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Chapter 2

Methods and Theory:
A Semi-Empirical Approach
to Density Functional
Theory

Part of this Chapter is based on:

D. Migliorini et al., J. Chem. Phys. Lett., 8, 4177 (2017)

https://pubs.acs.org/doi/abs/10.1021/acs.jpclett.7b01905

which is reproduced with the permission of ACS Publications1.

2.1 Introduction

Heterogeneous catalysis generally focuses on very complicated processes that in-

volve many molecular states and several reaction steps taking place on irregular

and highly corrugated transition metal catalysts. Today an accurate simulation of

such processes in their entirety is far beyond computational possibility. However

it has been shown that usually only a very few of the molecular states involved

exhibit a large degree of rate control on the overall process [1] and this allows

experiments and simulations to focus on single fundamental steps rather than on

1further permissions related to the material excerpted should be directed to the ACS.
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24 Chapter 2 – Methods and Theory

the whole process. Often the catalytic system is modeled by a single reaction

step involving a molecule dissociating on an ideal low-index metal surface.

Rate controlling states can be either molecular adsorption or transition states

and they are crucial because a small change in their energy might dramatically

affect the rate of the overall process. While molecular adsorption energies can be

measured experimentally (i.e., using tempreature programmed desorption), it is

more complicated to design experiments able to measure dissociative chemisorp-

tion barriers. Theoretical calculations can provide energy barriers (Eb) but the

large number of atoms and the periodic representation [2] needed for this kind of

system makes accurate full quantum chemical simulations unfeasible. The the-

oretical method of choice to simulate the dissociation of molecules on a metal

surface while including all the relevant atoms is density functional theory (DFT)

at the generalized gradient approximation (GGA) level. Unfortunately GGA-

DFT is not accurate enough to calculate chemically accurate barriers (i.e., with

errors smaller than 1 kcal/mol ≈ 4.2 kJ/mol) [3].

A way to improve DFT accuracy is to develop a semi-empirical specific re-

action parameter (SRP) density functional. Recent theoretical work [4–6] and

recent joint theoretical and experimental efforts [7, 8] have been successful in

developing system-specific SRP functionals for several catalytically relevant sys-

tems [4–8] by comparing ab initio molecular dynamics (AIMD) simulations [9, 10]

with supersonic molecular beam experiments.

In this Chapter the main steps needed to accurately simulate supersonic

molecular beam experiments are reported and discussed in order to obtain an

SRP functional for a polyatomic molecule dissociating on a transition metal sur-

face. The Chapter is organized as follows: the basics of the DFT method and

of the specific reaction parameter approach to DFT are explained in Section 2.2,

the strategy to develop and test an SRP functional is reported in Section 2.3 and

the procedure to accurately simulate molecular beam experiments is described in

Section 2.4.
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2.2 SRP Approach to DFT

DFT is a particularly convenient method to study catalytically relevant systems

and surface science in general. The high complexity of these systems and the large

number of degrees of freedom (DOFs) involved benefit from the favorable scaling

of the computational cost of DFT (∝ n3, where n is the total number of electrons),

which is better than for correlated wavefunction-based methods. Moreover DFT

offers an easy treatment of periodicity. This allows a full-dimensional treatment

of larger systems (even for dynamical simulations, when coupled with classical

time propagation), which are crucial to understand surface reactions. However

this comes with the price of a lower accuracy due to the unknown analytical form

of the exchange-correlation functional (EXC), needed to obtain the energy of the

system in the DFT approach. This problem of lack of accuracy for a molecule on

a transition metal surface can be circumvented trough a semi-empirical approach

by developing a specific reaction parameter density functional (SRP-DFT).

2.2.1 Density Functional Theory

The heart of the DFT method is formed by the Hohenberg-Kohn theorems [11].

The first theorem states that for a non-degenerate ground state (gs) all the prop-

erties of the system are determined by the electronic density (ρ0). This implies

that the gs wave function (Ψ0(r1, r2, ..., rn)) can be expressed as a functional of

the gs electronic density (ρ0):

Ψ0(r1, r2, ..., rn) = Ψ[ρ0(r)], (2.1)

and allows one to write the gs expectation value of any observable Ô as a func-

tional of the density:

O0 = O[ρ0] = 〈Ψ[ρ0(r)]
∣∣ Ô ∣∣ Ψ[ρ0(r)]〉. (2.2)

This entails that the energy of the ground state is a functional of ρ0(r) as well.

