namely Alanyltryptophan and Indoleacetic acid 

with higher and Linoleoyl ethanolamide with lower abundance in both RRMS and SPMS 

compared to controls. Abbr., RRMS: relapsing-remitting multiple sclerosis, SPMS: 

secondary progressive multiple sclerosis.

Demonstrators 3 and 4: Domain agnosticity (NMR and fluxomics 
workflows)
We developed a workflow for analysis of 1D NMR data. The workflow 
consisted of automatic downloading NMR vendor data (and metadata) 
from MetaboLights database followed by format standardisation, spectral 
processing and statistical analysis. We processed a NMR dataset 
(demonstrator 3) resulting to quantification of a total of 726 features 
which were used to perform Orthogonal Projections to Latent Structures 
Discriminant Analysis (OPLS-DA). This resulted in a clear separation 
between T2DM and controls (Figure 5), similar to that of previous 
findings (Salek et al., 2007). Lastly, we designed a workflow for 
analyzing metabolite metabolic fluxes. The workflow integrated four 
main steps including data extraction, data correction, calculation of flux 
distribution and visualisation. Using this workflow (Figure 6), we 
achieved detailed description of the magnitudes of the fluxes through the 
reactions accounting for glycolysis and pentose phosphate pathway. 

Fig 5. Overview of the NMR workflow in Demonstrator 3. The raw NMR data and 

experimental metadata (ISATab) was automatically imported from the Metabolights 

database and converted to open source nmrML format. The preprocessing was performed 

using the rnmr1d package part of nmrprocflow (Jacob et al., 2017) tools. All study factors 
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were imported from MetaboLights and were fed to the multivariate node to perform an 

OPLS-DA.

Fig 6. Overview of the workflow for fluxomics, with Ramid, Midcor, Iso2Flux and 

Escher-fluxomics tools supporting subsequent steps of the analysis. The example 

refers to HUVEC cells incubated in the presence of [1,2-13C2]glucose and label (13C) 

propagation to glycogen, RNA ribose and lactate measured by mass spectrometry. Ramid 

reads the raw netCDF files, corrects baseline and extracts the peak intensities. The 

resulting peak intensities are corrected (natural abundance, overlapping peaks) by Midcor, 

which provides isotopologue abundances. Isotopologue abundances, together with a 

model description (SBML model, tracing data, constraints), are used by Iso2Flux to 

provide flux distributions through glycolysis and pentose-phosphate pathways, which are 

shown as numerical values associated to a metabolic scheme of the model by the Escher-

fluxomics tool.

Discussion
Implementing the different tools and processing steps of a data analysis 
workflow as separate services that are made available over a network 
was in the spotlight in the early 2000’s (Foster, 2005) as service-oriented 
architectures (SOA) in science. At that time, web services were 
commonly deployed on physical hardware and exposed and consumed 
publicly over the internet. However, it soon became evident that this 
architecture did not fulfill its promises as it was hard to scale from a 
computational and maintainability perspective. In addition, the web 
services were not portable and mirroring them was complicated (if at all 
possible). Furthermore, API changes and frequent services outage made 
it frustrating to connect them into functioning computational workflows. 
Ultimately, the ability to replicate an analysis on local and remote 
hardware (such as a computer cluster) was very difficult due to 
heterogeneity in the computing environments. 

At first sight microservices might seem similar to above mentioned SOA 
web services, but microservices can with great benefit be executed in 
virtual environments (abstracting over OS and hardware architectures) in 
such a way that they are only instantiated and executed on-demand, and 
then terminated when they are no longer needed. This makes such virtual 
environments inherently portable and they can be launched on demand 
on different platforms (e.g., a laptop, a powerful physical server or an 
elastic cloud environment). A key aspect is that workflows of 
microservices are still executed identically, agnostic of the underlying 
hardware platform. Container-based microservices provide a wide 

