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Stress-induced mast cell activation 
contributes to atherosclerotic 
plaque destabilization
H. Maxime Lagraauw1,4, Anouk Wezel1,2,5, Daniël van der Velden1,3,6, Johan Kuiper1 &  
Ilze Bot   1

Mast cells accumulate in the perivascular tissue during atherosclerotic plaque progression and 
contribute to plaque destabilization. However, the specific triggers for mast cell activation in 
atherosclerosis remain unresolved. We hypothesized that psychological stress-induced activation of 
mast cells may contribute to plaque destabilization. To investigate this, apoE−/− mice on Western-
type diet were exposed to 120′ restraint stress. A single episode of restraint caused a significant 
increase in mast cell activation in the heart. In addition to a rise in serum corticosterone and changes in 
circulating leukocyte populations, we observed an increase in the circulating pro-inflammatory cytokine 
interleukin (IL)-6 in the stressed mice. Subsequent characterization of the atherosclerotic plaques 
revealed a high incidence and larger size of intraplaque hemorrhages in stressed mice. In mast cell-
deficient apoE−/− mice, restraint stress affected circulating leukocyte levels, but did not increase plasma 
IL-6 levels. Furthermore, we did not observe any intraplaque hemorrhages in these mice upon stress, 
strongly indicating the involvement of a mast cell-dependent response to stress in atherosclerotic 
plaque destabilization. In conclusion, we demonstrate that acute stress activates mast cells, which 
induces the incidence of intraplaque hemorrhage in vivo, identifying acute stress as a risk factor for 
atherosclerotic plaque destabilization.

Acute cardiovascular syndromes (ACS), such as acute myocardial infarction and stroke remain principle causes 
of death worldwide1,2. In addition to traditional risk factors for ACS such as dyslipidemia, diabetes and obesity, 
psychological stress is receiving increased attention as both a contributing factor to various disorders, including 
cardiovascular disease3. For instance, the INTERHEART study indicated that the presence of chronic psychoso-
cial stressors, such as work stress, increases the risk of myocardial infarction4, and also acute stress has been asso-
ciated with an increase incidence of ACS5. Very recently, activity of the amygdala, an area of the brain involved 
in stress, was seen to associate with the incidence of ACS via bone marrow activation and arterial inflammation6. 
Although these data remain associative, the immune system seems to actively participate in stress-induced ACS. 
Previously, we and others have established a key role for the inflammatory mast cell in atherosclerosis and espe-
cially in the destabilization of advanced atherosclerotic plaques7,8. Furthermore, these experimental animal data 
are in line with human data, correlating perivascular mast cell numbers and activation status with disease pro-
gression and the incidence of ACS9. As mast cells are shown to accumulate in and near atherosclerotic lesions, 
these cells are uniquely located to respond to acute triggers and subsequently release their pro-atherogenic con-
tent. Being in close proximity to perivascular neurons10 and expressing different types of neuropeptide and hor-
mone receptors, a neuron-mast cell connection is likely to play an exacerbating role in cardiovascular diseases. 
Combined, the epidemiological and experimental data suggest a pro-atherogenic role for stress-induced mast cell 
activation. However, the direct effects on advanced atherosclerosis, plaque stability and its implications for CVD 
have not yet been established. In this study we therefore evaluated mast cell-dependent effects of acute stress on 
atherosclerotic lesion stability in mice.
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Results
Restraint stress activates perivascular mast cells.  To evaluate the effect of acute physical and psycho-
logical stress on perivascular mast cell activation we subjected male apoE−/− mice to a restraint stress protocol. 
A time course experiment was performed to determine the optimal stress time resulting in mast cell activation. 
Restraint stress induced a quick and strong increase in circulation glucocorticoid levels (P < 0.05, Fig. 1A), indi-
cating HPA-axis activation. Furthermore, as shown before11, we observed a significant decrease in total white 
blood cell counts (Fig. 1B), which was caused by a reduction in blood monocyte and lymphocyte numbers, while 
the amount of circulating neutrophils was not affected by stress (Fig. 1C). The relative leukocyte composition in 
blood shifted to an increased percentage of neutrophils and a reduction in lymphocytes and monocytes (Fig. 1D). 
Serum IL-6 levels were significantly higher in the stressed mice compared to unstressed mice (Fig. 2A). Next, 
we assessed perivascular mast cell numbers and activation status by immunohistochemical staining of heart 
cross-sections at the level of the aortic root. While absolute mast cell numbers in the perivascular area of the 
aortoc root were similar in all groups, the percentage of activated mast cells, scored by the presence of granules 
deposited outside the mast cell (Fig. 2B), was significantly increased upon stress exposure (37.3 ± 1.8% unstressed 
vs 50.7 ± 5.0% in 120′ stressed mice, Fig. 2C, P < 0.05). Serum levels of the mast cell-granule derived mediator 
β-hexosaminidase significantly correlated with the percentage of activated mast cells (Fig. 2D). As apoE−/− mice 

