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PREFACE

Atherosclerosis and its complications are the underlying cause for most cardiovascular 
diseases. It is a chronic, multifactorial disease in which lipid accumulates in the arterial 
wall, leading to a local inflammatory reaction and atherosclerotic plaque formation. 
Atherosclerotic disease develops largely asymptomatic over a lifetime. However, plaque 
rupture or erosion can cause the formation of a superimposed thrombus blocking the 
flow of blood. Upon rupture or erosion of an atherosclerotic plaque, platelets, the body’s 
first responders upon endothelial disruption, initiate the formation of a platelet plug, 
which activates the coagulation cascade to form an arterial thrombus. Although in 
principle a protective response, this thrombus formation can cause acute cardiovascular 
events such as myocardial infarction or ischemic stroke 1,2.

Bone marrow derived cells from both the innate and adaptive immune system, 
especially monocytes/macrophages and T cells, and platelets have been implicated in 
the pathophysiology of atherosclerosis 1, The primary site of immune cell and platelet 
production is the bone marrow. During bone marrow hematopoiesis, hematopoietic 
stem cells (HSCs) mature and differentiate until the formed immune cells and platelets 
enter the circulation or home towards their site of action or organ for final maturation 3. 
During homeostasis, hematopoiesis is tightly balanced between the different blood cell 
lineages. In that way, by controlling the output of immune cells and platelets, hema-
topoiesis plays a major role in the resolution or persistence of inflammatory diseases, 
such as atherosclerosis. An increased number of peripheral blood leukocytes, especially 
monocytes and granulocytes, as well as increased platelet counts and reactivity is associ-
ated with occurrence and outcome of cardiovascular disease 4–10. Interestingly, defects in 
cholesterol metabolism and hypercholesterolemia have been shown to affect hemato-
poiesis, immune cell production and platelet counts and reactivity 11,12. Therefore, bone 
marrow cholesterol handling is an interesting target in the battle against cardiovascular 
disease.

This chapter summarizes relevant information to understand the role of cholesterol 
metabolism in the production and reactivity of immune cells and platelets, and its ef-
fects on atherosclerosis and atherothrombosis development.

HEMATOPOIESIS

All circulating blood cells, i.e. erythrocytes, leukocytes and platelets, originate from bone 
marrow, in which they are formed from HSCs through hematopoiesis. Hematopoiesis is 
divided into three main branches: the myeloid, lymphoid and megakaryocyte-erythroid 
arms. HSCs constitute the top of the hematopoietic tree and give rise to committed 
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progenitor cells, which in turn mature into differentiated cells that home towards their 
site of action or organ for final maturation, Figure 1.

HSCs are self-renewing and either multi- or uni-potent. They remain quiescent to 
maintain their undifferentiated state. The HSC pool is divided into long-term HSCs (LT-
HSCs) and short-term HSCs (ST-HSCs). LT-HSCs can provide long term engraftment and 
can serially engraft irradiated mice, whereas ST-HSCs have more limited self-renewal 
capacity in a serial transplantation assay 3. ST-HSCs are believed to give rise to multipo-
tent progenitors (MPPs), which are capable of producing all blood cell linages, but lack 
the capacity for serial transplantation. These MPPs then differentiate further into either 
myeloid or lymphoid lineages. In the classical model of hematopoiesis, the next steps 
are the formation of common myeloid progenitors (CMPs), which give rise to all myeloid 
cells, including the megakaryo-erythroid lineage, and the common lymphoid progeni-
tors (CLPs) 3. However, this classical tree has been subject of debate. Recent evidence 
has suggested that possibly the first step from the HSC pool may not be a lymphoid-
myeloid differentiation decision step, but rather one that allows the megakaryocyte-
erythrocyte lineage to split off, leaving a progenitor with both lymphoid and myeloid 
potential, but without the capacity to form megakaryocytes or erythrocytes. Named a 
lymphoid-primed multipotent progenitor (LMPP), this cell then differentiates into the 
granulocyte-macrophage progenitor (GMP) and CLP 3. The GMP can differentiate into 
a neutrophil, monocyte (which in turn can differentiate into a macrophage or dendritic 
cell in the periphery), or an eosinophil 13. The CLP differentiates into a B cell, a natural 
killer cell (NK cell) or becomes an early thymic progenitor (ETP) that migrates from the 
bone marrow to the thymus to become a CD4+ T cell or a CD8+ T cell13. Megakaryocyte-
erythroid progenitors (MEPs) differentiate further into erythrocytes (through stimula-
tion with erythropoietin) or megakaryocytes (stimulated by thrombopoietin). Cells in 
the erythroid lineage are released into the bloodstream as reticulocytes that mature to 
erythrocytes in the circulation. Megakaryocytes mature fully in the bone marrow, after 
which they release platelets into the bloodstream and perish 14.

