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3 | Combined Chemical Genetics 
and Data-driven Bioinformatics 
Approach Identifies Receptor 
Tyrosine Kinase Inhibitors as 
Host-directed Antimicrobials 
Cornelis J. Korbee*, Matthias T. Heemskerk*, Dragi Kocev, Elisabeth van Strijen, 
Omid Rabiee, Kees L. M. C. Franken, Louis Wilson, Nigel D. L. Savage, Sašo 
Džeroski, Mariëlle C. Haks**, Tom H. M. Ottenhoff**


Antibiotic-resistance poses rapidly increasing global problems in combating 
multidrug-resistant (MDR) infectious diseases like MDR tuberculosis, prompting 
for novel approaches including host-directed therapies (HDT). Intracellular 
pathogens like Salmonellae and Mycobacterium tuberculosis (Mtb) exploit host 
pathways to survive. Only very few HDT compounds targeting host pathways are 
currently known. In a Library Of Pharmacologically Active Compounds (LOPAC) 
based drug-repurposing screen, we identify multiple compounds, which target 
Receptor Tyrosine Kinases (RTKs) and inhibit intracellular Mtb and Salmonellae 
more potently than currently known HDT-compounds. By developing a data-driven 
in silico model based on confirmed targets from public databases, we successfully 
predict additional efficacious HDT compounds. These compounds target host 
RTK signaling and inhibit intracellular (MDR-)Mtb. A complementary human 
kinome siRNA screen independently confirms the role of RTK signaling and 
kinases (BLK, ABL1 and NTRK1) in host control of Mtb. These approaches 
validate RTK signaling as a drugable host pathway for HDT against intracellular 
bacteria.


Adapted from:
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Introduction 

With an estimated 1/4 of the world population carrying a latent Mycobacterium 
tuberculosis (Mtb) infection, 10.5 million new cases and 1.8 million deaths 
annually, tuberculosis (TB) is an increasing global health issue1-3. This is further 
aggravated by the emergence of multi-, extensively- and totally drug-resistant 
(MDR/XDR/TDR) Mtb strains, threatening to render TB untreatable using current 
antibiotics4-6. In 2015 480,000 patients suffered from MDR-TB.

	 Although novel candidate antibiotics have recently been identified7, 
current antibiotics already cover the majority of druggable targets of pathogens, 
resulting in a continuous decline in the number of new and approved 
antibiotics8-13. Intracellular bacteria such as Salmonellae and Mtb pose additional 
challenges by manipulating host signaling pathways to subvert innate and 
adaptive immunity. This, however, also creates potential for novel treatment 
strategies like host-directed therapy (HDT), to reprogram the host immune system 
by pharmacological and chemical-genetic manipulation. Importantly, HDT-driven 
manipulation of host signaling pathways may be effective also against drug-
resistant bacteria, and help to restore host control of infection in metabolically 
perturbed cells14,15. Several recent studies, including our own, have demonstrated 
the feasibility of HDT approaches to inhibit bacteria both in vitro in human and 
murine cells16-20 and in vivo in mice, rabbits and zebrafish21-31. Using reciprocal 
chemical-genetics targeting the human kinome, we previously identified AKT1 as a 
central regulator of Salmonella enterica serovar Typhimurium (Stm), Mtb, and 
MDR-Mtb survival. Treatment of infected cells with the kinase inhibitor H-89 
significantly decreased intracellular bacterial loads. Despite H-89 being known as 
a PKA inhibitor, we demonstrated that this compound inhibited intracellular 
bacteria by targeting AKT116. However, H-89 had a substantially lower impact on 
intracellular growth of Mtb compared to Stm, suggesting that Mtb modulates 
additional host signaling pathways to survive. This is in agreement with reports 
that Mtb arrests vesicle maturation at an earlier stage than Stm16,32,33. Other 
studies identified additional drugable human kinases that regulate Mtb survival, 
including TGFβRI and CSNK118 and imatinib-sensitive kinases ABL1 and ABL221. 
In addition to kinases and kinase inhibitors, other potential targets and 
compounds for TB HDT were identified, including two antipsychotics (Haloperidol 
and Prochlorperazine) and an antidepressant (Nortryptiline)19, phosphodiesterase 
inhibitors22,23, anti-inflammatory agents like Ibuprofen25, the FDA-approved drug 
Zileuton26, the anti-diabetic drug Metformin34, phenylbutyrate35,36 and human 
metabolic targets37,38. Nevertheless, the field of TB HDT has not fully progressed 
towards clinical application and many interactions between host and bacterium 
remain to be deciphered. Therefore, better compounds are urgently needed as 
drug candidates for TB HDT as well as for the identification of cellular events 
occurring at the host-pathogen interface, which may enable rational drug design 
for HDT.

	 We used the screening assay described in Chapter 2 in drug-repurposing 
screens, and identified compounds with host-directed anti-(myco)bacterial activity 
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against Mtb and Stm, outperforming published HDT compounds’ activities. Based 
on these data, together with confirmed target profiles of the screened compounds 
we next developed a predictive in silico model in order to be able to identify 
additional HDT compounds. This model was applied to predict host-directed 
compounds amongst all compounds present in the PubChem repository and to 
identify their key targets with predicted activity against intracellular Stm or Mtb. 
Interestingly, both our experimental wet lab screens as well as the novel in silico 
predictive model identified inhibitors of (growth factor) receptor tyrosine kinases 
(RTKs) and downstream intermediates of RTK signaling as candidate host-
directed drugs to control intracellular infection. Moreover, an siRNA screen of the 
human kinome in Mtb-infected human cells independently validated a key role for 
RTK signaling in host control of Mtb. Thus, using two independent chemical 
genetic experimental approaches as well as a computational method, we find and 
validate RTK signaling as a novel important host pathway that controls intracellular 
Mtb (including MDR-Mtb) survival. This pathway is druggable by compounds and 
drugs including clinical drugs Dovitinib, AT9283 and ENMD-2076. These findings 
offer new approaches to combat intracellular infectious diseases in the face of 
rapidly rising multi drug resistance.


Results 

Identification of host-directed antimicrobial compounds 
We applied the novel screening assay described in Chapter 2 for a TB drug-
repurposing screen of a library of 1260 pharmacologically active compounds 
(LOPAC) in order to identify host-directed compounds with stronger activity 
against intracellular Mtb than H-89. The primary screen in the MelJuSo-Mtb 
intracellular infection model identified 110 compounds that significantly reduced 
and 16 compounds that increased intracellular bacterial loads. Ninety of these did 
not affect host cell viability (Figure 1A and Table 1) and were therefore pursued 
further. Seven compounds decreased Mtb bacterial load more potently than H-89 
(Table 2). A rescreen of these 7 compounds confirmed their activity and 5 of these 
compounds again surpassed H-89 (SU 6656, Quinacrine, SB 216763, GW 5074 
and Tyrphostin AG 494; Figure 1B and Table 2). Figure 1B shows z-score values 
in the left panel, with the actual percentage inhibition of Mtb growth shown in the 
middle panel, expressed as the % of control value. These latter data confirmed 
the strong inhibitory effect of these HDT compounds on intracellular Mtb. We next 
confirmed that these compounds exerted their antimicrobial effects via the host by 
excluding any direct microbicidal activity against extracellular Mtb (Figure 1C). As 
a control, the classical Mtb antibiotic rifampicin significantly inhibited Mtb.

	 To investigate whether also compounds existed with host-directed activity 
against Stm, and whether their activity was selective for Mtb, Stm or both, we also 
screened the same LOPAC library using the very similar HeLa-Stm infection model 
(Figure 2A). Twelve compounds were identified that significantly reduced the Stm 
bacterial load and 10 of these did not affect host cell viability (Table 3). 173 
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⬆ Figure 1. Identification of host-directed compounds inhibiting Mtb. 
A. Results of a screen of 1260 compounds of the LOPAC library at 10 µM in the 
MelJuSo-Mtb infection model using Mtb constitutively expressing stable DsRed, 
expressed as z-scores (left panel). Individual replicates of the screened 
compounds are shown as grey points and the average z-score for each 
compound is displayed in black. The average z-score and standard deviation of 
the controls (DMSO and H-89) are displayed separately and the assay window 
expressed as a Z'-factor is shown below. Cell viability z-scores of the 110 hit 
compounds are shown in the right panel. The dashed line depicts a cut-off at a 
z-score of -2. B. A rescreen of the hit compounds that were superior to H-89 
without affecting cell viability at 10 µM is shown as in A. The bacterial load is 
expressed as z-score in the utmost left panel and as a percentage of control 
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Bacterial 

load z-score
Cell viability 

z-score Compound name

-6.02 -1.36 SB 216763

-5.79 -0.33 SU 6656

-5.25 -1.14 Quinacrine dihydrochloride

-4.86 0.38 GW5074

-3.87 -0.14 3',4'-Dichlorobenzamil hydrochloride

-3.83 -1.01 Tyrphostin AG 494

-3.77 -1.20 Haloperidol

-3.43 -1.55 Metaproterenol hemisulfate

-3.16 2.35 Serotonin hydrochloride

-3.14 0.96 Hydrocortisone 21-hemisuccinate sodium salt

-2.98 -1.07 Nortriptyline hydrochloride

-2.95 -0.88 LY-294,002 hydrochloride

-2.94 -0.14 Emodin

-2.93 -0.77 NNC 55-0396

-2.92 -0.64 Metrifudil

-2.91 0.76 LY-367,265

value in the middle panel to indicate the extent of bacterial inhibition. Individual 
screening datapoints are overlayed on the bar graph. Compound abbreviations: 
SU = SU 6656, Q = Quinacrine, SB = SB 216763, G = GW5074, T494 = 
Tyrphostin AG 494, L = L-594,881, H = Haloperidol. C. 6-Day treatment of an 
Mtb broth culture with the 5 hit compounds of the Mtb screen at 10 µM. 
Rifampicin (20 μg/ml) was used as a positive control. The average bacterial 
density +/- standard deviation of 4 replicates from a representative experiment 
(out of 3 experiments) is shown, expressed as a percentage of the DMSO 
control. Statistically significant difference compared to DMSO was tested using 
a one-way ANOVA (F(6,25) = 81.66; *** = p-value < 0.001).

