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Abstract

The majority of diseases are associated with alterations in multiple molecular
pathways and complex interactions at the cellular and organ levels. Single-
target monotherapies therefore have intrinsic limitations with respect to
their maximum therapeutic benefits. The potential of combination drug
therapies has received interest for the treatment of many diseases and is well
established in some areas, such as oncology. Combination drug treatments
may allow us to identify synergistic drug effects, reduce adverse drug reac-
tions, and address variability in disease characteristics between patients. Iden-
tification of combination therapies remains challenging. We discuss current
state-of-the-art systems pharmacology approaches to enable rational iden-
tification of combination therapies. These approaches, which include char-
acterization of mechanisms of disease and drug action at a systems level, can
enable understanding of drug interactions at the molecular, cellular, phys-
iological, and organismal levels. Such multiscale understanding can enable
precision medicine by promoting the rational development of combination
therapy at the level of individual patients for many diseases.
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1. INTRODUCTION

Complex diseases such as cancer, diabetes, infectious diseases, and cardiovascular diseases are asso-
ciated with multiple alterations in molecular pathways and complex interactions at the cellular and
organ levels (1). The Cancer Genome Atlas (TCGA) studies, which provided detailed molecular
characterization at the level of individual patients for many cancers (2–5), have shown that similar
disease phenotypes can have differing underlying molecular networks (6, 7). This recognition of
multiple molecular definitions for disease phenotypes gave rise to the idea of precision medicine,
wherein diseases and treatments are guided by these molecular disease definitions in individual
patients (8, 9).

When considering drug treatment strategies in complex diseases, single-target monotherapy
approaches have fundamental limitations in terms of the optimal treatment effects that may be
attainable, as disease phenotypes are rarely driven by single molecular entities; these limitations
have led to an increasing interest in the development of combinatorial drug therapies (10–13). In
oncology, the use of combination regimens is well established, and was so even long before the
introduction of genomic technologies and insights into the molecular complexity of cancer (14).
Yet for many other complex diseases, drug development is still primarily focused on monother-
apeutic regimens, even though the molecular diversity of these diseases is often equally complex
to that of cancer.

The discovery, translation, and clinical development of optimal combination drug regimens
remains a major challenge in drug development (15, 16). Identification of drug combinations has
been driven to a large extent by high-throughput phenotypic screens (17, 18). Although such assays
are valuable, they have important limitations, including phenotypic readouts that oversimplify the
complexity of disease phenotypes, in addition to practical limitations related to scalability in terms
of the number of testable multidrug combinations or cell lines.

A holistic approach that considers both molecular interactions and multiscale physiological
and pathophysiological mechanisms is relevant to the identification and evaluation of the effects of
combinatorial drug regimens. Quantitative systems pharmacology (QSP), which combines systems
biology analyses with the quantitative reasoning used in pharmacokinetic–pharmacodynamic (PK-
PD) modeling, provides such a holistic approach (19–21). Systems pharmacology analyses focus on
the quantitative relationships and interactions between drugs and biological systems, considering
the behavior of the system as a whole rather than its individual constituents (22). Thus, systems
pharmacology approaches can enable meaningful integration of the individual biological and
pharmacological entities that are relevant for a pathophysiology of interest. Such integration can
help us understand and predict systems-level effects of drug combination regimens.

Key challenges that could be addressed using systems pharmacology approaches include the
consideration of variability of response between patients and, within patients (e.g., tumor hetero-
geneity), variability in terms of efficacy of drug therapy development or resistance to therapy and
mitigation of drug-induced adverse events. This can be done by establishing multiscale relation-
ships between drug action at the receptor and at the signal transduction level that describe the
propagation of drug effects through cellular regulatory networks that give rise to the organ and
organismal response to drug therapies.

New experimental technologies such as single-cell RNA-Seq (23), induced pluripotent stem
cell–derived differentiated cells, organoids, and microfluidic microphysiological systems (MPSs)
for drug testing (24–26) are of significant relevance to support systems pharmacology–guided
combination therapy development. New computational methods that utilize machine learning and
artificial intelligence approaches (27) are likely to have significant impact on systems pharmacology
approaches in the coming years.
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In this review, we discuss current and future approaches in systems pharmacology that can be
used to enable rational identification of combination therapies, including repositioning of existing
drugs (28) and development of personalized combination therapies.

