

Prediction of outcomes in patients with heart failure Sokoreli, I.

Citation

Sokoreli, I. (2019, March 19). *Prediction of outcomes in patients with heart failure*. Retrieved from https://hdl.handle.net/1887/69813

Version:	Not Applicable (or Unknown)
License:	<u>Licence agreement concerning inclusion of doctoral thesis in the</u> <u>Institutional Repository of the University of Leiden</u>
Downloaded from:	https://hdl.handle.net/1887/69813

Note: To cite this publication please use the final published version (if applicable).

Cover Page

Universiteit Leiden

The following handle holds various files of this Leiden University dissertation: http://hdl.handle.net/1887/69813

Author: Sokoreli, I. Title: Prediction of outcomes in patients with heart failure Issue Date: 2019-03-19

2 Depression and anxiety as predictors of mortality among HF patients: systematic review and meta-analysis

This article was published as "I. Sokoreli, J. J. G. de Vries, S. C. Pauws, and E. W. Steyerberg, "Depression and anxiety as predictors of mortality among heart failure patients: systematic review and meta-analysis", *Heart failure reviews*, vol.21, no.1, pp.49-63, 2016."

ABSTRACT

Aims: Several studies suggest that psychological factors are associated with negative outcomes and in particular higher mortality rates among Heart Failure (HF) patients. We aimed to evaluate the effect sizes of depression and anxiety on all-cause mortality in HF patients.

Methods and results: We conducted a systematic review according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) methodology. We searched for studies on depression or anxiety effects on all-cause mortality among HF patients published up to June 2015. A number of 26 and 6 articles met inclusion criteria for depression (total 80627 patients) and anxiety (total 17214 patients) respectively. The effect estimates were pooled using random-effect meta-analysis.

Depression has significant and moderately heterogeneous effect on all-cause mortality (HR = 1.57; 95%CI 1.30 – 1.89, P < 0.001); adjustment for confounders led to a similar effect estimate (HR = 1.40; 95%CI 1.22 – 1.60; p < 0.001). Larger studies and higher study prevalence of depression were associated with smaller effect size. The effect of anxiety on mortality outcome was small and not conclusive given the low number of studies (n=6) (HR = 1.02; 95% CI 1.00 - 1.04, P < 0.05).

Conclusions: This systematic review and meta-analysis suggests that depression is an important and independent predictor of all-cause mortality among HF patients, while anxiety does not appear to have a strong effect. Further research is recommended towards the detection and treatment of depression.

INTRODUCTION

Heart Failure (HF) is defined as a clinical syndrome in which patients have typical symptoms such as breathlessness, ankle swelling, and fatigue and signs such as elevated jugular venous pressure, pulmonary crackles, and displaced apex beat, resulting from an abnormality of cardiac structure or function [1]. Approximately 1–2% of the adult population in developed countries has HF, with the prevalence rising to $\geq 10\%$ among persons 70 years of age or older [2]. HF is one of the most common causes of hospital readmission and mortality.

Psychological factors such as depression or anxiety are often reported with high prevalence and strong association with negative outcomes in patients with cardiovascular disease [3]. Many studies have reported high rates of depression among HF patients. A prior systematic review and meta-analysis published by Rutledge in 2006 [4] reported an overall aggregated depression prevalence rate of 21.6% among HF patients, while individual study prevalence estimates ranged from 9% to 60%. Moreover, in 2005 Konstam [5] reported that approximately 40% of HF patients may suffer from major anxiety, and overall anxiety levels are 60% higher than levels seen in the healthy population.

Depression has been linked to increased risk of negative outcomes, such as rehospitalization and mortality among HF patients. According to a previous meta-analysis, the aggregated risk estimate derived from 8 studies suggested a greater than 2-fold risk of death and secondary events for HF patients with heightened depressive symptoms or a depressive disorder [4]. A similar analysis was also published by Fan [6] in 2014 on 9 prospective studies, who reported a pooled Hazard Ratio of 1.51 for patients with depression compared to patients without depression. In both cases the result was strongly heterogeneous but no further analysis, such as meta-regression, was performed to examine the sources of this heterogeneity. On the other hand, there is, to the best of our knowledge, no meta-analysis published about the prevalence of anxiety among HF patients and the effect of anxiety on mortality outcome. Even though anxiety is usually correlated with depression, it has not extensively been studied among patients with HF.

Our aim is to provide an updated systematic review of prospective or retrospective studies and a meta-analysis of the effect of depression and the effect of anxiety on mortality among HF patients. To reach this objective, we searched extensively for available studies investigating the impact of depression and anxiety on mortality of HF patients. Within these studies, we identified also the reported prevalence of depression or anxiety among HF patients.

METHODS

Search strategy and selection criteria

This systematic review and meta-analysis were conducted according to the guidelines introduced in the Preferred Reporting Items for Systematic reviews and Meta-analysis (the PRISMA Statement) [7]. The 27 checklist items of the PRISMA methodology followed are given in Appendix A. Three electronic databases (MEDLINE, BIOSIS and EMBASE) were searched for studies that investigated the relationship between depression or anxiety and mortality among Heart Failure (HF) patients. No publication time restriction was applied. All papers written in English and published before the 25th of June 2015 were included. Selected journals as well as the references of full-text papers were also hand-searched, when necessary, in order to identify studies that meet the inclusion criteria.

The database search string was created according to the PICO model (P, population/ patient; I, intervention/indicator; C, comparator/control; and O, outcome). For the "P" in PICO the "HEART FAILURE" keyword was included. For the "I", the following keywords: "DEPRESS? OR STRESS OR ANXIETY OR PSYCHOLOG?". For the "C", no particular terms were used in our case. For "O", we used the following keywords: "MORTALITY OR DEATH". The complete query as used for the databases search is given in Appendix B.

Study selection

In our analysis, several inclusion and exclusion criteria were defined. All studies that met those criteria were included. The inclusion criteria were articles presenting studies focusing on the association between depression or anxiety and mortality in a HF adult population. All mortality outcomes such as all-cause or cardiac related mortality were included and studies focusing on inpatient, outpatient or both care settings were taken into account. On the other hand, publications analyzing data that had already been used before for the same purpose, studies introducing no quantitative assessment of the impact of depression or anxiety on the outcome or analyzing the use of antidepressants as primary focus were excluded from our analysis.

Review process and data collection

All titles and abstracts of studies identified by the electronic and hand search were screened by the reviewer (IS) to identify those meeting the inclusion/ exclusion criteria. Then, all the selected full texts were screened independently by two reviewers (IS, GJdV) to identify which articles should be included in the systematic review. Any disagreement between the reviewers was resolved by a third reviewer (SP). For each of the selected articles the reviewers extracted data about author, year of publication, follow-up period, outcome variable, location, study design, study population (size/ type), prevalence of depression or anxiety, assessment method of the psychological parameter, other parameters, statistical method and results.

Mendeley 1.13.8 software was used for organizing and managing of the articles.

Data analysis

All studies were categorized according to the psychological factor investigated (depression or anxiety). Information was extracted according to whether the analysis was adjusted for confounders such as age, gender, and clinical severity. For both groups the association between depression or anxiety and mortality was reported by collecting information of the hazard ratios/odds ratios, 95%CI and/or p-values.