Table 1. LOPAC MelJuSo-Mtb primary screen hits using a bacterial load 
cut-off at z<-2 and a host cell viability cut-off at z>-2.
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-2.78 -1.31 Fluspirilene

-2.75 0.06 nor-Binaltorphimine dihydrochloride

-2.66 -0.38 R-(-)-Fluoxetine hydrochloride

-2.65 -1.30 Loperamide hydrochloride

-2.63 0.08 BU224 hydrochloride

-2.62 -1.23 Nylidrin hydrochloride

-2.57 1.52 Farnesylthiosalicylic acid

-2.50 -0.46 PD 168,077 maleate

-2.48 -1.80 GR 127935 hydrochloride hydrate

-2.48 -0.49 5-Hydroxyindolacetic acid

-2.47 -0.46 Fenoldopam monohydrobromide

-2.47 0.01 S-Nitrosoglutathione

-2.44 -0.04 L-Histidine hydrochloride

-2.43 0.65 L-165,041

-2.41 0.04 4-Hydroxybenzhydrazide

-2.41 -1.83 Forskolin

-2.40 -0.38 AMN082

-2.36 -0.45 NAN-190 hydrobromide

-2.36 -0.68 Labetalol hydrochloride

-2.35 -0.41 Hexahydro-sila-difenidol hydrochloride, p-fluoro analog

-2.35 -0.01 L-Canavanine

-2.33 0.05 BRL 50481

-2.31 -0.11 N-Methyl-beta-carboline-3-carboxamide

-2.31 0.23 B-HT 933 dihydrochloride

-2.30 -1.05 Tyrphostin AG 527

-2.30 -0.52 1,3-Dimethyl-8-phenylxanthine

Bacterial 

load z-score
Cell viability 

z-score Compound name
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-2.30 0.10 Dopamine hydrochloride

-2.29 -1.17 A-77636 hydrochloride

-2.28 -1.53 Formoterol fumarate dihydrate

-2.25 -0.22 cis-(Z)-Flupenthixol dihydrochloride

-2.25 0.18 5-hydroxydecanoic acid sodium salt

-2.24 0.64 Isoguvacine hydrochloride

-2.23 -0.38 Nimesulide

-2.23 -0.66 alpha-Lobeline hydrochloride

-2.20 -0.67 Hydroxyurea

-2.19 -1.31 Fenoterol hydrobromide

-2.17 -0.34 L-733,060 hydrochloride

-2.17 -0.05 Minocycline hydrochloride

-2.17 -0.71 3-Nitropropionic acid

-2.17 0.41 LFM-A13

-2.16 -1.01 Nalidixic acid sodium salt

-2.16 -1.07 1,3,5-tris(4-hydroxyphenyl)-4-propyl-1H-pyrazole

-2.16 0.57 CR 2249

-2.15 1.02 p-MPPF dihydrochloride

-2.15 -0.04 Naltrexone hydrochloride

-2.15 0.87 Fluphenazine dihydrochloride

-2.14 -1.08 (-)-Tetramisole hydrochloride

-2.14 -0.31 Hydralazine hydrochloride

-2.14 0.09 (+)-Hydrastine

-2.12 0.54 MHPG sulfate potassium

-2.12 -0.67 6-Hydroxy-DL-DOPA

-2.12 -0.52 Ro 90-7501

Bacterial 

load z-score
Cell viability 

z-score Compound name
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Compounds increased the Stm bacterial load without affecting host cell viability. 
Four of the hit compounds that decreased the bacterial load (Trimethoprim, 
Haloperidol, Mibefradil and Ofloxacin) were superior to H-89 in inhibiting 

-2.12 0.75 Neostigmine bromide

-2.11 -0.20 4-Amino-1,8-naphthalimide

-2.10 0.26 Flunarizine dihydrochloride

-2.09 -0.39 2-Methyl-5-hydroxytryptamine maleate

-2.09 0.01 L-368,899 hydrochloride

-2.09 -0.48 Tyrphostin AG 528

-2.09 -0.50 Lamotrigine

-2.09 -0.38 VER-3323 hemifumarate salt

-2.09 0.51 BU99006

-2.09 0.11 GYKI 52466 hydrochloride

-2.09 0.51 Hexamethonium bromide

-2.09 0.49 Flutamide

-2.07 0.05 Hypotaurine

-2.06 -0.06 NCS-356 sodium salt hydrate

-2.06 -0.07 (±)-7-Hydroxy-DPAT hydrobromide

-2.06 0.88 Hydroxylamine hydrochloride

-2.05 0.14 MDL 26,630 trihydrochloride

-2.04 -0.23 4-Hydroxy-3-methoxyphenylacetic acid

-2.03 -0.35 Fenofibrate

-2.03 -0.02 (±)-8-Hydroxy-DPAT hydrobromide

-2.02 -0.25 5-Hydroxy-L-tryptophan

-2.01 0.78 Methiothepin mesylate

Hit compounds that performed better than H-89 in both the primary screen and the 
rescreen are displayed in bold.

Bacterial 

load z-score
Cell viability 

z-score Compound name
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intracellular Stm (Table 2). Mibefradil again exceeded the inhibitory effect of H-89 
in a rescreen (Figure 2B), while all four compounds consistently and strongly 
decreased the Stm bacterial load. While Figure 2A and the left panel of Figure 2B 
show z score values, the percentage inhibition of intracellular Stm growth is shown 
in the middle panel of Figure 2B, expressed as the % of control value, 
demonstrating the strong inhibitory effect of these HDT compounds on 
intracellular Stm. We next excluded any direct microbicidal activity of these HDT-
compounds against extracellular Stm (Figure 2C). By contrast, Trimethoprim and 
Ofloxacin (both known antibiotics), which were part of the LOPAC library and 
therefore tested here as well, directly inhibited extracellular Stm as expected. The 

Abbr. Compound name Alternative name(s)
Primary 

screen z-
score

Rescre
en z-

score
Activity

Mycobacterium tuberculosis

SU SU 6656

2,3-Dihydro-N,N-dimethyl-2-oxo-3-
[(4,5,6,7-tetrahydro-1H-indol-2-
yl)methylene]-1H-indole-5-
sulfonamide

-5.79 -10.51 Src family kinase inhibitor

Q Quinacrine 
dihydrochloride -5.25 -9.90 MAO inhibitor

SB SB 216763
3-(2,4-Dichlorophenyl)-4-(1-
methyl-1H-indol-3-yl)-1H-
pyrrole-2,5-dione

-6.02 -8.29 GSK-3 kinase inhibitor

G GW5074
3-(3, 5-Dibromo-4-
hydroxybenzylidine-5-iodo-1,3-
dihydro-indol-2-one)

-4.86 -6.98 Raf1 kinase inhibitor

T494 Tyrphostin AG 494
N-Phenyl-3,4-
dihydroxybenzylidenecyanoacetami
de

-3.83 -6.93 EGFR kinase inhibitor

L
3',4'-
Dichlorobenzamil 
hydrochloride

L-594,881 -3.87 -5.13 Na+/Ca2+ exchanger inhibitor

H Haloperidol -3.77 -2.96 D2/D1 dopamine receptor antagonist

Salmonella Typhimurium

T Trimethoprim -4.06 -12.18 Antibiotic; dihydrofolate reductase 
inhibitor

H Haloperidol -3.90 -12.09 D2/D1 dopamine receptor antagonist

M Mibefradil 
dihydrochloride

Ro 40-5967; (1S,2S)-2-[2[[3-(2-
benzimidazolylpropyl]methylamino]e
thyl]-6-fluoro-1,2,3,4-tetrahydro-1-
isopropyl-2-naphthyl 
methoxyacetate dihydrochloride

-3.64 -12.76 Ca2+ channel blocker

O Ofloxacin Ofloxacine; DL-8280; HOE-280 -3.45 -11.60 Antibiotic; DNA synthesis inhibitor

Z-scores lower than the z-score of H-89 are displayed in bold.

Table 2. Details of validated hit compounds from the Mtb and Stm LOPAC 
screens.
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fact that these known antibiotics for Stm were hits in our screen further confirms 
the strength and validity of our approach, showing that we can clearly distinguish 
antibiotics from host-directed compounds. Taken together, Haloperidol (a known 
HDT inhibitor19) and Mibefradil (newly discovered here) were confirmed and 
identified, respectively, as host-directed inhibitors of Stm.

	 Interestingly, a comparison of the Mtb and Stm HDT compound screening 
results revealed a highly limited overlap between hits in the two infection models 
(Figure 2D). This observation agrees well with reports that Mtb and Stm arrest 
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⬅ Figure 2. Identification of host-directed compounds inhibiting Stm. 
A. Screen of the LOPAC library in the HeLa-Stm infection model using Stm 
constitutively expressing stable DsRed, as in Figure 2A. B. Rescreen of the hit 
compounds from the HeLa-Stm screen that were superior to H-89 without 
affecting cell viability, displayed as in Figure 2B. The bacterial load is expressed 
as z-score in the utmost left panel and as a percentage of control value +/- 
standard deviation in the middle panel to indicate the extent of bacterial 
inhibition. Compound abbreviations: T = Trimethoprim, H = Haloperidol, M = 
Mibefradil, O = Ofloxacin. C. Overnight treatment of a Stm broth culture with the 
hit compounds at 10 µM. Gentamicin (50 μg/ml) was used as a positive control. 
The average bacterial density +/- standard deviation of 6 replicates from a 
representative experiment out of 3 experiments is shown. The bacterial load is 
expressed percentage of the DMSO control value to indicate the extent of 
bacterial inhibition. Statistically significant difference compared to DMSO was 
tested using a one-way ANOVA (F(5,30) = 4871; *** = p-value < 0.001). D. 
Comparison of the Stm and Mtb primary screening data. Compounds that were 
superior to H-89 and subsequently confirmed in a rescreen are indicated in grey 
triangles. H = haloperidol.

