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1 Introduction
Generally, the data from remote sensing surveys is 
screened manually in archaeology. However, constant 
monitoring of the earth’s surface—by a multitude of air-
borne and satellite sensors—causes a huge influx of data 
of high complexity and high quality. To cope with this 
ever-growing set of largely digital and easily available 
data, computer-aided methods for the processing of data 
and the detection of archaeological objects1 are needed 
( Bennett, Cowley & De Laet 2014: 896).

Over a decade ago, archaeologists started develop-
ing computational methods for the (semi-)automated 
detection of archaeological objects (De Boer 2007; De 
Laet, Paulissen & Waelkens 2007). Since then multiple 
case studies have shown these algorithms to be capable 
of detecting well-defined archaeological traces, such as 
barrows (see for example Sevara et al. 2016). However, 
these (often) handcrafted algorithms are highly special-
ised on specific, single object categories and data sources, 
which restricts their use in different contexts and limits 
their usability in general for archaeological prospection. 
Furthermore, these approaches are predominantly com-
plex algorithms that can require a high level of expertise 

to operate, and are regularly dependent on expensive soft-
ware. All this results in an implementation that is limited 
in its user-friendliness (see also Ball, Anderson & Seng 
Chan 2017: 3).

To overcome the aforementioned limitations, this 
research project explores the implementation of advanced 
computational methods to develop a generic, flexible and 
robust automated detection method for archaeological 
objects in remotely sensed data. More specifically, this 
project aims to develop user-friendly workflows for the 
detection of multiple classes of archaeological objects in 
LiDAR (Light Detection And Ranging; Wehr & Lohr 1999) 
data using Deep Learning (Goodfellow, Bengio & Courville 
2016). The research project, a four-year PhD, is part of the 
Data Science Research Programme (DSRP) at the Faculty of 
Archaeology and the Leiden Centre of Data Science (LCDS) 
at Leiden University. The DSRP aims to bring together 
domain knowledge and associated ‘big data’ problems (for 
instance in archaeology) with the technical methods and 
solutions from data science.

This paper presents the results of the first year of the PhD 
project consisting of the first workflow developed, called 
WODAN (Workflow for Object Detection of Archaeology 
in the Netherlands). WODAN has successfully been imple-
mented on LiDAR data from the research area in the 
Netherlands (Figure 1). The workflow serves as a proof 
of concept, to demonstrate that by implementing deep 
learning techniques it is possible to create a multi-class 
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detector for archaeological objects. While the first results 
are promising, there is still improvement needed in order 
to achieve a generic detection method.

In the following the research area is introduced 
(Section 2), followed by an overview of the type of deep 
learning technique used (Section 3). The structure of the 
workflow and the datasets (Section 4) as well as the results 
of the initial experiments (Section 5) will be presented and 
discussed (Section 6). The paper will finish with an over-
view of improvements and future developments planned 
for WODAN (Section 7).

2 The Research Area
The research area comprises a largely forested area of circa 
2350 km2 (about 7% of the total area of the  Netherlands, 
excluding water) in the central part of the Netherlands 
(Figure 1). It is locally known as the Utrechtse Heuvel-
rug (western part) and the Veluwe (eastern part), which 
are separated by the Gelderse Vallei. Both the Utrechtse 
Heuvelrug and the Veluwe consist of ice-pushed ridges 
formed in the Saale glacial period (circa 350,000 to 
130,000 years ago), and were subsequently covered with 
coversand deposits during the Weichselian glacial period 
(circa 115,000 to 10,000 years ago; Berendsen 2004). Till 
the second half of the Middle Ages (500 to 1500 AD), 

the area remained largely covered by forest and heath. 
Between the 8th and 10th century AD large swathes of 
forest were cut down due to extending agricultural areas 
and iron production, the latter needing large amounts of 
charcoal. Areas with drift-sand (Aeolian sand) emerged, 
presumably due to the deforestation (Berendsen 2004). 
In the first quarter of the 20th century large parts of the 
research area were reforested and the majority of the 
still extant archaeological objects are now under forest 
cover. While this has likely contributed to their present 
day preservation, their location also hinders the survey of 
these archaeological objects (see also Kenzler &  Lambers 
2015). Nevertheless, the area holds one of the largest 
clusters of known (extant) archaeological objects in the 
 Netherlands, including barrows, Celtic fields, charcoal 
kilns, hollow roads, and landweren (border barriers).2 The 
area has been the subject of several (recent) archaeologi-
cal projects (e.g. Arnoldussen 2018; Bourgeois 2013), pro-
viding up-to-date inventories of archaeological objects 
and their state of preservation (though see Section 4.1). 
This area is ideally suited for the research at hand thanks 
to the large number and overall good preservation of 
archaeological objects, their clear visibility in LiDAR data, 
the available archaeological information as well as the 
size of the area.