Moreover, the second Hohenberg-Kohn theorem states that, for a given system,
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the energy E[ρ′] of a generic density ρ′ cannot be lower than the gs energy E[ρ0]:

E[ρ0] = 〈Ψ[ρ0(r)]
∣∣ Ĥ ∣∣ Ψ[ρ0(r)]〉 ≤ 〈Ψ[ρ′(r)]

∣∣ Ĥ ∣∣ Ψ[ρ′(r)]〉 = E[ρ′], (2.3)

where Ĥ is the Hamiltonian for the given system that can be written as:

Ĥ = T̂ + Û + V̂ . (2.4)

Here T̂ is the kinetic term, Û is the electron-electron interaction term and V̂ is

the potential term due to the positively charged nuclei. In order to obtain the gs

energy of the system, ideally one only has to minimize the functional:

E[ρ] = 〈Ψ[ρ]
∣∣ T̂ + Û + V̂

∣∣ Ψ[ρ]〉. (2.5)

However, in order to do so, analytical expressions for T̂ , Û and V̂ are needed.

The most common approach to solve the DFT problem and to obtain the gs

energy has been proposed by Kohn and Sham [12]. The core idea of the Kohn-

Sham (KS) method is to introduce a fictious system of non-interacting particles

that has the same gs density of the real interacting system and to solve a set of

single-particle Kohn-Sham (KS) equations:

[
− 1

2
∇2 + Vs(r)

]
ϕi(r) = εiϕi(r). (2.6)

Here the gs wavefunction Ψ0 has been written as a Slater determinant of single

particle KS orbitals ϕi(r), and Vs(r) is the so-called KS potential. Equation 2.6

is reported in atomic units, consistently with the rest of the equations in this

Section.

In order to solve the KS Equation 2.6, one can use the kinetic energy for a

system of non-interacting particles Ts[ρ], the Hartree interaction energy UH [ρ]

(i.e., the coulombic repulsion), while moving the contributions due to the inter-

acting nature of the system into the so-called exchange-correlation energy term
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EXC , so that:

E[ρ] = Ts[ρ] + UH [ρ] + EXC [ρ] + V [ρ], (2.7)

where

EXC = (U − UH) + (T − Ts). (2.8)

Note that Equation 2.7 is formally correct but the analytical expression of EXC is

unknown. Therefore, in order to obtain an accurate value for the energy, a good

approximation (i.e., analytical expression) of EXC is needed. Some of the most

important and widely used approximations for EXC are reported and discussed

in Section 2.2.3. Now it is possible to define the KS potential as:

Vs(r) =

∫
dr′

ρ(r)

|r− r′|
−
∑
N

ZN
|r−RN |

+ VXC(r), (2.9)

where the first term is the Hartree potential UH , the second (V ) is due to the

interaction with the N nuclei in the system and VXC(r) is the derivative of

EXC [ρ(r)] with respect to the density:

VXC(r) =
δEXC [ρ(r)]

δρ(r)
. (2.10)

If Vs is defined as in Equation 2.9, from the solution of Equation 2.6 it is possible

to recover the ground state density of the real correlated system as:

ρ0(r) =
∑
i

fi
∣∣ ϕi(r)

∣∣2 . (2.11)

where fi are the occupation numbers. Note that ρ0(r) is the correct gs density

if the exact analytical expression for EXC would be known. The Kohn-Sham

Equation 2.6 depend on the density ρ(r) through Vs(r) and ρ(r) itself is obtained

from the KS orbitals through Equation 2.11. Therefore, in order to optimize the

KS orbitals ϕi(r), the KS equations need to be solved self-consistently starting
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from an initial guess of the density ρinit(r).

The KS approach shifts the problem from minimizing the energy functional

to solving a set of non-interacting equations while, in principle, delivering the

correct density ρ0 (Equation 2.11) and energy E[ρ0] (Equation 2.7) of the real

interacting and correlated system. As mentioned before, the overall accuracy of

the method depends then on the quality of the approximation used to obtain the

exchange-correlation contribution EXC (see Section 2.2.3).

2.2.2 Plane Wave DFT

When it comes to describing periodic systems, it is possible to expand the KS

orbitals according to Bloch’s theorem in a set of plane waves that have the same

periodicity as the system considered:

ϕj(r,k) = N
∑
G

cjGke
i(k+G)r. (2.12)

Here j runs over the KS orbitals, k is a vector in the irreducible Brillouin zone

(IBZ), G is a reciprocal lattice vector and N is a normalization constant. Equa-

tion 2.12 has to be solved for the coefficients cjGk. Performing a plane wave

DFT calculation requires two “parameters”: a grid of K-points in order to avoid

having to integrate over all the IBZ, and a cut off on the kinetic energy of the

plane waves (Ecut). This defines the size of the basis set as it will only include

plane waves associated with a kinetic energy:

1

2

∣∣ k + G
∣∣2≤ Ecut. (2.13)

In order to obtain accurate results, the energy needs to be converged with respect

to both the value of Ecut and the number of K-points.

In order to accurately reproduce the strongly oscillating wave function close

to the nuclei one would need to use a very large value of Ecut, thus resulting

in slowly converging calculations. This limitation can be circumvented by using

pseudopotentials [13, 14] to explicitly treat only the valence electrons while re-
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placing the strong Coulomb potential close to the nuclei with a weaker (effective)

potential. This results in smoother wave functions close to the nuclei that can

be described using a smaller value of Ecut, while approximately reproducing the

all-electron wave functions at larger distances. Moreover the pseudopotentials

can be designed to partially account for relativistic effects and, since only the

chemically-relevant valence electrons are explicitly treated, they further reduce

the calculation time.