Random-effects meta-analysis was applied to combine the results. We decided to pool not only the adjusted effect but also the unadjusted effects in order to avoid the bias of the different adjustments. For the few cases where Odds Ratios were reported, they were converted [8] into Hazard Ratios in order to be comparable with the other Hazard Ratios. In studies where results were presented for several periods of followup we selected the longest follow-up period to avoid bias of including multiple results on the same patient data.

Studies collected in our analysis were different with respect to patient population, locations and depression or anxiety assessment methods. The random-effects method allows for heterogeneity by assuming that the effects being estimated in the different studies are not identical, but follow a normal distribution. Heterogeneity across the studies was quantified by the I^2 statistic [9]. The I^2 statistic summarizes the fraction of the variation across studies due to heterogeneity relative to chance. Random-effect meta-regression was used in an attempt to explain between-study heterogeneity and identify possible sources of bias. Meta-regression is a method to quantify the association between the estimated effect of depression and different study characteristics.

Meta analyses were presented in the form of forest plots created with the *metafor* package for R statistics version 3.0.3 (The R Foundation for Statistical Computing).

RESULTS

Search result

A total of 906 potentially relevant articles was identified from the electronic search and 5 from the hand search. After removing the duplicates and reviewing the titles and abstracts we ended up with 62 articles for a full text review. From these, 35 more articles were excluded, leaving 27 articles for the systematic review (Figure 2.1).

Characteristics of the selected studies

Depression and mortality

Among the identified studies, 26 reported on the effect of depression. The prevalence of depression varied from 10 to 79% in the identified literature studies. The unadjusted effect of depression is presented in Table 2.1, while the effect of depression after adjusting for several confounders in Table 2.2. The most common confounders, used in more than 10 studies, were age, gender, NYHA class and (left ventricular) ejection fraction. There were various techniques used among the studies to assess depression levels. We included all studies assessing for clinically significant depression. The most common scale used was the Beck Depression Inventory (BDI) [10], followed by the Patient Health Questionnaire (PHQ) [11].

FIGURE 2.1: Consort diagram

Author	Year	Assessment	Population	Region	Study	Follow-	Predicting	Statistical	HR/	p-	95% CI	Prevalence of
		method				up	period	method	OR	value		depression
Adams	2012	BDI ≥ 10	985 HF	US	Prospective	1792.3	—	Univariate Cox	1.35	< 0.001	1.15 - 1.57	30%
[12]					cohort study	days						
						(mean)						
Albert [13]	2009	history of	48612 HF	US	OPTIMIZE-	60-90	Inpatient	Univariate Cox	1.36	0.027	1.04 - 1.79	11%
		depression			HF com-	days		proportional				
					prehensive			hazards model				
					registry							
Diez-	2013	$GDS-4 \ge 1$	1017 HF	ES	Prospective	5.4 year	Outpatient	Univariate Cox	1.39	0.001	1.15 - 1.68	42%
Quevedo					cohort study	(me-		proportional-				
[14]						dian)		hazards model				
Faller [15]	2007	PHQ-9	231 CHF	DE	Prospective	2.7 year	Outpatient	Univariate Cox	3.3	< 0.001	1.80-6.10	13%
					cohort study	(me-		proportional-				
						dian)		hazards model				
Faller [16]	2015	PHQ-9	863 HF	DE	Extended	18	Outpatient	Univariate Cox	1.07	< 0.001	1.04 - 1.09	-
					INH study	month		proportional				
								hazards model				
Farisa [17]	2002	ICD-10	39 HF	UK	Retrospective	48	Outpatient	Univariate Cox	2.1	0.0005	1.40 - 3.20	21%
					cohort study	month		proportional				
						(mean)		hazards model				
Friedmann	2006	BDI-II	231 CHF	US	PFOS cohort	23.6	Outpatient	Univariate Cox	2.59	0.0177	0.23-5.43	36%
[18]					study	month		proportional				
						(mean)		hazards model				
Jiang [19]	2001	$BDI \ge 10$	374 CHF	US	Prospective	1 year	Inpatient	Univariate lo-	2.26	0.04	1.04 - 4.91	35%
					cohort study			gistic regression				
Jiang [20]	2007	$BDI \ge 10$	1006 HF	US	Cohort	971	Inpatient	Univariate Cox	1.45	< 0.001	1.19-1.77	30%
					study	days		proportional-				
						(mean)		hazards model				
Junger [21]	2005	HADS-D	209 CHF	DE	Prospective	24.8	-	Univariate Cox	1.09	0.0071	1.02-1.17	30%
		>6			study	month		proportional-				
						(mean)		hazards model				
Kato [22]	2009	CES-D ≥ 16	115 HF	JP	Prospective	2.1 year	Outpatient	Univariate Cox	5.51	0.004	1.75-	23%
					cohort study	(me-		proportional-			17.39	
						dian)		hazards model				

 TABLE 2.1: Unadjusted effect of depression on all-cause mortality among HF patients

Continued on next page

25

	Table 2.1 – Continued from previous page											
Author	Year	Assessment	Population	Region	Study	Follow-	Predicting	Statistical	HR/	p-	95% CI	Prevalence of
		method				up	period	method	OR	value		depression
Lesman-	2009	CES-D \geq 24	958 HF	NL	COACH	18	Inpatient	Univariate Cox	1.18	0.172	0.93 - 1.50	21%
Leegte					prospective	month		proportional				
[23]					study			hazards model				
Moraska	2013	PHQ-9 ≥10	402 HF	US	Prospective	1.6 year	Inpatient/	Univariate Cox	3.37	< 0.001	1.97 - 5.75	15%
[24]					cohort study	(mean)	outpatient	proportional				
								hazards model				
O'connor	2008	history of	5791 HF	US	OPTIMIZE-	72.7	Inpatient	Univariate Cox	1.56	0.0004	1.23 - 1.97	14%
[25]		depression			HF Prospec-	days		proportional				
					tive cohort	(mean)		hazards model				
					study							
Sullivan	2004	PRIME-MD	142 HF	US	Prospective	3 year	Outpatient	Univariate Cox	1.65	0.403	0.51 - 5.28	29%
[26]		interview/			cohort study	(mean)		proportional				
		HDRS/						hazards model				
		SCL-20										
HR, hazard r	atio; OF	R, odds ratio; CI	, confidence in	erval; BDI	, Beck depressio	n inventory	; GDS, geriatri	c depression scale; F	HQ, pat	ient health	n questionnaire	27

ICD, international classification of diseases; HADS-D, hospital anxiety and depression scale - depression; CES-D, center for epidemiological studies depression; HDRS, Hamilton rating scale for depression; SCL-20, Hopkins symptom checklist- 20-item depression scale; PRIME-MD, primary care evaluation of mental disorders; PFOS, psychosocial factors outcome study

26

CI	
ue CI	
.001 1.16-	30%
1.68	
25 1.05-	11%
2.03	
12 1.01-	33%
1.11	
66 0.10-	34%
1.03	
-	1.68 $1.05-2.03$ 12 $1.01-1.11$ 66 $0.10-1.03$

 TABLE 2.2: Adjusted effect of depression on all-cause mortality among HF patients

