

Host-directed therapy for intracellular bacterial Infections Korbee, C.J.

Citation

Korbee, C. J. (2019, March 6). *Host-directed therapy for intracellular bacterial Infections*. Retrieved from https://hdl.handle.net/1887/69481

Version:	Not Applicable (or Unknown)
License:	<u>Licence agreement concerning inclusion of doctoral thesis in the</u> <u>Institutional Repository of the University of Leiden</u>
Downloaded from:	https://hdl.handle.net/1887/69481

Note: To cite this publication please use the final published version (if applicable).

Cover Page

Universiteit Leiden

The handle <u>http://hdl.handle.net/1887/69481</u> holds various files of this Leiden University dissertation.

Author: Korbee, C.J. Title: Host-directed therapy for intracellular bacterial Infections Issue Date: 2019-03-06

Curriculum Vitae

Born in Leiden on November 29th, 1982, Cornelis Jacob (Kees) Korbee grew up in Noordwijk aan Zee. There, his interest for medical biology was sparked during his VWO education while attending a practical course in biology class, dissecting heart tissue. However, this did not directly lead him to higher education in biology. After a brief departure to study multimedia design in Rotterdam in 2001, he saw the light and was drawn back to his city of birth in 2002 to study Biomedical Sciences. Upon graduation in 2008, he started his research to attain his Ph.D. at the Department of Infectious Diseases of the Leiden University Medical Center, resulting in this thesis.

His frequent work with (genetically modified) human pathogens at a high containment level, combined with his more than frequent student supervision activities in the laboratory, subsequently led him to a career in biological safety. Kees placed his first steps in this field as a Biological Safety Officer at Erasmus MC in 2017, where he learned the trade for half a year. The lessons learned during his Ph.D. regarding genetic modification, infectious diseases and safely working in a BSL-3 facility will be more than valuable in his current occupation as Biological Safety Officer at the Netherlands Cancer Institute - Antoni van Leeuwenhoek in Amsterdam.

List of Publications

1. Novel Host-Directed Chemical Compounds Inhibit Intracellular Bacteria by Targeting PCTAIRE Kinases.

Korbee, C.J.*, Heemskerk, M.T.*, Walburg, K.V., Van den Nieuwendijk, R., Van Strijen, E., Kuijl, C., Schreuders, C., Eken, J., Savage, N.D.L., Neefjes, J.J., Overkleeft, H.S., Ottenhoff, T.H.M.**, Haks, M.C.**. *Manuscript in preparation.*

2. Combined chemical genetics and data-driven bioinformatics approach identifies receptor tyrosine kinase inhibitors as host-directed antimicrobials.

Korbee, C.J.*, Heemskerk, M.T.*, Kocev, D., Van Strijen, E., Rabiee, O., Franken, K.L.M.C., Wilson, L., Savage, N.D.L., Džeroski, S., Haks, M.C.**, Ottenhoff, T.H.M.**. *Nature Communications* **9**, 358. doi:10.1038/s41467-017-02777-6 (2018).

- The DNA damage-regulated autophagy modulator DRAM1 links mycobacterial recognition via TLR-MYD88 to authophagic defense. Van der Vaart, M., Korbee, C.J., Lamers, G.E.M., Tengeler, A.C., Hosseini, R., Haks, M.C., Ottenhoff, T.H.M., Spaink, H.P., Meijer, A.H.. *Cell Host and Microbe* 15, 753–767. doi:10.1016/j.chom.2014.05.005 (2014).
- 4. Systems Microbiology: Current Topics and Applications; Chapter 5 -Manipulating the Fight Between Human Host Cells and Intracellular Pathogens.

Barsacchi, R.*, Sundaramurthy, C.*, **Korbee, C.J.**, Neefjes, J.J., Ottenhoff, T.H.M., Scanu, T., Zerial, M..

Caister Academic Press. ISBN: 978-1-908230-02-7 (2012).

5. Mycobacterial secretion systems ESX-1 and ESX-5 play distinct roles in host cell death and inflammasome activation.

Abdallah, A.M.*, Bestebroer, J.*, Savage, N.D.L., De Punder, K., Van Zon, M., Wilson, L., **Korbee, C.J.**, Van der Sar, A.M., Ottenhoff, T.H.M., Van der Wel, N.N., Bitter, W., Peters, P.J..

The Journal of Immunology 187, 4744–4753. doi:10.4049/jimmunol.1101457 (2011).

6. Nuclear Localization of CXCR4 Determines Prognosis for Colorectal Cancer Patients.

Speetjens, F.M., Liefers, G.J., **Korbee, C.J.**, Mesker, W.E., Van de Velde, C.J.H., Van Vlierberghe, R.L., Morreau, H., Tollenaar, R.A., Kuppen, P.J.K..

Cancer Microenvironment 2, 1-7. doi:10.1007/s12307-008-0016-1 (2009).

