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Abstract
Synchronization of neurons forming a network with a hierarchical structure is essential
for the brain to be able to function optimally. In this paper we study synchronization of
phase oscillators on the most basic example of such a network, namely, the hierarchical
lattice. Each site of the lattice carries an oscillator that is subject to noise. Pairs of oscillators
interact with each other at a strength that depends on their hierarchical distance, modulated
by a sequence of interaction parameters. We look at block averages of the oscillators on
successive hierarchical scales, which we think of as block communities. In the limit as
the number of oscillators per community tends to infinity, referred to as the hierarchical
mean-field limit, we find a separation of time scales, i.e., each block community behaves
like a single oscillator evolving on its own time scale. We argue that the evolution of the
block communities is given by a renormalized mean-field noisy Kuramoto equation, with a
synchronization level that depends on the hierarchical scale of the block community. We find
three universality classes for the synchronization levels on successive hierarchical scales,
characterized in terms of the sequence of interaction parameters. What makes our model
specifically challenging is the non-linearity of the interaction between the oscillators. The
main results of our paper therefore come in three parts: (I) a conjecture about the nature of the
renormalisation transformation connecting successive hierarchical scales; (II) a truncation
approximation that leads to a simplified renormalization transformation; (III) a rigorous
analysis of the simplified renormalization transformation.We provide compelling arguments
in support of (I) and (II), but a full verification remains an open problem.
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1 Introduction

The concept of spontaneous synchronization is ubiquitous in nature. Single oscillators (like
flashing fireflies, chirping crickets or spiking brain cells) may rotate incoherently, at their own
natural frequency, when they are isolated from the population, but within the population they
adapt their rhythm to that of the other oscillators, acting as a system of coupled oscillators.
There is no central driving mechanism, yet the population reaches a globally synchronized
state via mutual local interactions.

The omnipresence of spontaneous synchronization triggered scientists to search for a
mathematical approach in order to understand the underlying principles. The first steps were
taken byWinfree [19,20], who recognized that spontaneous synchronization should be under-
stood as a threshold phenomenon: if the coupling between the oscillators is sufficiently strong,
then a macroscopic part of the population freezes into synchrony. Although the model pro-
posed byWinfree was too difficult to solve analytically, it inspired Kuramoto [8,9] to suggest
a more mathematically tractable model that captures the same phenomenon. The Kuramoto
model has since been used successfully to study synchronization in a variety of different con-
texts. By now there is an extended literature, covering aspects like phase transition, stability,
and effect of disorder (for a review, see Acébron et al. [1]).

Mathematically, the Kuramoto model still poses many challenges. As long as the interac-
tion is mean-field (meaning that every oscillator interacts equally strongly with every other
oscillator), a fairly complete theory has been developed. However, as soon as the interaction
has a non-trivial geometry, computations become cumbersome. There is a large literature for
theKuramotomodel on complex networks, where the population is viewed as a randomgraph
whose vertices carry the oscillators and whose edges represent the interaction. Numerical
and heuristic results have been obtained for networks with a small-world, scale-free and/or
community structure, showing a range of interesting phenomena (for a review, see Arenas
et al. [2]). Rigorous results are rare. In the present paper we focus on one particular network
with a community structure, namely, the hierarchical lattice.

The remainder of this paper is organised as follows. Sections 1.1–1.3 are devoted to the
mean-field noisy Kuramoto model. In Sect. 1.1 we recall definitions and basic properties.
In Sect. 1.2 we recall the McKean–Vlasov equation, which describes the evolution of the
probability density for the phase oscillators in the mean-field limit. In Sect. 1.3 we take a
closer look at the scaling properties of the order parameters towards the mean-field limit.
In Sect. 1.4 we define the hierarchical lattice and in Sect. 1.5 introduce the noisy Kuramoto
model on the hierarchical lattice, which involves a sequence of interaction strengths (Kk)k∈N
acting on successive hierarchical levels. Section 2 contains our main results, presented in
the form of a conjecture, a truncation approximation, and rigrorous theorems. These concern
the hierarchical mean-field limit and show that, for each k ∈ N, the block communities at
hierarchical level k behave like the mean-field noisy Kuramoto model, with an interaction
strength and a noise that depend on k and are obtained via a renormalization transformation
connecting successive hierarchical levels. There are three universality classes for (Kk)k∈N,
corresponding to sudden loss of synchronization at a finite hierarchical level, gradual loss of
synchronization as the hierarchical level tends to infinity, and no loss of synchronization. The
renormalization transformation allows us to describe these classes in some detail. In Sect. 3
we analyse the renormalization scheme, in Sect. 4 we find criteria for the universality classes.
Appendix provides numerical examples and computations.
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190 D. Garlaschelli et al.

Fig. 1 Mean-field interaction of N = 6 oscillators with natural frequencies ωi and phases θi , i = 1, . . . , 6,
evolving according to (1.3)

1.1 Mean-Field KuramotoModel

We begin by reviewing the mean-field Kuramoto model. Consider a population of N ∈ N

oscillators, and suppose that the i th oscillator has a natural frequency ωi , such that

� ωi , i = 1, . . . , N , are i.i.d. and are drawn from

a common probability distribution μ on R.
(1.1)

Let the phase of the i th oscillator at time t be θi (t) ∈ R. If the oscillators were not interacting,
then we would have the system of uncoupled differential equations

dθi (t)

dt
= ωi , i = 1, . . . , N . (1.2)

Kuramoto [8,9] realized that the easiest way to allow for synchronization was to let every
oscillator interact with every other oscillator according to the sine of their phase difference,
i.e., to replace (1.2) by:

dθi (t)

dt
= ωi + K

N

N∑

j=1

sin
[
θ j (t) − θi (t)

]
, i = 1, . . . , N . (1.3)