Continued on next page

Chapter 2. Depression and anxiety as predictors of mortality

	Table 2.2 – Continued from previous page												
Author	Year	Assessment	Population	Region	Study	Follow-	Predicting	Statistical	Other parameters	HR/	p-	95%	Prevalence
		method				up	period	method		OR	value	CI	
Cully	2009	ICD-9	12028 HF	US	Retrospective	12	Outpatient	Multivariate	age,gender,race, mar-	0.93	ns	0.71-	18%
[29]					cohort	month		logistic	ried,income, comor-			1.15	
					study			regression	bidities, combined de-				
									pression/ anxiety				
Diez-	2013	$GDS-4 \ge 1$	1017 HF	ES	Prospective	5.4	Outpatient	Multivariate	Sex, age, months	1.31	0.008	1.07 -	42%
Quevedo					cohort	year		Cox	since HF diagnosis,			1.60	
[14]					study	(me-		proportional-	ischemic etiology,				
						dian)		hazards	LVEF, NYHA, DM,				
								model	COPD, peripheral				
									vasculopathy, CrC,				
									BMI, ACE or ARB,				
									BB				
Faller	2007	PHQ-9	231 CHF	DE	Prospective	2.7	Outpatient	Multivariate	Age, sex, aetiology,	2.4	0.008	1.3-	13%
[15]					cohort	year		Cox	NYHA, EF, syst./			4.6	
					study	(me-		proportional-	non-syst. LV dys-				
						dian)		hazards	function, interaction				
								model	term b/w LVEF and				
T 11	2015	DUO	0(01)	DE		10	o		LV dysfunction	1.04	0.017	1.01	
Faller	2015	PHQ-9	863 HF	DE	extended	18	Outpatient	Multivariate	age, sex, randomiza-	1.04	0.017	1.01-	-
[16]					INH study	month		Cox	tion status, NYHA,			1.07	
								proportional-	LVEF 50%, amino-				
								madal	CRD LIP company				
								model	artery disease repal				
									duction anomia				
									diabatas ACE APB				
									BB diuretics and				
									stating				
Farisa	2002	ICD-10	396 HF	IJК	Retrospective	48	Outpatient	Multivariate	demographics social	3	0.004	14-	21%
[17]	2002		0,0111	UI	cohort	month	Surputient	Cox	medical history, base-		0.001	6.4	21/0
[1,]					study	(mean)		proportional-	line functional status			5.1	
					stady	(incur)		hazards	and clinical severity				
								model	and emileur beverity				
	_							mouci				1	1

Chapter 2. Depression and anxiety as predictors of mortality

28

					Tab	le 2.2 – Co	ntinued from p	revious page					
Author	Year	Assessment	Population	Region	Study	Follow-	Predicting	Statistical	Other parameters	HR/	p-	95%	Prevalence
		method				up	period	method		OR	value	CI	
Friedmann	2006	BDI-II	231 CHF	US	PFOS co-	23.6	Outpatient	Multivariate	treatment:ICD, amio-	2.35	0.0222	2.354 -	36%
[18]					hort study	month		Cox	darone, afib, EF, de-			4.743	
						(mean)		proportional-	pression score, social				
								hazards	support amount				
								model					
Jiang [19]	2001	BDI≥10/	374 CHF	US	Prospective	1 year	Inpatient	Multivariate	age, LVEF, NYHA, is-	2.12	0.07	0.94 -	35%
		positive			cohort			logistic	chemic aetiology of			4.81	
		DIS result			study			regression	CHF				
Jiang [20]	2007	$BDI \ge 10$	1006 HF	US	cohort	971	Inpatient	Multivariate	age, LVEF, NYHA, is-	1.4	0.003	1.12-	30%
					study	days		Cox	chemic aetiology of			1.74	
						(mean)		proportional-	CHF, history of dia-				
								hazards	betes, marital status				
								model					
Junger	2005	HADS-D	209 CHF	DE	Prospective	24.8	-	Multivariate	peakVO2, LVEF	1.08	0.02	1.01 -	30%
[21]		>6			study	month		Cox				1.15	
						(mean)		proportional-					
								hazards					
	• • • • •							model					
Kato [22]	2009	CES-D ≥ 16	115 HF	JP	Prospective	2.1	Outpatient	Multivariate	age, ACE, BNP	5.52	0.006	1.65-	24%
					cohort	year		Cox				18.46	
					study	(me-		proportional-					
						dian)		hazards					
Vanatana	1000		2275 I IE	UC	Dandaminad	26 5		model Multineriete	EE and treatment	1.07	0.022	1.01	
Konstam [20]	1996	HKQL	3375 HF	05	Randomized	36.5	-	Multivariate	EF, age, treatment,	1.07	0.023	1.01-	-
[30]					clinical trial	(manama)		Cox	NINA			1.12	
						(mean)		proportional-					
								madal					
Looman	2000		050 LIE	NI	СОАСН	10	Innationt	Multivariato	ago gondor PND	1 42	0.04	1.02	210/
Lesilian-	2009	C£3-D ≥24	7J0 FIF	INL	Prospectivo	month	mpatient	Cox	lovol	1.43	0.04	2.02	<i>L</i> 1 /0
[23]					etudy	monul		proportional	10 101			2.02	
[-0]					stady			hazards					
								model					
								mouer					<u> </u>

Chapter 2. Depression and anxiety as predictors of mortality

	Table 2.2 – Continued from previous page												
Author	Year	Assessment	Population	Region	Study	Follow-	Predicting	Statistical	Other parameters	HR/	p-	95%	Prevalence
		method				up	period	method		OR	value	CI	
Moraska	2013	PHQ-9	402 HF	US	Prospective	1.6	In/ out-	Multivariate	age, gender, CCI, in-	4.06	< 0.001	2.35-	15%
[24]		≥ 10			cohort	year	patient	Cox	cident vs. prevalent			7.01	
					study	(mean)		proportional-	HF status				
								hazards					
								model					
Murberg	2001	SDS	119 CHF	NO	Prospective	2 year	Outpatient	Multivariate	age, NYHA, depres-	1.05	0.116	0.99-	-
and Bru					study			Cox	sive symptoms, func-			1.11	
[31]								proportional-	tional status				
								hazards					
								model					
O'connor	2008	history of	5791 HF	US	OPTIMIZE-	72.7	Inpatient	Multivariate	SBP, age, weight,	1.48	0.0034	1.14 -	14%
[25]		depression			HF	days		step-	reactive airway dis-			1.93	
					prospec-	(mean)		wise Cox	ease, sodium, SCr,				
					tive cohort			proportional-	liver disease, lower				
					study			hazards	extremity edema,				
								model	statin at discharge,				
									BB at discharge				
Rollman	2012	PHQ-2	471 HF	US	Prospective	up	Inpatient	Multivariate	sex,age \geq 65, EF \leq 30%,	3.1	0.003	1.40 -	79%
[32]					study	to 12		Cox	NYHA 3/4, anxiety,			6.70	
						months		proportional-	COPD, renal insuf-				
								hazards	ficiency, ACE-I or				
								model	ARB, BB, Coumadin,				
									hemoglobin<10,				
									sodium<136, DBP,				
									SBP				
Sherwood	2007	$BDI \ge 10$	204 HF	US	Prospective	median	Outpatient	Multivariate	NT-proBNP, antide-	1.05	0.06	1.00-	46%
[33]					study	3		Cox	pressant, age, HF			1.10	
						years		proportional-	etiology, and LVEF				
								hazards					
								model					