Bacterial load 
z-score

Cell viability 
z-score Compound name

-4.06 -1.54 Trimethoprim

-3.90 0.98 Haloperidol

-3.64 1.57 Mibefradil dihydrochloride

-3.45 1.21 Ofloxacin

-2.86 1.96 Demeclocycline hydrochloride

-2.70 -0.38 Doxazosin mesylate

-2.47 2.29 Metergoline

-2.30 1.31 Fluspirilene

-2.20 0.52 8-(3-Chlorostyryl)caffeine

-2.00 2.15 GW2974

Hit compounds that performed better than H-89 in both the primary screen and 
the rescreen are displayed in bold.

Table 3. LOPAC HeLa-Stm primary screen hits using a bacterial load cut-off 
at z<-2 and a host cell viability cut-off at z>-2.
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vesicle maturation at different stages16,32,33. Haloperidol was the only compound 
that inhibited both Mtb and Stm.


Identification of HDT compounds using an in silico model 
We next decided to use the above experimental data obtained in our LOPAC 
screens, and combine these with bioactivity assay based data available for all 
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1260 LOPAC compounds in PubChem, to develop a novel bioinformatics 
predictive model using machine learning. The model was constructed to predict 
new chemical compounds with host-directed activity against intracellular Stm or 
Mtb, based on target protein profiles identified by machine learning from our own 
LOPAC screening data (Figure 3A). An extended description of the machine 
learning methods describing the predictive model is provided as Supplementary 
Information at the end of this chapter. In brief, we first linked all LOPAC 

⬅ Figure 3. Screen of in silico predicted compounds active against 
intracellular Mtb. 
A. Schematic of the predictive model. Abbreviations: BLoad = bacterial load z-
score; CViab = cell viability z-score. B. Compound primary screen (left panel) 
and rescreen (middle panel) at 10 µM in the MelJuSo-Mtb model using Mtb 
constitutively expressing stable DsRed, expressed as mean z-scores +/- 
standard deviation. Dashed lines indicate a hit cut-off at a z-score of 2 or -2. 
Average z-score and standard deviations of controls (DMSO and H-89) are 
displayed separately. To indicate the extent of bacterial inhibition, rescreen 
results are expressed both as z-score and as percentage of control value +/- 
standard deviation in the right panel. C. CFU assay of MelJuSo (left panel) and 
human primary Mφ1 (middle panel) and Mφ2 (right panel) Mtb infection models 
treated with the hit compounds from B at 10 µM. Mφ1 and Mφ2 models have 
been described by Verreck et al.39. Shown are representative data out of 3 
experiments (MelJuSo) and data from a representative donor (Mφs) out of 2 
(Mφ1) or 5 (Mφ2) blood bank donors. To indicate the extent of bacterial 
inhibition, results are expressed as percentage of control +/- standard deviation. 
Replicates in the MelJuSo model: AT9283 and ENMD-2076: n=6; Dovitinib, 
VEGFR KI I and DAPH2: n=5; DMSO and H-89: n=9. Replicates in the Mφ 
models: AT9283, ENMD-2076, Dovitinib, VEGFR KI I and DAPH 2: n=3; DMSO 
and H-89: n=5. Statistically significant difference compared to DMSO was tested 
by one-way ANOVA (MelJuSo: F(6,39) = 16.35; Mφ1: F(6,18) = 10.88; Mφ2: F(6,18) = 
5.23; * = p-value < 0.05, ** = p-value <0.01, *** = p-value < 0.001). D. CFU assay 
of the Mφ1 and Mφ2 models infected with MDR-Mtb (Beijing family China 16319 
and Dutch outbreak 2003-1128) and treated with the validated hit compounds 
from C at 10 µM. Shown are data (n=3 technical replicates) from a representative 
donor out of 4 different blood bank donors, displayed as percentage of the 
DMSO control +/- standard deviation. Statistically significant differences 
compared to DMSO were tested by one-way ANOVA (Mφ1 Beijing: F(4,10) = 
11.43; Mφ2 Beijing: F(4,10) = 3.72; Mφ1 Dutch outbreak: F(4,10) = 29.09; Mφ2 
Dutch outbreak: F(4,10) =8.81 ; * = p-value < 0.05, ** = p-value <0.01, *** = p-value 
< 0.001). E. Six-day treatment of Mtb cultures with hit compounds at 10 µM. 
Rifampicin (20 μg/ml) was used as a positive control. Average bacterial density 
+/- standard deviation of 3 replicates is shown, expressed as a percentage of 
the DMSO control. Displayed are representative results out of 3 individual 
experiments. Statistically significant difference compared to DMSO was tested 
by one-way ANOVA (F(6,25) = 101.4; ** = p-value <0.01, *** = p-value < 0.001).
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compounds to PubChem, and retrieved bioassay data by using a pre-processing 
pipeline (Supplementary Figure 1A), which identified 1058 confirmed human 
protein targets for these 1260 compounds. This resulted in a data table 
comprising all LOPAC compounds annotated with their corresponding impact on 
intracellular bacterial survival and host cell viability from our screens, expressed as 
z-scores, combined with their PubChem bioassay activity for each confirmed 
human target. An example of the table structure is shown in Supplementary 
Table 1. This was then used as a training set to learn ensembles of predictive 
clustering trees (PCTs; Supplementary Figure 2) to predict impact on intracellular 
bacterial survival and host cell viability. We next employed this in silico tool (the 
learned model) to identify and select candidate compounds from PubChem with 
predicted host-directed antimicrobial activity. Querying PubChem for compounds 
that are known to target one or more of the above 1058 confirmed human protein 
targets yielded 460,580 compounds, which were then annotated with their 
bioassay data and fed into the predictive model as a testing set. Using the 
ensembles of PCTs learned from the training data to predict the intracellular 
bacterial survival and host cell viability z-scores of these 460,580 compounds, we 
identified 47 candidate compounds predicted to affect intracellular Mtb load 
(Table 4) and 30 compounds predicted to affect intracellular Stm load (Table 5). 
From these two lists of compounds, commercially available compounds (Table 6) 
were ordered and screened in the MelJuSo-Mtb and HeLa-Stm infection models. 
As the PubChem BioAssay data contains compound-target relations based only 
on IC50 and EC50 values as well as binding constants, the predictive model was 
able to identify only compound-target interactions rather than the direction of the 
target effects. Thus, as we were therefore unable to predict whether compounds 
would actually inhibit or activate their associated targets, predicted negative z-
scores might result in experimentally positive z-scores in in vitro intracellular 
bacterial inhibition tests and vice versa. In the Mtb screen 6 out of 9 compounds 
predicted to affect the bacterial load indeed decreased or increased the bacterial 
load (Figure 3B, left panel). A rescreen of the hit compounds confirmed 5 out of 6 
hits (VEGFR KI I, ENMD-2076, Dovitinib, AT9283 and DAPH 2; Figure 3B, middle 
and right panels). Results are shown as z-scores as well as the percentage 
inhibition of Mtb growth expressed as the % of control value, to confirm the strong 
inhibitory effect of these HDT compounds on intracellular Mtb (Figure 3B, utter 
right panel).

	 As compound autofluorescence might result in false positive z-scores in 
our assay, we further validated all the confirmed hit compounds independently in 
classical CFU assays, both in cell lines and in primary human Mφs. The 
compounds AT9283, ENMD-2076 and Dovitinib significantly decreased Mtb CFUs 
in both MelJuSo cells and human primary Mφs (Figure 3C; results are shown as 
percentage inhibition of Mtb growth expressed as % of control value). Importantly, 
AT9283, ENMD-2076 and Dovitinib also reduced CFUs in human primary Mφs 
infected with two different MDR-Mtb strains (Beijing family China 16319 and Dutch 
outbreak 2003-1128; Figure 3D). These data independently confirm and validate 
the results obtained in our novel screening and prediction pipeline, and -
importantly- extend the newly identified HDT-compounds’ effects to intracellular 
multidrug resistant bacteria. Finally, none of the compounds directly affected 
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PubChem ID Predicted bacterial load z-score Predicted cell viability z-score Reliability
6604502 -2.59 -0.59 0.61

46233889 -2.38 -0.84 0.54
46235770 -2.38 -0.84 0.54
56945171 -2.38 -0.84 0.54
56945172 -2.38 -0.84 0.54
56945173 -2.38 -0.84 0.54
56945174 -2.38 -0.84 0.54
56945175 -2.38 -0.84 0.54
56945277 -2.38 -0.84 0.54
24995659 -2.35 -0.96 0.61
10113978 -2.29 -0.91 0.53
11496629 -2.27 -0.95 0.54
10907042 -2.24 -0.87 0.54
59627005 -2.21 -0.93 0.54
16041424 -2.15 -0.89 0.54

9977819 -2.14 -0.93 0.53
6419834 -2.14 -0.93 0.53

67161540 -2.13 -0.94 0.52
11485656 -2.10 -0.87 0.54
16757867 -2.09 -0.73 0.68

6711154 -2.08 -0.93 0.68
10142586 -2.07 -0.99 0.52

657806 -2.07 -0.48 0.66
9532258 -2.05 -0.86 0.71

10209082 -2.01 -0.93 0.66
24889392 -2.00 -0.87 0.65

5782470 -1.99 -0.64 0.75
660914 -1.95 -0.22 0.67

1552034 -1.91 -0.50 0.79
3246585 -1.89 -0.55 0.66
5284352 -1.86 -0.48 0.62

16235522 -1.84 -0.42 0.71
5284416 -1.84 -0.72 0.65
661761 -1.83 -0.23 0.66

6097179 -1.82 -0.43 0.65
1745927 -1.82 -0.34 0.75
3246543 -1.82 -0.63 0.63
6918515 -1.81 0.31 0.75
5765289 -1.80 -0.47 0.78
664864 -1.78 -0.25 0.66

1363897 -1.78 -0.19 0.71
3246495 -1.78 -0.50 0.65
6604530 -1.78 -0.50 0.65
663169 -1.78 -0.50 0.65
456214 -1.78 -0.45 0.63
660368 -1.77 -0.40 0.65
660838 -1.77 -0.52 0.65

Commercially available compounds selected for the study are indicated in bold.