Here, K ∈ (0,∞) is the interaction strength, and the factor 1
N is included to make sure

that the total interaction per oscillator stays finite in the thermodynamic limit N → ∞. The
coupled evolution equations in (1.3) are referred to as the mean-field Kuramoto model. An
illustration of the interaction in this model is given in Fig. 1.
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r = 0.095 r = 0.929(a) (b)

Fig. 2 Phase distribution of oscillators for two different values of r . The arrow represents the complex number
reiψ

If noise is added, then (1.3) turns into the mean-field noisy Kuramoto model, given by

dθi (t) = ωi dt + K

N

N∑

j=1

sin
[
θ j (t) − θi (t)

]
dt + D dWi (t), i = 1, . . . , N . (1.4)

Here, D ∈ (0,∞) is the noise strength, and (Wi (t))t≥0, i = 1, . . . , N , are independent
standard Brownian motions on R. The coupled evolution equations in (1.4) are stochastic
differential equations in the sense of Itô (see e.g. Karatzas and Shreve [7]). As initial condition
we take

� θi (0), i = 1, . . . , N , are i.i.d. and are drawn from

a common probability distribution ρ on [0, 2π).
(1.5)

In order to exploit the mean-field nature of (1.4), the complex-valued order parameter
(with i the imaginary unit)

rN (t) eiψN (t) = 1

N

N∑

j=1

eiθ j (t) (1.6)

is introduced. In (1.6), rN (t) is the synchronization level at time t and takes values in [0, 1],
while ψN (t) is the average phase at time t and takes values in [0, 2π). (Note that ψN (t)
is properly defined only when rN (t) > 0.) The order parameter (r , ψ) is illustrated in
Fig. 2 (r = 0 corresponds to the oscillators being completely unsynchronized, r = 1 to the
oscillators being completely synchronized).

By rewriting (1.4) in terms of (1.6) as

dθi (t) = ωi dt + KrN (t) sin
[
ψN (t) − θi (t)

]
dt + D dWi (t), i = 1, . . . , N , (1.7)

we see that the oscillators are coupled via the order parameter, i.e., the phases θi are pulled
towards ψN with a strength proportional to rN . Note that rN (t) and ψN (t) are random
variables that depend on μ, D and ρ.
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192 D. Garlaschelli et al.

In the mean-field limit N → ∞, the system in (1.7) exhibits what is called “propagation
of chaos”, i.e., the evolution of single oscillators becomes autonomous. Indeed, let the order
parameter associated with ρ in (1.5) be the pair (R, Φ) ∈ [0, 1] × [0, 2π) defined by

R eiΦ =
∫ 2π

0
ρ(dθ) eiθ . (1.8)

Suppose that R > 0, so that Φ is properly defined. Suppose further that

� the disorder distribution μ in (1.1) is symmetric. (1.9)

Then, as we will see in Sects. 1.2–1.3, the limit as N → ∞ of the evolution of a single
oscillator, say θ1, is given by

dθ1(t) = ω1 dt + Kr(t) sin
[
Φ − θ1(t)

]
dt + D dW1(t), (1.10)

where (W1(t))t≥0 is a standard Brownian motion, and r(t) is driven by a deterministic
relaxation equation such that

r(0) = R, lim
t→∞ r(t) = r for some r ∈ [0, 1). (1.11)

The parameter r = r(μ, D, K ) will be identified in (1.21) below (and the convergence holds
at least when R is close to r ; see Remark 1 below). The evolution in (1.10) is not closed
because of the presence of r(t), but after a transient period it converges to the autonomous
evolution equation

dθ1(t) = ω1 dt + Kr sin
[
Φ − θ1(t)

]
dt + D dW1(t). (1.12)

Without loss of generality, we may calibrate Φ = 0 by rotating the circle [0, 2π) over
−Φ. After that the parameters R, Φ associated the initial distribution ρ are gone, and only
r remains as the relevant parameter. It is known (see e.g. (1.23) below) that there exists a
critical threshold Kc = K (μ, D) ∈ (0,∞) separating two regimes:

– For K ∈ (0, Kc] the system relaxes to an unsynchronized state (r = 0).
– For K ∈ (Kc,∞) the system relaxes to a partially synchronized state (r ∈ (0, 1)), at

least when ρ in (1.5) is chosen such that R is close to r (see Remark 1 below).

See Strogatz [16] and Luçon [11] for overviews.

1.2 McKean–Vlasov Equation

For the system in (1.4), Sakaguchi [13] showed that in the limit as N → ∞, the probability
density for the phase oscillators and their natural frequencies (with respect to λ × μ, with λ

the Lebesgue measure on [0, 2π ] and μ the disorder measure on R) evolves according to the
McKean–Vlasov equation

∂

∂t
p(t; θ, ω) = − ∂

∂θ

[
p(t; θ, ω)

{
ω + Kr(t) sin

[
ψ(t) − θ

]}]+ 1

2

∂2

∂θ2
p(t; θ, ω),

(1.13)

where

r(t) eiψ(t) =
∫

R

μ(dω)

∫ 2π

0
dθ eiθ p(t; θ, ω), (1.14)
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is the continuous counterpart of (1.6). Note that we have, without loss of generality, put
D = 1. If ρ has a density, say θ �→ ρ(θ), then p(0; θ, ω) = ρ(θ) for all ω ∈ R.

By (1.9), we can again calibrate the average phase to be zero, i.e.,ψ(t) = ψ(0) = Φ = 0,
t ≥ 0, in which case the stationary solutions of (1.13) satisfy

0 = − ∂

∂θ

[
p(θ, ω) (ω − Kr sin θ)

]+ 1

2

∂2

∂θ2
p(θ, ω). (1.15)

The solutions of (1.15) are of the form

pλ(θ, ω) = Aλ(θ, ω)
∫ 2π
0 dφ Aλ(φ, ω)

, λ = 2Kr , (1.16)

with

Aλ(θ, ω) = Bλ(θ, ω)

(
e4πω

∫ 2π

0

dφ

Bλ(φ, ω)
+ (1 − e4πω)

∫ θ

0

dφ

Bλ(φ, ω)

)
,

Bλ(θ, ω) = eλ cos θ+2θω.