CHOLESTEROL METABOLISM

Cholesterol is an important precursor for steroid hormones and an essential component 
of cell membranes, in which it modulates membrane fluidity. Cholesterol can exist in 
eukaryotic cells in two forms: an unbound, free from in cell membranes, or stored as 
cholesteryl esters. Esterification for storage is important, as excess free cholesterol is 
cytotoxic. See Figure 2 for a schematic overview.
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Lipoproteins
General structure and function
Cholesterol is a hydrophobic molecule and is insoluble in aqueous solutions. Therefore, 
it is transported thought the blood circulation by lipoproteins. Lipoproteins are water-
soluble macromolecular complexes, comprised of a hydrophobic core containing cho-
lesteryl esters, neutral lipids, and triglycerides, and a hydrophilic monolayered shell of 
phospholipids, unesterified free cholesterol and specific apolipoproteins. Lipoproteins 
are classified according to their size and density: chylomicrons, very-low-density lipo-
proteins (VLDL), low-density lipoproteins (LDL), and high-density lipoproteins (HDL) 15. 
Chylomicrons and VLDL are the largest and least dense lipoproteins, as they consist 
primarily of a triglyceride rich core. LDL, a remnant of VLDL, and HDL contain a core 
which is comprised primarily of cholesteryl esters 15. Moreover, the different lipoproteins 
can be distinguished by their apolipoprotein composition. Chylomicrons, VLDL and LDL 
have apolipoprotein B (ApoB) as their primary apolipoprotein, whereas apolipoprotein 
A1 (ApoA1) is the principle apolipoprotein of HDL.

The liver plays a central role in cholesterol metabolism, which can be divided in an 
exogenous, endogenous and reverse cholesterol transport pathway 6.

LT-HSC 

ST-HSC 

MPP 

LMPP 

CLP 

CMP 

B T NK GR MO E MK 

GMP MEP 

Figure 1: Schematic overview of hematopoiesis. For explanation see text. LT-HSC: long-term hematopoi-
etic stem cell. ST-HSC: short-term hematopoietic stem cell. MPP: multipotent progenitor. LMPP: lymphoid-
primed multipotent progenitor. CMP: common myeloid progenitor. CLP: common lymphoid progenitor. 
GMP: granulocyte-macrophage progenitor. MEP: megakaryocyte-erythroid progenitor. B: B cell. T: T cell. NK: 
natural killer cell. GR: granulocyte. MO: monocyte. E: erythrocyte. MK: megakaryocyte.
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Exogenous lipid and cholesterol metabolism
The amount of cholesterol and triglycerides absorbed from the diet is a major contribu-
tor the lipid and cholesterol levels in the circulation. Upon absorption by the enterocytes 
dietary triglycerides and cholesteryl esters are, together with intestinal ApoB molecules 
incorporated in nascent chylomicrons. These newly synthesized chylomicrons are then 
exocytosed into the lymph and subsequently enter the blood circulation, where they 
acquire Apolipoprotein E (ApoE) and apolipoprotein C (ApoC) apolipoproteins to form 
mature chylomicrons 16,17. Mature chylomicrons circulate in the blood, where their tri-
glycerides molecules are lipolyzed by lipoprotein lipase (LPL) and taken up for energy 
production and storage 18,19. The formed chylomicron remnants are then removed from 
the circulation through interaction of ApoE with hepatic LDL receptor related protein 
(LRP), remnant receptors, heparin sulphate proteoglycans, and scavenger receptor BI 
(SR-BI) 20–22. In line with the importance of ApoE for removal of lipoproteins and chy-
lomicron remnants from the circulation, targeted deletion of ApoE is associated with 
severe hypercholesterolemia. Hypercholesterolemia in these mice already occurs on a 
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Figure 2: Schematic overview of lipid metabolism. For explanation, see text.
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standard chow diet which does not contain cholesterol, and is strongly aggravated on a 
high-cholesterol diet 23,24.