Author	Year	Assessment	Population	Region	Study	Follow-	Predicting	Statistical	Other parameters	HR/	p-	95%	Prevalence
		method				up	period	method		OR	value	CI	
Smith	2012	BDI	380 CHF	NL	-	2.3	Outpatient	Multivariate	male, age, LVEF,	1.41	0.02	1.05 -	-
[34]						year		Cox	NYHA, smoking,			1.88	
						(me-		proportional-	exertion fatigue				
						dian)		hazards					
								model					
van den	2011	CES-D ≥ 8	208 HF	NL	Prospective	11	Outpatient	Multivariate	age, gender, race,	1.49	-	1.05 -	36%
Broek					community	year		Cox	SBP, cholesterol,			2.11	
[35]					based study	(me-		proportional-	DM, BMI, smoking,				
						dian)		hazards	reduced physical				
								model	activity, CHD at				
									baseline, LVEF, left				
									ventricular hypertro-				
									phy, NT-proBNP				
Volz [36]	2011	HADS >10	111 HF	CH	Prospective	2.8	Outpatient	Multivariate	LVEF, peak oxygen	0.65	0.7	0.08 -	10%
					cohort	year		Cox	uptake			5.17	
					study	(mean)		proportional-					
								hazards					
								model					
Zuluaga	2010	GDS-10 ≥5	433 HF	ES	Prospective	5.7	Outpatient	Multivariate	age, gender, race,	1.4	<0.01	1.05 -	24%
[37]					study	year		Cox	COPD, CCI, serum			1.86	
						(mean)		proportional-	creatinine level,				
								hazards	LVEF, NYHA, HF				
								model	hospitalization in				
									last year, ischemic				
									cardiopathy, heart				
									valve disease				
HR, hazard	ratio;	OR, odds ratio;	CI, confidence	e interval	; BDI, Beck dep	ression inv	ventory; PHQ	, patient health	questionnaire; CES-D, cen	ter for	epidemio	logical stu	ıdies

HR, hazard ratio; OR, odds ratio; CI, confidence interval; BDI, Beck depression inventory; PHQ, patient health questionnaire; CES-D, center for epidemiological studies depression; ICD, international classification of diseases; GDS, geriatric depression scale; HADS-D, hospital anxiety and depression scale - depression; HDRS, Hamilton rating scale for depression; SCL-20, Hopkins symptom checklist- 20-item depression scale; PRIME-MD, primary care evaluation of mental disorders; PFOS, psychosocial factors outcome study; NYHA, New York heart association; CABG, coronary artery mypass grafting; ACE, angiotensin converting enzyme; SBP, systolic blood pressure; DBP, diastolic blood pressure; HR, heart rate; BNP, b-type natriuretic peptide; LVEF, left ventricular ejection fraction; DM, diabetes mellitus; COPD, chronic obstructive pulmonary disease; CrC, creatinine clearance by Cockcroft formula; BMI, body mass index; ARB, angiotensin receptor blocker; BB, beta-blockers; CHD, coronary heart disease; CCI, Charlson comorbidity index

The pooled hazard ratio for the unadjusted effect of depression on mortality was strongly significant across 15 studies (HR = 1.57; 95%CI 1.30 – 1.89; p < 0.001). The pooled estimation was strongly heterogeneous as reflected by the I^2 statistic ($I^2 = 94\%$, heterogeneity p < 0.001). The pooled adjusted Hazard Ratio was also significant (HR = 1.40; 95%CI 1.22 – 1.60; p < 0.001) and again heterogeneous (heterogeneity p < 0.001; $I^2 = 97\%$, Figure 2.2).

Adams 2012	-	1 25 [1 16 1 59]
Auditis, 2012		1.00[1.10, 1.00]
Albert, 2009		1.30[1.04, 1.78]
Diez-Quevedo, 2013	H H H	1.39 [1.15, 1.08]
Faller, 2007	<u>↓</u> ↓ → ↓ →	3.30[1.79, 6.07]
Faller, 2015	1	1.07 [1.05 , 1.10]
Faris, 2002	⊢-∎1	2.10 [1.39 , 3.17]
Friedmann , 2006	⊢ ₽	2.58 [0.53 , 12.56]
Jiang, 2001	→ 1	2.26 [1.04 , 4.91]
Jiang 2007	H a ll	1.45 1.19 1.77 1
Junger 2005		109[102 117]
Kato 2009		551[175 1737]
Losman Logato 2000		1 10 [0.02 1 50]
Lesman-Leegle, 2009		1.10[0.93, 1.50]
Moraska, 2013		3.37[1.97, 5.76]
O'connor, 2008	H E H	1.56[1.23, 1.97]
Sullivan, 2004	⊢ I	1.65 [0.51 , 5.31]
		4.577.4.00.4.001
RE Model (unadjusted)	•	1.57 [1.30 , 1.89]
	[· ·]	
	0.50 8.00	
	HR (95% CI)	
Adams, 2012	H EE H	1.40 [1.16 . 1.68]
Albert 2009	⊢ ∎1	1.46[1.05] 2.03]
Alburani 2015		106[101 111]
Covne 2011		101[031] 324]
Cully 2000		0.03[0.73 1.18]
Diaz Quayada 2012		121[107 160]
Diez-Queveuo, 2013		1.31[1.07, 1.00]
Faller, 2007		2.40 [1.28 , 4.51]
Faller, 2015		1.04[1.01, 1.07]
Faris, 2002	⊢ −■−−−1	3.00[1.40, 6.41]
Friedmann, 2006	-■-1	2.35 [1.66 , 3.34]
Jiang , 2001	l i −	2.12[0.94, 4.80]
Jiang , 2007	H∎⊣	1.40 [1.12 , 1.74]
Junger, 2005	i i i i i i i i i i i i i i i i i i i	1.08 1.01 1.15
Kato, 2009		5.52 [1.65 . 18.46]
Konstam 1996	i i i i i i i i i i i i i i i i i i i	106[101 112]
Lesman, Leegte 2009		143[102 201]
Moracka 2013		4.06[2.35, 7.01]
Murborg and Bru 2001		4.00[2.33, 7.01]
Oleannar 2000		1.05[0.99, 1.11]
O connor, 2008	H E H	1.48 [1.14 , 1.93]
Rollman, 2012	↓ ■	3.10[1.42, 6.78]
Sherwood, 2007	#	1.05 [1.00 , 1.10]
Smith, 2012	₽₩	1.41 [1.05 , 1.89]
van den Broek , 2011	}- ∎-1	1.49 [1.05 , 2.11]
Volz, 2011		0.65 [0.08 , 5.23]
Zuluaga , 2010	₽₩₽	1.40 [1.05 , 1.86]
	•	4.40.14.00.4.00.1
RE MODEL (adjusted)	•	1.40[1.22, 1.60]
	0.50 8.00	
	0.00 0.00	
	HR (95% CI)	

FIGURE 2.2: Meta-analysis – Forest plot calculating the effect of depression (a) unadjusted effect, (b) adjusted effect A random-effect meta-regression was performed to understand the sources of the higher than 90% observed heterogeneity between the studies. The potential study-level covariates analyzed were the study characteristics introduced in Tables 2.1, 2.2. There was no association found between heterogeneity and the depression assessment method, the adjusted or univariate analysis, the location where the study was conducted, the inpatient or outpatient predictive period, the year of the study, the type of the study and the follow-up period. On the other hand, significant heterogeneity was associated with the total population size (smaller effect in larger studies p < 0.01) and the prevalence of the depression in the study (smaller effect for prevalence >29%; p < 0.01, Table 2.3).