2. RATIONALE FOR USING DRUG COMBINATIONS

Drug combination regimens may confer therapeutic benefits through different mechanisms. Drugs
can interfere with disease-associated signal transduction pathways, either in serial, through differ-
ent proteins in a single pathway, or in parallel, through proteins associated with different pathways
(29), which can lead to synergistic drug effects (Figure 1a). Such synergy arises from cooperation
between different pathways in producing physiological responses; this cooperation is often a com-
plex feature in many cellular regulatory systems. Drug combinations that target multiple pathways
can also delay the development of therapy resistance (11). Synergistic drug combinations may also
allow for the reduction of dose levels of individual drugs used in the combination and thus reduce
the risk of exposure-driven drug toxicities and drug resistance due to desensitization at the level
of drug targets.

Heterogeneity in molecular characteristics of the disease within patients and variability between
patients in molecular disease characteristics represent other rationales for the use of combinatorial
therapies. Within-patient disease heterogeneity, e.g., tumor clonal variability, may be associated
with variability in drug sensitivities across individual cells, and thus, combinatorial regimens may
enable more efficient eradication of cells with variable drug sensitivities (30). When consider-
ing within-patient heterogeneity, adaptations or evolution of diseased cell populations can make
selection of drug regimens even more complicated (31).

In the case of patient-to-patient variability in drug sensitivities, combination regimens may
increase the possibility of at least one drug being efficacious and leading to a favorable treatment
response (32) (Figure 1c). Similarly, such an approach has been used for empirical combination
regimens for bacterial infections, where the antimicrobial susceptibility of the pathogen is often
unknown (33). Ultimately, however, the development of personalized combination therapies for
complex diseases needs to be guided by molecular characterization of the disease state to ultimately
reach the goal of optimal treatment outcomes in every patient (34).

Combinatorial drug interactions may also occur at the pharmacokinetic (PK) level, where
drugs can affect the absorption, metabolism, or elimination of another drug, for instance, through
induction or inhibition of drug-metabolizing enzymes. This may lead to undesired changes in
drug concentrations, resulting in toxicities or reduced efficacy. Alternatively, such interactions
may also be therapeutically exploited, for instance, to boost drug exposure (35, 36).

For diseases in which the immune system plays a role, interest in combinatorial therapies
that target the immune system has increased. For instance, the field of immuno-oncology has
led to major advances in the treatment of malignancies, and strong interest exists in strategies to
develop combination therapies that contain drugs to stimulate the immune system (37). However,
the complexity of the immune system challenges rational identification of such regimens. In this
case, multiscale systems pharmacological approaches where the responses of the immune system
are considered in the context of the diseased tissue response could be used to develop rational
combination therapies.

Prevention and reversal of resistance to drug treatment are two important applications of an-
timicrobial therapies. To this end, interest is increasing in the development of combinatorial ther-
apies to combat the challenge of antimicrobial resistance. The occurrence of collateral sensitivity
(Figure 1b), where resistance to one antibiotic leads to sensitivity to another antibiotic, has been
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Figure 1 (Figure appears on preceding page)

Several rationales exist for the effects of combination therapies. (a) Drugs may act in combination either in a serial fashion (left) or in a
parallel fashion (right) on a signaling pathway component (white circles) that is associated with a downstream effect (gray circle). (b) The
occurrence of collateral sensitivity, here depicted as a network of relationships between drug resistance (arrow origin) and associated
drug sensitivity, can be exploited to design combinatorial therapies to restore drug sensitivity. (c) Heterogeneity in cellular drug
sensitivity within patients (left) and between patients (middle) forms an important rationale for combinatorial regimens. Relative
variability in drug sensitivity across cell types (right) can be addressed using resensitizing combination regimens. (d) Additive,
synergistic, and antagonistic combinatory drug effects may be quantified by isobologram analysis. Collateral sensitivity network
depicting relationships between drug resistance (arrow origin) and associated drug sensitivity.

suggested to enable a new paradigm for antibiotic combinatorial dosing to address antimicrobial
resistance (38–41).