Endogenous lipid and cholesterol metabolism
Lipids derived from hepatic uptake of lipoprotein remnants and de novo synthesized 
cholesterol are packaged and (re)secreted into the circulation by the liver as ApoB100-
containing nascent VLDL particles 25. In the circulation, VLDL further acquires ApoE and 
ApoC 15. Hydrolysis of triglycerides transforms VLDL to intermediate-density lipoproteins 
(IDL), which are partly taken up by the liver via the LDL receptor (LDLr) and LRP 26. Further 
hydrolysis of IDL particles results in the formation of smaller cholesteryl ester-rich LDL, 
which has ApoB100 as the sole apolipoprotein 26. Finally, LDL is recognized by the LDLr 
mostly on the liver as well as peripheral tissues and removed from the circulation for 
intracellular metabolism. In line with its important role in the removal of VLDL remnants 
and its ultimate remnant LDL from the circulation, mice which are genetically deficient 
for the LDLr have a prolonged half-life of plasma VLDL and LDL 27. These mice display 
a modestly elevated plasma cholesterol level when fed a normal chow diet. However, 
when placed on a cholesterol-rich diet they show strongly elevated plasma cholesterol 
levels (hypercholesterolemia) 28,29.

Reverse cholesterol transport
Reverse cholesterol transport is the pathway through which excess cholesterol from pe-
ripheral tissues is transported back to the liver by HDL for recycling or biliary excretion.

HDL metabolism
HDL is primarily produced by the liver, and to a lesser extent by the intestine, though in-
teraction of lipid-poor ApoA1 with the ATP-binding cassette transporter A1 (ABCA1) 30,31. 
This is an essential part of HDL formation, as both genetic deficiency of ApoA1 as well as 
lack of ABCA1 diminishes circulating HDL levels 32,33. Lipidation of ApoA1 results in the 
formation of nascent pre-β HDL particles 34. These nascent HDL particles are potent ac-
ceptors of excess cholesterol from peripheral tissues. Upon association of, primarily, free 
cholesterol and phospholipids from peripheral tissues, discoidal HDL particles mature to 
spherical HDL3 particles upon conversion of its free cholesterol into cholesteryl esters by 
lecithin:cholesteryl acyltransferase (LCAT) 35 and storage in the core of the particle. HDL3 
is subsequently converted into large α-migrating mature HDL2 by further acquirement 
of phospholipids by transfer through phospholipid transfer protein (PLTP) and apoli-
poproteins that are released during lipolysis of triglycerides in chylomicrons or VLDL. 
Mature HDL circulates in the blood where it takes up excess cholesterol from tissues, 
excreted through cholesterol efflux transporters. The cholesteryl esters are delivered to 
the liver via SR-BI for recycling and biliary excretion or transferred to ApoB containing 



Chapter 1

16

lipoproteins by cholesteryl ester transfer protein (CETP) for redistribution through the 
endogenous lipid and cholesterol metabolism pathway.

Cholesterol efflux towards ApoA1 and HDL
Cholesterol efflux is an active mechanism, which is regulated by various transporters, 
the most important of which are members of the ATP binding cassette (ABC) transporter 
family. Several members of this family of transmembrane proteins mediate the transport 
of cholesterol between various cellular domains and eventual efflux of cholesterol to 
ApoA1 or HDL on the plasma membrane.