Table 4. Complete list of compounds identified as potential hits from the 
Mtb predictive model output.
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PubChem ID Predicted bacterial load z-
score

Predicted cell viability z-
score Reliability

5035 -1.88 0.60 0.65

50994498 -1.68 0.52 0.72

202478 -1.58 0.47 0.71

7333 -1.56 0.04 0.66

44474938 -1.55 0.54 0.73

57402462 -1.55 0.54 0.73

11743300 -1.52 0.44 0.73

13998486 -1.52 0.44 0.73

15163141 -1.52 0.44 0.73

185834 -1.52 0.44 0.73

4416 -1.52 0.44 0.73

44303090 -1.52 0.44 0.73

44398003 -1.52 0.44 0.73

44398036 -1.52 0.44 0.73

44398114 -1.52 0.44 0.73

47641 -1.52 0.44 0.73

50266 -1.52 0.44 0.73

5474589 -1.52 0.44 0.73

6437849 -1.52 0.44 0.73

6439331 -1.52 0.44 0.73

65638 -1.52 0.44 0.73

6713949 -1.52 0.44 0.73

72027 -1.52 0.44 0.73

73345319 -1.52 0.44 0.73

93365 -1.52 0.44 0.73

9799239 -1.52 0.44 0.73

9841596 -1.52 0.44 0.73

9951886 -1.52 0.44 0.73

9954083 -1.52 0.44 0.73

9417 -1.51 0.15 0.68

Commercially available compounds selected for the study are indicated in bold.

Table 5. Complete list of compounds identified as potential hits from the 
Stm predictive model output.
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extracellular bacterial growth in liquid cultures, while classical antibiotics 
(rifampicin) did, confirming that the mode of action of the new HDT-compounds is 
via modulation of host and not direct bacterial mechanisms (Figure 3E).

	 Using this same screening and validation approach for Stm in the HeLa-
Stm infection model, we confirmed that 2 out of 4 compounds predicted to affect 
Stm survival indeed decreased the bacterial load of Stm-infected cells in a primary 
screen (Figure 4A, left panel). Both of these hits (Opipramol and Nafoxidine) were 
subsequently confirmed in a rescreen (Figure 4A, middle and right panels; 
results shown as z-scores and as % inhibition of Stm growth expressed as the % 
of control value). Both hit compounds also reduced the Stm bacterial load 
independently in classical CFU assays (Figure 4B), again without directly affecting 
bacterial growth in a liquid overnight Stm culture (Figure 4C), confirming their HDT 

PubChe
m ID Compound name

Predicted 
bacterial 

load z-
score

Predicted 
cell 

viability 
z-score

Reliabilit
y 

score

Primary 
screen 

z-score

Rescreen 
z-score Activity

Mycobacterium tuberculosis

10113978 Pazopanib·HCl -2.30 -0.91 0.53 -1.50 N.D. Receptor Tyrosine Kinase 
(RTK) inhibitor

11496629 AT9283 -2.27 -0.95 0.54 4.01 6.09 JAK/Aurora kinase inhibitor

16041424 ENMD-2076 -2.15 -0.89 0.54 -3.62 -2.83 RTK/Aurora A inhibitor

11485656 Linifanib 
(ABT-869) -2.11 -0.87 0.54 -3.13 0.66 VEGFR/PDGFR inhibitor

10907042 PDGFR Tyrosine 
Kinase Inhibitor III -2.24 -0.88 0.53 1.19 N.D. PDGFR inhibitor

9977819
Dovitinib 
(TKI-258, 
CHIR-258)

-2.14 -0.93 0.53 -3.70 -2.02 RTK inhibitor

6419834 VEGFR2 Kinase 
Inhibitor I -2.14 -0.93 0.53 -3.91 -7.63 VEGFR2 inhibitor

6711154 DAPH 2 -2.08 -0.93 0.68 136.21 80.77 PKC inhibitor

24889392 Quizartinib -2.00 -0.87 0.65 -0.24 N.D. FLT3 inhibitor

Salmonella Typhimurium

4416 Nafoxidine 
hydrochloride -1.52 0.44 0.73 -3.06 -2.33 Estrogen receptor modulator

7333 1,3-Di-o-
tolylguanidine -1.56 0.04 0.66 -0.42 N.D. Sigma 1 receptor agonist

47641 Naftifine 
hydrochloride -1.52 0.44 0.73 -0.61 N.D. Fungal squalene epoxidase 

inhibitor

9417 Opipramol -1.51 0.15 0.69 -4.01 -4.21 Sigma receptor agonist

Z-scores exceeding the cut-off (2 < z-score <-2) are displayed in bold, N.D. = not determined.

Table 6. Compounds selected from the predictive model output.
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⬆ Figure 4. Screen of in silico predicted compounds active against 
intracellular Stm. 
A. Chemical compound primary screen (left panel) and rescreen (middle panel) at 
10 µM in the HeLa-Stm infection model using Stm constitutively expressing 
stable DsRed, expressed as mean z-scores +/- standard deviation. Horizontal 
dashed lines indicate a hit cut-off at a z-score of 2 or -2. The average z-scores 
and standard deviations of the controls (DMSO and H-89) are displayed 
separately. To indicate the extent of bacterial inhibition, rescreen results are 
expressed as percentage of control value +/- standard deviation in the right 
panel. B. CFU assay of the HeLa-Stm infection model treated with the validated 
hit compounds from A at 10 µM. Shown are representative data out of 3 
independent experiments, displayed as a percentage of the DMSO control. The 
average +/- standard deviation of 3 replicates is shown. Statistically significant 
differences compared to DMSO were tested using a one-way ANOVA (F(3,8) = 
56.31; *** = p-value < 0.001). C. Overnight treatment of Stm broth cultures with 
the hit compounds at 10 µM. The Stm antibiotic Gentamicin (50 μg/ml) was used 
as a positive control. The average bacterial density +/- standard deviation of 3 
replicates is shown, expressed as a percentage of the DMSO control. Displayed 
are representative results out of 3 individual experiments. Statistically significant 
differences compared to DMSO were tested using a one-way ANOVA (F(3,38) = 
579.5; *** = p-value < 0.001).
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mode of action. These data therefore confirm and validate our novel screening and 
prediction pipeline not only for Mtb but also Stm.

	 Thus, we have successfully developed and used a data-driven novel in 
silico predictive model to identify host-directed compounds with antimicrobial 
activity against intracellular bacteria. The model significantly enhanced the 
identification of de novo hit compounds (5 out of 9 (55.6%) and 2 out of 4 (50%) 
for Mtb and Stm, respectively) compared to random LOPAC library primary 
screening (126 out of 1260 (10%) for Mtb and 185 out of 1260 (14.6%) for Stm). In 
addition, the results were replicated and validated in primary human Mφs infected 
with Mtb, strongly agreeing with and further validating the MelJuSo-Mtb model 
used in our novel flow cytometry-based screening assay.


RTK signaling is a novel host pathway controlling Mtb 
As AT9283, ENMD-2076 and Dovitinib are RTK inhibitors40-42 we used a chemical 
genetics approach to confirm a role for RTK signaling in host-mediated Mtb 
control. We first retrieved human protein targets of AT9283, ENMD-2076 and 
Dovitinib from the Compound Bioactivity section in ChEMBL (http://
www.www.ebi.ac.uk/chembl/) and further downselected targets for which the 
compounds were annotated as 'Active'. Because no targets annotated as 'Active' 
could be retrieved for AT9283 and ENMD-2076, we first constructed a STRING 
protein network and performed gene ontology (GO) analysis using the targets of 
Dovitinib (n=86 proteins; Figure 5A). Due to the hierarchical organization of GO-
terms, general cellular and molecular functions tend to be highly enriched in GO 
term enrichment analyses. Therefore, we focused on identifying the highest 
ranked GO terms that described distinct pathways rather than the overall highest 
ranked GO terms. As expected from the reported target specificities of Dovitinib42, 
'transmembrane receptor protein tyrosine kinase signaling pathway' (GO:0007169, 
false discovery rate (FDR) 3.82E-33) was the highest ranking enriched pathway 
and 40 protein targets participated in this pathway (Figure 5A and Figure 6A). We 
next verified that both AT9283 and ENMD-2076 target RTKs by retrieving human 
protein targets from the Target Summary section in ChEMBL and performed an 
identical STRING analysis (Figures 6B and 6C). Even though this analysis resulted 
in small networks due to the limited number of studied targets and the lists of 
targets from the Target Summary section also include non-confirmed targets, the 
GO-term 'transmembrane receptor protein tyrosine kinase signaling pathway' (GO:
0007169) was again highly enriched in the target networks of AT9283 (FDR 
1.11E-12) and ENMD-2076 (FDR 6.47E-5).