The design of drug combination regimens goes beyond the selection of particular therapeutic
agents to be used together. PK and pharmacodynamic (PD) characteristics (42) can be very different
for different drugs, and clinical dose regimens have to take such differences into account. Moreover,
sequential combinatory drug regimens may have significant benefits, as well, as was shown for
anticancer agents (43).

The quantification of combinatorial drug effects remains a debated field, where the Loewe
additivity principle–based interaction index and the Bliss independence criterion remain the most
important metrics (44, 45). The Loewe additivity principle (46) assumes that additivity of a com-
binatorial drug treatment is cooperative, as when it is mediated through a single mechanism.
Isobologram analysis can be used to define the concentration of two drugs required for the main-
tenance of a constant level of output activity (Figure 1d). The Bliss independence criterion (47)
assumes independence of drug effects and does not consider nonlinearities in dose–response curves.
Antagonism or synergy is determined through observed deviations from the predicted additive
response. These metrics are, however, primarily relevant to quantifying the end effects in an
empirical fashion. For prediction of dosing regimens, quantitative systems-level approaches that
consider molecular and physiological complexity are needed.

3. EXPERIMENTAL PLATFORMS TO EVALUATE DRUG
COMBINATIONS

Combination therapy identification has been primarily driven by (large-scale) phenotypic screens
in in vitro cell line–based assay systems (17, 18, 48, 49); these screens have limitations in terms
of physiological relevance, i.e., translatability to humans from immortalized cell lines, and when
considering complex diseases that involve more than one cell type. Furthermore, such screens can
quickly become infeasible when expanding the therapy to more than two drug combinations or
when evaluating larger panels of cell lines to recapitulate variability in drug response. Systems
pharmacology approaches may enable more efficient identification of combinatorial regimens,
and experimental platforms to screen and validate drug combination regimens in physiologically
meaningful yet efficient ways are thus crucially important. An example of a systems pharmacology–
enabled work flow is shown in Figure 2.

The use of human induced pluripotent stem cell (hiPSC)-derived differentiated cell lines in drug
discovery and development has been quickly becoming more common (50–53). hiPSC-derived
cell line panels, which can be subjected to selective mutagenesis, may allow us to recapitulate
pharmacogenomic determinants of drug response present in the patient population, thus allowing
conduct of in vitro clinical trials (54) through utilization of patient-derived cell lines. Genetic
engineering approaches such as CRISPR-Cas9 can be used to create cell lines with particular drug
response genotypes (55) or to reconstruct relevant disease-related molecular networks in cell lines

www.annualreviews.org • Systems Pharmacology of Drug Combinations 25
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Figure 2 (Figure appears on preceding page)

Systems pharmacology approaches for combination therapy development. (a) Systems pharmacology–guided assessment of
drug–disease interactions is enabled by a combination of patient-derived data and cell lines and state-of-the-art translational models
and molecular profiling technologies, which enable characterization of multiscale drug–disease systems pharmacology models.
(b) Patient-specific (liquid) biopsies analyzed with molecular profiling technologies can be used as inputs to established systems
pharmacology platforms to predict optimal individualized combination regimens. Abbreviations: hiPSC, human induced pluripotent
stem cell; PDX, patient-derived xenograft.

that can then be potentially useful in identifying efficacious drug combinations. For instance, a
multiplexed CRISPR-Cas9 approach has been described utilizing barcoded combinatorial gene
perturbations in human cell lines that could be translated into novel drug combination strategies
(56).

Organoid 3D cell culture models of human cells are increasingly recognized as ex vivo models
that are potentially more relevant to study disease and drug effects as these models better represent
cellular heterogeneity and differentiation (25, 57). hiPSC-derived cell lines, as well as primary
human cells, have been used to develop organoid models. A noteworthy development has been
the creation of a living organoid biobank of colorectal cancer patients, enabling screening of
drug treatment response (58). The majority of organoids have been developed for identification
of cancer therapy (57). However, for many other tissues, organoid models have been generated
using hiPSC-derived cell lines, including for the kidney (59) and the lung (60) and for human
tissue–derived pancreatic organoids with endocrine differentiation potential (61).