ABCA1 is present on the cellular plasma membrane, and mediates cholesterol efflux 
to lipid poor apolipoproteins, such as ApoA1 and ApoE, but not large HDL particles 36. 
ABCA1 is highly expressed in hepatocytes and enterocytes, the two cell types that to-
gether generate the majority of the plasma HDL 37. As a consequence, ABCA1 knockout 
mice are unable to lipidate circulating ApoA1, resulting in HDL deficiency 32. In line, mu-
tations in the ABCA1 gene in humans are the causal factor in Tangier disease, of which 
HDL deficiency is a major clinical manifestation 38–40. However, ABCA1 is most known for 
its crucial function in lipid homeostasis and cholesterol efflux from macrophages, as the 
deletion of ABCA1 in bone marrow leads to a dramatic increase in foam cell formation 
and subsequent atherosclerosis in hypercholesterolemic mice 41.

Another important cholesterol transporter is ABCG1. ABCG1 is highly expressed 
in macrophages, endothelial cells, epithelial cells and brain. However, in contrast to 
ABCA1, not in hepatocytes or intestinal enterocytes 42. Moreover, contrary to ABCA1, 
which is a full transporter, ABCG1 needs to dimerize with another ABC transporter to 
become functional 43. ABCG1 mediates in cholesterol efflux to mature HDL particles, but 
not lipid-free apolipoproteins 42,44,45. In line, ABCG1 does not facilitate HDL generation 42. 
Interestingly, whereas ABCA1 is present on the plasma membrane and directly binds 
to circulating ApoA1 46, ABCG1 is involved in intracellular sterol movement. Although 
the precise cellular localization of ABCG1 remains elusive, it is involved in trafficking 
of cholesterol over the endoplasmic reticulum membrane and endosomes. In that way 
it does not only increase availability of cholesterol for efflux to lipoprotein acceptors, 
but is also important for the regulation of endoplasmic reticulum-localized cholesterol 
biosynthesis genes 46,47.

Besides ABCA1 and ABCG1, ABCG4 has also been implicated as a cholesterol efflux 
transporter 44. ABCG4 shows high levels of homology to ABCG1, and effluxes to HDL 
particles. Interestingly, it is not expressed in macrophages, but is highly expressed in 
megakaryocytes, the precursor cells of platelets 48.

Besides ABC transporter family members, SR-BI has also been implicated as a choles-
terol efflux transporter, as it induces free cholesterol flux down a cholesterol-concen-
tration gradient 49,50. The exact mechanism by which SR-BI mediates cholesterol efflux 
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is largely unknown. Possibly, SR-BI simply mediates tethering of acceptor HDL particles 
closely to the cell surface 51. Another possibility is that SR-BI reorganizes the lipids in 
cholesterol-rich domains in the plasma membrane, thereby facilitating the movement 
of cholesterol towards HDL 51.

ATHEROSCLEROSIS

Atherosclerosis is a chronic, multifactorial disease induced by lipid accumulation in 
the vessel wall and subsequent arterial wall inflammation, leading to atherosclerotic 
plaque formation. Atherosclerosis develops asymptomatic over a lifetime. However, 
when a plaque ruptures or erodes, a superimposed thrombus is formed causing acute 
cardiovascular events such as myocardial infarction or ischemic stroke.

Dyslipidemia is a major risk factor for atherosclerosis
A major risk factor for the development of premature atherosclerosis is dyslipidemia. 
Dyslipidemia is a broad term, which refers to a number of lipid disorders, including el-
evated LDL cholesterol, low HDL cholesterol, excess lipoprotein(a), hypertriglyceridemia, 
and mixed lipid disorders. Although familial causes account for ~20% of these disorders, 
most (~80%) are related to diet and lifestyle 52. It is well established that there is a direct 
relationship between dyslipidemia and cardiovascular risk 53. In healthy individuals, 
cholesterol levels are below 5 mmol/L. A rise of 2 mmol/L cholesterol increases the risk 
of death by cardiovascular disease by 50% 54. This is most likely attributable to high LDL 
cholesterol, the main carrier of cholesterol in human plasma. In contrast, large popula-
tion studies have consistently shown that low HDL cholesterol, as well as ApoA1 levels 
are independent, inverse predictors of cardiovascular disease risk 55–59. Normalization 
of dyslipidemia is therefore a major target in the prevention of atherosclerosis and its 
clinical manifestations.