Figure 1: The research area (highlighted red) in the central part of the Netherlands (source background map https://
www.pdok.nl).

https://www.pdok.nl
https://www.pdok.nl
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3 From CNN to Faster R-CNN
Deep learning (DL) is a subfield of machine learning 
which attempts to acquire high-level abstractions in data 
by utilising hierarchical architectures (Guo et al. 2016: 
27). Recently, DL has been applied in multiple artificial 
intelligence domains, such as computer vision and natu-
ral language processing. To date, the most frequently 
used DL architectures are Convolutional Neural Networks 
(CNNs; Krizhevsky, Sutskever & Hinton 2012). A CNN is 
an image-classifying algorithm that is loosely inspired 
by the human visual cortex (Ball, Anderson & Seng Chan 
2017: 5). A typical CNN consists of an input layer, multiple 
hidden layers, and an output layer. The hidden layers are 
generally a combination of alternating convolutional- and 
pooling layers, followed by several fully-connected layers. 
In the convolutional layers, various filters (kernels) are 
used to convolve (add values of a pixel within an image to 
its neighbouring pixels based on a certain filter) the image 
into feature maps. The subsequent pooling layer reduces 
the dimensions of these feature maps (Figure 2).

After the last pooling layer, there are several fully-con-
nected layers that look at to which particular class the pro-
duced feature maps most strongly correlate and compute 
the probabilities for the different classes (Guo et al. 2016: 
28–29). Together all layers comprise a feature extractor 
and a classifier, of which the latter assigns class labels or 
computes probabilities of a given class being present in 
the input image (Ball, Anderson & Seng Chan 2017: 5).

A CNN learns from given examples (generally a very 
large set of labelled images), rather than relying on a 
human programmer to formulate rules or set parameters. 
The training of a CNN involves the following steps: for-
ward-propagation, computation of the loss cost (error), 
and back-propagation. During forward-propagation the 
input image is fed through the different layers with the 
current parameters (weights and bias) fixed. The output 
is compared to the ground truth labels (the same manu-
ally labelled image) and used to calculate the loss cost. 
Based on the loss cost, the gradients of each parameter 

are computed and used to update all parameters during 
back-propagation. All layers are then prepared for the 
next forward-propagation. One training round (a forward-
propagation, computation of the loss cost (error), and 
back-propagation) of all training examples is called an 
epoch. After a sufficient number of these epochs—when 
the loss cost has become acceptably low—the training of 
the CNN can be stopped (Guo et al. 2016).

One of the main problems to overcome in (semi-)auto-
mated archaeological object detection is the (in compari-
son to other fields) small datasets that are available. One 
of the merits of CNNs (especially for a field such as archae-
ology) is the possibility of transfer learning or domain 
adaption. Rather than training a CNN from scratch on a 
small dataset, a CNN is pre-trained on a generic image set 
and then optimised and reused on a small dataset (from 
a different domain; Razavian et al. 2014). Because all 
 layers (except for the output layer) can use the pre-trained 
parameters during transfer learning, the training time of 
the CNN is greatly reduced while the generalisation ability 
of the algorithm is improved (Guo et al. 2016: 30). Transfer 
learning has been successfully applied in archaeologi-
cal contexts, on photographs and drawings (Hohl 2016) 
as well as on images from remote sensing surveys (Trier, 
Cowley & Waldeland 2018; Trier, Salberg & Pilø 2018; 
Zingman et al. 2016).