Figure 1.  (A) Restraint stress significantly increased plasma corticosterone levels (n = 6 per group, one-way 
ANOVA followed by Dunnett’s multiple comparisons test). (B) Automated differential cell counting analysis 
of blood from non-stressed and 120′ stressed apoE−/− mice showed a significant decrease in circulating WBC 
levels, which was mainly caused by a reduction in (C) lymphocytes and monocytes directly after stress exposure, 
both in numbers and as percentage of the total WBC population. Circulating neutrophil numbers were 
increased. n = 6 per group, *P < 0.05, **P < 0.01, ***P < 0.001. All data in B and C were analyzed using a two-
sided unpaired student T-test.
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subjected to 2 hours of restraint stress showed a prominent increase in perivascular mast cell activation we used 
this experimental setup for subsequent experiments.

Stress-induced mast cell activation in atherosclerosis.  Next, we investigated the effects of acute 
stress-induced mast cell activation in an atherosclerotic setting. Western-type diet fed apoE−/− mice were sac-
rificed three days after exposure to the stressor, a time point after which mast cell activation was been shown 
to have the most prominent effects on the composition of the atherosclerotic lesion7 (Fig. 3A). Again, 120′ 
restraint produced a strong stress response, indicated by a rise in glucocorticoid levels (Fig. 3B). As expected 
at this time-point, lesion size in the aortic root was similar between the groups (Fig. 3C). Also, at this timepoint 
after the stress protocol, we did not observe a significant increase in the percentage of activated perivascular 
mast cells in the stressed mice anymore (Fig. 3D). Apoptotic cell numbers or relative necrotic core area did not 
differ between stressed and unstressed mice (data not shown). Relative collagen content did not differ between 
the groups (Fig. 3E). Interestingly, we observed intraplaque hemorrhages (IPH), a hallmark of unstable plaques 
characterized by the presence of intimal erythrocytes in 5 out of 13 mice in the stress group (Fig. 3F). In contrast, 
only one IPH was detected in the unstressed mice. In addition, when we quantified the relative area of the intimal 
erythrocytes, the IPH in the stressed mice were significant larger compared to control mice (Fig. 3F).

To firmly establish the contribution of mast cells to the stress-dependent effects on plaque stability, we next 
evaluated the effects of acute stress on plaque stability in the mast cell deficient apoE−/−KitW-sh/W-sh mice. In this 
experiment, Western-type diet fed apoE−/−KitW-sh/W-sh mice were exposured to the stressor. A subset of mice was 
bled immediately after the stress protocol and as expected, stress exposure induced similar effects in the WBC 
populations as compared to the apoE−/− mice (Fig. 4A). Strikingly however, IL-6 levels did not rise upon acute 
stress in the apoE−/−KitW-sh/W-sh mice (Fig. 4B), and also did not differ between the groups at the time of sacrifice 
(i.e. 3 days after the stress protocol, Fig. 4C). No significant differences in plaque size were observed between the 
stressed and non-stressed apoE−/−KitW-sh/W-sh mice (Fig. 4D), while we also did not observe a significant differ-
ence in relative collagen content of the plaques (34 ± 2% in the non-stressed group versus 31 ± 3% in the stressed 
group). Strikingly, no intraplaque hemorrhages could be detected in any of the aortic root plaques of either the 
non-stressed or stressed mice, suggesting that stress-induced plaque destabilization is, at least partly, mediated by 
a mast cell-dependent response (Fig. 4E).