Pathophysiology of atherosclerosis
Atherosclerotic plaques form at specific arterial sites with differences in blood flow 
dynamics, such as arterial tree branches and bifurcations. Low shear stress, oscillatory 
or turbulent flow, together with dyslipidemia, which can cause lipoprotein retention 
in the subendothelial matrix, cause damage and endothelial dysfunction. This is gen-
erally regarded as the primary step in atherosclerosis development. Damage to the 
endothelium increases arterial wall permeability and increases expression of adhesion 
molecules, and the production of cytokines and chemokines, thereby leading to the 
migration of inflammatory cells such as monocytes, lymphocytes and neutrophils from 
the circulation into the arterial wall intima. Macrophages in the intimal wall then rapidly 
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engulf the accumulated lipids and the first foam cells in the nascent lesion are formed. 
Macrophage foam cell formation is the hallmark of early atherosclerotic lesions, also 
called fatty streaks. These fatty streaks can then progress towards intermediate fibro-
fatty lesions, which consist of several layers of foam cells and vascular smooth muscle 
cells with T cells, surrounded by a relatively poor developed matrix of connective tissue. 
These intermediate plaques can then progress further into advanced fibrous lesions, 
which are characterized by a fibrous cap that covers a core of extracellular lipid and 
necrotic material, together with macrophages, smooth muscle cells and T cells 1. In 
line with the importance of immune cell influx and inflammation in atherosclerosis 
development, studies in mice have indicated a causal relationship between the levels 
of blood monocytes and neutrophils and the extent of atherosclerosis 60–62. Moreover, 
the levels of blood monocytes and neutrophils are predictive of acute cardiovascular 
events 4,5. Importantly, monocytosis in the absence of hyperlipidemia is insufficient to 
induce atherosclerosis 11,63. Only when the endothelium becomes inflamed in response 
to hypercholesterolemia, monocytosis and neutrophilia contribute to lesion develop-
ment 11,64–66.

Atherothrombosis
Vulnerable plaques
Atherosclerotic plaques develop slowly, and remain largely asymptomatic as long as 
they remain intact. However, advanced plaques can cause complications through ath-
erothrombosis formation. Atherothrombosis can occur in two ways: by rupture of an 
unstable lesion, or by erosion of the overlying endothelium. Plaques prone to rupture, 
so-called vulnerable plaques, are characterized by a thin fibrous cap, and a large lipid 
core with a relative abundance of inflammatory leukocytes 67. In contrast, vulnerable 
plaques underlying areas of superficial erosion do not have thin fibrous caps. Moreover, 
they harbor fewer inflammatory cells, and lack large lipid pools 68. From autopsy studies 
done several decades ago, it was suggested that plaque rupture most commonly led to 
fatal coronary atherothrombosis 67,69, whereas a minority of fatal events was caused by 
superficial plaque erosion. However, more recently, questions have been raised about 
the dominant mechanisms implicated in atherothrombosis. Recent evidence suggests 
that plaques with thin fibrous caps and large lipid pools seldomly rupture and cause 
clinical events 70,71. Moreover, recent studies have shown that there is a shift towards 
plaques with significantly more fibrous, non-inflammatory characteristics 72–74. Possibly, 
this shift in plaque characteristics could lead to a subsequent shift in plaque rupture 
versus erosion occurrence 75,76.
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Pathophysiology of atherothrombosis
When a plaque ruptures or erodes, subendothelial collagen and thrombogenic plaque 
material, such as macrophage tissue factor, are exposed to the arterial circulation. This 
leads to thrombus formation on top of the ruptured or eroded plaque 2. Upon the breach 
of the arterial endothelial lining, platelets are the first responders. Within one minute 
after rupture, platelets adhere and aggregate on collagenous plaque components. In 
line with their importance in atherothrombotic development, platelet characteristics 
such as density and volume are associated with the risk of acute coronary syndromes 6–9, 
and implies mean platelet volume, a determinant of platelet reactivity, as both a causal 
and prognostic factor 10. Following the platelet response, approximately three minutes 
after breaching of the endothelial lining, the thrombus is characterized by thrombin 
and fibrin formation, and by tissue factor-triggered coagulation cascade activation 77. 
This thrombus formation can lead to rapid occlusion of the vessel, a cause myocardial 
infarction, ischemic stroke and sudden death. This deadly nature of atherothrombosis 
has made it a critical target for investigation.