Anxiety and mortality

Only 6 studies analyzing the effect of anxiety on mortality among HF patients were identified with a prevalence of anxiety varying from 9 to 53%. Table 2.4 shows the unadjusted effects reported in the studies and Table 2.5 the reported effects on mortality after adjusting for a group of confounders. Age, NYHA class and (left ventricular) ejection fraction were the most common confounders in the identified studies.

	Estimated coefficient (SE)	p-value
Year	-0.0016 (0.0124)	0.8957
Assessment method		
BDI	0.0349 (0.1287)	0.7863
PHQ	0.2096 (0.1433)	0.1434
Other	-0.1571 (0.1117)	0.1596
Population size	-0.0004 (0.0002)	<0.05
Region		
EU	-0.1119 (0.1134)	0.3241
US	0.04355 (0.1140)	0.7555
Follow-up period	0.0014 (0.0269)	0.9599
Statistical method		
Unadjusted	0.1066 (0.1159)	0.3573
Adjusted	Reference	Reference
Study type		
Prospective	0.1453 (0.1134)	0.2003
Retrospective	0.0667 (0.2217)	0.7637
Other	-0.1756 (0.1178)	0.1359
Depression prevalence	-0.0108 (0.0059)	<0.1
Predicting period		
Inpatient	-0.1641 (0.1156)	0.1156
Outpatient	Reference	Reference

In order to estimate the unadjusted effect of each study-level factor, the studies with missing values were excluded in each case

TABLE 2.4:	Unadjusted	effect of anxiety	on all-cause	mortality	among HF	patients

Author	Year	Assessment method	Population	Region	Study	Follow- up	Predicting period	Statistical method	HR/ OR	p-value	95% CI	Prevalence of anxiety
Friedmann	2006	STAI	149 CHF	US	PFOS cohort	23.6	Outpatient	Univariate Cox	1.037	0.06	0.998-	45%
[18]					study	month	_	proportional-			1.078	
								hazards model				
Jiang [38]	2004	STAI	291 CHF	US	Prospective	1 year	Inpatient	Univariate Cox	State-	State-	State-	29%
Ũ					cohort study	-	-	proportional-	A:1.017;	A:0.12;	A:0.996	
					-			hazards model	Trait-	Trait-A:	-1.039;	
									A:1.010	0.44	Trait-	
											A:0.98-	
											1.03	
HR, hazard	HR, hazard ratio; OR, odds ratio; CI, confidence interval; STAI, State-Trait anxiety inventor; PFOS, psychosocial factors outcome study											

Author	Year	Assessment	Population	Region	Study	Follow-	Predicting	Statistical	Other parameters	HR/	p-	95%	Prevalence
		method	-	U	5	up	period	method	1	OR	value	CI	of anxiety
Alhurani [27]	2015	BSI	1260 HF	US	Registry	12 month	Outpatient	Multivariate Cox proportional- hazards model	age, gender, ethnic- ity, NYHA, depres- sion	1.07	0.652	0.79- 1.45	-
Cully [29]	2009	ICD-9	12028 HF	US	Retrospective cohort study	12 month	Outpatient	Multivariate logistic re- gression	age, gender, race, married, income, comorbidities, combined depres- sion/anxiety	1.01	ns	0.76 - 1.54	9%
Friedmann [18]	2006	STAI	149 CHF	US	PFOS cohort study	23.6 month	Outpatient	Multivariate Cox proportional- hazards model	NYHA, atrial fib- rillation/ flutter, treatment group	1.03	0.12	0.989 - 1.072	45%
Jiang [38]	2004	$STAI \ge 40$	291 CHF	US	Prospective cohort study	1 year	Inpatient	Multivariate Cox proportional- hazards model	BDI, age, LVEF, NYHA, ischemic CHF origin	State- A: 1.01; Trait- A: 1.00	State- A: 0.30; Trait- A: 0.97	State- A: 0.988- 1.040; Trait- A: 0.971- 1.031	-
Konstam [30]	1996	HRQL	3375 HF	US	Randomized clinical trial	36.5 month (mean)	-	Multivariate Cox proportional- hazards model	EF, age, treatment, NYHA	1.02	ns	-	-
Volz [36]	2011	HADS-A >10	111 HF	СН	Prospective cohort study	2.8 year (mean)	Outpatient	Multivariate Cox proportional- hazards model	LVEF, peak oxygen uptake	1.75	0.47	0.37- 8.21	9%

TABLE 2.5: Adjusted effect of anxiety on all-cause mortality among HF patients

Continued on next page

37

Author	Year	Assessment	Population	Region	Study	Follow-	Predicting	Statistical	Other parameters	HR/	p-	95%	Prevalence
		method				up	period	method		OR	value	CI	of anxiety

HR, hazard ratio; OR, odds ratio; CI, confidence interval; BSI, Brief symptom inventory; ICD, international classification of diseases; STAI, State-Trait anxiety inventor; HRQL, health related quality of life; HADS-A, hospital anxiety and depression scale - anxiety; PFOS, psychosocial factors outcome study; NYHA, New York heart association; BDI, Beck depression inventory; LVEF, left ventricular ejection fraction; EF, ejection fraction There was no evidence found for anxiety as an independent predictor of mortality. The pooled hazard ratio for the unadjusted effect of anxiety on mortality, which was based on 2 studies, was 1.02 (95% CI 1.00 – 1.04; p = 0.24, heterogeneity p = 0.38; $I^2 = 0\%$). The pooled hazard ratio for the adjusted effect of anxiety on mortality could be based on 5 studies and was identical (HR = 1.02; 95% CI 1.00 – 1.04; p = 0.09) and reasonably homogenous (heterogeneity p = 0.97; $I^2 = 0\%$, Figure 2.3)).

FIGURE 2.3: Meta-analysis – Forest plot calculating the effect of anxiety (a) unadjusted effect, (b) adjusted effect

DISCUSSION

This systematic review was conducted according to the PRISMA guidelines to assess the evidence on the effect of depression (26 studies) and anxiety (6 studies) on allcause mortality outcome among Heart Failure (HF) patients. <Key results: 1.6 for depression but very heterogeneous across studies; no effect for anxiety>. In contrast to other reviews, our study was not limited on follow-up duration or only in prospective studies reporting adjusted effects of the two parameters. We reviewed all studies published quantifying the effect of depression or anxiety.