(1.17)

After rewriting

Aλ(θ, ω) = Bλ(θ, ω)

(∫ 0

θ−2π

dφ

Bλ(−φ,−ω)
+
∫ θ

0

dφ

Bλ(φ, ω)

)
(1.18)

and noting that Bλ(φ, ω) = Bλ(−φ,−ω), we easily check that

pλ(θ, ω) = pλ(−θ,−ω), (1.19)

a property we will need later. In particular, in view of (1.9), we have
∫

R

μ(dω)

∫ 2π

0
dθ pλ(θ, ω) sin θ = 0. (1.20)

Since ψ(t) = ψ(0) = Φ = 0, we see from (1.14) that pλ(θ, ω) in (1.16) is a solution if
and only if r satisfies

∫

R

μ(dω)

∫ 2π

0
dθ pλ(θ, ω) cos θ = r , λ = 2Kr . (1.21)

This gives us a self-consistency relation for

r = r(K ) (1.22)

a situation that is typical for mean-field systems, which can in principle be solved (and
possibly hasmore than one solution). The equation in (1.21) always has a solutionwith r = 0:
the unsynchronized state corresponding to p0(θ, ω) = 1

2π for all θ, ω. A (not necessarily
unique) solution with r ∈ (0, 1) exists when the coupling strength K exceeds a critical
threshold Kc = Kc(μ). When this occurs, we say that the oscillators are in a partially
synchronized state. As K increases also r increases (see Fig. 3). Moreover, r ↑ 1 as K → ∞
and we say that the oscillators converge to a fully synchronized state. When K crosses Kc, the
system exhibits a second-order phase transition, i.e., K �→ r(K ) is continuous at K = Kc.

For the case where the frequency distribution μ is symmetric and unimodal, an explicit
expression is known for Kc:

1

Kc
=
∫

R

μ(dω)
1

1 + 4ω2 . (1.23)
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194 D. Garlaschelli et al.

Fig. 3 Picture of K �→ r(K ) for
fixed μ and D

K

r(K)

Kc

1

Thus, when the spread ofμ is large compared to K , the oscillators are not able to synchronize
and they rotate near their own frequencies. As K increases, this remains the case until K
reaches Kc. After that a small fraction of synchronized oscillators starts to emerge, which
becomes of macroscopic size when K moves beyond Kc. Forμ symmetric and unimodal it is
conjectured that for K > Kc there is a unique synchronized solution pλ(·, ·) with r ∈ (0, 1)
solving (1.21) (Luçon [11, Conjecture 3.12]). This conjecture has been proved when μ is
narrow, i.e., the disorder is small (Luçon [11, Proposition 3.13]).

Remark 1 Stability of stationary solutions has been studied by Strogatz and Mirollo [17],
Strogatz et al. [18], Luçon [11, Section 3.4]. For symmetric unimodal disorder, the unsyn-
chronized state is linearly stable for K < Kc and linearly unstable for K > Kc, while the
synchronized state for K > Kc is linearly stable at least for small disorder. Not much is
known about stability for general disorder. �	

There is no closed form expression for Kc beyond symmetric unimodal disorder, except
for special cases, e.g. symmetric binary disorder. We refer to Luçon [11] for an overview. A
large deviation analysis of the empirical process of oscillators has been carried out in Dai
Pra and den Hollander [5].

1.3 Diffusive Scaling of the Average Phase

Bertini et al. [3] showed that for the mean-field noisy Kuramoto model without disorder,
in the limit as N → ∞ the synchronization level evolves on time scale t and converges to
a deterministic limit, while the average phase evolves on time scale Nt and converges to a
Brownian motion with a renormalized noise strength. 1

1 The fact that the average phase evolves slowly was already noted by Ha and Slemrod [6] for the Kuramoto
model with disorder and without noise, while an approximate solution was obtained by Sonnenschein and
Schimansky-Geier [15] for the Kuramoto model without disorder and with noise.
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Theorem 1 (Bertini et al. [3]) Suppose that μ = δ0 and r > 0. Then, in distribution,

lim
N→∞ ψN (Nt) = ψ∗(t),

lim
N→∞ rN (t) = r(t),

(1.24)

with

dψ∗(t) = D∗ dW∗(t), ψ∗(0) = Φ,

limt→∞ r(t) = r , r(0) = R,
(1.25)

where (W∗(t))t≥0 is a standard Brownian motion and

D∗ = D∗(K , r) = 1√
1 − [I0(2Kr)]−2

, r = r(K ), (1.26)

with I0 the modified Bessel function of order zero given by

I0(λ) = 1

2π

∫ 2π

0
dθ eλ cos θ , λ ∈ [0,∞). (1.27)

The work in [3] also shows that

lim
N→∞ rN (Nt) = r ∀ t > 0, (1.28)

i.e., the synchronization level not only tends to r over time, it also stays close to r on a time
scale of order N . Thus, the synchronization level is much less volatile than the average phase.

In Sect. 3.1 we explain the heuristics behind Theorem 1. This heuristics will play a key role
in our analysis of the Kuramoto model on the hierarchical lattice in the hierarchical mean-
field limit. In fact, Conjecture 1 below will extend Theorem 1 to the hierarchical lattice. It is
important to note that the diffusive scaling only occurs in the modelwithout disorder. Indeed,
for the model with disorder it was shown in Luçon and Poquet [12] that the fluctuations of
the disorder prevail over the fluctuations of the noise, resulting in ‘travelling waves’ for the
empirical distribution of the oscillators. Therefore, also on the hierarchical lattice we only
consider the model without disorder.