Complex diseases typically involve multiple physiologically interconnected tissues. MPSs rep-
resent a rapidly developing field that combines multiple organ-on-a-chip cell or organoid cultures
on a single microfluidic platform (62). Several complex multi-organ MPS models have been de-
scribed, including an MPS that uses human cells to couple intestine, liver, kidney proximal tubules,
the blood–brain barrier, and skeletal muscle (24). MPSs are of significant interest for drug dis-
covery (63) and could potentially allow the study combinatorial drug treatments with more phys-
iological relevance than single-cell-type or tissue cultures and with the possibility for medium-
throughput scalability. MPSs naturally integrate with multiscale systems pharmacology models
(64, 65) and have been explored for screening combinatorial therapies in patient-derived tissue
(66).

Patient-derived xenograft (PDX) models consisting of engrafted tumor tissue from patients
are of increasing interest for screening of drug combination regimens in the field of oncol-
ogy. PDX models take into account the tumor microenvironment and allow assessment of
genomic variability between tumors as seen in the patient population. Large biobank PDX repos-
itories have been established (67, 68) that can enable preclinical phase II trials of drug (com-
bination) regimens (67–70). Although some concerns have been raised regarding PDX models
(71), they currently remain among the best systems to test drugs to predict responses in humans.
One feature that makes PDX models valuable is that they preserve intratumor heterogeneity
(68).

4. SYSTEMS-LEVEL MEASUREMENT OF COMBINATORY DRUG
INTERACTIONS

Molecular profiling methods such as RNA-Seq (72), proteomics (73), and metabolomics (74–76)
are of great relevance to mapping systems-level molecular interactions in response to (combinato-
rial) drug treatments. These technologies can be used for the development of novel combinations
of drugs to study mechanisms through which such combinatorial regimens act and to study how
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variability across cell lines or patient samples may explain differences in combinatorial drug treat-
ment response.

Integrative analyses of multiple molecular profiling data sets can add insight into combinatorial
drug response. For instance, combining (phospho-)proteomics and transcriptomics has allowed
for systems-level analysis of drug combinations and synergy in imatinib-resistant chronic myeloid
leukemia cells (77). Other examples include the use of whole genome sequencing of patient-derived
melanoma circulating tumor cells to evaluate the potential for personalized combination therapies
for melanoma (78) and the combination of genomic and transcriptomic profiles in cell line panels
to predict two-drug combination therapies (79).

During drug development of novel combinatorial regimens, chemogenomic (80) approaches
can be used to elucidate the role of a particular genomic background and the resulting molecular
systems-level responses to individual and combinatorial regimens. For instance, chemogenomic
approaches have been used to identify novel antibiotic combination therapies (81). Similarly,
CRISPR-Cas9 screens are relevant to the systematic mapping of drug combinations associated
with particular genetic profiles to identify combinatorial therapies to prevent anticancer drug
resistance (82).

Cellular molecular heterogeneity is now increasingly recognized as a major factor that can
explain the failure of drug therapy, particularly in cancer. Combinatorial therapies have been sug-
gested as a crucial approach to addressing such intratumor heterogeneity and associated treatment
response (30, 31, 83). Emerging single-cell analytical tools, such as single-cell transcriptomics, are
thus of great interest for their potential to support development of combinatorial therapies (84–86).
For instance, single-cell phosphoproteomic profiling allowed the characterization of signaling dy-
namics and the selection and validation of combination therapies for a glioblastoma in vivo model
(86).