However, in archaeological prospection the focus lies not 
only on characterising objects (or classifying, the typical 
task of a CNN) but also on obtaining the exact position (or 
localising) of these objects in the wider landscape (David 
2005). This is where R-CNNs (Regions with CNN features 
or Region-based CNNs; Girshick et al. 2014) can prove use-
ful. Unlike normal CNNs, which classify the entire input 
image, R-CNNs address the problem of object detection, 
which requires correctly localising and classifying (multi-
ple) objects within a larger image (Guo et al. 2016: 39). The 
basic concept of an R-CNN is to generate multiple object 
proposals within an image, extract features from each pro-
posal using a CNN, and then classify these. The developed 

Figure 2: Schematic representation of a convolution- and pooling layer in a CNN.
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workflow uses a recent ‘evolution’ of R-CNN: Faster R-CNN 
(Ren et al. 2017). For a detailed explanation of the work-
ings of Faster R-CNN see Section 4.2.

4 WODAN
The aim of the research project is to create user-friendly 
workflows for multi-class archaeological object detec-
tion in remotely sensed data. The first workflow devel-
oped, called WODAN, is designed to detect barrows, Celtic 
fields and charcoal kilns in LiDAR data by utilising Faster 
R-CNN (Figure 3). WODAN can be broken down into three 
separate parts: a preprocessing- (Section 4.1), an object 
detection- (Section 4.2), and a post-processing part (Sec-
tion 4.3). The first part deals with all the (pre)processing 
necessary to convert LiDAR data into input images that 
meet the requirements of Faster R-CNN. The second part 
of the workflow is where the actual object detection by 
Faster R-CNN is performed. In the post-processing part, 
the results of the object detection are converted back into 
geographical data. The latter is done to make the results 
more usable for archaeological prospection. In the follow-
ing the different parts of the workflow are discussed.

4.1 Datasets
In order to successfully train Faster R-CNN for the task 
at hand, a training-, validation-,3 and testing dataset of 
LiDAR images containing labelled archaeological objects 
is needed. Unfortunately, at the outset of the project no 
such datasets were available, and therefore had to be 
created. The datasets were designed to be similar in for-
mat (image size, image type, and folder structure) to the 
PASCAL Visual Object Challenge (VOC) datasets (Evering-
ham et al. 2010). These challenging datasets are the most 
widely employed for the evaluation of object detection 
architectures and therefore are readily usable in most 
object detection algorithms (Guo et al. 2016).

From the Veluwe (see Section 2) about 440 km2 of inter-
polated LiDAR data was acquired.4 The interpolated data 
was visualized with Simple Local Relief Model (SLRM) 
from the Relief Visualisation Toolbox (Kokalj 2013). This 
visualization enhances the local detail, while suppressing 
the large-scale terrain (Hesse 2010). The images were sub-
sequently turned into a format that Faster R-CNN requires 
(JPG files of maximum 1000 by 600 pixels) by importing 
them into QGIS (2.18 Las Palmas; QGIS Development Team 

Figure 3: The workflow WODAN, with processes in blue and in-/output files in yellow.
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2017) and using the plugin gridSplitter (Krambach 2016) 
(see also Figure 3). This resulted in 2940 sub-images of 
1000 by 596 pixels (500 by 298 m). Due to this ‘cutting 
up’ of the images, about 3% of the barrows in the train-
ing dataset were dissected. It is unclear whether this had 
any effect on the training or performance of the model. 
However, it has been noted that there are also some 
cases where barrows have been dissected ‘naturally’ by 
other, more modern objects, such as (hollow) roads. This 
potential problem will be addressed in future research 
by implementing overlap between sub-images. The sub-
images were converted from GeoTIFF files to JPG files 
with Irfanview (Skiljan 2005). All barrows, Celtic fields and 
charcoal kilns within these sub-images were labelled using 
LabelImg (Tzutalin 2015). However, during the labelling a 
problem arose. Many of the sub-images contained poten-
tial barrows that were previously unknown. At the moment 
of writing 745 potential barrows have been discovered in 
the datasets. As it was unclear whether these objects are 
real barrows or other (geological) objects, sub-images con-
taining only potential barrows were excluded from the 
datasets. Potential barrows in sub-images containing both 
known and unknown objects were labelled as barrows. It 
was also noted that parts of the research area were made 
up of large zones of drift-sand of unknown date (but see 