The plane waves implementation of DFT has the advantage that the basis

functions are inherently periodic and do not depend on the atomic positions but

only on the size of the simulation box and on the value of Ecut. This avoids

the basis-set superposition error (BSSE) and issues with systematic basis set

convergence which are typical of atomic orbital based methods. On the other

hand, it implies that increasing the box size will increase the computational

cost even if the number of atoms is held constant. For surface simulations, this

translates into a limitation of the size of the vacuum that can be use to separate

the metal slab from its 1st periodic replica, which needs to be considered when

long range interactions are included. A more detailed discussion is reported in

Section 2.4.2.

2.2.3 Exchange-Correlation Functional

As mentioned before, the DFT approach is formally correct and it would return

the exact ground state density and energy if an analytical expression for EXC was

known. Since the beginning of DFT, many different EXC approximations have

been proposed and applied to physically relevant systems. However the recipe

for the universal exchange-correlation functional has not yet been found and any

of the available approximations will perform better for some systems and worse

for others.

The first form of EXC is based on the assumption that the electrons behave

as a homogeneous gas and it was proposed directly by Kohn and Sham [12] with
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the name of local density approximation (LDA):

ELDAXC [ρ(r)] =

∫
ρ(r) εLDAxc [ρ(r)] dr, (2.14)

where εLDAxc can be decomposed into the exchange part εx [15, 16]:

εx = −3

4

(
3

π
ρ(r)

)1/3

, (2.15)

and into the correlation part εc. The analytical expression of εc is known for the

limits of high density (weak correlation) and low density (strong correlation). The

two limits have then been connected by fitting results of Monte Carlo simulations

[17].

The LDA approximation is based on the assumption that the electrons behave

as a homogeneous gas and therefore it performs poorly when it comes to describe

molecular bonds or molecule-surface interactions. This makes the LDA approxi-

mation not viable for heterogeneous catalysis where dissociation barrier heights

are of fundamental importance and need to be calculated with high accuracy.

The next natural step to overcome the locality of this approximation is to

include the gradient of the density (∇ρ(r)) in the expression of EXC . The so-

called semi-local generalized gradient approximation (GGA) functionals have a

general form:

EGGAXC [ρ(r)] =

∫
F [ ρ(r),∇ρ(r) ] dr, (2.16)

where EGGAXC can be decomposed into the sum of the exchange part (EGGAX ) plus

the correlation part (EGGAC ). Two of the most used GGA functionals in surface

science are the Perdew-Burke-Ernzerhof (PBE) [18, 19] and its revised version by

Nørskov and coworkers (RPBE) [20]. The PBE and the RPBE functionals have

the same correlation part:

EGGAC [ρ(r)] =

∫
ρ(r)

(
εc[ρ(r)] +H[ρ(r),∇ρ(r)]

)
dr, (2.17)
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where the gradient contribution H is based on physical constraints.

For both PBE and RPBE the GGA exchange functional (EGGAX ) has the

general form:

EGGAX [ρ(r)] =

∫
ρ(r) εx[ρ(r)] F (s) dr, (2.18)

where F (s) is the enhancement factor of the LDA εx and depends on the reduced

density gradient s(r):

s(r) =

∣∣ ∇ρ(r)
∣∣

[ 2(3π2)1/3ρ(r)4/3 ]
. (2.19)

The only difference between PBE [18] and RPBE [20] is in the expression of F (s):

FPBE(s) = 1 + k − k

(1 + µs2/k)
, (2.20)

FRPBE(s) = 1 + k(1− e−µs
2/k), (2.21)

where k and µ are based on physical constants [18].

Several attempts have been made to improve further on the GGA approx-

imation such as including the Laplacian of the electron density ∇2ρ(r) (meta-

GGA functionals) or adding fractions of the Hartree-Fock exchange (hybrid func-

tionals). However these approximations are not suitable to effectively simulate

molecules on surfaces due to, for instance, their high computational cost.

One of the pitfalls of the GGA approximation is that long range van der Waals

interaction is not taken into account. Among the different approaches that have

been proposed to overcome this limitation [21–24], one of the most interesting is

the vdW-DF correlation functional developed by Dion et al. [24], which models

the long range interaction based on the density of the system without semi-

empirical parameters.