flexibility in terms of versioning, allowing the execution of newer and 
older versions of each container as needed for reproducibility. Since all 
software dependencies are encompassed within the container, which is 
versioned, the risk of workflow failure due to API changes is minimized. 
An orchestration framework such as Kubernetes further allows for 
managing errors in execution and transparently handles the restarting of 
services. Hence, technology has caught up with service-oriented science, 
and microservices have taken the methodology to the next level, 
alleviating many of the previous problems related to scalability, 
portability and interoperability of software tools. This is advantageous in 
the context of omics analysis, which produces multidimensional data sets 
reaching beyond gigabytes, on into terabytes, leading to ever-increasing 
demand on processing performance (Marx, 2013; Schadt et al., 2010). 
However, containerization does not address how services communicate 
with each other, but this has to be implemented inside the container 
itself. Traditional web services addressed this by standardizing the 
messaging protocol and public-facing interfaces (e.g. SOAP and WSDL) 
(Stockinger et al., 2008), while in a containerized environment 
Representational State Transfer (REST) (Fielding and Taylor, 2000) or 
passing files by reference to a shared file system is more common. In 
Demonstrator 1, we showed that microservices enable highly efficient 
and scalable data analyses by executing individual modules in parallel, 
and that they effectively harmonize with on-demand elasticity of the 
cloud computing paradigm. The reached scaling efficiency of ~88% 
indicates remarkable performance achieved on generic cloud providers. 
Furthermore, although our results in positive ionization model was 
slightly different to that of Ranninger et al. (Ranninger et al., 2016), the 
results of our analysis were replicable regardless of the platform used to 
perform the computations..

In addition to the fundamental demand for high performance, the 
increased throughput and complexity of omics experiments has led to a 
large number of sophisticated computational tools (Berger et al., 2013), 
which in turn necessitates integrative workflow engines (Di Tommaso et 
al. 2017; Atkinson et al. 2017; Liew et al. 2016). In order to integrate 
new tools in such workflow engines, compatibility of the target 
environment, tools and APIs needs to be considered (Di Tommaso et al., 
2017). Containerization facilitates this by providing a platform-
independent virtual environment for developing and running the 
individual tools. However, the problem of compatibility between 
tools/APIs and data formats remains and needs to be tackled by 
international consortia (e.g., strictly adhering to FAIR Data Principles 
(Wilkinson et al., 2016)).. Our methodology  the currently non-trivial 
task of instantiating the complete microservice environment through a 
web portal that allows for convenient deployment of the VRE on public 
cloud providers. Moreover, using this web portal, microservices and 
VREs can be deployed on a trusted private cloud instance or a local 
physical server on an internal network, such as within a hospital 
network, allowing for levels of isolation and avoiding transfer of data 
across untrusted networks which often are requirements in the analysis of 
sensitive data. This was exemplified in Demonstrator 2, where a 
complete start-to-end workflow was run on the Galaxy platform on a 
secure server at Uppsala University Hospital, Sweden, leading to the 
identification of novel disease fingerprints in the CSF metabolome of 
RRMS and SPMS patients. It is worth mentioning that the selected 
metabolites were part of the tryptophan metabolism (alanyltryptophan 
and indoleacetic acid) and endocannabinoids (linoleoyl ethanolamide), 
both of which have been previously implicated in multiple sclerosis 
(Lovelace et al., 2016; Lim et al., 2017; Amirkhani et al., 2005; 
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Centonze et al., 2007; Zamberletti et al., 2012; Baker and Pryce, 2008). 
However, since the cross-validated predictive performance (Q2Y = 
0.286) is not much higher than some of the models generated after 
random permutation of the response (Figure 4A), the quality of the 
model needs to be confirmed in a future study on an independent cohort 
of larger size.

The microservice architecture is domain-agnostic and not limited to a 
particular assay technology, i.e. mass spectrometry. This was showcased 
in Demonstrator 3 and 4, where an automated 1D NMR workflow and 
calculation of flux distributions (derived from the application of stable 
isotope resolved metabolomics) were performed. In Demonstrator 3, we 
showed that the pattern of the metabolite expression is different between 
type 2 diabetic and healthy controls, and that a large number of 
metabolites contribute to such separation. In Demonstrator 4, we showed 
a high rate of glycolysis in cells cultured in hypoxia, which is consistent 
with the one expected for endothelial cells (Iyer et al., 1998) and with 
how these cells maintain energy in low oxygen environments and 
without oxidative phosphorylation (Eelen et al., 2015; Polet and Feron, 
2013). These two examples further show that complex workflows can be 
applied with minimal effort on other studies (i.e. simply by providing a 
MetaboLights accession number), leading to the capability to re-analyze 
data and compare the results with the original publication findings. 
Furthermore, it demonstrates the value of standardised dataset 
descriptions such as nmrML (Schober et al., 2017) and ISA format 
(Rocca-Serra et al., 2016; Sansone et al., 2012) for representing NMR 
based studies, as well as the potential of the VRE to foster 
reproducibility. Furthermore, the data processing steps are trackable and 
replicable as each container/tool is versioned for a specific release and 
data processing steps and the corresponding parameters are taken care of 
by the workflow engine. In addition, the cli KubeNow is using speciffic 
pinned versions of all dependant software and all versions of software is 
stored in the user config dir created by the init-command. The specific 
version of KubeNow used is saved in user config directory.