Bourgeois 2013). Sub-images containing large parts of this 
drift-sand were excluded as well, because the small dunes 
within these areas are indistinguishable from barrows, 
even for humans. In total 754 sub-images were excluded 
from the training- and validation datasets, based on the 
above arguments. A further 1360 sub-images contained 
no relevant archaeological objects and were excluded 
from the training- and validation datasets as well. For the 
testing dataset 73 sub-images (of the 420) were selected, 
including both sub-images with and without relevant 
archaeological objects. Several sub-images, containing 
‘difficult’ terrain objects that could easily been mistaken 
for archaeological objects (objects of confusion), were 
added as well (see Figure 4). This resulted in training-, 
validation-, and testing datasets of respectively 365, 41, 
and 73 sub-images. See Table 1 for more information on 
the datasets.

4.2 Faster R-CNN
The main part of the workflow consists of an altered ver-
sion of Faster R-CNN.5 This particular R-CNN architecture 
was chosen because it performs well on several difficult 
object detection tasks (Guo et al. 2016: 39). The basic con-
cept of an R-CNN is to generate multiple object propos-
als within an image, extract features from each proposal 

Figure 4: Output images of Faster R-CNN showing correctly detected barrows (a); correctly detected Celtic fields (b); 
both classes correctly detected within a single image (c); a false detection of a roundabout classified as barrow (d); 
undetected charcoal kilns (center left) (e); ‘empty’ image with possible objects of confusion (f).
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using a CNN, and then classify these. In the Faster R-CNN 
architecture (also see Figure 3) a region proposal network 
(RPN; a small fully convolutional neural network) gener-
ates the object proposals. The feature extraction and clas-
sification is done by the Fast R-CNN detector (Girshick 
2015). Fast R-CNN consists of a bounding box regres-
sor and a CNN (in this research the Resnet50- (He et al. 
2016) or the VGG16 model (Simonyan & Zisserman 2015) 
was used). Both the RPN and the Fast R-CNN detector 
are trained simultaneously during the training of Faster 
R-CNN. The RPN takes an image as input and outputs a 
set of rectangular object proposals, each with a likelihood 
that the proposal contains a relevant object. The RPN is 
slid over the image with a set interval (called stride). At 
every location, multiple object proposals (or regions of 
interest; RoIs) are generated based on anchors of three 
different scales (also see Table 2) and three aspect ratios 
(1:1, 1:2, and 2:1) resulting in nine anchor boxes per loca-
tion. These anchor boxes are fed into a regression layer, 
which outputs the coordinates of the anchor boxes, and 
into a classification layer that estimates the probability of 
the anchor box containing an object or no object. Simply 
said: the RPN tells the Fast R-CNN detector where to look 
(Ren et al. 2017: 3–4). The Fast R-CNN detector takes the 
image and the object proposals (that presumably contain 
an object) from the RPN. For every object proposal a prob-
ability of it belonging to a particular class (plus a catch-all 
‘background’ class) is given (by the classifier) as well as a 
set of refined bounding box coordinates (by the bounding 
box regressor; Girshick 2015). Based on a set probability 
threshold object proposals are discarded or given as out-
put of the model.

Several alterations were made to the ‘original’ Faster 
R-CNN model (see also Table 2):

•	 A validation step was incorporated after every two 
epochs to monitor overfitting of the model during 
training. During this step the model’s performance 

was tested against the validation dataset. Decline in 
the performance during the validation step can be an 
indication of overfitting;

•	 Data augmentation was implemented by using 
horizontal- and vertical flip and 90° rotations 
(effectively multiplying the dataset by 4) to reduce 
overfitting;

•	 Because a pre-trained model was used on a small 
dataset the number of epochs was drastically lowered 
from 2000 to 12–18;

•	 The size of the anchor boxes was adjusted from 64, 
128, 512 pixels to 16, 64, 128/256/384/512 pixels 
to better cope with the small objects in the images.