* Contributed equally

** Contributed equally

Portfolio

Courses	Year
Basiscursus Regelgeving en Organisatie voor Klinisch Onderzoekers (BROK)	2016
PhD Introductory Meeting	2016
Basic Methods and Reasoning in Biostatistics	2015
LIFI Course in Immunology	2011
Conferences	Year
Antibiotics Alternatives for the New Millennium (London). <i>Invited speaker.</i>	2014
Keystone Symposium - (Keystone, CO, USA). Presented work; 2 Posters at poster session.	2014
CiPKeBIP Annual Conference on: Immune response and host microbiota in disease development (Ljubljana, Slovenia). <i>Presented work (invited speaker).</i>	2012
NVVI Conference (Noordwijkerhout, The Netherlands). Presented work.	2011
Keystone Keystone Symposium - Tuberculosis: Immunology, Cell Biology and Novel Vaccination Strategies (Vancouver, BC, Canada). <i>Attended conference.</i>	2011
NVVI Conference (Noordwijkerhout, The Netherlands). Attended conference.	2010
Teaching	Period
Supervision of student internships. 8 Students in total (BSc., MSc., HLO).	2010-2015
Biomedical Sciences Bachelor's Course Pathogen-Host Interactions. Gave lectures; Supervised work groups; Prepared and evaluated exam questions.	2011-2014
Biomedical Sciences Master's Course Pathogen-Host Interactions. Prepared and supervised practical course.	2011-2014
Supervised research proposal writing 2 Students	2013-2014

List of Abbreviations

3-МА	3-Methyladenine
ADC	Albumin dextrose catalase
АМРК	Adenosine monophosphate-activated protein kinase
ANOVA	Analysis of variance
AUC	Area under the curve
AVG	Average
CDK	Cyclin-dependent kinase
CFU	Colony forming unit
Cq	Chloroquine
DMSO	Dimethyl sulphoxide
Dpf	Days post-fertilization
Dpi	Days post-infection
DRAM1	DNA-damage regulated autophay modulator
DS	Drug-sensitive
ECL	Enhanced chemiluminescence
EGFR	Epidermal growth factor receptor
EM	Electron microscopy
ER	Endoplasmic reticulum
FACS	Fluorescence-activated cell sorting
FBS	Fetal bovine serum
FDR	False discovery rate
GEO	Gene Expression Omnibus
GFP	Green fluorescent protein
GM-CSF	Granulocyte macrophage-colony stimulating factor

GO	Gene ontology
HDT	Host-directed therapy
Нрі	Hours post-infection
HTS	High-throughput sampler
IFNγ	Interferon gamma
IFNγR	Interferon gamma receptor
IL1R	Interleukin-1 receptor
IMDM	Iscove's Modified Dulbecco's Medium
K. pneumoniae	Klebsiella pneumoniae
Ki	Dissociation constant
LAM	Lipoarabinomannan
LAP	LC3-associated phagocytosis
LB	Luria-Bertani
LC3	Microtubule-associated protein 1 light chain 3
LOPAC	Library of pharmacologically active compounds
LPS	Lipopolysaccharide
M-CSF	Macrophage-colony stimulating factor
MDR	Multi-drug resistant
Мт	Mycobacterium marinum
MODC	Mouse ornithine decarboxylase
ΜΟΙ	Multiplicity of infection
Мф	Macrophage
Μφ1	Type 1 macrophage
Μφ2	Type 2 macrophage
Mtb	Mycobacterium tuberculosis
mTOR	Mammalian target of rapamycin
Myd88	Myeloid differentiation primary response 88

NAI	NF-kB activation inhibitor
ns	Not significant
NTRK1	Neurotrophic receptor tyrosine kinase 1
OD	Optical density
OD ₆₀₀	Optical density at 600 nm
РСТ	Predictive clustering tree
Pfal	Plasmodium falciparum
PFDHOD	Plasmodium falciparum dihydro orotate dehydrogenase
PI(3)P	Phosphatidylinositol 3-phosphate
РКС	Protein kinase C
PknG	Protein kinase G
РМА	Phorbol 12-mystirate 13-acetate
qPCR	Quantitative polymerase chain reaction
RD1	Region of difference 1
RNA	Ribonucleic acid
RNAi	RNA interference
ROS	Reactive oxygen species
RPMI	Roswell Park Memorial Institute
RTK	Receptor tyrosine kinase
S. Paratyphi	Salmonella enterica serovar Paratyphi
S. Typhi	Salmonella enterica serovar Typhi
Saa	Serum amyloid A
SCV	Salmonella-containing vesicle
SDF	Structure-data format
SEM	Standard error of the mean
SFK	SRC family kinase
siRNA	Small interfering RNA

SPI1	Salmonella pathogenicity island 1
SPI2	Salmonella pathogenicity island 2
STDEV	Standard deviation
Stm	Salmonella enterica serovar Typhimurium
T3SS	Type III secretion system
TANK	TRAF-associated NF-kB activator
тв	Tuberculosis
ТВК1	TANK-binding kinase-1
TDR	Totally drug resistant
TGFBI	Tumor growth factor β type-1
TGFBII	Tumor growth factor ß type-2
TGFßRI	TGFß type-1 receptor
TGFßRII	TGFß type-2 receptor
TLR	Toll-like receptor
TRAF	Tumor necrosis factor receptor-associated factor
TTSS	Type III secretion system
VEGFR	Vascular endothelial growth factor receptor
XDR	Extensively drug resistant