Figure 2.  (A) Plasma IL-6 levels were significantly increased in stressed versus non-stressed mice (n = 6 per 
group, Mann-Whitney test). (B) Representative images of resting (non-activated, arrows) and degranulating 
(activated, arrow heads) perivascular mast cells in the aortic root. (C) Restraint stress increased mast cell 
activation in the aortoc root (n = 6 per group, one-way ANOVA followed by Sidak’s multiple comparisons test). 
(D) The percentage of activated aortic root mast cells significantly correlated with serum β-hexosaminidase 
activity levels. (Spearman’s correlation, all mice pooled, n = 30). *P < 0.05.
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Discussion
Plaque inflammation and degradation of the fibrous cap are prerequisites for plaque rupture and identifying risk 
factors fueling the inflammatory response is key in preventing ACS12. The stress response and its main mediators 
(glucocorticoids, adrenalin and noradrenalin) are among the most potent immune modulatory agents known to 
men. Considerable evidence exist for a detrimental and bi-directional role for psychological stress in allergies, 
asthma and skin diseases13,14. However, such implications for ACS are less well understood. In the current study, 
we show that restraint stress, a mouse model for acute physical and psychological stress, activates aortic root mast 
cells resulting in a more unstable atherosclerotic plaque phenotype.

In the human arterial wall, mast cells have been shown to reside in the perivascular tissue10, but also in the 
intima of the human atherosclerotic plaque mast cells has been detected15. More specifically, mast cells were 
shown to accumulate in the shoulder region of coronary atheroma. There, these mast cells may degranulate and 

Figure 3.  (A) Schematic overview of the experimental setup to evaluate the mast cell contribution to acute 
stress-induced cardiovascular complications. (B) Stress-induced increase in circulating corticosterone 
level in apoE−/− mice (n = 13 per group, one-way ANOVA followed by Tukey’s multiple comparisons test). 
Atherosclerotic lesion size (C), mast cell activation status (D) or collagen content (E) did not differ between the 
groups at 3 days after the stress protocol (n = 13, two-sided unpaired student T-test). (F) Representative pictures 
of an intraplaque hemorrhage (IPH), displaying erythrocytes inside the atherosclerotic plaque. Amount and 
percentage of intraplaque hemorrhages in each group (Fisher’s exact test) and quantification of the IPH area 
demonstrates significantly larger bleedings on the stressed mice compared to the controls (Mann-Whitney test).
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release both chymase and tryptase, as intraplaque mast cells were seen to contain both proteases16. These pro-
teases, and other mast cells mediators such as chemokines and cytokines, have been shown to enhance smooth 
muscle cell apoptosis17, collagen degradation18, vascular leakage and overall inflammatory status of the plaque7, 
thereby potentially contributing to plaque instability. In addition, the mast cell proteases can activate matrix 
metalloproteinases19, which in turn can degrade extracellular matrix molecules, thus providing an additional 
mechanism via which mast cells contribute to plaque destabilization. Previous work from our group and others 
has demonstrated there are several neuropeptides that can induce mast cell activation in atherosclerosis, such as 
Substance P20 and Neuropeptide Y21. Furthermore, a recent literature review indeed showed that stress can pre-
cipitate acute coronary syndromes and demonstrated an important role for coronary mast cell activation through 
the stress hormone corticotropin-releasing hormone as well as other neuropeptides22.

Our data are in line with previous results showing cardiac mast cell degranulation and histamine secretion 
upon acute stress exposure23. We also show that restraint stress increases plasma IL-6 levels, which corresponds 
to observations in human studies, in which circulating IL-6 levels are associated with stress-related disorders3. 
Circulating IL-6 levels have also been shown to associate with cardiovascular disease24,25, and plasma IL-6 levels 
were actually reduced in the CANTOS trials upon treatment with canakinumab26. In our experimental study, 
IL-6 levels failed to rise upon stress exposure in the mast cell deficient mice, suggesting that the mast cell is an 
important source of IL-6 in episodes of stress. These data comply with a previous study, in which serum IL-6 levels 
were increased upon ischemia-reperfusion in wild-type mice, which did not occur in mast cells deficient W/Wv 
mice27. In our study, we measured increased mast cell activation by analyzing the amount of degranulating mast 
cells, however cytokines, including IL-6, can be released from mast cells via non-degranulation pathways as well. 
For example, IL-1 can stimulate mast cells to release IL-6 without granule release and thus active degranulation28.