The Connectivity Map (87) offers insights into similarities and differences in drug perturbation
molecular response profiles, as it contains transcriptomic signatures of a variety of drugs in human
cell lines. The Library of Integrated Network-based Cellular Signatures (LINCS) program of the
National Institutes of Health (NIH) could be viewed as a follow-up to this effort and contains
multi-omics drug perturbation response profiles in healthy and disease-associated human cell
lines, including hiPSC-derived cell line panels (88). Tools such as L1000FWD further enable
exploration of such databases in an efficient manner (89). An overview of some resources to
support systems pharmacology–based modeling efforts is provided in Table 1.

5. ANALYSIS OF MOLECULAR DRUG–DISEASE NETWORK
INTERACTIONS

High-throughput omics data, which can be generated to profile the molecular response to single or
combination drug treatments in experimental models and patients, require a formalized framework
to transform these data into biological and pharmacological knowledge at a systems level. Such
analyses can be supported by existing large-scale databases that contain information about molec-
ular interaction networks (90), transcriptomic drug perturbation profiling (87), chemical binding
affinity and bioactivity profiles (91), and existing approved or investigational drug combination
regimens (92). Analysis of omics data in conjunction with such databases of prior knowledge can
enable development of molecular networks to map and quantify interactions of drug combinations
(93–100).

Different mathematical formalisms may be used for this purpose depending on the available
level of molecular and kinetic information, including undirected molecular interaction networks
(e.g., protein–protein interaction networks), directional logic models, and full kinetic models that
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Table 1 Overview of relevant data repositories to support systems pharmacology combination therapy discovery

Repository Description URL Reference

DCDB Database of approved and investigational drug
combinations

http://www.cls.zju.edu.cn/dcdb/ 92

NIH LINCS Repository containing large-scale cellular drug
perturbation data

http://lincsportal.ccs.miami.edu/ 135

STITCH Chemical–protein interaction network database http://stitch.embl.de/ 136

DrugBank Drug characteristics database including drug
targets and pharmacology

http://drugbank.ca/ NA

ChEMBL Database of bioactive molecules and bioactivity
data

https://www.ebi.ac.uk/chembl/ 91

ConsensusPathDB Pathway database with integration of multiple
pathway databases available

http://cpdb.molgen.mpg.de 90

Abbreviations: DCDB, Drug Combination Database; LINCS, Library for Integrated Network-based Cellular Signatures; NA, not applicable; NIH,
National Institutes of Health.

may describe, for instance, signal transduction kinetics. Such models, which capture both net-
work configurations and signaling dynamics, can be used to develop enhanced pharmacodynamics
models that can quantitatively account for genomic and epigenomic alterations that lead to drug
sensitivity or drug resistance (101).

One example of such analyses includes the interaction networks informed by the gene
expression Connectivity Map data that were used to rank optimal drug combination thera-
pies (102). Another example is the development of protein interaction networks to charac-
terize TRAIL-induced apoptosis, and to identify potential targets for combination therapy
(103). Molecular interaction network analysis has also been used to identify combinatorial reg-
imens that may reduce the risk for cardiovascular adverse drug reactions (104). Coupling of
hiPSC-derived cell lines and pharmacogenomic profiling could potentially allow the develop-
ment of individualized combinatorial therapies that reduce the risk for adverse drug reactions
(54).

Logic-based network models use Boolean relationships to define stimulatory or inhibiting
relationships between nodes; they are increasingly being used in QSP as middle-out network
models that do not require full kinetic parametrization but are much more informative than an
undirected network (105–107). Several variants of logic modeling have been used, including those
that utilize fuzzy logic and those that use Hill equations (105, 106, 108). Logic models have been
shown to be relevant to the prediction of drug combination effects. For instance, a fuzzy logic
ensemble model of intracellular signaling in hepatocellular carcinoma was used to predict the
effects of key transcription factors associated with treatment response (109). Another example is
the development of Boolean modeling of ErbB signaling pathways to investigate combinatorial
drug targets for treatment of trastuzumab-resistant breast cancer (110).