1.4 Hierarchical Lattice

The hierarchical lattice of order N consist of countable many vertices that form communities
of sizes N , N 2, etc. For example, the hierarchical lattice of order N = 3 consists of vertices
that are grouped into 1-block communities of 3 vertices, which in turn are grouped into 2-
block communities of 9 vertices, and so on. Each vertex is assigned a label that defines its
location at each block level (see Fig. 4).

Formally, the hierarchical group ΩN of order N ∈ N\{1} is the set

ΩN =
{
η = (η�)�∈N0 ∈ {0, 1, . . . , N − 1}N0 :

∑

�∈N0

η� < ∞
}

(1.29)

with addition modulo N , i.e., (η + ζ )� = η� + ζ � (mod N ), � ∈ N0. The distance on ΩN is
defined as

d : ΩN × ΩN → N0, (η, ζ ) �→ min
{
k ∈ N0 : η� = ζ � ∀ � ≥ k

}
, (1.30)
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196 D. Garlaschelli et al.

Fig. 4 The hierarchical lattice of order N = 3. The vertices live at the lowest level. The tree visualizes their
distance: the distance between two vertices η, ζ is the height of their lowest common branching point in the
tree: d(η, ζ ) = 2 in the picture

i.e., the distance between two vertices is the smallest index fromwhich onwards the sequences
of hierarchical labels of the two vertices agree. This distance is ultrametric:

d(η, ζ ) ≤ min{d(η, ξ), d(ζ, ξ)} ∀ η, ζ, ξ ∈ ΩN . (1.31)

For η ∈ ΩN and k ∈ N0, the k-block around η is defined as

Bk(η) = {ζ ∈ ΩN : d(η, ζ ) ≤ k}. (1.32)

1.5 Hierarchical KuramotoModel

We are now ready to define the model that will be our object of study. Each vertex η ∈ ΩN

carries a phase oscillator, whose phase at time t is denoted by θη(t). Oscillators interact in
pairs, but at a strength that depends on their hierarchical distance. Tomodulate this interaction,
we introduce a sequence of interaction strengths

(Kk)k∈N ∈ (0,∞)N, (1.33)

and we let each pair of oscillators η, ζ ∈ ΩN at distance d(η, ζ ) = d interact as in the
mean-field Kuramoto model with K/N replaced by Kd/N 2d−1, where the scaling factor is
chosen to ensure that the model remains well behaved in the limit as N → ∞. Thus, our
coupled evolution equations read

dθη(t) =
∑

ζ∈ΩN

Kd(η,ζ )

N 2d(η,ζ )−1
sin
[
θζ (t) − θη(t)

]
dt + dWη(t), η ∈ ΩN , t ≥ 0,

(1.34)

where (Wη(t))t≥0, η ∈ ΩN , are i.i.d. standard Brownian motions. As initial condition we
take, as in (1.5),

� θη(0), η ∈ ΩN , are i.i.d. and are drawn from

a common probability distribution ρ(dθ) on [0, 2π).
(1.35)

We will be interested in understanding the evolution of the average phase in the definition of
the order parameter associated with the Nk oscillators in the k-block around η at time Nkt ,
defined by

R[k]
η,N (Nt) eiΦ

[k]
η,N (t) = 1

Nk

∑

ζ∈Bk (η)

eiθζ (Nkt), η ∈ ΩN , t ≥ 0, (1.36)
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where R[k]
η,N (Nt) is the synchronization level at time Nkt and Φ

[k]
η,N (t) is the average phase

at time Nkt . The new time scales Nt and t will turn out to be natural in view of the scaling
in Theorem 1. The synchronization level R[k]

η,N captures the synchronization of the (k − 1)-
blocks, of which there are N in total constituting the k-block around η. These blocks must
synchronize before their average phase Φ

[k]
η,N can begin to move, which is why R[k]

η,N moves

on a different time scale compared to Φ
[k]
η,N . Our goal will be to pass to the limit N → ∞,

look at the limiting synchronization levels around a given vertex, say η = 0N, and classify
the scaling behavior of these synchronization levels as k → ∞ into universality classes
according to the choice of (Kk)k∈N in (1.33).

Note that, for every η ∈ ΩN , we can telescope to write

∑

ζ∈ΩN

Kd(ζ,η)

N 2d(η,ζ )−1
sin
[
θζ (t) − θη(t)

]

=
∑

k∈N

Kk

N 2k−1

∑

ζ∈Bk (η)/Bk−1(η)

sin
[
θζ (t) − θη(t)

]

=
∑

k∈N

( Kk

N 2k−1 − Kk+1

N 2(k+1)−1

) ∑

ζ∈Bk (η)

sin
[
θζ (t) − θη(t)

]
. (1.37)

Inserting (1.37) into (1.34) and using (1.36), we get

dθη(t) =∑k∈N 1
Nk−1

(
Kk − Kk+1

N2

)
R[k]

η,N (N 1−k t) sin
[
Φ

[k]
η,N (N−k t) − θη(t)

]
dt + dWη(t).

(1.38)

This shows that, like in (1.7), the oscillators are coupled via the order parameters associated
with the k-blocks for all k ∈ N, suitably weighted. As for themean-field Kuramotomodel, for
every η ∈ ΩN , R

[k]
η,N (N 1−k t) andΦ

[k]
η,N (N−k t) are random variables that depend on (Kk)k∈N

and D.
When we pass to the limit N → ∞ in (1.38), in the right-hand side of (1.38) only the

term with k = 1 survives, so that we end up with an autonomous evolution equation similar
to (1.10). The goal of the present paper is to show that a similar decoupling occurs at all
block levels. Indeed, we expect the successive time scales at which synchronization occurs
to separate. If there is synchronization at scale k, then we expect the average of the k-blocks
around the origin forming the (k + 1)-blocks (of which there are N in total) to behave as if
they were single oscillators at scale k + 1.