	 To independently confirm RTK signaling as a functional pathway that 
controls intracellular survival of Mtb, we next performed an unbiased siRNA 
screen of the human kinome in the MelJuSo-Mtb infection model (Figure 5B), 
agnostic to the above data. The siRNA screen identified 20 targets that decreased 
and 21 that increased the Mtb bacterial load whilst not affecting host cell viability 
(Table 7). These 41 hit kinases were then used in a STRING protein network and 
GO analysis. Independently confirming the STRING analysis of the targets of 
Dovitinib, AT9283 and ENMD-2076, also in this analysis 'transmembrane receptor 
protein tyrosine kinase signaling pathway' (GO:0007169, FDR 1.32E-13) was the 
highest-ranking enriched pathway, and 18 hit kinases from the siRNA screen 

69



participated in this pathway (Figure 5C and Figure 6D). Three of the kinases 
(ABL1, BLK and NTRK1) were both hits in the siRNA screen and confirmed targets 
of Dovitinib (Figure 5D). Of these 3 kinases, only ABL1 was present in the 
potential target networks of AT9283 and ENMD-2076 (Figures 6B and 6C). 
However, a lower dissociation constant (Ki) is reported in ChEMBL for the 
interaction between Dovitinib and BLK (Ki: 12.59 nM) than between Dovitinib and 
ABL1 (Ki: 100 nM), suggesting that BLK is targeted more strongly by Dovitinib. To 
identify the top enriched RTK signaling pathway targeted by Dovitinib and siRNA, 
we used the kinases shown in Figure 5D in a STRING analysis. This identified the 
neurotrophin signaling pathway as the top enriched KEGG pathway (Figure 7)43. 
Silencing of Neurotrophic Receptor Tyrosine Kinase 1 (NTRK1) resulted in an 
increased Mtb bacterial load (Table 7), establishing a functional link between 
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⬅ Figure 5. Identification of host kinases controlling intracellular Mtb 
survival. 
A. STRING network of confirmed targets of Dovitinib retrieved from the ChEMBL 
repository Compound Bioactivity section (left panel). Individual proteins are 
displayed as nodes. Lines represent protein-protein interactions and the 
thickness of the lines indicates confidence. Proteins participating in the 
'transmembrane receptor tyrosine kinase signaling pathway' are displayed in 
red. The top 10 enriched GO terms in the 'Biological Function' category are 
displayed along with the number of genes/proteins annotated with the indicated 
GO terms and the false discovery rate (FDR) of the enrichment (right panel). B. 
Results of a siRNA screen of the human kinome in the MelJuSo-Mtb infection 
model using Mtb constitutively expressing destabilized DsRed, expressed as z-
scores. The average z-score +/- standard deviation for each siRNA pool is 
displayed. A hit cut off at z=2 or z=-2 is displayed as a dashed line. The average 
z-score and standard deviation of the controls (siCTRL and siAKT) are displayed 
separately. SiCTRL: non-targeting siRNA pool. C. STRING network of the siRNA 
screen hits (left panel) is displayed along the top 10 enriched GO terms in the 
'Biological Function' category (right panel), as in A. D. Participation of individual 
targets of Dovitinib (top row) or hits from the siRNA screen (bottom row) in the 
'transmembrane receptor tyrosine kinase signaling pathway' is indicated by filled 
squares. Proteins that are both targeted by Dovitinib and were a hit in the siRNA 
screen are shown in magenta. Dissociation constants (Ki) retrieved from 
ChEMBL are shown below for the interaction between Dovitinib and ABL1, BLK 
and NTRK1.

➡ Figure 6 (next page). STRING analysis of targets of Dovitinib, AT9283, 
ENMD-2076 and siRNA screening hits. 
A. Association of individual targets of Dovitinib with the top 10 enriched GO 
terms is indicated by filled squares. B. STRING network of potential targets of 
AT9283 retrieved from the ChEMBL repository Target Summary section (top 
panel). Individual proteins are displayed as nodes. Lines represent protein-
protein interactions and the thickness of the lines indicates confidence. Proteins 
participating in the 'transmembrane receptor tyrosine kinase signaling pathway' 
are displayed in red. The top 10 enriched GO terms in the 'Biological Function' 
category are displayed along with the number of genes/proteins annotated with 
the indicated GO terms and the false discovery rate (FDR) of the enrichment 
(bottom panel). C. STRING network of potential targets of ENMD-2076 retrieved 
from the ChEMBL repository Target Summary section (top panel) and the top 18 
enriched GO terms in the 'Biological Function' category (bottom panel) are 
displayed as in B. D. Association of individual siRNA hit kinases with the top 10 
enriched GO terms is indicated by filled squares.
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neurotrophin signaling and Mtb survival.

	 Thus, using independent chemical genetic, functional and computational 
approaches, we find and validate that (1) RTK signaling is a novel host pathway 
that controls intracellular (MDR)-Mtb survival and that (2) repurposable drugs such 
as Dovitinib, AT9283 and ENMD-2076 that target RTK signaling are new 
candidates for HDT in treating TB, including MDR-Mtb.
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GenBank Accession Gene Symbol Z-score

NM_006213 PHKG1 -2,65

NM_133494 NEK7 -2,65

NM_018425 PI4KII -2,50

NM_032017 MGC4796 -2,47

NM_019884 GSK3A -2,44

NM_014975 SAST -2,42

NM_006219 PIK3CB -2,34

NM_001079 ZAP70 -2,25

NM_005157 ABL1 -2,19

NM_012119 CCRK -2,18

NM_017525 HSMDPKIN -2,17

NM_007199 IRAK3 -2,16

NM_001715 BLK -2,15

NM_001278 CHUK -2,14

NM_000293 PHKB -2,11

NM_002611 PDK2 -2,09

NM_017771 PXK -2,08

NM_005399 PRKAB2 -2,02

NM_021923 FGFRL1 -2,01

NM_004717 DGKI -2,00

NM_005027 PIK3R2 2,02

NM_021972 SPHK1 2,12

NM_001100594 SNRK 2,20

NM_006218 PIK3CA 2,26

NM_175886 PRPS1L1 2,26

Table 7. siKinome screen hits in the MelJuSo-Mtb infection model.
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NM_005975 PTK6 2,27

NM_033487 CDC2L1 2,51

NM_001007792 NTRK1 2,62

NM_001081562 DMPK 2,69

NM_001006665 RPS6KA1 2,72

NM_016308 UMP-CMPK 2,77

NM_002944 ROS1 3,31

NM_004336 BUB1 3,50

NM_182493 MLCK 3,58

NM_001006943 EPHA8 3,70

NM_052853 ADCK2 3,80

NM_018423 STYK1 4,02

NM_001039468 MARK2 4,46

NM_145185 MAP2K7 4,85

NM_003557 PIP5K1A 6,10

NM_017449 EPHB2 7,68

GenBank Accession Gene Symbol Z-score

➡ Figure 7. STRING analysis of the siKinome screening data. 
STRING analysis to identify enriched KEGG pathways using the kinases from 
Figure 5D. Displayed are the top 10 enriched KEGG pathways along with the 
number of genes/proteins annotated with the indicated GO terms and the false 
discovery rate (FDR) of the enrichment (left panel). Involvement of individual 
proteins is overlaid on the 'neurotrophin signaling pathway' KEGG pathway 
retrieved from the Kyoto Encyclopedia of Genes and Genomes (http://
www.genome.jp/kegg/). Proteins in grey are targeted by Dovitinib only, blue 
proteins were siRNA screening hits and proteins in red are both targeted by 
Dovitinib and silencing of these genes affected the Mtb bacterial load.

74



75



Discussion 

Employing chemical genetic screens complemented with newly developed 
computational approaches, we have identified host-directed therapy (HDT) 
compounds and drugs (Dovitinib, AT9283 and ENMD-2076) that target human 
RTK signaling to control intracellular Mtb survival, including MDR-Mtb. Perhaps 
more importantly, our findings pave the way towards identifying additional 
compounds targeting human RTK signaling to improve control of intracellular Mtb 
infection since all compounds were confirmed to be effective in primary human 
Mφ infection models.

	 Current efforts to develop HDT are a topic of interest for infectious 
diseases and cancer (reviewed recently38). In order to be able to screen larger 
HDT-compound libraries for novel leads with activity against intracellular Mtb and 
Stm, we have developed a new robust and rapid fluorescence-based intracellular 
screening assay (Chapter 2). This assay allowed us to identify host-directed Mtb-
inhibiting compounds (SU 6656, Quinacrine, SB 216763, GW5074 and Tyrphostin 
AG 494) and host-directed Stm-inhibiting compounds (Mibefradil), which 
performed significantly better than our best reference compound H-89, in a 
LOPAC library drug-repurposing screening effort. We were also able to confirm the 
activity of previously published HDT compounds in our screening approach 
(Imatinib, D4476, LY-364947, Haloperidol), lending strong plausibility and validity 
to our strategy.

	 We next developed a novel in silico model which was data-driven and 
based on known and confirmed targets from public databases, by which we could 
successfully predict and verify additional compounds with host-directed activity 
against Mtb (Dovitinib, AT9283 and ENMD-2076) and Stm (Nafoxidine and 
Opipramol). Using STRING network analysis we uncovered RTK signaling as a 
novel host pathway controlling Mtb intracellular survival, which is targeted by 
compounds identified in this study. Finally we performed an independent unbiased 
siRNA screen of the human kinome, which confirmed a role for RTK signaling in 
control of intracellular Mtb survival. Collectively, our results uncover new host 
signaling pathways as well as corresponding active chemical compounds 
targeting these to control intracellular bacterial infections, including MDR-TB and 
Stm.