The prevalence of depression varied among the 26 different studies with an average of approximately 29% ranging from 10 to 79%. The meta-analysis showed that the unadjusted risk of death among HF patients facing depression was 1.57 times higher than the risk among HF patients without depression and the pooled estimate of the adjusted Hazard Ratio was 1.40. In both univatiate and adjusted analysis, strong heterogeneity among the studies was found. Our findings are more conservative than previous reviews published [4, 6]. Rutledge et al reported a 2.10 higher adjusted risk of mortality and secondary events based on 8 studies and Fun et al reported a pooled adjusted Hazard Ratio of 1.51 based on 9 studies, both with substantial heterogeneity. From our attempt to explain heterogeneity we found that the effect of depression is weaker in larger studies; this suggests publication bias: small studies were published if they found relatively large effect estimates, while small studies with modest effect estimates were not. The weaker effect in studies with higher prevalence of depression may relate to the use of different cut-offs on an underlying, latent, scale for depression. If a more liberal cut-off was used, those labeled as depressed actually were milder than with a more strict definition of depression.

Our results for anxiety do not have the same weight as the results with respect to depression since anxiety was less studied in the literature. Anxiety had a similar prevalence to depression among the six identified studies (average 29%, range 9 - 45%), but patients with anxiety had no increased risk of death compared to those without anxiety. However, since anxiety is usually correlated with other factors such as depression, further research of anxiety as a covariate to other factors is recommended.

One limitation of our study is related to the variation in follow-up times. Follow-up

times varied from 30 days to a number of years; furthermore, there were studies covering different follow-up periods but in these cases we always selected the longest follow-up. Further analysis such as subgroup analysis would be recommended to investigate the effect variation in different follow-up periods, however limited information in some of the literature publications is restrictive towards this direction.

Moreover, we focused only on mortality. Nevertheless, there is evidence that depression and anxiety are also associated to other adverse events such as readmission. Further investigation in needed also towards this direction. One limitation of the metaregression is that even though we tried to cover a broad selection of study-level covariates there are more that might also be related to the heterogeneity. Further research on different factors' interactions would be recommended.

The "gold standard" test of causality of a putative risk factor is a randomized clinical trial. Such a trial minimizes concerns about confounders [39, 40, 41]. To the best of our knowledge, there is no randomized clinical trial conducted for depression among a HF population. Based on our findings we strongly recommend such a trial in order to evaluate the causality of depression.

Finally, according to our findings from the meta-regression, depression should not be underestimated in clinical practice within HF population groups where prevalence is low. Furthermore, based on our overall findings on the effect of depression, we recommend further research on the recognition and management of depression in clinical practice which might improve patient outcomes. Further analysis such as subgroup analysis and interventional studies are required for stronger evidence towards this direction.

APPENDIX A: PRISMA CHECKLIST

Section/ topic	Ν	Checklist item	Page						
TITLE									
Title	1	Identify the report as a systematic review, meta-analysis, or both.	15						
ABSTRACT									
Structured summary	2	Provide a structured summary including, as applicable: background; ob- jectives; data sources; study eligibility criteria, participants, and interven- tions; study appraisal and synthesis methods; results; limitations; con- clusions and implications of key findings; systematic review registration number.	17						
INTRODUCTION									
Rationale Objectives	3 4	Describe the rationale for the review in the context of what is already known. Provide an explicit statement of questions being addressed with reference to participants, interventions, comparisons, outcomes, and study design	18-19 20						
METHODO		(PICOS).							
METHODS	-								
Protocol and registra- tion	5	Indicate if a review protocol exists, if and where it can be accessed (e.g., Web address), and, if available, provide registration information includ- ing registration number.	Appendix A						
Eligibility criteria	6	Specify study characteristics (e.g., PICOS, length of follow-up) and report characteristics (e.g., years considered, language, publication status) used as criteria for eligibility, giving rationale.	20						
Information sources	7	Describe all information sources (e.g., databases with dates of coverage, contact with study authors to identify additional studies) in the search and date last searched.	20						
Search	8	Present full electronic search strategy for at least one database, including any limits used, such that it could be repeated.	Appendix B						
Study selection	9	State the process for selecting studies (i.e., screening, eligibility, included in systematic review, and, if applicable, included in the meta-analysis).	20						
Data collection pro- cess	10	Describe method of data extraction from reports (e.g., piloted forms, in- dependently, in duplicate) and any processes for obtaining and confirm- ing data from investigators.	21						
Data items	11	List and define all variables for which data were sought (e.g., PICOS, funding sources) and any assumptions and simplifications made.	20-22						
Risk of bias in indi- vidual studies	12	Describe methods used for assessing risk of bias of individual studies (including specification of whether this was done at the study or outcome level), and how this information is to be used in any data synthesis.	21						
Summary measures	13	State the principal summary measures (e.g., risk ratio, difference in means).	21						
Synthesis of results	14	Describe the methods of handling data and combining results of stud- ies, if done, including measures of consistency (e.g., I2) for each meta- analysis.	21						

TABLE 2.6: PRISMA checklist

		5 1 1 8	
Section/ topic	Ν	Checklist item	Page
Risk of bias across	15	Specify any assessment of risk of bias that may affect the cumulative evi-	21
studies		dence (e.g., publication bias, selective reporting within studies).	
Additional analyses	16	Describe methods of additional analyses (e.g., sensitivity or subgroup	21
		analyses, meta-regression), if done, indicating which were pre-specified.	
RESULTS			
Study selection	17	Give numbers of studies screened, assessed for eligibility, and included	Fig. 2.1
		in the review, with reasons for exclusions at each stage, ideally with a flow diagram.	
Study characteristics	18	For each study, present characteristics for which data were extracted (e.g.,	Tables
		study size, PICOS, follow-up period) and provide the citations.	2.1,2.2,2.4, 2.5
Risk of bias within studies	19	Present data on risk of bias of each study and, if available, any outcome level assessment (see item 12).	1
Results of individual	20	For all outcomes considered (benefits or harms), present, for each study:	Tables
studies		(a) simple summary data for each intervention group (b) effect estimates	2.1,2.2,2.4,2.5;
		and confidence intervals, ideally with a forest plot.	Fig. 2.2 - 2.3
Synthesis of results	21	Present results of each meta-analysis done, including confidence inter- vals and measures of consistency.	Fig. 2.2 - 2.3
Risk of bias across	22	Present results of any assessment of risk of bias across studies (see Item	34/ Table 2.3
Additional analysis	22		24 / T-1-1-2-2
Additional analysis	25	analyses meta-regression [see Item 16])	54/ Table 2.5
DISCUSSION		analyses, neu regression (see rent 10)).	
Summary of avidance	24	Cummerize the main findings including the strength of suidenes for each	40.41
Summary of evidence	24	main outcome: consider their relevance to key groups (e.g., healthcare	40-41
		providers, users, and policy makers).	
Limitations	25	Discuss limitations at study and outcome level (e.g., risk of bias), and at	40-41
		review-level (e.g., incomplete retrieval of identified research, reporting	
		bias).	
Conclusions	26	Provide a general interpretation of the results in the context of other evi-	40-41
		dence, and implications for future research.	
FUNDING	•		-
Funding	27	Describe sources of funding for the systematic review and other support	/
		(e.g., supply of data); role of funders for the systematic review.	