Kinetic models describing molecular interaction networks such as for signal transduction allow
us to consider multiscale models to predict combinatory drug effects. Parameterization of kinetic
models can be challenging. Recently, it has been shown that transcriptomic profiling data derived
from glioblastoma patient-derived tumor samples can be used to inform kinetic systems phar-
macology models to conduct virtual drug combination trials (111). Another example described
the prediction of combination therapies for B-cell lymphoma using a kinetic model of the B-cell
receptor signaling network (112).
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6. PHARMACOKINETIC–PHARMACODYNAMIC MODELING

To characterize and predict clinical-level effects of combinatory treatments at the organ and organ-
ismal levels, scaling from molecular-level network models to higher-level physiological response
markers is needed. To this end, PK and PD mathematical models (42, 113, 114) are relevant.
PK models describe the absorption, distribution, elimination, and metabolism of drugs in the
body, where systems pharmacology–based, physiologically based PK (PBPK) models can predict
local tissue target site concentrations based on system-specific tissue parameters and drug-specific
physicochemical parameters (115). Drug combinatory effects may already occur at the PK level,
for instance, through inhibition or induction of drug metabolizing enzymes. PBPK modeling can
be used to quantify and predict such drug–drug interactions (116). Moreover, PBPK modeling
approaches may help to translate among experimental models that do not account for the effects
of drug metabolites or the occurrence of drug protein binding.

PK-PD models typically described biomarker-based physiological responses at the time scale
of clinical treatment regimens. They allow one to effectively quantify and model interindividual
variability and to account for comorbidities that may be present. PK-PD modeling is used ex-
tensively to support dose optimization in translational and clinical drug development (21, 117)
and has been specifically used to investigate combinatory effects of drugs, for instance, to predict
synergistic activity of gemcitabine and trabectedin in pancreatic cancer cells (118), to model tumor
growth and anticancer effects of combination therapy in animal models (119), and for interspecies
scaling of combination therapies for vasoconstriction (120).

7. MULTISCALE SYSTEMS PHARMACOLOGY MODELS TO PREDICT
COMBINATORIAL TREATMENT REGIMENS

Systems pharmacology models that aim to predict optimal (pre-)clinical combination dose regi-
mens should ideally consist of multiscale models that include PBPK models for drug target site
concentrations, target binding kinetic models, kinetic or network-based downstream signal trans-
duction models, and PD models that integrate molecular-level events with higher time scales
and treatment response biomarkers. Such integration of network-based models for signal trans-
duction and higher-level response have been described for the epidermal growth factor receptor
pathway (101). Another example explicitly integrated PK-PD modeling with a model of the vascu-
lar endothelial growth factor signaling pathway to explore combinatory treatment regimens (121).
Approaches to potentially associating logic-based models with PK-PD models have also been de-
scribed (122). Agent-based models linked to network and PK-PD models are also of interest to the
computational study of the impact of cell-to-cell heterogeneity in response to combinatorial treat-
ments (123). A schematic overview of how the different technologies and modeling formalisms
can be integrated to support combination therapy development is provided in Figure 3.

One current challenge in which multiscale systems pharmacology modeling approaches could
be relevant concerns the identification of combinatorial regimens that target the immune system,
such as in the field of immuno-oncology (37, 124, 125). Such models need to take into consider-
ation the complex PK of typical large molecule immune therapeutics, as well as both inter- and
intracellular immune signaling mechanisms.

8. BRIDGING SYSTEMS PHARMACOLOGY AND MACHINE LEARNING

Developments in the field of machine learning and artificial intelligence–based learning ap-
proaches are occurring at a brisk pace (126). As larger electronic health record data sets become
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Figure 3
Drug efficacy of combination therapies is mediated by the interaction of several physiological and pharmacological processes that occur
across multiple scales of time and space, including drug (target-site) pharmacokinetics, signal transduction, the effects of cellular
heterogeneity, and ultimate organ (system)-specific physiological response. Quantitative systems pharmacology approaches allow us to
integrate prior knowledge and patient-specific data across these scales to infer optimized combination regimens.
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available, further integration of the genomic and epigenomic information of individual patients
with clinical data can help us understand the genetic contributions to many complex diseases.
Additionally, efforts to combine large-scale multi-omics data sets with kinetic systems pharmacol-
ogy models could benefit from the use of machine learning algorithms (127). Already, machine
learning–based approaches have already proven to be relevant to the prediction of optimal combi-
nation therapies (27, 128) and allow integration of phenotypic, therapeutic, chemical, and genomic
properties to predict drug–drug interactions (129). Also, the integration of signaling network mod-
els with machine learning approaches has recently been reported (130). Further development of
machine learning approaches may also enable us to fully utilize existing and rapidly expanding
large-scale databases for experimental and clinical drug combination studies. For such data sets, it
remains crucial to ensure high data quality standards, particularly for the field of systems pharma-
cology (131). Recent initiatives such as the NIH LINCS project have ensured that such standards
are being met (88).