While microservices are not confined to metabolomics and generally 
applicable to a large variety of applications, there are some important 
implications and limitations of the method. Firstly, tools need to be 
containerized in order to operate in the environment. This is however not 
particularly complex, and an increasing number of developers provide 
containerized versions of their tools on public container repositories such 
as Dockerhub or Biocontainers (da Veiga Leprevost et al., 2017). 
Secondly, uploading data to a cloud-based system can take a 
considerable amount of time, and having to re-do this every time a VRE 
is instantiated can be time-consuming. This can be alleviated by using 
persistent storage on a cloud resource, but the availability of such storage 
varies between different cloud providers. Further, the storage system can 
become a bottleneck when many services try to access a shared storage. 
We observe that using a distributed storage system with multiple storage 
nodes can drastically increase performance, and the PhenoMeNal VRE 
comes with a distributed storage system by default. When using a 
workflow system to orchestrate the microservices, stability and 
scalability are inherently dependent on the workflow system’s job 
runner. Workflow execution is dependent on the underlying workflow 
engine, and we observed that a large number of outputs can make the 
Galaxy engine unresponsive, whereas the Luigi engine did not have 
these shortcomings. With clouds and microservices maturing, workflow 
systems will need to evolve and further embrace the new possibilities of 
these infrastructures. It is important to note that microservices do not 
overcome the incompatibility between tools with respect to using 

different data formats, and code resolving such incompatibility is still 
needed. However, using a shared platform makes such bridging 
components easier to maintain and makes them reusable. There remains 
great challenges in establishing interoperable and agreed-upon standards 
and data formats that are widely accepted and implemented by tools, as 
well as achieving complete support for the FAIR principles (Wilkinson 
et al., 2016). Further, not all research can be easily pipelined, for 
example exploratory research might be better carried out in an ad-hoc 
manner than with workflows and the overhead this implies. A Jupyter 
Notebook as used in in Demonstrator 1 or embedded in Galaxy (Grüning 
et al., 2017) constitutes  a promising way to make use of microservices 
for interactive analysis. The serverless architecture, also called Functions 
as a Service (FaaS) architecture, is an interesting methodology when 
deployed with microservices as it allow developers to execute code in 
response to events without managing the underlying infrastructure. . 
While serverless technologies have irrupted strongly in areas of software 
engineering closer to web development, this doesn’t mean that their 
usage can be easily transferred to scientific workloads. This is due to the 
far more complex network of dependencies that scientific software will 
have compared to web applications, where large applications can be 
managed for instance through npm package resolutions only. On 
scientific software solutions one will commonly find dependencies in 
different programming languages, different underlying libraries and even 
sometimes on different incompatible versions of the same frameworks. 
This level of complexity is not resolvable today through server less 
approaches and requires more isolated approaches based on containers, 
such as the one presented here.

In summary, we showed that microservices allow for efficient horizontal 
scaling of analyses on multiple computational nodes, enabling the 
processing of large data sets. By applying a number of data (mzML 
(Martens et al., 2011), nmrML) and metadata standards (ISA 
serialisations for study descriptions (Rocca-Serra et al., 2016; Sansone et 
al., 2012)), we also demonstrated a high level of interoperability in the 
context of metabolomics, by providing completely automated start-to-
end analysis workflows for mass spectrometry and NMR data. In 
addition, many of the state-of-the-art tools such as components of XCMS 
ONLINE (Warth et al., 2017) and MetaboAnalyst (Xia et al. 2012) can 
be incorporated in the workflows, providing more refined workflows. 
The ability to instantiate VREs close to large datasets, such as on local 
servers within a hospital for Demonstrator 2, makes it possible to use the 
VRE on sensitive data that is not allowed to leave the current 
environment for ELSI reasons. While the current PhenoMeNal VRE 
implementation uses Docker for software containers and Kubernetes for 
container orchestration, the microservice methodology is general and not 
restricted to these frameworks. Likewise, the choice of Luigi and Galaxy 
was here used to demonstrate the capabilities of workflow management 
microservices in cloud environments. In fact, our microservice 
architecture supports other major workflow engines such as Nextflow 
(Di Tommaso et al., 2017) or Snakemake (Köster and Rahmann, 2012). 
Hence it is possible to use any of such workflow engines in our VRE and 
still produce reproducible results. In addition, despite some of our 
workflows were novel in the context of metabolomics (e.g. Demonstrator 
2) and can be readily applied on other datasets, their main contribution in 
this work is to showcase scalability and interoperability of the 
microservices methodology. Finally, we emphasise that the presented 
methodology goes beyond metabolomics and can be applied to virtually 
any field, lowering the barriers for taking advantage of cloud 
infrastructures and opening up for large-scale integrative science.
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