Dahms [4] considers a multi-layer model with a different type of interaction: single layers
labelled by N, each consisting of N oscillators, are stacked on top of each other, and each
oscillator in each layer is interacting with the average phases of the oscillators in all the other
layers, with interaction strengths (K̃k)k∈N (see [4, Section 1.3]). For this model a necessary
and sufficient criterion is derived for synchronization to be present at all levels in the limit as
N → ∞, namely,

∑
n∈N K̃−1

k < ∞ (see [4, Section 1.4]).Wewill see that in our hierarchical
model something similar is happening, but the criterion is rather more delicate.

2 Main Results

In Sect. 2.1 we state a conjecture about the multi-scaling of the system (Conjecture 1 below),
which involves a renormalization transformation describing the synchronization level and the

123



198 D. Garlaschelli et al.

average phase on successive hierarchical levels. In Sect. 2.2 we propose a truncation approxi-
mation that simplifies the renormalization transformation, and argue why this approximation
should be fairly accurate. In Sect. 2.3 we analyse the simplified renormalization transforma-
tion and identify three universality classes for the behavior of the synchronization level as
we move upwards in the hierarchy, give sufficient conditions on (Kk)k∈N for each universal-
ity class (Theorem 3 below), and provide bounds on the synchronization level (Theorem 4
below). The details are given in Sects. 3–4.

2.1 Multi-scaling

Our first result is a conjecture stating that the average phase of the k-blocks behaves like that
of the noisy mean-field Kuramato model described in Theorem 1. Recall the choice of time
scales in (1.36).

Conjecture 1 (Multi-scaling for the block average phases) Fix k ∈ N and assume that R[k] >

0. Then, in distribution,

lim
N→∞ Φ

[k]
0,N (t) = Φ

[k]
0 (t), (2.1)

where (Φ
[k]
0 (t))t≥0 evolves according to the SDE

dΦ[k]
0 (t) = Kk+1 E [k] R[k+1]

0 (t) sin
[
Φ − Φ

[k]
0 (t)

]
dt + D[k] dW [k]

0 (t), t ≥ 0, (2.2)

(W [k]
0 (t))t≥0 is a standard Brownian motion, Φ = 0 by calibration, and

(E [k],D[k]) = T(K�)1≤�≤k (E [0],D[0]), k ∈ N, (2.3)

with (E [0],D[0]) = (1, 1) and T(K�)1≤�≤k a renormalization transformation.

The convergence in (2.1) is as a process on C([0, T ],S) as in Theorem 1 with the time
scaling taken care of in definition (1.36). The evolution in (2.2) is that of a mean-field noisy
Kuramoto model with renormalized coefficients, namely, an effective interaction strength
Kk+1 E [k] and an effective noise strength D[k] (compare with (1.7)). These coefficients are
to be viewed as the result of a renormalization transformation acting on block communities
at levels k ∈ N successively, starting from the initial value (E [0],D[0]) = (1, 1). This initial
value comes from the fact that single oscillators are completely synchronized by definition.
The renormalization transformation at level k depends on the values of K� with 1 ≤ � ≤ k.
It also depends on the synchronization levels R[�] with 1 ≤ � ≤ k, as well as on other
order parameters associated with the phase distributions of the �-blocks with 1 ≤ � ≤ k.
In Sect. 2.2 we will analyse an appro for which this dependence simplifies, in the sense that
only one set of extra order parameter comes into play, namely, Q[�] with 1 ≤ � ≤ k, where
Q[�] is the average of the cosine squared of the phase distribution of the �-block.

The evolution in (2.2) is not closed because of the presence of the term R[k+1]
0 (t), which

comes from the (k + 1)-st block community one hierarchical level up from k. Similarly as
in (1.11), R[k+1]

0 (t) is driven by a deterministic relaxation equation such that

R[k+1]
0 (0) = R, lim

t→∞ R[k+1]
0 (t) = R[k+1]. (2.4)

This relaxation equation will be of no concern to us here (and is no doubt quite involved).
Convergence holds at least for R close to R[k+1] (recall Remark 1). Thus, after a transient
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period, (2.2) converges to the closed evolution equation

dΦ[k]
0 (t) = Kk+1 E [k] R[k+1] sin

[
Φ − Φ

[k]
0 (t)

]
dt + D[k] dW [k]

0 (t), t ≥ 0. (2.5)

The initial values (R, Φ) in (2.4) and (2.5) come from (1.8) and (1.35).
Conjecture 1 perfectly fits the folklore of renormalization theory for interacting particle

systems. The idea of that theory is that along an increasing sequence ofmesoscopic space-time
scales the evolution is the same as on themicroscopic space-time scale, but with renormalised
coefficients that arise from an ‘averaging out’ on successive scales. It is generally hard to carry
through a renormalization analysis in full detail, and there are only a handful of interacting
particle systems for which this has been done with mathematical rigour. Moreover, there are
delicate issues with the renormalization transformation being properly defined. However, in
our model these issues should not arise because of the ‘layered structure’ of the hierarchical
lattice and the hierarchical interaction. Since the interaction between the oscillators is non-
linear, we currently have little hope to be able to turn Conjecture 1 into a theorem and identify
the precise form of T(K�)1≤�≤k . In Sect. 3.2 we will see that the non-linearity of the interaction
causes a delicate interplay between the different hierarchical levels.

In what follows we propose a simplified renormalization transformation T̄(K�)1≤�≤k , based
on a truncation approximation in which we keep only the interaction between successive
hierarchical levels. The latter can be analysed in detail and replaces the renormalization
transformation T(K�)1≤�≤k in Conjecture 1, of which we do not know the details. We also
argue why the truncation approximation is reasonable.