9. CASE STUDY: COMBINATION THERAPY DISCOVERY THROUGH
TRANSCRIPTOMIC PROFILING, NETWORK ANALYSIS IN IN VITRO
CELL LINES, AND PATIENT-DERIVED XENOGRAFT MODELS

Recent studies in our laboratory (132) have demonstrated how systems pharmacology approaches
can be used to identify drug combinations using bulk transcriptomic data. Network modeling
of these data allow us to extract signatures of expression patterns that could be used to predict
responsiveness to drug therapy. We computationally analyzed TCGA data (133) for lung adeno-
carcinoma patients and identified a subset in which xanthine dehydrogenase expression correlated
with decreased survival. We tested whether xanthine dehydrogenase inhibits proliferation in a
panel of human non–small cell lung cancer (NSCLC) cell lines and identified sensitive and re-
sistant cell lines. Bulk gene expression profiles of these cell lines were used to identify six-gene
signatures for allopurinol-sensitive and -resistant cell lines. Network development and analyses
identified JAK2 as an additional target in allopurinol-resistant lines. Treatment of resistant cell
lines with allopurinol and the JAK2 inhibitor CEP-33779 resulted in cell death. We then uti-
lized the six-gene signatures to predict five additional allopurinol-sensitive NSCLC lines and
four allopurinol-resistant lines susceptible to combination therapy. We found that drug treatment
of all cell lines yielded the responses that were predicted by the genomic signatures. We used
these signatures to search a repository of PDX NSCLC tumors to identify tumors that would be
predicted to be sensitive to monotherapy or combination therapy. Patient-derived tumors pre-
dicted to be allopurinol sensitive or susceptible to combination therapy showed the predicted drug
response. Although this study does not show that we can predict responsiveness in the clinic, it pro-
vides a systems-based approach to predicting both drug resistance and sensitivity to combination
therapy.

10. CASE STUDY: COMBINATORY THERAPY DISCOVERY
FOR NERVE REGENERATION

Tissue organization adds an additional level of complexity to consider in setting up combination
therapy. In an example from our laboratory (134), we used a systems pharmacology approach
to develop a four-drug combination to functionally regenerate axons after nerve crushes. We
reasoned that some drugs could be protective and promote regeneration by acting at the cell
body, while other drugs might be more efficacious if applied at the site where the nerves were
injured. This application of drugs at different locations could increase neuronal regenerative

32 van Hasselt · Iyengar

A
nn

u.
 R

ev
. P

ha
rm

ac
ol

. T
ox

ic
ol

. 2
01

9.
59

:2
1-

40
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s 

pr
ov

id
ed

 b
y 

U
ni

ve
rs

ity
 o

f 
L

ei
de

n 
- 

Fa
cu

lte
it 

So
ci

al
e 

W
et

en
sc

ha
pp

e 
on

 0
4/

10
/1

9.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

 



PA59CH03_Iyengar ARI 20 November 2018 12:13

capacity by regulating multiple subcellular processes at the cell body, while drugs near the injury
site would help grow long axons in inhibitory environments. Dynamical computational models of
neurite outgrowth showed that the transcriptional effects of drugs applied at the cell body served
as a base, such that a combination of drugs that work locally near the site of the injured axons
could produce extensive synergistic growth. We used the optic nerve crush in rats to test the drug
combinations. We intravitreally injected two drugs, cannabinoid receptor-1 agonist HU-210 and
IL-6 (interleukin 6 receptor agonist) to stimulate retinal ganglion cells whose axons had been
crushed, and applied two drugs in gel foam, Taxol to stabilize microtubules and activated protein
C to potentially clear the injury site debris field. Morphology experiments using the injured optic
nerve showed that the four-drug combination promoted robust axonal regeneration from the
retina to the optic chiasm and on to the visual cortex. The four-drug treatment restored pattern
electroretinograms, and approximately 25% of the animals had detectable visual evoked potentials
in the brain. These studies show that combination therapy that takes into account morphological
complexity can promote functional axonal regeneration after nerve injury.