	 Our LOPAC screen provides important and general proof-of-principle for 
drug repurposing, since we successfully identified several candidate compounds 
that displayed host-directed antimicrobial activity while their known targets have 
not previously been associated with infectious diseases. Strikingly, 4 of the 5 hit 
compounds that consistently outperformed H-89 in controlling Mtb infection are 
known to affect (growth factor) RTK signaling. Tyrphostin AG 494, SU 6656, SB 
216763 and GW5074 are inhibitors of EGFR, SRC Family Kinases (SFKs), GSK-3 
and RAF1, respectively, which are all kinases participating in RTK pathways44-48. In 
addition to compounds affecting RTK signaling we identified 3 other host-directed 
Mtb-inhibiting compounds with vastly different target specificities. Firstly, 
Quinacrine was originally developed as an antimalarial drug but has displayed 
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activity in a myriad of diseases via a wide range of targets49. Interestingly, reported 
targets of Quinacrine include AKT1 and NF-κB as well as phospholipase A250. The 
latter is a central enzyme in the eicosanoid pathway, which was recently shown to 
be involved in Mtb control by balancing the type I interferon response26. Secondly, 
Haloperidol is an antipsychotic drug targeting dopamine receptors51. Importantly, 
Haloperidol was recently shown to affect survival of intracellular mycobacteria in a 
host-directed fashion19, providing important additional and independent validation 
of our screening strategy and models. Finally, 3',4'-Dichlorobenzamil is an 
amiloride-analogue Na+/Ca2+ exchanger inhibitor52. This compound may act by 
inhibiting Ca2+ transport in the cell, as activation of calcineurin by increased Ca2+ 
levels has previously been proposed as a mechanism for inhibition of phagosome 
maturation in Mtb-infected cells53.

	 A similar LOPAC library screen in the HeLa-Stm infection model resulted 
in 4 compounds that more strongly reduced the bacterial load than our reference 
compound H-89, and Mibefradil was further confirmed to surpass H-89’s activity 
in a rescreen. However, H-89 is already a highly potent host-directed inhibitor of 
Stm and all 4 compounds consistently and significantly reduced the Stm bacterial 
load. Two of the 4 hit compounds from the primary screen were known antibiotics 
(Trimethoprim and Ofloxacin) but these were tested nevertheless in our screen 
because they were part of the LOPAC. Of the remaining 2 HDT compounds, 
Haloperidol, which was already found in a previous HDT screen study in TB, was 
confirmed as a HDT compound with activity against Mtb, but we extend these 
results here to Stm as well. These data again show the validity of our screening 
and prediction approach since we are able to consistently and faithfully confirm 
already available knowledge. The data on Haloperidol also suggest that this 
compound may be applicable for HDT in a broader spectrum of intracellular 
bacterial infections. The second hit compound, Mibefradil, is a Ca2+ channel 
blocker54. The majority of screening hits in the HeLa-Stm infection model 
exacerbated bacterial loads and even though these compounds can therefore not 
be used for drug repurposing, all of the identified compounds may be important 
starting points for gaining deeper mechanistic insight into Stm-host interactions. 
The limited overlap between the hit compounds from Mtb and Stm screens likely 
reflects the vastly different intracellular 'lifestyles' of these pathogens. 
Notwithstanding this, several compounds display consistent intracellular 
antimicrobial activity in both Mtb and Stm infection models, such as Haloperidol. 
These compounds are therefore promising candidate drugs with wider application 
against (antibiotic resistant) intracellular bacterial infections.

	 Selecting hits for follow-up analysis in large (chemical) screens poses 
substantial challenges. Here, we employed two complementary strategies for 
screening follow-up. Firstly, as we aimed to identify compounds with superior 
host-directed antimicrobial activity, we focused on compounds performing better 
than the reference compound H-89, resulting in a strictly data-driven hit cut-off. 
Using this strategy we identified SU 6656, Quinacrine, SB 216763, GW5074 and 
Tyrphostin AG 494 as the most promising candidate compounds for TB and 
Mibefradil for salmonellosis, as well as confirmed Haloperidol as an attractive drug 
for HDT against both Mtb and Stm. Secondly, as screening outcome may be 
strongly influenced by compound properties such as solubility, hydrophobicity, 
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concentration, IC50 and target selectivity, using a strict cut-off may mask valuable 
data hidden in the large dataset and will be lost to follow-up. We therefore used a 
complementary follow-up approach by developing an innovative in silico 
compound predictive model to uncover relevant chemical compound classes and 
target profiles in screening data. Focusing on confirmed target profiles by 
automated extraction of bioassay data from PubChem we were able to both 
discern compound targets and predict novel active compounds. As the target 
profiles were ranked without using a hit cut-off, this approach enabled unbiased 
validation and follow-up of the primary chemical compound screen. The use of 
simple numerical values as predictive parameters renders this prediction model 
highly adaptable and easily applicable to other chemical screens. The model 
significantly enhanced the identification of de novo hit compounds (55.6% and 
50% for Mtb and Stm, respectively) compared to random LOPAC library primary 
screening (10% for Mtb and 14.6% for Stm). Remarkably, the predicted Mtb hit 
compounds AT9283, ENMD-2076 and Dovitinib were all (growth factor) RTK 
inhibitors40-42.

	 As inhibitors of RTK signaling molecules were already observed to be 
over-represented in the hits from our drug-repurposing screen, our predictive 
model successfully provided an unbiased validation of this observation and 
prompted us to further focus our screening endeavor on RTK inhibitors. RTK 
inhibitors are widely studied in cancer research for their anti-neoplastic 
properties55. Phase II clinical trials have been performed with both AT9283 and 
ENMD-2076 and Dovitinib has already passed phase III clinical trials56-61 (http://
www.clinicaltrials.gov), enabling swift future drug repurposing as host-directed 
antimicrobials. Our unbiased siRNA screen of the human kinome independently 
identified and validated RTK signaling as a host pathway regulating Mtb survival, 
identifying BLK, ABL1 and NTRK1 as host kinases controlling intracellular Mtb and 
possible drugable targets. BLK is an SFK involved in B-cell receptor signaling and 
the insulin response to glucose uptake in pancreatic islet cells62,63. The non-
receptor tyrosine kinase ABL1 was previously linked to mycobacterial infection 
and its commonly used inhibitor Imatinib was shown to exert host-directed Mtb 
inhibiting activity in vivo15,21, providing independent validation of our siRNA 
screening. Finally, NTRK1 is an RTK involved in peripheral nervous system 
development and synaptic function and plasticity64. Various cells of the 
hematopoietic lineage have been shown to produce the NTRK ligand nerve growth 
factor during inflammation and autoimmunity65 and expression of NTRKs in 
monocytes has been previously reported66. Next to the confirmation of these 
compound targets by genetic silencing as described here, there were other siRNA 
hits involved in RTK signaling which might represent as yet unknown molecular 
targets for these or other hit compounds. Conversely, confirmed compound 
targets that were not identified in our siRNA screen may still contribute to Mtb 
control due to redundancy and possible incomplete genetic knockdown inherent 
to siRNA screens.

	 A role for growth factors in mycobacterial infection has been previously 
reported. The growth factor VEGF was linked to mycobacterial infection in a 
zebrafish Mycobacterium marinum (Mm) infection study28 as well as in a rabbit 
Mtb infection model27. However, in both studies the reported effect of VEGF was 
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primarily systemic rather than (sub)cellular, inducing enhanced angiogenesis in 
granulomas. Our data strongly suggest that an intracellular response to growth 
factor receptor signaling via RTKs may be another important determinant for 
mycobacterial infection outcome. Interestingly, Oehlers et al. used Pazopanib, one 
of the compounds identified by our predictive model to show an inhibitory effect 
of VEGF receptor (VEGFR) inhibition on vascularization around nascent 
granulomas in their model. Though not meeting our strict hit selection criteria, 
Pazopanib statistically significantly (z-score -1.50) decreased Mtb loads in our 
screen (and thus in the absence of a vascular system), suggesting that cellular 
Mtb inhibition by Pazopanib might precede or complement the vascularization 
effects observed in vivo by Oehlers et al. Additionally, epidermal growth factor 
receptor (EGFR) signaling has previously been linked to mycobacterial infection 
through a chemical screen identifying EGFR inhibitor Gefitinib as a compound that 
restricts Mtb growth31. Our study significantly expands this knowledge by 
introducing additional RTK-targeting compounds that can be used for drug 
repurposing, including compounds targeting VEGFR (Dovitinib) and EGFR 
(Tyrphostin AG 494) signaling.

	 Our in silico predictive model successfully identified two compounds 
(Nafoxidine, an estrogen receptor modulator and Opipramol, a Sigma receptor 
agonist) with host-directed Stm-inhibiting activity. Interestingly, Haloperidol (a hit 
in both the Mtb and Stm LOPAC screens) was previously reported to interact with 
Sigma receptors with high affinity67, suggesting mechanistic involvement of Sigma 
receptors in host control of intracellular bacteria.

	 In conclusion, the results from our chemical genetic and novel 
bioinformatics approach provide an important proof-of-concept of HDT for 
intracellular infections, such as (MDR) TB and salmonellosis. Moreover, our results 
identify human RTK signaling as a signaling pathway targetable by novel 
repurposable drugs, providing a new and promising therapeutic starting point for 
drug development against Mtb, including MDR-Mtb.


Experimental procedures 

Reagents 
H-89 dihydrochloride, DAPH 2, Nafoxidine hydrochloride, 1,3-Di-o-tolylguanidine, 
Naftifine hydrochloride, Opipramol, Rifampicin, Kanamycin and the Library of 
Pharmacologically Active Compounds (LOPAC) were purchased from Sigma-
Aldrich, Zwijndrecht, The Netherlands. Hygromycin B was acquired from Life 
Technologies-Invitrogen, Bleiswijk, The Netherlands. VEGFR2 Kinase Inhibitor I 
and Ampicillin were purchased from Calbiochem Merck-Millipore, Darmstadt, 
Germany. Pazopanib HCl, AT9283 and Linifanib (ABT-869) were acquired from 
Selleck Chemicals, Munich, Germany. Quizartinib was purchased from 
MedChemExpress, Stockholm, Sweden. Santa Cruz BioTechnology, Heidelberg, 
Germany was the supplier of PDGFR Tyrosine Kinase Inhibitor III. Dovitinib 
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(TKI-258, CHIR-258) was from APExBIO, Houston, TX, USA. The siKinome library 
was acquired from Thermo Fisher Dharmacon, Waltham Massachusetts, USA.