2.2 Truncation Approximation

The truncation approximation consists of replacing T(K�)1≤�≤k by a k-fold iteration of a
renormalization map:

T̄(K�)1≤�≤k = TKk ◦ · · · ◦ TK1 . (2.6)

In other words, we presume that what happens at hierarchical scale k + 1 is dictated only
by what happens at hierarchical scale k, and not by any of the lower scales. These scales do
manifest themselves via the successive interaction strengths, but not via a direct interaction.

Define

I0(λ) = 1

2π

∫ 2π

0
dφ eλ cosφ, λ > 0, (2.7)

which is the modified Bessel function of the first kind. After normalization, the integrand
becomes what is called the von Mises probability density function on the unit circle with
parameter λ, which is φ �→ pλ(φ, 0) in (1.16)–(1.17). We write I ′

0(λ) = I1(λ) and I ′′
0 (λ) =

I2(λ).

Definition 1 (Renormalization map) For K ∈ (0,∞), let TK : [0, 1] × [ 12 , 1] → [0, 1] ×
[ 12 , 1] be the map

(R′, Q′) = TK (R, Q) (2.8)
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defined by

R′ = R
I1(2K R′√Q)

I0(2K R′√Q)
,

Q′ − 1
2 = (Q − 1

2 )

[
2
I2(2K R′√Q)

I0(2K R′√Q)
− 1

]
.

(2.9)

The first equation is a consistency relation, the second equation is a recursion relation. They
must be used in that order to find the image point (R′, Q′) of the original point (R, Q) under
the map TK . �	

With this renormalization mapping we can approximate the true renormalized system.

Approximation 2 After truncation, (2.2) can be approximated by

dΦ[k]
0 (t) = Kk+1 Ē [k] R[k+1]

0 (t) sin
[
Φ − Φ

[k]
0 (t)

]
dt + D̄[k] dW [k]

0 (t), t ≥ 0, (2.10)

with

Ē [k] = Q[k]

R[k] , D̄[k] =
√
Q[k]
R[k] , (2.11)

where

(R[k], Q[k]) = T̄(K�)1≤�≤k (R
[0], Q[0]), (R[0], Q[0]) = (1, 1). (2.12)

We will see in Sect. 3.2 that R[k] plays the role of the synchronization level of the k-blocks,
while Q[k] plays the role of the average of the cosine squared of the phase distribution of the
k-blocks (see (3.33) below).

In the remainder of this sectionwe analyse the orbit k �→ (R[k], Q[k]) in detail.Wewill see
that, under the simplified renormalization transformation, k �→ (R[k], Q[k]) is non-increasing
in both components. In particular, synchronization cannot increasewhen the hierarchical level
goes up.

Remark 2 In Sect. 3.2 we will argue that a better approximation can be obtained by keeping
one more term in the truncation approximation, but that the improvement is minor. �	

2.3 Universality Classes

There are three universality classes depending on the choice of (Kk)k∈N in (1.33), illustrated
in Fig. 5:

(1) Synchronization is lost at a finite level:
R[k] > 0, 0 ≤ k < k∗, R[k] = 0, k ≥ k∗ for some k∗ ∈ N.

(2) Synchronization is lost asymptotically:
R[k] > 0, k ∈ N0, lim

k→∞ R[k] = 0.

(3) Synchronization is not lost asymptotically:
R[k] > 0, k ∈ N0, lim

k→∞ R[k] > 0.

Our second result provides sufficient conditions for universality classes (1) and (3) in terms
of the sum

∑
k∈N K−1

k .

Theorem 3 (Criteria for the universality classes)
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Fig. 5 The dots represent the map
k �→ (R[k], Q[k]) for the three
universality classes, starting from
(R[0], Q[0]) = (1, 1). The dots
move left and down as k
increases

Fig. 6 Caricature showing the
critical surface in the parameter
space and the bounds provided by
Theorem 3

–
∑

k∈N K−1
k ≥ 4 �⇒ universality class (1).

–
∑

k∈N K−1
k ≤ 1√

2
�⇒ universality class (3).

�	
Two examples are: (1) Kk = 3

2 log 2 log(k+1); (3) Kk = 4ek . The scaling behaviour for these
examples is illustrated via the numerical analysis in Appendix (see, in particular, Figs. 10
and 11 below).

The criteria in Theorem 3 are not sharp. Universality class (2) corresponds to a critical
surface in the space of parameters (Kk)k∈N that appears to be rather complicated and certainly
is not (!) of the type

∑
k∈N K−1

k = c for some 1√
2

< c < 4 (see Fig. 6). Note that the full

sequence (Kk)k∈N determines in which universality class the system is.
The behaviour of Kk as k → ∞ determines the speed at which R[k] → R[∞] in univer-

sality classes (2) and (3). Our third theorem provides upper and lower bounds.

Theorem 4 (Bounds for the block synchronization levels)

– In universality classes (2) and (3),

1
4σk ≤ R[k] − R[∞] ≤ √

2 σk, k ∈ N0, (2.13)

with σk =∑�>k K
−1
� < ∞.
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– In universality class (1), the upper bound in (2.13) holds for k ∈ N0, while the lower
bound in (2.13) is replaced by

R[k] − R[k∗−1] ≥ 1
4

k∗−1∑

�=k+1

K−1
� , 0 ≤ k ≤ k∗ − 2. (2.14)

The latter implies that

k∗ ≤ max

{
k ∈ N :

k−1∑

�=1

K−1
� < 4

}
(2.15)

because R[0] = 1 and R[k∗−1] > 0.

In universality classes (2) and (3) we have limk→∞ σk = 0. Depending on how fast k �→ Kk

grows, various speeds of convergence are possible: logarithmic, polynomial, exponential,
superexponential.