4.3 Post-processing
The prior object detection step results in the input images 
with superimposed bounding boxes (Figure 4). Every 
bounding box is associated with a class label and a confi-
dence score (range 0–100). Furthermore, a text-file with 
class labels, confidence scores, and bounding box coordi-
nates per image is created. One of the drawbacks of Faster 
R-CNN is that these bounding box coordinates are in a 
local coordinate system—instead of a ‘real-world’ coordi-
nate system—based on the pixels of the input image. To 
convert the bounding box coordinates into coordinates 
usable in a GIS environment the Boundingbox Localizer 
Tool (BLT) was developed. This program takes the ‘real-
world’ coordinates from the input images (while still in 
GeoTIFF format; see Section 4.1) and uses these to calcu-
late the corner and central coordinates of the bounding 
boxes. The resulting points are used to create bounding 
box polygons with the convex hull algorithm in QGIS 
(QGIS Development Team 2017). The outcome is a GIS 
layer with the results of the object detection step (bound-
ing boxes, class labels, and confidence scores) in ‘real-
world’ coordinates. The results can therefore directly be 
verified with the original LiDAR data (or additional data) 
in a GIS environment.

Table 1: The developed datasets used in this research.

dataset # images # barrows # Celtic 
fields

# char-coal 
kilns

# objects

training 365 749 904 119 1772

validation 41 49 199 24 272

testing 73 78 235 23 336

Table 2: Initial results of the experiments (values before slash are for barrows, after slash for Celtic fields).

Experiment # epochs Anchorbox sizes Recall Precision F1 MaF1

1 12 16, 64, 512 0.76/0.19 0.57/0.71 0.65/0.30 0.43

2 15 16, 64, 128 0.78/0.48 0.36/0.47 0.49/0.47 0.47

3 15 16, 64, 256 0.69/0.97 0.77/0.26 0.73/0.41 0.45

4 15 16, 64, 384 0.71/0.92 0.90/0.26 0.79/0.41 0.46

5 15 16, 64, 512 0.62/0.82 0.55/0.58 0.59/0.68 0.66

6 18 16, 64, 512 0.81/0.20 0.68/0.50 0.74/0.29 0.44
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5 Initial Results
The developed datasets (see Section 4.1) were used to train 
and test the altered Faster R-CNN model. Training and 
 testing was done on one Graphics Processing Unit (GPU; 
NVidia Tesla K80). Training took between 20–30 minutes 
per epoch, while validation only took circa 2  minutes. On 
average the testing time was less than one second per image. 
A total of 20 experiments were conducted. Several param-
eters were varied between experiments in order to inves-
tigate their influence on the performance of the model – 
namely the ‘backbone’ CNN, the number of epochs, the 
stride of the RPN, and the size of the anchor boxes.

Nine experiments were conducted with Resnet50 (He 
et al. 2016) instead of VGG16 as the ‘backbone’ CNN. 
Both models (Resnet50 and VGG16) are designed to clas-
sify multiple classes. However, in the nine experiments 
conducted in this research with the Resnet50 model, 
Resnet50 was only able to detect a single class (barrows), 
not multiple classes (barrows and Celtic fields). While mul-
tiple Resnet50 models, one for each class, could be used 
in conjunction (see for instance Trier, Cowley & Waldeland 
2018 for a comparable approach), this is not preferable 
as the research aims at a single, multi-class detector for 
various archaeological object classes. Further experiments 
with Resnet50 were dropped in favour of experiments 
with the VGG16 model. Another five experiments yielded 
no results: they were unable to detect any objects at all. 
This was caused either by overfitting or by changes in the 
model that resulted in critical failures, such as the chang-
ing of the stride of the RPN. Table 2 shows the results 
of the six experiments that were able to detect multiple 
classes. In these experiments the number of epochs was 
varied between 12 and 18. The size of the anchor boxes 
was varied between 16, 64, 128 and 16, 64, 512.

The performance of the experiments was evaluated by 
calculating the recall, precision, F1-score, and MaF1-score 
(see Table 2). All these metrics reach their best value at 1 
and worst at 0. These metrics are calculated by determin-
ing the number of true positives (TP), false positives (FP), 
and false negatives (FN). The recall gives a measure of how 
many relevant objects are selected (recall = TP/(TP+FN); 
Sammut & Webb 2010, 781). The precision meas-
ures how many of the selected items are relevant 
(precision = TP/(TP+FP); Sammut & Webb 2010, 781). 
The F1-score is the harmonic average of the precision 
and recall and a measure of the model’s performance 
per class (F1 = 2*recall*precision/(recall+precision); 
Sammut & Webb 2010, 397). The latter is usually more 
useful than accuracy, especially if the datasets have an 
uneven class distribution. The Micro averaged F1-score 
(MaF1) is the harmonic mean of the Micro averaged pre-
cision (=TP1+TP2/(TP1+TP2+FP1+FP2)) and Micro aver-
aged recall (=TP1+TP2/(TP1+ TP2+FN1+FN2)) and gives 
a measure of the model’s overall performance (Manning, 
Raghavan, & Schütze 2009, 280).