The vdW-DF approach consists in pairing a GGA exchange functional with

a correlation (EvdW-DF
C ) that can model the van der Waals interaction. The

ensuing correlation is defined as the sum of a local (LDA) part and a non local
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(nl) contribution:

EvdW-DF
XC [ρ(r)] = EGGAX [ρ(r)] + ELDAC [ρ(r)] + EnlC [ρ(r)], (2.22)

where the non-local part of the correlation, which vanishes for a homogeneous

density, is obtained through a double spatial integration over the density:

EnlC [ρ(r)] =
1

2

∫∫
dr1 dr2 ρ(r1)Φ(q1, q2, r12)ρ(r2). (2.23)

The kernel Φ depends on r12 = |r1− r2| and on q1 and q2 which, in turn, depend

on ρ and on ∇ρ evaluated in r1 and r2.

Despite the complexity of EnlC [ρ(r)], the kernel Φ can be tabulated and the

integral can be very efficiently evaluated thanks to the implementation of Román-

Pérez and Soler [25]. This makes the vdW-DF functional almost as fast to evalu-

ate as any other standard GGA functional. Moreover the long range interaction

is evaluated self-consistently on the density of the system without semi-empirical

parameters [24, 26].

2.2.4 Specific Reaction Parameter Functional

The specific reaction parameter (SRP) approach to DFT is a semi-empirical

method, originally proposed by Truhlar and coworkers [27]. Its implementation

for molecules on surfaces allows us to develop a semi-empirical and system spe-

cific functional able to improve the accuracy of standard GGA functionals, which

are in general not quantitative for these systems [3]. The SRP-DFT approach

has been proven successful for different molecule-metal surface systems such as

H2 on Cu(111) [4], H2 on Cu(100) [5], D2 on Pt(111) [6] and recently CHD3 on

Ni(111) [7] and Pt(111) and Pt(211) [8]. The SRP strategy consists of selecting

an experimental observable that depends on the minimum barrier height (i.e.

the zero-coverage reaction probability S0) and to choose two functionals that

predict values that are systematically too high and too low compared to the ex-

perimental data. Note that the functionals of choice need to be able to reproduce
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the shape of the reaction probability curve which depends on the distribution

of energy barriers on the surface [28]. For many molecules reacting on a metal

surface [4, 7, 8, 28–33] the GGA exchange functionals of choice are PBE [18]

and RPBE [20], with the first known to usually underestimate and the second

to overestimate barrier heights for these systems. The SRP exchange correlation

functional (ESRPXC ) is then defined as a linear combination of the chosen GGA

functionals:

ESRPXC = x · ERPBEXC + (1− x) · EPBEXC , (2.24)

where x is an adjustable parameter that allows us to tune the performance of

the functional in order to fit theoretical values of S0 to a set of experimental

results. Once the mixing parameter is identified, the SRP functional is tested

and validated by simulating a different set of experimental data for the same

system (more details are reported in Section 2.3).

The van der Waals interaction can be accounted for by replacing the PBE

correlation functional present in PBE and RPBE by the vdW-DF correlation

functional (EvdW-DF
C ) developed by Dion et al. [24, 25] and discussed in Section

2.2.3. This correlation functional has been shown to improve the description of

weakly activated dissociation [28] while maintaining the same accuracy of [34],

or improving the accuracy [7, 8] over that [33] achieved using Equation 2.24 for

highly activated dissociation systems. Moreover, as mentioned before, the vdW-

DF correlation functional is non-empirical being based on first principles [26]. The

general formulation of the SRP functional used in most of the studies reported in

this Thesis is based on a linear combination of the two GGA exchange functionals

plus the vdW-DF correlation funtional:

ESRPXC = x · ERPBEX + (1− x) · EPBEX + EvdW-DF
C . (2.25)

The SRP functional is constructed as much as possible [7] on the basis of non-

empirical, constrained-based functionals (including the spin-scaling relationship,
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the Lieb-Oxford bound, and the recovery of the uniform gas limit [18, 24] that

should ensure applicability to metals [35]).

2.3 Semi-Empirical Strategy

The strategy and the steps needed to develop and test an SRP functional for a

polyatomic molecule dissociating on a metal surface are reported in the follow-

ing Sections. The discussion is mainly focused on the tri-deuterated methane

molecule (CHD3) which has been the center of most of the studies on which this

Thesis is based. However, the same methodology should be applicable, in prin-

ciple, to any molecule dissociating on a transition metal surface through σ-bond

breaking [8].

The SRP functional used in most of the work reported in this Thesis has

been developed by comparing an observable that depends on the minimum bar-

rier height, the zero-coverage reaction probability (S0), obtained from ab initio

molecular dynamics (AIMD) calculations [9, 10] and from supersonic molecular

beam experiments. For specific initial conditions, S0 can be measured exper-

imentally using the King and Wells beam reflectivity technique [36, 37] after a

molecular beam impinges on an ideal low-index metal surface. The same quantity

can then be obtained from the number of reacted molecules (Nreact):

S0 = Nreact/Ntot, (2.26)

in a set ofNtot AIMD trajectories where a single molecule impinges on the surface,

prepared as described in Section 2.4 to accurately reproduce the experimental

initial conditions.