3 Multi-scaling for the Block Average Phases

In Sect. 3.1 we explain the heuristics behind Theorem 1. The diffusive scaling of the average
phase in the mean-field noisy Kuramato model, as shown in the first line of (1.24), is a key
tool in our analysis of the multi-scaling of the block average phases in the hierarchical noisy
Kuramoto model, stated in Conjecture 1. The justification for the latter is given in Sect. 3.2.

3.1 Diffusive Scaling of the Average Phase for Mean-Field Kuramato

Proof For the heuristic derivation of the second line of (1.24) we combine (1.13)–(1.14), to
obtain

d

dt
r(t) =

∫ 2π

0
dθ cos θ

×
{
− ∂

∂θ

[
pλ(t; θ)

{
Kr(t) sin[ψ(t) − θ ]}

]
+ 1

2

∂2

∂θ2
pλ(t; θ)

} (3.1)

with λ = 2Kr and pλ(t; θ) = pλ(t; θ, 0) (recall that ω ≡ 0). After partial integration with
respect to θ this becomes (use that θ �→ pλ(t; θ) is periodic)

d

dt
r(t) =

∫ 2π

0
dθ pλ(t; θ)

{
(− sin θ) Kr(t) sin(−θ) + (− cos θ)

1

2

}
, (3.2)

where we use that ψ(t) = ψ(0) = 0. Define

q(t) =
∫ 2π

0
dθ pλ(t; θ) cos2 θ. (3.3)

Then (3.2) reads

d

dt
r(t) =

[
K (1 − q(t)) − 1

2

]
r(t). (3.4)
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We know that

lim
t→∞ q(t) = q =

∫ 2π

0
dθ pλ(θ) cos2 θ (3.5)

with (put ω ≡ 0 in (1.16))

pλ(θ) = eλ cos θ

∫ 2π
0 dφ eλ cosφ

. (3.6)

Note that K (1 − q) − 1
2 = 0 because λ = 2Kr and

∫ 2π

0
dθ pλ(θ) sin2 θ = (1/λ)

∫ 2π

0
dθ pλ(θ) cos θ = r/λ (3.7)

by partial integration. Hence limt→∞ r(t) = r . (The fine details of the relaxation are delicate,
depend on the full solution of the McKean–Vlasov equation in (1.13), but are of no concern
to us here.)

For the derivation of the first line of (1.24) we use the symmetry of the equilibrium
distribution (recall (1.16)–(1.17)), i.e.,

pλ(θ) = pλ(−θ), (3.8)

together with the fact that x �→ cos x is a symmetric function and x �→ sin x is an asymmetric
function.

Write the definition of the order parameter as

rN = 1

N

N∑

j=1

ei(θ j−ψN ) (3.9)

and compute

∂rN
∂θi

= i

N
ei(θi−ψN ) − i

∂ψN

∂θk
rN . (3.10)

Collecting the real and the imaginary part, we get

∂ψN

∂θi
= 1

NrN
cos(ψN − θi ),

∂rN
∂θi

= 1

N
sin(ψN − θi ). (3.11)

One further differentiation gives

∂2ψN

∂θ2i
= − 1

Nr2N

∂rN
∂θi

cos(ψN − θi ) − 1

NrN

[
∂ψN

∂θi
− 1

]
sin(ψN − θi )

= − 2

(NrN )2
sin(ψN − θi ) cos(ψN − θi ) + 1

NrN
sin(ψN − θi ),

(3.12)

plus a similar formula for ∂2rN
∂θ2i

(which we will not need). Thus, Itô’s rule applied to (1.6)

yields the expression

dψN (t) =
N∑

i=1

∂ψN

∂θi
(t) dθi (t) + 1

2

N∑

i=1

∂2ψN

∂θ2i
(t)
(
dθi (t)

)2 (3.13)
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with

∂ψN

∂θi
(t) = 1

NrN (t)
cos
[
ψN (t) − θi (t)

]
,

∂2ψN

∂θ2i
(t) = − 2(

NrN (t))2
sin
[
ψN (t) − θi (t)

]
cos
[
ψN (t) − θi (t)

]

+ 1

NrN (t)
sin
[
ψN (t) − θi (t)

]
. (3.14)

Inserting (1.7) into (3.13)–(3.14), we get

dψN (t) = I (N ; t) dt + dJ (N ; t) (3.15)

with

I (N ; t) =
[
K

N
− 1
(
NrN (t)

)2

]
N∑

i=1

sin
[
ψN (t) − θi (t)

]
cos
[
ψN (t) − θi (t)

]
,

dJ (N ; t) = 1

NrN (t)

N∑

i=1

cos
[
ψN (t) − θi (t)

]
dWi (t),

(3.16)

where we use that
∑N

i=1 sin[ψN (t) − θi (t)] = 0 by (1.6). Multiply time by N , to get

dψN (Nt) = N I (N ; Nt) dt + dJ (N ; Nt) (3.17)

with

N I (N ; Nt) =
[
K − 1

N
(
rN (Nt)

)2

] N∑

i=1

sin
[
ψN (Nt) − θi (Nt)

]
cos
[
ψN (Nt) − θi (Nt)

]
,

dJ (N ; Nt) = 1

NrN (Nt)

N∑

i=1

cos
[
ψN (Nt) − θi (t)

]
dWi (Nt).