11. CONCLUSIONS

Systems pharmacology–based approaches offer a unique tool set to characterize and predict the
multiscale interactions of drug combinations and the resulting effects, as they allow multiscale
integration of molecular-level profiling data with data from the organ level and clinical treatment
response. A key potential of systems pharmacology–based approaches is to combine information
regarding genomic determinants of individuals with multiscale data on drug action to predict the
action of specific drug combinations in individuals. These types of predictions are likely to be very
useful in precision medicine. Systems pharmacology approaches can support the development of
combinatorial regimens beyond the initial phases of drug discovery, providing valuable insights
for both preclinical animal studies and clinical drug development. Encouraging results have been
described in recent years with respect to predictions of combinatorial regimens guided by systems
pharmacology approaches. However, further studies and development of new approaches are
needed to optimize and catalog strategies to allow us to develop more straightforward applications
for combination therapy in drug development and to enable personalized medicine in the clinic for
many complex diseases. The majority of current developments have been in the field of oncology,
but in many cases, these approaches may be adapted for other diseases as larger molecular and
tissue- and organ-level, as well as clinical, data sets become available.

SUMMARY POINTS

1. Systems pharmacology approaches that integrate consideration of drug action at the
molecular, cellular, organ and organismal levels can enable discovery of new combina-
torial drug treatments to improve treatment of diseases.

2. Enabling technologies, such as single-cell transcriptomics, hiPSC-derived cell line
libraries, and organ-on-a-chip MPSs, represent key platforms to enable systems
pharmacology–guided combination therapy identification.

3. Multiscale systems pharmacology modeling approaches, including network analysis, dy-
namical modeling of signal transduction, agent-based modeling, and PBPK and PK-PD
modeling, offer tool sets to enable data integration across experimental models and to
allow patients to support discovery and development of novel combination regimens.
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4. Integration of systems pharmacology modeling approaches with machine learning and
artificial intelligence–based approaches may further enhance our ability to select combi-
nation regimens.

5. Combinatorial therapies that rationally address disease variability across patients and
within-patient cellular disease heterogeneity, as well as the development of host-directed
combinatorial therapies that utilize the immune system, offer unique strategies to improve
outcomes in patients.
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107. Irurzun-Arana I, Pastor JM, Trocóniz IF, Gómez-Mantilla JD. 2017. Advanced Boolean modeling of
biological networks applied to systems pharmacology. Bioinformatics 33(7):1040–48

108. Shim JV, Chun B, van Hasselt JGC, Birtwistle MR, Saucerman JJ, Sobie EA. 2017. Mechanistic sys-
tems modeling to improve understanding and prediction of cardiotoxicity caused by targeted cancer
therapeutics. Front. Physiol. 8:651

38 van Hasselt · Iyengar

A
nn

u.
 R

ev
. P

ha
rm

ac
ol

. T
ox

ic
ol

. 2
01

9.
59

:2
1-

40
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s 

pr
ov

id
ed

 b
y 

U
ni

ve
rs

ity
 o

f 
L

ei
de

n 
- 

Fa
cu

lte
it 

So
ci

al
e 

W
et

en
sc

ha
pp

e 
on

 0
4/

10
/1

9.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

 



PA59CH03_Iyengar ARI 20 November 2018 12:13

109. Morris MK, Clarke DC, Osimiri LC, Lauffenburger DA. 2016. Systematic analysis of quantitative logic
model ensembles predicts drug combination effects on cell signaling networks. CPT Pharmacomet. Syst.
Pharmacol. 5(10):544–53
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