Interplay between cholesterol and bone marrow cells in atherosclerosis
Atherosclerosis is generally characterized as an inflammatory response to hypercholes-
terolemia. However, there is increasing evidence that the inflammatory process driving 
the atherogenic response to hypercholesterolemia may be initiated in the bone marrow. 
A large body of evidence indicates that bone marrow functioning and hematopoiesis 
are affected by changes in HSC cholesterol homeostasis, i.e. hypercholesterolemia and 
cholesterol efflux.

Hypercholesterolemia and HSCs
Several studies on the effects of hypercholesterolemia on bone marrow function have 
been done in high-fat, high-cholesterol (HFHC) diet -fed LDLr and ApoE knockout mice. 
Both HFHC diet-fed ApoE knockout, and to a lesser extent HFHC diet-fed LDLr knockout 
mice display and augmented expansion and proliferation of HSCs 64,78,79. This phenotype 
is paralleled by an increase in myeloid cell production and increased circulating counts 
of monocytes and neutrophils 64,78,79.

Interestingly, hypercholesterolemia-induced hyperproliferation of HSCs, as well as the 
consequent leukocytosis, are also evident in recipients of transplanted bone marrow 
from hypercholesterolemic mice 79,80. Thus, long-term intrinsic changes in stem cells are 
induced by the hypercholesterolemia.

Besides HSC proliferation and leukocytosis, hypercholesterolemia also alters platelet 
production and reactivity. Rabbits and guinea pigs fed a high-cholesterol diet develop 
megakaryocytes with increased ploidy and size 81,82. Hypercholesterolemia in humans is 
also associated with higher megakaryocyte ploidy, indicative of altered megakaryocyte 



Chapter 1

20

maturation 83. Notably, the change in megakaryocyte maturation in hypercholesterol-
emic human subjects coincided with a higher mean platelet volume 83.

Cholesterol efflux and HDL and HSCs
Most of the atherosclerosis-protective properties of APOA1 and HDL are attributed 
to their role in cholesterol efflux and subsequent reverse cholesterol transport from 
macrophage foam cells, as well as direct anti-inflammatory properties 84–86. HSCs utilize 
cholesterol efflux pathways to oppose the excessive production of myeloid cells 11,64,78,87. 
Genetic deletion of ABCA1 and ABCG1 leads to dramatic expansion and proliferation of 
HSCs and an increase in committed myeloid progenitor populations 11. This stimulates 
the development of severe monocytosis and neutrophilia and infiltration of multiple 
organs with myeloid cells and accumulation of macrophage foam cells 11. A similar phe-
notype is observed when ABCA1/ABCG1 double knockout bone marrow is transplanted 
into LDLr homozygous or heterozygous knockout mice 11,88. Interestingly, increased 
HSC numbers and the myeloproliferative phenotype caused by combined deletion 
of ABCA1/ABCG1 in bone marrow could be rescued by transgenic overexpression of 
ApoA1 in recipient mice 11. Infusion of ApoA1 into LDLr/ApoA1 double knockout mice 
also reduces the number of LSK cells in bone marrow 87, and reduces HSC proliferation in 
hypercholesterolemic LDLr knockout mice, and ApoE knockout mice 64,78.