The results of the experiments (see Table 2) show a top 
performance of the Faster R-CNN model of 0.66 (MaF1) and 
an on average performance of 0.49 (average MaF1 score of 
all experiments). The experiments show that Faster R-CNN 
can be trained to detect and categorise both barrows and 

Celtic fields (Figure 4). However, it should be noted that 
during all experiments Faster R-CNN was unable to detect 
charcoal kilns (see below). Charcoal kilns were therefore 
omitted from the results. The performance of Faster R-CNN 
varies greatly between experiments. Recall values for bar-
rows and Celtic fields are respectively 0.62–0.81 (on aver-
age 0.73) and 0.19–0.97 (on average 0.60). Precision values 
for barrows and Celtic fields are respectively 0.36–0.90 (on 
average 0.64) and 0.26–0.71 (on average 0.46). F1-scores 
lie between 0.49 and 0.79 for barrows (on average 0.67) 
and between 0.29 and 0.68 for Celtic fields (on average 
0.43). The latter shows that the model performs better at 
detecting barrows than Celtic fields.

6 Discussion
While Faster R-CNN performs adequately, with a top per-
formance of 0.66 (MaF1) and an average MaF1-score of 
0.49 (see Table 2), the method is still far from perfect. 
As stated above, Faster R-CNN has been unable to detect 
charcoal kilns in any of the conducted experiments (see 
Figure 4). Other studies have managed to (semi-)auto-
matically detect charcoal kilns in LiDAR data (Schneider 
et al. 2015; Trier, Salberg & Pilø 2018). Performance issues 
in these studies were either contributed to the size (Sch-
neider et al. 2015) and ‘high speciality’ (or complexity) of 
charcoal kilns (Trier, Salberg & Pilø 2018), the terrain (and 
terrain objects) surrounding the charcoal kilns (e.g. forest 
roads intersecting charcoal kilns; Schneider et al. 2015), 
or the difference between RGB photographs and greyscale 
LiDAR images (Trier, Salberg & Pilø 2018). The above-men-
tioned issues seem not to have been the main problem in 
our experiments. We were able to detect other archaeo-
logical objects, of comparable size and complexity, which 
were on occasion intersected by (modern) terrain objects 
in greyscale LiDAR images. The most probable cause for 
the lack of learning of this particular class is the low num-
ber of examples in the training set (119 versus 749 and 
904 for the other classes; see Table 1).

Comparing the results to other archaeological (semi-)
automated detection methods proves difficult. The main 
complications are insufficient details on the number of 
true- and false positives (e.g. Cerrillo-Cuenca 2017) and/or 
the fact that additional circumstances have been of influ-
ence on the results. As an example of the latter: in the 
research of Kramer (2015) on the detection of barrows in 
LiDAR data, the dataset used for verification included an 
unknown amount of levelled barrows which were impos-
sible to detect in LiDAR data and therefore increased the 
number of false negatives. Such complications make it 
either challenging or even impossible to calculate the 
above-mentioned metrics, or make us question the valid-
ity of the calculated metrics. However, in Table 3 a rough 
comparison between the results of our best performing 
model (listed as WODAN) and other detection methods 
for barrows (or equivalent mounds) is depicted. The object 
detection method used is also shown (see Cheng & Han 
2016 for an overview of these different methods). The 
results shown are the best performing detection method 
in that particular paper. The rough comparison shows that 
our approach is among the top in performance compared 
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to other methods. These results therefore show that Faster 
R-CNN is a promising technique for the detection of mul-
tiple classes of archaeological objects in LiDAR data.