Cell culture 
HeLa cells and the MelJuSo human melanoma cell line were maintained at 37°C 
and 5% CO2 in Gibco Iscove’s Modified Dulbecco’s Medium (IMDM; Life 
Technologies-Invitrogen) with 10% fetal bovine serum (FBS, Greiner Bio-One, 
Alphen a/d Rijn, The Netherlands), 100 units/ml Penicillin and 100 µg/ml 
Streptomycin (Life Technologies-Invitrogen). Pro-inflammatory Mφ1s and anti-
inflammatory Mφ2s were generated from monocytes isolated from whole blood of 
healthy donors by FICOLL separation and CD14 MACS sorting (Miltenyi Biotec, 
Teterow, Germany) followed by 6 days differentiation with 5 ng/ml granulocyte 
macrophage-colony stimulating factor (GM-CSF; BioSource Life Technologies-
Invitrogen) or 50 ng/ml macrophage-colony stimulating factor (M-CSF; R&D 
Systems, Abingdon, United Kingdom) respectively, as previously reported68. Mφs 
were cultured in Gibco Roswell Park Memorial Institute (RPMI) 1640 medium (Life 
Technologies-Invitrogen) with 10% FBS and 2 mM L-Alanyl-L-Glutamine (PAA, 
Linz, Austria).


Bacterial culture 
Bacterial strains used are displayed in Table 8. Mycobacteria were cultured in 
Difco Middlebrook 7H9 broth (Becton Dickinson, Breda, The Netherlands) 
supplemented with 10% ADC (Becton Dickinson), 0.5% Tween-80 (Sigma-Aldrich) 
and appropriate antibiotics. Stm was cultured on Difco Luria-Bertani (LB) agar 
(Becton Dickinson) or in Difco LB broth (Becton Dickinson) supplemented with 
appropriate antibiotics.


Base strain Plasmid Antibiotic resistance (source, 
concentration)

Stm SL1344. pMW211[C.10E/DsRed] 
(Constitutive promoter).

Ampicillin (plasmid, 100 µg/ml).

Mtb H37Rv. pSMT3[Phsp60/DsRed]. Hygromycin (plasmid, 50 µg/ml).

Mtb H37Rv. pSMT3[Phsp60/
destabilized DsRed].

Hygromycin (plasmid, 50 µg/ml).

MDR Mtb Beijing family 
China (Kremer 43) 16319

None. Rifampicin, Isoniazid, Ethambutol, 
Pyrazinamide (intrinsic, n/a).

MDR Mtb Dutch outbreak 
2003-1128.

None. Rifampicin, Isoniazid, Streptomycin, 
Claritromycin (intrinsic, n/a).

Table 8. Bacterial strains, plasmids used for fluorescent protein expression 
and their respective antibiotic selection markers.
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Stm and Mtb infections 
One day before infection, mycobacterial cultures were diluted to a density 
corresponding with early log phase growth (optical density at 600 nm (OD600) of 
0.4). Stm was grown either in LB broth or on LB agar with appropriate antibiotics. 
After overnight incubation Stm liquid cultures were diluted 1:33 and cultured for an 
additional 3-4 hours while plate grown Stm was suspended in PBS by rinsing the 
agar plates. Bacterial density was determined by measuring the OD600 and the 
bacterial suspension was diluted in cell culture medium without antibiotics to 
reach a multiplicity of infection (MOI) of 10 (unless indicated otherwise). Accuracy 
of bacterial density measurements was verified by a standard colony forming unit 
(CFU) assay. Cell cultures (HeLa for Stm infections and MelJuSo for Mtb 
infections), seeded in 96-well flat-bottom plates as described below, were 
inoculated with 100 μl of the bacterial suspension, centrifuged for 3 minutes at 
800 rpm and incubated at 37°C/5% CO2 for 20 minutes if infected with Stm or 60 
minutes if infected with Mtb. Plates were then washed with culture medium 
containing 30 μg/ml gentamicin sulfate (Lonza BioWhittaker, Basel, Switzerland) 
and incubated at 37°C and 5% CO2 in medium containing 5 μg/ml gentamicin and 
indicated chemical compounds until readout by flow cytometry or CFU, as 
indicated.


Chemical compound treatment 
10,000 HeLa or MelJuSo cells were seeded per well in 96-well flat-bottom plates 
or 300,000 primary Mφs were seeded per well in 24-well plates in appropriate 
culture medium without antibiotics one day prior to infection with Mtb or broth-
grown Stm. Infected cells were treated overnight with chemical compounds at 10 
μM (unless indicated otherwise) or DMSO at equal v/v in medium containing 5 μg/
ml gentamicin.


siRNA transfections 
3,000 HeLa or MelJuSo cells were reverse-transfected with ON-TARGETplus 
siRNA pools (Thermo Fisher Dharmacon, Waltham Massachusetts, USA) at a 50 
nM concentration using 0.2 μl Dharmafect1 (Thermo Fisher Dharmacon) per well in 
a flat-bottom 96-well plate in appropriate culture medium without antibiotics. Cells 
transfected with siRNA were infected with Mtb at MOI 1000 24 hours post 
transfection and incubated for an additional 48 hours and infections with agar-
grown Stm were carried out at MOI 500 72 hours post transfection and incubated 
overnight, unless indicated otherwise.


Colony forming unit assay 
CFU assays were performed using the track dilution method described 
previously69. In short, bacterial suspensions were serially diluted and 10 μl drops 
were plated on square agar plates, which were subsequently placed at an angle to 
allow the drops to spread over a larger surface area.
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Bacterial growth assay 
100 μl Stm or Mtb culture (OD600 of 0.1) was plated in a flat-bottom 96-well plate 
containing 100 μl of indicated chemical compounds at 20 μM in LB (Stm) or 7H9 
(Mtb) broth. The plate was incubated at 37°C overnight for Stm or during a period 
of 15 days for Mtb and absorbance was measured at a 550 nm wavelength on a 
Mithras LB 940 plate reader (Berthold Technologies, Bad Wildbad, Germany).


Compound identification within the PubChem repository and 
retrieval of BioAssay data 
Structure-data format (SDF) data supplied with the LOPAC library was converted 
to InChIKey using the OpenBabel toolbox (http://www.openbabel.org). InChIKeys 
were subsequently mapped to PubChem IDs and correct identification was 
checked manually. Compounds were manually linked to PubChem IDs if InChIKey 
information was insufficient for automated identification. For each of the identified 
compounds, BioAssay data was retrieved from the PubChem repository (as of July 
25th, 2014). Human protein targets for which compounds were confirmed to be 
active were then extracted from the BioAssay data. Compounds were 
subsequently described with their confirmed protein targets, as well as z-scores 
for bacterial load and cell viability from the primary screening data. All remaining 
compounds in the PubChem repository that were not included in the LOPAC 
library were described with their confirmed protein targets as above. Compounds 
that were not confirmed to target any of the protein targets identified for the 
LOPAC compounds were excluded from analysis and the remaining compounds 
were used as a testing set for the predictive model.


Predictive model 
Using LOPAC compounds as a training set, BioAssay data obtained from 
PubChem (descriptive variables) were related to the z-scores for bacterial load 
and cell viability from the primary screening data (target variables) using the 
predictive modelling approach of multi-target regression to simultaneously predict 
both target variables. Predictive models were constructed within the predictive 
clustering framework35,36, using predictive clustering trees (PCTs) as predictive 
models for multi-target regression. Ensembles of predictive clustering trees were 
generated37,38 using the Bagging ensemble learning method70,71 as implemented in 
the data mining tool CLUS (http://clus.sourceforge.net). Multiple predictive models 
were constructed using different bootstrap samples of the training dataset and 
their predictions were averaged to obtain an overall prediction. The variance of the 
predictions for the two target variables across the models in the ensemble was 
calculated for each target variable separately, averaged between the two targets 
and then used as a reliability estimation score72.


STRING analysis 
Protein interaction networks were generated using STRING version 10 (http://
string-db.org/)73 using experiments and databases as data sources and a minimal 
confidence score of 0.4.
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Statistics 
Student's T-test, one-way ANOVA and linear regression were performed using 
GraphPad Prism version 6.0 for Mac OS X (GraphPad Software, San Diego 
California, USA; www.graphpad.com). Z' factors were calculated using the formula 

� , where AVG is the average percentage of DsRed positive 
events measured after DMSO or H-89 treatment, SD is the standard deviation of 
these measurements and n is the number of replicates (as in Chapter 2). Z-scores 

were calculated using the formula � , where the difference between the 
percentage of DsRed positive events (bacterial load) or the total event count (cell 
viability) of a single replicate of an experimental condition (x) and the average 
percentage of DsRed positive events or the total event count of the DMSO control 
(AVGDMSO) is divided by the standard deviation of the DMSO control (STDEVDMSO). 
Z-scores for the primary screens were calculated using a similar formula, where
the average percentage of fluorescent events and the standard deviation of all
samples on each plate (instead of the DMSO control) were used (to provide plate
normalization). The average DMSO z-score was then subtracted from each
sample. An average z-score ≤ -2 or ≥ 2 was used as a hit cut-off, unless otherwise
indicated.


Data availability 
The data that support the findings of this study are available from the 
corresponding authors upon request.


Code availability 
The code of the machine learning software CLUS that was used to build the in-
silico models for predicting compound activity is available for download from the 
SourceForge repository (at https://sourceforge.net/projects/clus/).


Supplementary Information: Development and use of 
an in silico model for predicting compound activity. 