AIMD allows the accurate simulation of dynamical processes within the frame-

work of the Born-Oppenheimer approximation. This approximation assumes

that, due to the different time scale, it is possible to separate the motion of

the electrons from that of the nuclei, effectively treating the electrons as if they

were moving in the potential generated by the nuclei. For each propagation step
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the energy and the forces are evaluated on-the-fly at a DFT level without the

need to fit a high dimensional Potential Energy Surface (PES), and then the

positions of the ions are classically propagated according to Newton’s equations

of motion. Moreover the quasi-classical trajectory (QCT) approach can be ex-

ploited by imparting vibrational zero-point energy (ZPE) to the molecule. For

the experimental conditions addressed in this Thesis, AIMD-QCT is the method

of choice to effectively simulate molecular beam experiments and to test the va-

lidity of the semi-empirical SRP approach. The main reason to choose AIMD

over a higher level of theory (i.e., quantum dynamics) [38, 39] is the possibility

to include explicitly all the DOFs of the system in the simulation without any

dynamical approximation. Not only is it possible to include all the molecular

DOFs, but the surface atom motion, which is known to be important for the dis-

sociation of polyatomic molecules (such as methane) on metal surfaces [40], is also

accounted for. AIMD can also be extended to reactions affected by electron-hole

pair excitation by including electronic friction [41].

The results of the AIMD simulations are compared with experimental results

for a set of laser-off conditions (for which the initial molecular rovibrational dis-

tribution only depends on the nozzle temperature, see Section 2.4) and, through a

trial and error procedure, the parameter x of Equation 2.25 is optimized until the

AIMD results are in agreement with the experiments within chemical accuracy.

The agreement between the results is verified by fitting the experimental data

and by checking that, on average, the distance on the energy axis from the AIMD

results to the experimental fit is smaller than 4.2 kJ/mol. Once chemical accu-

racy has been reached for the laser-off simulations, the candidate SRP functional

is validated by simulating a different experiment for the same system. The SRP

functional presented in this Thesis has been tested against state-resolved molecu-

lar beam experiments for which the molecules impinge on the surface after being

selectively prepared in a specific rovibrational state through laser excitation.

In order to ensure a meaningful comparison between experiments and AIMD-

QCT simulations, many aspects have to be considered, both on the experimental

and on the theoretical side. First, the total energy of the molecule (translational
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+ vibrational) has to be chosen above the minimum ZPE corrected barrier. This

ensures the applicability of the QCT approach because under such conditions

the reaction occurs in the classical “over-the-barrier” regime [9, 42]. Second,

the molecular beams have to be produced using a nozzle temperature (Tn) as

low as possible, for example by taking advantage of H2 seeding, so that most

of the molecules are in the vibrational ground state. This limits the deficiencies

of the QCT method in describing the reactivity of coupled excited vibrational

states (i.e., the CD vibrational states in CHD3) due to artificial intramolecular

vibrational energy redistribution (IVR) caused by the availability of resonant vi-

brations [7]. For the same reason the ν1 = 1 excited state of CHD3 is a good

choice to compare theoretical and experimental state selected reaction probabil-

ities. This excited vibrational state possesses 95% of CH stretch character [43]

and, due to the lack of Fermi resonances, energy imparted to this normal mode

in the gas-phase remains localized on a time scale comparable with the collision

time [7, 8, 44]. The reactivity of ν1 = 1 CHD3 is therefore unlikely to be affected

by IVR [9, 44]. Third, the surface temperature (Ts) has to be chosen well above

the Debye temperature TD of the metal bulk, which varies with the composi-

tion of the surface. At Ts larger than TD quantum effects are not expected to

significantly affect the molecule-surface energy exchange dynamics, making such

conditions suitable for AIMD simulations. Specifically, for values of Ts higher

than the Debye-Waller temperature the validity of a classical approach to dy-

namics calculations on scattering from a surface can be assessed by computing

the argument to the Debye-Waller factor [45]:

2W =
3p2Ts

MCkbT 2
D

, (2.27)

where p2 is the average of the square of the change in momentum of a scattering

molecule, MC the mass of a surface atom and kb the Boltzmann constant. Ex-

perience suggests that treating the surface vibrations classically works well for

Ts > TD for values of 2W greater than 6 [46, 47] (note that 2W is a dimension-

less quantity) and that under such conditions, the energy transfer to the surface
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phonons should happen classically. Finally AIMD cannot be comfortably used to

compute reaction probabilities smaller than 1%. This is due to the high computa-

tional cost of the method which, in light of present-day computational resources,

limits the number of trajectories (Ntot) that can be used to simulate a single

beam condition to ≈ 500-1000. This affects the accuracy of the results since the

statistical error on S0 representing the 68% confidence limits [48] depends on the

reaction probability and on the total number of trajectories as:

σp =

√
S0(1− S0)

Ntot
. (2.28)

This effectively reduces the statistical significance of low reaction probabilities

computed with AIMD. However, once the SRP functional has been developed,

in principle it is possible to couple it with an high dimensional PES approach

that also describes the motion of the surface atoms (as demonstrated for N2 +

Ru(0001) [49]) allowing the accurate simulation of smaller S0.