In our study, restraint stress resulted in an increase in the amount of intraplaque hemorrhages, indicative 
of a more unstable plaque phenotype. Importantly, these stress-induced effects were abolished in the mast cell 
deficient apoE−/−KitW-sh/W-sh, suggesting that mast cells actively participate in stress-induced intraplaque hemor-
rhage. In human atherosclerosis, mast cells have been shown to colocalize with intraplaque microvessels29 and 
by release of basic fibroblast growth factor, mast cells may induce the growth of these immature microvessels in 
the plaque30. The number of mast cells in carotid artery plaques also associated with the number of microvessels 

Figure 4.  (A) Automated differential cell counting analysis of bloodsamples from non-stressed and 
120′ stressed apoE−/−KitW-sh/W-sh mice (n = 4/5 per group, unpaired two-sided student T-test). (B) In the 
apoE−/−KitW-sh/W-sh mice, circulating IL-6 levels were not induced immediately upon stress exposure (n = 5/6 
per group, unpaired two-sided student T-test), and (C) also after 3 days, IL-6 levels did not differ between the 
groups (control: n = 7, stress: n = 13 unpaired two-sided student T-test). (D) Plaque size in apoE−/−KitW-sh/W-sh 
was not affected at 3 days after the stress protocol (control n = 7, stress n = 11, two-tailed unpaired student 
T-test). (E) Amount and percentages of IPH in apoE−/−KitW-sh/W-sh mice (Fishers exact test).
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and interestingly, with the incidence of intraplaque hemorrhage9. We here speculate that focal mast cell activation 
may, by the release of histamine and its proteases, result in leakiness of these small and immature vessels, subse-
quently leading to intraplaque hemorrhage. By the deposition of erythrocytes and cholesterol these hemorrhages 
in turn contribute to plaque expansion and destabilization31.

Together, the release of mast cell mediators is likely to contribute to the induction of mast cell dependent 
plaque destabilization in this stress model, however this remains to be further established, also at later time points 
after stress exposure. The exact mechanisms via which mast cells are activated during episodes of stress remain 
to be elucidated as well.

In conclusion, we here demonstrate that a single episode of restraint stress, is sufficient to significantly acti-
vate perivascular mast cells, resulting in an increase in serum IL-6 and β-hexosaminidase levels. Such acute 
stress-induced mast cell activation in mice with established atherosclerotic lesions negatively affected plaque 
stability by inducing the intraplaque hemorrhage incidence. Combined these results provide further evidence 
for the important role of mast cells in modulating atherosclerotic plaque stability and highlight the acute stress 
response as a ACS risk factor.

Methods
Animals.  All animal work was approved by the Leiden University Animal Ethics committee and performed 
in compliance with the Dutch government guidelines and the Directive 2010/63/EU of the European Parliament. 
10–12 weeks old male apoE−/− mice and mast cell deficient apoE−/−KitW-sh/W-sh were obtained from the local ani-
mal breeding facility and all animals had access to food and water ad libitum.

Restraint-stress model.  All stress experiments were performed between 9:00 AM and noon, a period in 
which individual differences in corticosterone levels in mice are relatively small11. 24 male apoE−/− mice were 
subjected to restrained stress by immobilization in a well-ventilated 50 mL Corning tube for 30′, 60′, 90′ or 120′ 
(n = 6 per time point) while control mice were left undisturbed in their home cage. Directly after the indicated 
stress-time the mice were terminally anaesthetized by subcutaneous injections with ketamine (100 mg/mL), 
sedazine (25 mg/mL) and atropine (0.5 mg/mL). Deep anesthesia was established by toe pinch reflex, after which 
the mice were sacrificed. Total cell count, neutrophils, monocyte and lymphocyte counts in blood were analyzed 
using an automated XT-2000iV veterinary hematology analyzer (Sysmex Europe GMBH, Norderstedt, Germany). 
Serum IL-6 levels were determined by ELISA according to the manufacturer’s protocol (BD Biosciences). Hearts 
were excised and briefly fixed in 3.7% neutral-buffered formalin (Formal-Fixx; Shandon Scientific Ltd, UK) 
before further processing.

Serum analysis.  Blood samples for basal corticosterone analysis were drawn by tail cut between 9:00 AM 
and noon. Levels of corticosterone were determined using a 125-I radioimmunoassay (RIA) with a lower detec-
tion limit of 5 ng/ml, according to the manufacturer’s specifications (MP Biomedicals, Illkirch-Graffenstaden, 
France). To measure β-hexosaminidase levels 50 μL of serum was added to 50 μL 2 mM 4-nitrophenyl 
N-acetyl-b-D-glucosaminide (Sigma, Germany) in 0.2 M citrate (pH 4.5) and incubated at 37 °C for 2 hours. 
After addition of 150 μL 1 M Tris (pH 9.0), absorbance was measured at 405 nm.