Transplantation of ABCA1 knockout bone marrow into LDLr knockout mice is associ-
ated with lymphocytosis, although no such phenotype is found in total body ABCA1 
knockout mice 41. Similarly, chow-fed ApoA1 knockout mice do not display monocytosis 
or proliferation of HSCs 64. As both ABCA1 and ApoA1 knockout mice are hypocholes-
terolemic through the inability to produce HDL, this indicates that the importance of 
cholesterol efflux may depend on the levels of circulating cholesterol levels. Genetic 
deletion of only ABCG1 has thus far not been shown to affect bone marrow hematopoi-
esis, neither as a total body knockout nor after transplantation to hypercholesterolemic 
recipient mice.

ABCG4 is specifically expressed in MEP cell populations and megakaryocyte progeni-
tors. In line, ABCG4 knockout megakaryocyte progenitors show defective cholesterol 
efflux to HDL and increased MEP and megakaryocyte progenitor cell populations, which 
are relatively more responsive to thrombopoietin. As a consequence, ABCG4 knockout 
transplanted LDLr knockout mice have increased platelet counts 48.

OUTLINE OF THE THESIS

Defects in cholesterol metabolism and hypercholesterolemia have been shown to affect 
hematopoiesis, immune cell production and platelet counts and reactivity. Therefore, 
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bone marrow cholesterol handling is an interesting target in the battle against cardio-
vascular diseases, and acute cardiovascular events in particular.

This thesis will describe novel interactions between cholesterol metabolism and the 
production immune cells and platelets, and its effects on atherosclerosis and athero-
thrombosis development.

The first part of this thesis focusses on cholesterol metabolism in hematopoiesis.
It is well established that dyslipidemia is an important risk factor for cardiovascular 

disease. Circulating lipid levels are highly correlated with atherosclerotic plaque devel-
opment. In addition, experimental evidence suggests that lipids also directly influence 
thrombosis and influence the risk and the outcome of acute cardiovascular events. In 
chapter 2, the effects of lipoproteins on three important components of atherothrom-
bosis pathophysiology, i.e. endothelial function, platelets and secondary coagulation, 
are reviewed.

A substantial body of clinical evidence indicates that platelet characteristics such as 
density and volume are associated with increased risk of acute coronary syndromes 6–9, 
and implies mean platelet volume, a determinant of platelet reactivity, as both a causal 
and prognostic factor 10. Therefore, modification of platelet functionality is a promis-
ing therapeutic target in the prevention and treatment of cardiovascular disease. In 
chapter 3, we show that elevated plasma unesterified cholesterol levels impairs mega-
karyopoiesis and platelet production in SR-BI knockout mice. Our findings suggest that 
impaired platelet production, in addition to the previously reported augmented platelet 
clearance, may explain part of the thrombocytopenic phenotype associated with SR-BI 
deficiency. In chapter 4, we describe novel and opposing roles of the cholesterol efflux 
transporters ABCA1 and ABCG1 in megakaryopoiesis, platelet production and effects on 
platelet characteristics.

In addition to effects on hematopoietic stem cell functionality and hematopoiesis, 
ApoA1 and HDL also directly influence inflammatory cell responses 86. In chapter 5, we 
dissociated the direct effects of ApoA1 deficiency on immune cells in the context of 
atherosclerosis from effects that are generated through changes in bone marrow im-
mune cell production.

The second part of this thesis focusses on the development of experimental animal 
models of atherothrombosis.

Although atherosclerosis is widely studied in experimental mouse models, ex-
perimental studies regarding atherothrombosis are hampered due to lack of suitable 
mouse models. In chapter 6 recent advances in the development of mouse models for 
spontaneous atherothrombosis are reviewed. In chapter 7, we describe a novel RNA 
interference-based mouse model for spontaneous atherothrombosis in ApoE knockout 
mice. Further characterization and attempts to optimize this model through administra-
tion of phenylephrine to ApoE knockout mice are described in chapter 8. Murine SR-BI 
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deficiency is associated with increased platelet reactivity and a higher susceptibility for 
FeCl3 damage-induced arterial thrombosis in the carotid artery 12. In chapter 9, we apply 
the developed atherothrombosis model to hypercholesterolemic SR-BI knockout mice.

Finally, all the results obtained in this thesis and future perspectives are summarized 
and discussed in chapter 10.
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