Table 2.6 – Continued from previous page

APPENDIX B: DATABASE SEARCH QUERY

S (HEART(W)FAILURE)/TI AND ((DEPRESS? OR STRESS? OR ANXIETY OR PSY-CHOLOG?) (S)(MORTALITY OR DEATH))/TI,AB.

REFERENCES

- [1] J. J. Mcmurray, S. Adamopoulos, S. D. Anker, A. Auricchio, M. Böhm, K. Dickstein, V. Falk, G. Filippatos, C. Fonseca, M. A. Gomez-Sanchez, T. Jaarsma, L. Kober, G. Y. Lip, A. P. Maggioni, A. Parkhomenko, B. M. Pieske, B. A. Popescu, P. K. Ronnevik, F. H. Rutten, J. Schwitter, P. Seferovic, J. Stepinska, P. T. Trindade, A. A. Voors, F. Zannad, A. Zeiher, J. J. Bax, H. Baumgartner, C. Ceconi, V. Dean, C. Deaton, R. Fagard, C. Funck-Brentano, D. Hasdai, A. Hoes, P. Kirchhof, J. Knuuti, P. Kolh, T. Mcdonagh, C. Moulin, Ž. Reiner, U. Sechtem, P. A. Sirnes, M. Tendera, A. Torbicki, A. Vahanian, S. Windecker, L. A. Bonet, P. Avraamides, H. A. Ben Lamin, M. Brignole, A. Coca, P. Cowburn, H. Dargie, P. Elliott, F. A. Flachskampf, G. F. Guida, S. Hardman, B. Iung, B. Merkely, C. Mueller, J. N. Nanas, O. W. Nielsen, S. Orn, J. T. Parissis, and P. Ponikowski, "ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure 2012," *European Journal of Heart Failure*, vol. 14, no. 8, pp. 803–869, 2012.
- [2] A. Mosterd and A. W. Hoes, "Clinical epidemiology of heart failure," *Heart*, vol. 93, pp. 1137–1146, sep 2007.
- [3] K.-H. Ladwig, F. Lederbogen, C. Albus, C. Angermann, M. Borggrefe, D. Fischer, K. Fritzsche, M. Haass, J. Jordan, J. Jünger, et al., "Position paper on the importance of psychosocial factors in cardiology: update 2013," GMS German Medical Science, vol. 12, 2014.
- [4] T. Rutledge, V. A. Reis, S. E. Linke, B. H. Greenberg, and P. J. Mills, "Depression in heart failure: a meta-analytic review of prevalence, intervention effects, and associations with clinical outcomes," *Journal of the American college of Cardiology*, vol. 48, no. 8, pp. 1527–1537, 2006.
- [5] V. Konstam, D. K. Moser, and M. J. De Jong, "Depression and anxiety in heart failure," *Journal of Cardiac Failure*, vol. 11, no. 6, pp. 455–463, 2005.
- [6] H. Fan, W. Yu, Q. Zhang, H. Cao, J. Li, J. Wang, Y. Shao, and X. Hu, "Depression after heart failure and risk of cardiovascular and all-cause mortality: a meta-analysis," *Preventive Medicine*, vol. 63, pp. 36–42, jun 2014.
- [7] A. Liberati, D. G. Altman, J. Tetzlaff, C. Mulrow, P. C. Gøtzsche, J. P. a. Ioannidis, M. Clarke, P. J. Devereaux, J. Kleijnen, and D. Moher, "The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration," *Annals of Internal Medicine*, vol. 151, no. 4, 2009.
- [8] J. P. Higgins, D. G. Altman, P. C. Gøtzsche, P. Jüni, D. Moher, A. D. Oxman, J. Savović, K. F. Schulz, L. Weeks, and J. A. Sterne, "The cochrane collaboration's tool for assessing risk of bias in randomised trials," *Bmj*, vol. 343, p. d5928, 2011.
- [9] J. P. T. Higgins, S. G. Thompson, J. J. Deeks, and D. G. Altman, "Measuring inconsistency in metaanalyses," *BMJ*, vol. 327, pp. 557–560, sep 2003.
- [10] J. M. Zich, C. C. Attkisson, and T. K. Greenfield, "Screening for depression in primary care clinics: the CES-D and the BDI.," *International journal of psychiatry in medicine*, vol. 20, pp. 259–77, jan 1990.
- [11] K. Kroenke, R. L. Spitzer, and J. B. Williams, "The PHQ-9: validity of a brief depression severity measure," *Journal of General Internal Medicine*, vol. 16, pp. 606–613, sep 2001.
- [12] J. Adams, M. Kuchibhatla, E. J. Christopher, J. D. Alexander, G. L. Clary, M. S. Cuffe, R. M. Califf, R. R. Krishnan, C. M. O'Connor, and W. Jiang, "Association of depression and survival in patients with chronic heart failure over 12 years," *Psychosomatics*, vol. 53, no. 4, pp. 339–346, 2012.
- [13] N. M. Albert, G. C. Fonarow, W. T. Abraham, M. Gheorghiade, B. H. Greenberg, E. Nunez, C. M. O'Connor, W. G. Stough, C. W. Yancy, and J. B. Young, "Depression and clinical outcomes in heart failure: an optimize-hf analysis," *The American journal of medicine*, vol. 122, no. 4, pp. 366–373, 2009.
- [14] C. Diez-Quevedo, J. Lupón, B. González, A. Urrutia, L. Cano, R. Cabanes, S. Altimir, R. Coll, T. Pascual, M. De Antonio, and A. Bayes-Genis, "Depression, antidepressants, and long-term mortality in heart failure," *International Journal of Cardiology*, vol. 167, pp. 1217–1225, aug 2013.