2.4 Initial Condition Sampling

In order to simulate a molecular beam experiment at an AIMD-QCT level it is

important to accurately generate and sample the initial conditions of the system

in order to have a fair comparison. In the work reported in this Thesis, we can

distinguish between two classes of molecular beam experiments: laser-off and

laser-on.

In laser-off experiments the molecules are accelerated according to the nozzle

temperature (Tn) which defines the collision energy (Ei) distribution of the beam

and the vibrational states as a Boltzmann distribution for that temperature. The

rotational energy of the molecules is generally low as the number of intermolecular

collisions during the expansion is high enough to dissipate it (rotational cooling).

Therefore, in laser-off experiments, all the molecules are assumed to be in the ro-

tational ground state. The experimental laser-off zero-coverage reactivity (Soff0 )

can then be directly measured and so the molecules in the AIMD trajectories are
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prepared to be randomly oriented, in the rotational ground state and sampling

the experimental Ei distribution and all the vibrational states accessible at Tn.

In laser-on experiments an optical transition is used to excite molecules from

an initial to a target rovibrational state and, since the laser excitation happens

after the beam expansion (i.e., after rotational cooling), the molecules maintain

the rotational excitation. A large fraction of the molecules is in the desired target

state but a variety of other states are still present in the beam. However from the

measured laser-on zero-coverage reaction probability (Son0 ) is possible to extract

the reaction probability (Sν̄0 ) for the desired rovibrational state ν̄ once Soff0 is

known for the same Ei [50]. This can be evaluated as:

Sν̄0 =
Son0 − S

off
0

fexc
+ Sv=0

0 , (2.29)

where fexc is the excited fraction, or the fraction of the molecule in the beam

excited to the target state, and Sv=0
0 is the reaction probability of the ground

state. Sv=0
0 can usually be approximated by Soff0 , which does result in a small

overestimation. Other methods to estimate Sv=0
0 are available but it has been

shown that, for systems like the ones addressed in this Thesis, they all give

very similar results [7]. Being able to directly extract Sν̄0 from the experiments

simplifies the simulations because it allows one to prepare all the molecules in

the desired ν̄ rovibrational state.

2.4.1 Molecular Beam

The initial conditions imparted to the projectile molecule need to accurately

represent the experimental molecular beam that has to be modeled. In the ex-

periments the molecules have a specific collision energy distribution and a specific

rovibrational state associated with a defined angular momentum L.

First of all the molecular beams simulated are very narrow in translational

energy but not monochromatic. In order to describe the distribution of energies

(and velocities) n(Ei) of the beam, Michelsen and Auerbach [51] proposed the
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expression:

n(Ei)dEi =
1

N
Ei exp

[
− 4Es

(
√
Ei −

√
Es)

2

(∆Es)2

]
dEi, (2.30)

where the energy spread ∆Es is defined by:

∆Es
Es
≡ 2α

vs
. (2.31)

Here the stream velocity vs and the width of the velocity distributions α can be

obtained by fitting time of flight measurements [52]. Once vs and α are available,

the initial collision energy for the molecules in the trajectories is selected by

sampling the distribution n(Ei).

In order to prepare the molecule in the desired vibrational state the potential

energy Vν along each vibrational mode needs to be known. The vibrational

modes can be obtained using finite differences as the eigenvectors of the mass-

weighted Hessian and for each of them a one-dimensional potential is computed

by displacing the molecule along the mode itself. This interpolation can be

performed just once for each mode before preparing the whole set of molecules.

Once the Vν potentials are available the molecule can be prepared in the desired

vibrational state.

In order to prepare a set of molecules in a target vibrational state (e.g., H2O in

ν1=1, ν2=0, ν3=0), one can perform a classical micro-canonical sampling for each

mode of each molecule in the set. This is done by running a 1D quasi-classical

dynamics simulation along each mode using the energy associated with the state

we want to generate and then by randomly selecting the initial velocity (vvib)

and displacement from the equilibrium positions (δqvib) from it (i.e., randomly

selecting the phase of the vibration). The sum of the displacements and the

velocities for all the modes is assigned to the molecule to prepare it in the target

vibrational state. It is important to note that, since we sample the initial position

classically along the vibrational modes and in the time domain, when we average

over many generated molecules prepared in a given vibrational state we obtain
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a classical distribution where the molecule has a higher probability to sit close

to one of the turning points. Note that applying the shift δqvib results in a

small change in the inertia of the system and introduces small spurious rotational

velocities which are computed and removed. If this correction changes the energy

along the normal modes by more than 1 meV, the initial conditions are discarded

and generated again from the beginning.