Atherosclerosis.  Atherosclerotic lesion formation was induced by feeding male apoE−/− mice (n = 39) a 
Western-type diet (0.25% cholesterol and 15% cocoa butter; Special Diet Services, Witham, Essex, UK) for 6 
weeks. Blood samples were taken at the start of the experiment, at 2 and 5 weeks of WTD feeding by tail cut and 
plasma was obtained by centrifugation at 8,000 rpm for 10 min. Levels of total plasma cholesterol were measured 
spectrophotometrically using enzymatic procedures (Roche Diagnostics, Almere, the Netherlands). At 6 weeks 
mice were randomly assigned to either the undisturbed control or the 120′ restraint stress (n = 13 per group) and 
subjected to the stress protocol. Three days after stress all mice were terminally anaesthetized by subcutaneous 
injections with ketamine (100 mg/mL), sedazine (25 mg/mL) and atropine (0.5 mg/mL). Deep anesthesia was 
established by toe pinch reflex, after which their vascular system was perfused with PBS at a continuous low flow 
via heart puncture in the left ventricle. Blood was processed for Sysmex or ELISA/RIA as described above. Heart, 
skin and lung tissue were fixated in 3.7% neutral-buffered formalin (Formal-fixx; Shandon Scientific Ltd, UK) 
before further processing. A similar experimental setting was applied to evaluate the effects of stress in mast cell 
deficient male apoE−/−KitW-sh/W-sh mice (no stress: n = 7, 120′ stress: n = 13).

Plaque morphometry and immunohistochemistry.  Harvested hearts were fixated in 3.7% 
neutral-buffered formalin solution (Formal-fixx; Shandon Scientific Ltd, UK) and embedded in O.C.T compound 
(Tissue-Tek, Sakura Finetek, CA, USA). Once the aortic root was identified by the appearance of aortic valve 
leaflets, transverse 10-µm sections were prepared on a Leica CM 3050 S Cryostat (Leica Instruments, Nassloch, 
Germany) and mounted on gelatin-coated slides. Mean lesion area (in µm2) was calculated from six Oil-Red-O 
stained sections in distal direction starting at the point where all three aortic valve leaflets first appeared. Leica 
Qwin image analysis software was used for morphometric analysis of the atherosclerotic burden. Mast cells were 
visualized by chloroacetate esterase staining according to manufacturer’s protocol (CAE, Sigma, Germany) and 
degranulation status was assessed manually by bright-field microscopy as described previously7. Mast cells were 
identified and counted in the perivascular tissue of the aortic root at the site of atherosclerosis. A mast cell was 
considered resting when all granula were maintained inside the cell, while mast cells were assessed as activated 
when granula were deposited in the tissue surrounding the mast cell.

In addition, immunohistochemical stainings were performed to assess plaque composition and stabil-
ity. Sections were stained for collagen (picrosirius red) and macrophages (MOMA-2) as described previ-
ously32. Necrotic core area was defined as the a-cellular, debris-rich plaque area and represented as percentage 
of total plaque area. Apoptosis was visualized using a terminal dUTP nick-end labelling (TUNEL) kit (Roche 
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Diagnostics). As another measure of lesion destabilization the amount and surface area of intraplaque hem-
orrhages (IPH) were determined as described before7. Presence of masses of intimal erythrocytes, free in the 
plaque matrix or filling the necrotic core, was classified as intraplaque hemorrhage33. For detection of intraplaque 
hemorrhage, we analyzed all hematoxylin & eosin-stained sections (at 50 µM intervals) for each mouse having 
atherosclerotic plaques. Furthermore, erythrocytes were visualized by fluorescence microscopy (erythrocyte aut-
ofluorescence at 560 nm emission wavelength). All morphometric analyses were performed by blinded independ-
ent operators (I.B. and H.M.L.).

Statistical analysis.  Data are expressed as mean ± SEM. A two-tailed student T-test was used to com-
pare normally distributed data between individual groups, while non-parametric data were analyzed using 
a Mann-Whitney test. For comparison of three or more different groups, data were analyzed with a one-way 
ANOVA followed by a Tukey’s, Dunnett’s or Sidak’s multiple comparisons test. Correlations were analyzed using a 
Spearman’s correlation test. Frequency data analysis was performed by means of the Fisher’s exact test. Probability 
values of P < 0.05 were considered significant.

Data Availability
The data generated during and/or analysed in this study are available from the corresponding author on reason-
able request.
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