Machine learning in a nutshell. 
Machine learning studies computer programs/algorithms that have the ability to 
learn (improve with experience) where the experience is given in the form of data 
examples (instances). The input to a typical machine learning algorithm is a single 
flat table comprising a number of records (rows) and attributes (columns). In 
general, each row represents an object and columns represent properties of 
objects{Dzeroski:2001di}. An excerpt of the data table that we used to learn a 
predictive model is given in Supplementary Table 1. Here, rows correspond to 
individual compounds and columns contain different properties of these 
compounds, including bioactivity profiles retrieved from PubChem, intracellular
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bacterial survival z-scores and host cell viability z-scores. The task formulated 
here is to predict the intracellular bacterial survival and the host cell viability z-
scores for a novel compound using the information from its PubChem bioactivity 
profile. In machine learning terminology, this translates into a predictive modelling 
task (or supervised learning) where the two z-scores are called target (or output or 
dependent) variables/attributes and the variables describing the bioactivity profile 
are called descriptive (or input or independent) variables/attributes. Furthermore, 
considering that there are two numeric target variables, the task at hand is called 
multi-target regression74. This is illustrated in the data excerpt in Supplementary 
Table 1. The output of a data mining algorithm is typically a predictive model (or a 
set of predictive models) valid for the given data. The dataset used to learn the 
models is usually called training dataset. The model can then be applied to a 
different set of data, usually called testing dataset.


Data pre-processing 
In this study, the training set of compounds consisted of our reference compound 
H-89 and the LOPAC library compounds that were screened in our HeLa-Stm and
MelJuSo-Mtb infection models, while the testing set consisted of all other
compounds available in the PubChem public repository. We performed separate
analyses on the Mtb and Stm datasets, but the pre-processing of the data and the
data analysis were performed following identical procedures. A schematic
overview of the complete pre-processing pipeline is displayed in Supplementary
Figure 1A.

Descriptive/Input space (PubChem BioAssay 
accession) Target/Output space

PubChem 
ID

gi:
10864009

gi:
10880131

gi:
10937869

gi:
112938 ... Bacterial load 

z-score
Cell viability 

z-score

ID1 1a 0 0 1 ... -2.61 0.29

ID2 0 0 0 1 ... -1.57 -0.43

ID3 0 0 0 0 ... 0.47 0.22

ID4 0 0 1 0 ... -0.83 -0.13

ID5 1 1 0 0 ... -2.58 -0.53

ID6 0 1 0 0 ... 1.78 0.97

... ... ... ... ... ... ... ...

a '1' indicates that the compound has the corresponding protein as a 
confirmed target in a PubChem BioAssay.

Supplementary Table 1. Excerpt from the data table for the Mtb screen used 
to learn the predictive models.
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The first step of the data pre-processing was to uniquely identify the LOPAC 
compounds by linking them to their corresponding PubChem IDs. Based on the 
structure-data format (SDF) information provided by the compound supplier, we 
linked the LOPAC compounds to compounds from PubChem. To this end, SDF 
information of the compounds was first converted into InChIKey using the 
OpenBabel toolbox (http://www.openbabel.org) and then mapped to PubChem 
IDs. Next, we manually checked whether the mapping was correct and provided 
manual mapping where the InChIKey information was not sufficient, obtaining a 
list of PubChem compounds that were used in our study. Next, biological activity 
information was retrieved for the LOPAC compounds from each compounds' 
'bioassays' section in PubChem. From the bioassays, only human protein targets 
for which compounds were confirmed to be active were extracted, yielding a total 
of 1058 protein targets. This resulted in the columns on the left-hand side of 
Supplementary Table 1 (the descriptive variables). At the end of the pre-
processing pipeline, each compound is described with both its protein targets (as 
descriptive attributes for machine learning) and experimental measurements of 
activity and viability (as target attributes for the machine learning). These 
compound descriptions comprise our training set. Finally, we considered all of the 
remaining compounds from PubChem as potential candidates for drug 
repurposing (Supplementary Figure 1A). We applied the pre-processing pipeline 
on each of these compounds as described above. Only compounds confirmed to 
target at least one of the 1058 human target proteins were included, thus 
obtaining a testing set of 460,580 compounds. Note that the compounds from the 
testing set have information only for the bioactivity profiles (the descriptive 
attributes), while the intracellular bacterial survival and host cell viability z-scores 
are not known but the goal is to predict these. We obtained these predictions by 
applying the predictive model (predictive clustering tree) learned from the training 

⬆ Supplementary Figure 1. Data pre-processing pipeline. 
A. Pre-processing pipeline used to link compounds described by structured-
data files to compounds in the PubChem database of compounds. B. Data
analysis pipeline from the pre-processed compounds to the new candidate
compounds for wet-lab experiments.
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data to each of the compounds from the testing set, as described in more detail 
below.


Predictive clustering trees 
To analyze the data and learn a predictive model, we used the machine learning 
tool CLUS (available at http://clus.sourceforge.net). Specifically, we used 
predictive clustering trees (PCTs) for multi-target regression as models74,75. PCTs 
are a generalization of regression trees, a machine learning approach commonly 
used for regression. An example PCT is shown in Supplementary Figure 2. 
Similar to regression trees, PCTs are tree-like structures that have internal nodes 
and leaves. The internal nodes contain tests on the descriptive variables (i.e. 
asking whether a given protein is targeted or not), while leaves give predictions for 
the target variables (the predicted z-scores for intracellular bacterial survival and 
host cell viability). We opted to use PCTs because they are able to implicitly exploit 

⬆ Supplementary Figure 2. Example predictive clustering tree. 
Example predictive clustering tree (PCT) obtained from the screening data for 
Mtb. The internal nodes of the tree refer to the descriptive variables and check 
whether or not a compound targets a given protein. The leaves then give the 
predictions for the intracellular bacterial survival and the host cell viability z-
scores. For example, compounds that target gi15724400, but not gi14263638, 
gi20070193 or gi120046, are predicted to drastically reduce bacterial load (z-
score of -5.27) and not affect cell viability (z-score of 0.05).
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the relation between the target variables during model construction. Furthermore, 
PCTs are easily interpretable. A PCT can be viewed as a hierarchy of clusters with 
each node corresponding to a cluster. The top-node of a PCT corresponds to one 
cluster (group) containing all data points. This cluster is recursively partitioned into 
smaller clusters while moving down the tree. The leaves represent the clusters at 
the lowest level of the hierarchy and each leaf is labeled with its cluster's centroid/
prototype (the averages of the target variables are the prediction made by the 
leaf).

	 PCTs are built with a greedy recursive top-down induction algorithm. This 
learning algorithm starts by selecting a test for the root node by using a heuristic 
function computed on the training examples. The goal of the heuristic is to guide 
the algorithm towards small trees with good predictive performance. Based on the 
selected test, the training set is partitioned into subsets according to the test 
outcome. This is recursively repeated to construct the subtrees. The partitioning 
process stops when a stopping criterion is satisfied (i.e. the minimal number of 
examples per leaf is reached or the heuristic score no longer changes). In that 
case, the prototype (the prediction) is calculated as the averages of the target 
variables and stored in a leaf.


Ensembles of PCTs 
An ensemble is a set of predictive models (called base models). The prediction of 
an ensemble for a new example is obtained by combining the predictions of all 
base models from the ensemble. These predictions can be combined by 
averaging them. The ensemble learning procedure is illustrated in Supplementary 
Figure 3. Here, we consider ensembles of PCTs for multi-target regression74. For 
constructing the base models, we used the Bagging method76. Bagging is an 
ensemble method that constructs the base models in the ensemble by making 
bootstrap samples (Ei) of the training set (also called bootstrap replicates) and 
using each of these replicates to construct a predictive model. Each bootstrap 
sample is obtained by randomly sampling training instances, with replacement, 
from the original training set, until an equal number of instances as in the training 
set is obtained.


Reliability scores 
A very important aspect of using a predictive model is the ability to estimate the 
reliability of the predictions it makes. This reliability indicates how confident the 
model is about its prediction. Ensembles offer a natural way of estimating the 
reliability of their predictions by exploiting their voting mechanism77. When a 
prediction is made for an unlabeled example (these are examples that do not have 
z-score values for intracellular bacterial survival and host cell viability) by an 
ensemble, we consider it reliable if the predictions of the individual models in the 
ensemble are coherent, i.e., if the variance of the predictions is low. Here, we get 
the reliability score for a prediction of two targets by averaging the variances of 
the predictions for each of the two targets (the variances of the predicted z-scores 
for intracellular bacterial survival and host cell viability).
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Data analysis workflow 
To identify candidate compounds in the set of testing compounds to screen in our 
MelJuSo-Mtb or HeLa-Stm infection models, we followed the data analysis 
workflow outlined in Supplementary Figure 1B. First, we used the training 
dataset to construct a predictive model (a PCT) using a data-mining algorithm (the 
PCT algorithm). Next, the predictive model was applied to the testing set to obtain 
the predictions for the activity of the compounds, expressed as z-scores. Finally, 
we calculated a reliability score for each prediction for a test compound.

	 This data analysis workflow resulted in a small set of selected candidate 
compounds from all of the 460,580 compounds in the testing set. Predicted Mtb 
hits were defined as compounds with a predicted intracellular bacterial survival z-
score below -2 and a host cell viability z-score between -1 and 1 with a prediction 
reliability greater than 0.5, or an intracellular bacterial survival z-score below -1.75, 

⬆ Supplementary Figure 3. Illustration of the ensemble learning method of 
bagging. 
From the training set of examples E, n bootstrap samples are created (E1, E2, ..., 
En). Predictive models are then constructed (using a tree construction algorithm) 
on each of the n replicates. The predictions of the base predictive models (L1, 
L2... Ln) are combined by a voting (averaging) scheme into the final prediction (L) 
of the ensemble.
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a host cell viability z-score between -0.75 and 0.75 and a prediction reliability 
higher than 0.75. This yielded a total of 47 candidate compounds (Table 4). 
Predicted Stm hits were defined as compounds with a predicted intracellular 
bacterial survival z-score below -2, a host cell viability z-score between -1 and 1 
and a prediction reliability greater than 0.5 or an intracellular bacterial survival z-
score below -1.5, a host cell viability z-score between -0.75 and 0.75 and a 
prediction reliability higher than 0.5. This yielded a total of 30 candidate 
compounds (Table 5). From the resulting lists of predicted hits, compounds were 
then selected for further experiments based on their commercial availability.
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