As mentioned before, molecules in the rotational ground state can be initially

randomly oriented while, for the rotationally excited molecules, the quantiza-

tion of the angular momentum L and the quantization of its projections on a

space-fixed axis and on a body-fix axis translate into constraints on the initial

orientation effectively aligning the molecule.

Within the rigid rotor approximation, the projection of L on the reference

frame z axis depends only on the choice of the reference frame itself while the pro-

jection on the molecular rotational axis depends on the geometry of the molecule.

The principal rotational axis of a rigid rotor (here called a, b and c) and the asso-

ciated moments of inertia (labeled IA, IB and IC from the smallest to the largest)

can be obtained from the eigenvectors and the eigenvalues of the inertia tensor

I, respectively. Rigid rotors can be divided to four categories: linear, symmetric,

spherical and asymmetric according to the moments of inertia. For a linear rotor,

as the H2 molecule, IA << IB = IC . Symmetric rotors can be divided to oblate

symmetric top (e.g. benzene) for which IA = IB < IC and prolate symmetric top

(e.g. methyl-acetate CH3C≡CH) for which IA < IB = IC . Finally spherical top

rotors (e.g. CH4) shows IA = IB = IC and asymmetric top rotors (e.g. HOD)

IA < IB < IC . In the following paragraphs the procedure to generate a sample

of molecules in a rotationally aligned state is described in detail for an oblate

symmetric top molecule as the methane isotopologue CHD3. A few details will

be also given on how to proceed for an asymmetric top molecule like partially

deuterated water (HOD).

Considering an oblate top molecule like CHD3, the principal axis (c), associ-

ated with the largest moment of inertia IC , runs through the H atom, the C atom

and through the geometrical center of the CD3 umbrella (Figure 2.1A). The axes



41

a and b lay in the plane perpendicular to c and are associated with IA and IB

which are smaller than IC and of the same magnitude. For CHD3 a rotational

state is defined by the angular momentum L, by its magnitude:

∣∣ L
∣∣= h̄

√
J(J + 1), (2.32)

by its projections on the reference frame z axis:

Jz = h̄M, (2.33)

and by its projection on the principal axis c:

Jc = h̄K. (2.34)

Here M and K are integers in the range [−J ,+J ]. When the classical analogue of

a rotational state is prepared, these projections add constraints to the orientation

of the molecules resulting in a certain degree of alignment among the molecules

of the sample.

The CHD3 molecule can be prepared in a given (J , M , K) state according to

the following procedure:

• The molecule in its equilibrium geometry is aligned with the principal axis c

parallel to the reference frame z which is chosen to be normal to the surface

on which the molecule will impinge (Figure 2.1A).

• The rotation in α1 around the principal axis, which is the first unconstrained

degree of freedom, is randomly sampled (Figure 2.1B).

• In order to achieve the projection h̄K of L on the principal axis c, the

molecule is rotated by:

β = cos−1

(
K√

J(J + 1)

)
. (2.35)

Note that the angular momentum L is still assumed to be aligned with z
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(Figure 2.1C).

• The second unconstrained degree of freedom is sampled by randomly fixing

the orientation of the principal axis c with respect to the angular momentum

L through the angle α2 while keeping the projection of L on c constant

(Figure 2.1D).

• The projection h̄M of the angular momentum L on the reference frame axis

z is then defined, as shown in Figure 2.1E, by rotating both the molecule

and the angular momentum by:

φ = cos−1

(
M√

J(J + 1)

)
. (2.36)

• The last unconstrained degree of freedom is fixed by randomly orienting L

with respect to the reference frame axis z through the rotation α3 while

keeping the projection of L on z constant. Note that the same random ro-

tation around z is applied to both the angular momentum and the molecule

(Figure 2.1F).

• Once the orientation of the molecule and of the angular momentum have

been fixed, the rotational component of the velocity vrot can be computed

from:

L = I ωrot, (2.37)

vrot = ωrot × q, (2.38)

where I is the inertia tensor, ωrot is the rotational velocity and q is the

vector of the coordinates.

Finally, the total velocity v and the position q of each atom of the molecule can

be assigned as:

v = vtrans + vrot + vvib, (2.39)
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q = R
(
q0 + δqvib

)
i
, (2.40)

where R is the rotational matrix that aligns the molecule as described above, q0

is the equilibrium positions of the atoms with the molecular COM in the origin of

the coordinate system and δqvib is the sum of the displacements used to impart

the vibrational energy. Note that the rotational and the vibrational velocities

need to be rotated according to R as well. When the molecule is prepared in the

desired rovibrational state, it can then be translated to its initial position above

the metal surface.

The same strategy can be applied to different molecules considering that a

different kind of rotor will introduce different constraints on the initial orientation.

For an asymmetric rotor as HOD in our approximate representation, a rotational

state is characterized by 4 “quantum numbers”: (J , M , Ka, Kc). Here J , M ,

and Kc are the same as observed for CHD3 and control the magnitude of L, its

projection on z and on the principal axis, respectively. The additional Ka number

is related to the projection on another molecular axis and adds an extra constraint

on the initial orientation, reducing to 2 the number of randomly sampled DOFs

(see Chapter 7).