7 Conclusions
This paper presents the results of the application of a 
promising new technique for the automated detection 
of archaeological objects in LiDAR data, based on R-CNN 
(Region-based CNN). This deep learning architecture 
has successfully been integrated into a workflow, called 
WODAN. This workflow incorporates the preprocessing of 
LiDAR data (into the required format), multi-class object 
detection with Faster R-CNN, and the conversion of the 
results of the object detection step into geographical data. 
An altered Faster R-CNN model has been trained (through 
transfer learning) and tested on LiDAR data gathered from 
the central part of the Netherlands. The results of the 
experiments (see Table 2) show that while Faster R-CNN 
performs adequately (the MaF1-score of all experiments is 
on average 0.49), the method still requires improvement. 
The model is able to detect and categorise two types of 
archaeological objects (barrows and Celtic fields), but has 
been unable to detect a third type (charcoal kilns), prob-
ably due to the low number of examples in the training 
dataset. Based on a rough comparison with other detec-
tion methods for barrows (or equivalent mounds), Faster 
R-CNN is among the top in performance (see Table 3). 
These results show that Faster R-CNN is a promising tech-
nique for the detection of multiple classes of archaeologi-
cal objects in LiDAR data.

The research discussed in this paper is the results of the 
first year of a four-year PhD project and serves as a proof 
of concept for the usability of R-CNN architectures for 
archaeological object detection. In subsequent research, 
Faster R-CNN will be improved further by increasing the 
number of examples and classes in the training dataset, 
by addressing the potential problem of dissected objects 
within the datasets by implementing overlap between sub-
images, by implementing additional data augmentation, 

and by using models that have been pre-trained on data 
more comparable to LiDAR data. A method will be devel-
oped either to insert additional domain information (for 
instance about the subsoil, current land use etc.) into the 
LiDAR images or to use domain information in an addi-
tional classification step after the object detection. This 
will make the method useful in large-scale archaeological 
mapping over different types of terrain. WODAN will be 
improved by automating the steps within the workflow 
and incorporating these within a single program (or QGIS 
plugin). The end result will be a user-friendly application 
for multi-class archaeological object detection in remotely 
sensed data.

Notes
 1 In the field of Computer Vision the term ‘feature’ refers 

to the properties of an image, while an ‘object’ refers to 
real-world entities (Traviglia, Cowley &  Lambers 2016: 
14). Within this article the term ‘objects’ is therefore 
used for archaeological features, such as barrows.

 2 For instance, the Veluwe has one of the densest 
concentrations of barrows in the Low Countries, 
with more than 1000 recorded examples (Bourgeois 
2013: 3).

 3 A validation dataset was used in the experiments to 
monitor overfitting during training; a problem where a 
CNN has memorized the training examples, but it has 
not learned to generalise to new situations.

 4 Classified, as well as interpolated LiDAR data of the 
entire Netherlands (with a point density of 6–10 per 
m2 and a 50 cm resolution) is freely available from the 
Actueel Hoogtebestand Nederland (https://ahn.arcgi-
sonline.nl/ahnviewer/).

 5 A Keras (Chollet 2015) implementation of Faster 
R-CNN (https://github.com/yhenon/keras-frcnn) was 
used.
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Table 3: Overview of the results (recall, precision, F1-scores) of other research on the detection of barrows or equivalent 
mounds (TP: True Positives; FP: False Positives; FN: False Negatives).

Reference Method # TP # FP # FN Recall Precision F1

Caspari et al. (2014) Machine Learning 32 11 118 0.21 0.74 0.33

Kramer (2015) GEOBIA 50 196 163 0.23 0.20 0.21

Trier, Zortea & Tonning (2015) Template Matching 108 810 109 0.50 0.12 0.19

Freeland et al. (2016) GEOBIA 168 34 68 0.71 0.83 0.77

Freeland et al. (2016) Rules-based (iMound) 200 42 36 0.85 0.83 0.84

Sevara et al. (2016) GEOBIA 1581 220 275 0.85 0.87 0.86

Cerrillo-Cuenca (2017) GEOBIA 28 8000 15 0.61 0.002 0.003

Guyot, Hubert-Moy & Lorho (2018) Machine Learning 2952 41 46 0.98 0.99 0.98

WODAN Machine Learning (R-CNN) 55 6 23 0.71 0.90 0.79

https://ahn.arcgisonline.nl/ahnviewer/
https://ahn.arcgisonline.nl/ahnviewer/
https://github.com/yhenon/keras-frcnn
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