- [15] H. Faller, S. Störk, M. Schowalter, T. Steinbüchel, V. Wollner, G. Ertl, and C. E. Angermann, "Depression and survival in chronic heart failure: does gender play a role?," *European Journal of Heart Failure*, vol. 9, no. 10, pp. 1018–1023, 2007.
- [16] H. Faller, S. Störk, G. Gelbrich, M. Schowalter, G. Ertl, and C. E. Angermann, "Depressive symptoms in heart failure: independent prognostic factor or marker of functional status?," *Journal of Psychosomatic Research*, vol. 78, pp. 569–572, mar 2015.
- [17] R. Farisa, H. Purcell, M. Y. Henein, and A. J. Coats, "Clinical depression is common and significantly associated with reduced survival in patients with non-ischaemic heart failure," *European Journal of Heart Failure*, vol. 4, pp. 541–551, aug 2002.
- [18] E. Friedmann, S. a. Thomas, F. Liu, P. G. Morton, D. Chapa, and S. S. Gottlieb, "Relationship of depression, anxiety, and social isolation to chronic heart failure outpatient mortality," *American Heart Journal*, vol. 152, no. 5, pp. 1–8, 2006.
- [19] W. Jiang, J. Alexander, E. Christopher, M. Kuchibhatla, L. H. Gaulden, M. S. Cuffe, M. a. Blazing, C. Davenport, R. M. Califf, R. R. Krishnan, and C. M. O'Connor, "Relationship of depression to increased risk of mortality and rehospitalization in patients with congestive heart failure," *Archives* of internal medicine, vol. 161, no. 15, pp. 1849–1856, 2001.
- [20] W. Jiang, M. Kuchibhatla, G. L. Clary, M. S. Cuffe, E. J. Christopher, J. D. Alexander, R. M. Califf, R. R. Krishnan, and C. M. O'Connor, "Relationship between depressive symptoms and long-term mortality in patients with heart failure," *American Heart Journal*, vol. 154, no. 1, pp. 102–108, 2007.
- [21] J. Jünger, D. Schellberg, T. Müller-Tasch, G. Raupp, C. Zugck, A. Haunstetter, S. Zipfel, W. Herzog, and M. Haass, "Depression increasingly predicts mortality in the course of congestive heart failure," *European Journal of Heart Failure*, vol. 7, pp. 261–267, mar 2005.
- [22] N. Kato, K. Kinugawa, A. Yao, M. Hatano, T. Shiga, and K. Kazuma, "Relationship of depressive symptoms with hospitalization and death in japanese patients with heart failure," *Journal of cardiac failure*, vol. 15, no. 10, pp. 912–919, 2009.
- [23] I. Lesman-Leegte, D. J. Van Veldhuisen, H. L. Hillege, D. Moser, R. Sanderman, and T. Jaarsma, "Depressive symptoms and outcomes in patients with heart failure: data from the COACH study," *European Journal of Heart Failure*, vol. 11, no. 12, pp. 1202–1207, 2009.
- [24] A. R. Moraska, A. M. Chamberlain, N. D. Shah, K. S. Vickers, T. a. Rummans, S. M. Dunlay, J. a. Spertus, S. a. Weston, S. M. McNallan, M. M. Redfield, and V. L. Roger, "Depression, healthcare utilization, and death in heart failure a community study," *Circulation: Heart Failure*, vol. 6, no. 3, pp. 387–394, 2013.
- [25] C. M. O'connor, W. T. Abraham, N. M. Albert, R. Clare, W. G. Stough, M. Gheorghiade, B. H. Greenberg, C. W. Yancy, J. B. Young, and G. C. Fonarow, "Predictors of mortality after discharge in patients hospitalized with heart failure: an analysis from the organized program to initiate life-saving treatment in hospitalized patients with heart failure (optimize-hf)," *American heart journal*, vol. 156, no. 4, pp. 662–673, 2008.
- [26] M. D. Sullivan, W. C. Levy, B. a. Crane, J. E. Russo, and J. a. Spertus, "Usefulness of depression to predict time to combined end point of transplant or death for outpatients with advanced heart failure," *American Journal of Cardiology*, vol. 94, pp. 1577–1580, 2004.
- [27] A. S. Alhurani, R. L. Dekker, M. A. Abed, A. Khalil, M. H. Al Zaghal, K. S. Lee, G. Mudd-Martin, M. J. Biddle, T. A. Lennie, and D. K. Moser, "The association of co-morbid symptoms of depression and anxiety with all-cause mortality and cardiac rehospitalization in patients with heart failure," *Psychosomatics*, vol. 56, no. 4, pp. 371–380, 2015.
- [28] J. C. Coyne, M. J. Rohrbaugh, V. Shoham, J. S. Sonnega, J. M. Nicklas, and J. A. Cranford, "Prognostic importance of marital quality for survival of congestive heart failure," *Am.J Cardiol.*, vol. 88, pp. 526–529, sep 2001.
- [29] J. A. Cully, M. Johnson, M. L. Moffett, M. Khan, and A. Deswal, "Depression and anxiety in ambulatory patients with heart failure," *Psychosomatics*, vol. 50, pp. 592–598, nov 2009.

- [30] V. Konstam, D. Salem, H. Pouleur, J. Kostis, L. Gorkin, S. Shumaker, I. Mottard, P. Woods, M. A. Konstam, and S. Yusuf, "Baseline quality of life as a predictor of mortality and hospitalization in 5,025 patients with congestive heart failure," *American Journal of Cardiology*, vol. 78, no. 8, pp. 890–895, 1996.
- [31] T. A. Murberg and E. Bru, "Social relationships and mortality in patients with congestive heart failure," *Journal of Psychosomatic Research*, vol. 51, pp. 521–527, sep 2001.
- [32] B. L. Rollman, B. Herbeck Belnap, S. Mazumdar, P. R. Houck, F. He, R. J. Alvarez, H. C. Schulberg, C. F. Reynolds, and D. M. McNamara, "A positive 2-item patient health questionnaire depression screen among hospitalized heart failure patients is associated with elevated 12-month mortality," *Journal of Cardiac Failure*, vol. 18, pp. 238–245, mar 2012.
- [33] A. Sherwood, J. a. Blumenthal, R. Trivedi, K. S. Johnson, C. M. O'Connor, K. F. Adams, C. S. Dupree, R. a. Waugh, D. R. Bensimhon, L. Gaulden, R. H. Christenson, G. G. Koch, and A. L. Hinderliter, "Relationship of depression to death or hospitalization in patients with heart failure," *Archives of Internal Medicine*, vol. 167, p. 367, feb 2007.
- [34] O. R. Smith, N. Kupper, A. A. Schiffer, and J. Denollet, "Somatic depression predicts mortality in chronic heart failure: can this be explained by covarying symptoms of fatigue?," *Psychosomatic medicine*, vol. 74, no. 5, pp. 459–463, 2012.
- [35] K. C. Van Den Broek, C. R. Defilippi, R. H. Christenson, S. L. Seliger, J. S. Gottdiener, and W. J. Kop, "Predictive value of depressive symptoms and B-type natriuretic peptide for new-onset heart failure and mortality," *American Journal of Cardiology*, vol. 107, pp. 723–729, mar 2011.
- [36] A. Volz, J. P. Schmid, M. Zwahlen, S. Kohls, H. Saner, and J. Barth, "Predictors of readmission and health related quality of life in patients with chronic heart failure: a comparison of different psychosocial aspects," *Journal of Behavioral Medicine*, vol. 34, pp. 13–22, feb 2011.
- [37] M. C. Zuluaga, P. Guallar-Castillón, C. Rodríguez-Pascual, M. Conde-Herrera, P. Conthe, and F. Rodríguez-Artalejo, "Mechanisms of the association between depressive symptoms and longterm mortality in heart failure," *American Heart Journal*, vol. 159, no. 2, pp. 231–237, 2010.
- [38] W. Jiang, M. Kuchibhatla, M. S. Cuffe, E. J. Christopher, J. D. Alexander, G. L. Clary, M. A. Blazing, L. H. Gaulden, R. M. Califf, R. R. Krishnan, and C. M. O'Connor, "Prognostic value of anxiety and depression in patients with chronic heart failure," *Circulation*, vol. 110, pp. 3452–3456, nov 2004.
- [39] J. P. Ioannidis, "Contradicted and initially stronger effects in highly cited clinical research," Jama, vol. 294, no. 2, pp. 218–228, 2005.
- [40] T. H. Evans I Chalmers I, Glasziou P., *Testing Tretments: Better Research for Better Healthcare*, vol. 8. Pinter & Martin Publishers, 2011.
- [41] A. I. Mushlin and H. Ghomrawi, "Health care reform and the need for comparative-effectiveness research," *New England Journal of Medicine*, vol. 362, no. 3, p. e6, 2010.