2.4.2 van der Waals Functionals and Residual Energy

When a vdW correlation functional is used the simulation box needs to be big

enough to accommodate the large amount of vacuum between the slab and its

1st periodic image (≈ 30 Å) necessary to converge the long range interaction.

However, it has been shown for CHD3 on Ni(111) [7] and on platinum [8] that, to

a very good approximation, using a smaller amount of vacuum (e.g., 13 Å instead

of a well-converged value of 30 Å) affects the energy of the system only as a small

upwards shift of the gas-phase level, due to residual interaction with the slab

periodic replica, as sketched in Figure 2.2. The residual energy (ER) is defined

as the difference between the energy of the molecule placed away from the surface,

i.e. where it sits at the beginning of the simulations (typically 6 Å), in the cell



44 Chapter 2 – Methods and Theory

Figure 2.1: Scheme of the rotations needed to prepare the CHD3 molecule in a generic
aligned rotational state (J = 3, M = 2, K = 2). The carbon atom is reported in brown,
the hydrogen in white and the deuteriums in light blue. The reference frame axis z is
reported in black and the molecular axes a, b and c are reported in blue. The angular
momentum L is indicated in red. Dashed green arrows indicate rotations to obtain
the correct projections of L and full green arrows indicate rotations that are sampled
randomly. The values on the axes are reported in Å and |L| is in atomic units.
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with 13 Å and in the one with 30 Å of vacuum:

ER = E13Å
Z=6Å

− E30Å
Z=6Å

≈ ∆Eb = E13Å
b − E30Å

b . (2.41)

In order to validate this approximation, ER has to be the same as the difference

in the minimum barrier height (∆Eb) computed with the two cell sizes (E13Å
b

and E30Å
b , respectively) to within much better than chemical accuracy. In order

to correct for the residual interaction in the AIMD simulations the molecules

can be assigned an extra translational energy equal to ER which depends on the

system investigated and it is usually on the order of a few of kJ/mol [7, 8, 53]. By

imparting this excess energy, the molecules experience an effective barrier (Eeb )

that is approximately equal to the converged barrier height:

Eeb = E13Å
b − ER ≈ E30Å

b . (2.42)

This implies that the energy barrier converged for the amount of vacuum can

be obtained by subtracting ER from the non-converged barrier. Similarly, the

adsorption energies (see Figure 2.2) obtained with the non-converged setup need

to be increased by ER.
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Figure 2.2: Sketch of the barriers considered for a molecule on a metal surface when
using a long range functional. The blue and the red curves refer to the 13 Å and to the
30 Å setup, respectively. The barrier heights are shown as arrows in the same color as
the related curve. The residual energy (ER) is reported as a green arrow and the barrier
height difference between the two vacuum sizes (∆Eb) is reported as a black arrow.

2.4.3 Metal Surface Temperature

Since AIMD allows us to treat explicitly all the degrees of freedom, it is impor-

tant to accurately represent the experimental surface temperature (Ts). Initial

velocities and displacements are randomly generated and assigned to the sur-

face atoms according to their vibrational frequencies and sampling a Boltzmann

distribution for the desired temperature. This is done by approximating each

atom as an independent harmonic oscillator with kinetic energy K = 1
2mv

2 and

potential energy V = 1
2kq

2.

From the Boltzmann distribution in energy space f(E):

f(E) = A exp(−E/kbT ), (2.43)

where kb is the Boltzmann constant and T is the temperature, we can derive the

distributions in the velocity f(v) and in the position f(q) using the expression of

K and V and obtaining A as normalization constant:

f(v) =

[
m

2πkbT

] 1
2

exp

(
− mv2

2kbT

)
, (2.44)
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f(q) =

[
mω2

2πkbT

] 1
2

exp

(
− mω2q2

2kbT

)
. (2.45)

From here it is straightforward to show that f(v) can be rewritten as a Gaussian

distribution centered in v̄ = 0 and with a standard deviation σv =
√

kbT
m :

f(v | v̄, σv) =
1√

2πσ2
v

exp

(
− (v − v̄)2

2σ2
v

)
. (2.46)

Similarly a Gaussian distribution f(q | q̄, σq) centered on q̄ = 0 and with σq =√
kbT
mω2 can be derived for the positions. Here ω can be taken as the vibrational

frequency of a surface atom computed by finite differences.

For each atom a random velocity and position are selected in order to sample

these Gaussian distributions for the desired surface temperature Ts. This approx-

imation neglects all kind of coupling and therefore, in order to achieve a sound

physical description of the surface at the desired temperature, the slab needs to

be equilibrated by performing a standard AIMD propagation for 2 ps. Finally

any step among the last ps of equilibration can be chosen as initial condition for

the trajectories.
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