(3.18)

Suppose that the system converges to a partially synchronized state, i.e., in distribution

lim
N→∞ rN (Nt) = r > 0 ∀ t > 0 (3.19)

(recall (1.28)). Then limN→∞ 1/N (rN (Nt))2 = 0, and so the first line in (3.18) scales like

K
N∑

i=1

sin
[
ψN (Nt) − θi (Nt)

]
cos
[
ψN (Nt) − θi (Nt)

]
, N → ∞. (3.20)

This expression is a large sum of terms whose average with respect to the noise is close to
zero because of (3.8). Consequently, this sum behaves diffusively. Also the second line in
(3.18) behaves diffusively, because it is equal in distribution to

1

rN (Nt)

√√√√ 1

N

N∑

i=1

cos2
[
ψN (Nt) − θi (Nt)

]
dW∗(t). (3.21)

It is shown in [3] that the two terms together lead to the first line of (1.24), i.e., in distribution

lim
N→∞ ψN (Nt) = ψ∗(t) (3.22)
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Fig. 7 Plot of D̄∗/D∗ as a function of 2Kr

with

ψ∗(t) = D∗ W∗(t), ψ∗(0) = Φ = 0, (3.23)

where D∗ = D∗(K ) is the renormalized noise strength given by (1.26) with D = 1.2

Note that the term under the square root in (3.21) converges to q defined in (3.3). The latter
holds because θi (Nt), i = 1, . . . , N , are asymptotically independent and θi (Nt) converges
in distribution to θ �→ pλ(θ) relative to the value of ψN (Nt), which itself evolves only
slowly (on time scale Nt rather than t). �	

The second line of (3.18) scales in distribution to the diffusion equation

lim
N→∞ dJ (N ; Nt) = D̄∗dW∗(t), D̄∗ = D∗(K ) =

√
q

r
, r = r(K ). (3.24)

Inserting (3.6) and recalling (2.7) and (3.3), we have

D̄∗ = D̄∗(K ) = 1

r

√
I2(2Kr)

I0(2Kr)
. (3.25)

Clearly, D∗ �= D̄∗. Interestingly, however,

1 ≤ D̄∗
D∗

≤ C uniformly in K with C = 1.0392 . . . (3.26)

(G. Giacomin, private communication). Hence, not only does the first line of (3.18) lower
the diffusion constant, the amount by which it does so is less than 4 percent (see Fig. 7).
Further thoughts on the reason behind the discrepancy between D∗ and D̄∗ can be found in
Dahms [4, Section 3.5].

2 The proof is based on Hilbert-space techniques and is delicate. As pointed out below [3, Corollary 1.3]:
the proof requires control of the evolution of the empirical distribution of the oscillators, and so (3.15)–(3.16)
alone cannot provide an alternative route to the estimates that are needed to prove the convergence and the
persistence of proximity in (3.19) and (3.22).
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3.2 Multi-scaling of the Block Average Phases for Hierarchical Kuramoto

We give the main idea behind Conjecture 1. The argument runs along the same line as in
Sect. 3.1, but is more involved because of the hierarchical interaction.

What is crucial for the argument is the separation of space-time scales:

– Each k-block consists of N disjoint (k − 1)-blocks, and evolves on a time scale that is
N times larger than the time scale on which the constituent blocks evolve.

– In the limit as N → ∞, the constituent (k − 1)-blocks in each k-block rapidly achieve
equilibrium subject to the current value of the k-block, which allows us to treat the
k-blocks as a noisy mean-field Kuramoto model with coefficients that depend on their
internal synchronization level, with an effective interaction that depends on the current
value of the synchronization level of the (k + 1)-block.

– The k-block itself interacts with the other k-block’s, with interaction strength Kk+1, while
the interaction with the even larger blocks it is part of is negligible as N → ∞. This
interaction occurs through an effective interaction with the average value of the k-blocks
which is exactly the value of the (k + 1)-block.

If we want to observe the evolution of the k-blocks labeled 1 ≤ i ≤ N that make up the
(k + 1)-block (i.e., the Φ

[k]
i (t)’s) on time scale t), then we must scale the actual oscillator

time by Nk . The synchronization levels within the Φ
[k]
i (t)’s, given by R[k]

i (Nt), are then

moving over time Nt , since they must be synchronized before the Φ
[k]
i (t)’s start to diffuse.

This is taken care of by our choice of time scales in the hierarchical order parameter (1.36).
Itô’s rule applied to (1.36) with η = 0N gives

dΦ[k]
0 (t) =

∑

ζ∈Bk (0)

∂Φ
[k]
0

∂θζ

(t) dθζ (N
kt) + 1

2

∑

ζ∈Bk (0)

∂2Φ
[k]
0

∂θ2ζ
(t)
(
dθζ (N

kt)
)2 (3.27)

where we have suppressed the N -dependence in order to lighten the notation, writingΦ
[k]
0 =

Φ
[k]
0,N and R[k]

0 = R[k]
0,N . The derivatives are (compare with (3.14))

∂Φ
[k]
0

∂θζ

(t) = 1

Nk R[k]
0 (Nt)

cos
[
Φ

[k]
0 (t) − θζ (N

kt)
]
, (3.28)

∂2Φ
[k]
0

∂θ2ζ
(t) = − 2

[
N 2k R[k]

0 (Nt)
]2 sin

[
Φ

[k]
0 (t) − θζ (N

kt)
]
cos
[
Φ

[k]
0 (t) − θζ (N

kt)
]

+ 1

Nk R[k]
0 (Nt)

sin
[
Φ

[k]
0 (t) − θζ (N

kt)
]
. (3.29)

Inserting (1.38), we find

dΦ
[k]
0 (t) = [I1(k, N ; t) + I2(k, N ; t)] dt + dJ (k, N ; t) (3.30)
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with

I1(k, N ; t) = 1

R[k]
0 (Nt)

∑

�∈N

1

N �−1

(
K� − K�+1

N 2

)

×
∑

ζ∈Bk (0)
R[�]

ζ (N 1+k−�t) sin
[
Φ

[�]
ζ (Nk−�t)

− θζ (N
kt)
]
cos
[
Φ

[k]
0 (t) − θζ (N

kt)
]
,

I2(k, N ; t) = − 1

Nk
[
R[k]
0 (Nt)

]2
∑

ζ∈Bk (0)
sin
[
Φ

[k]
0 (t) − θζ (N

kt)
]
cos
[
Φ

[k]
0 (t) − θζ (N

kt)
]
,

dJ (k, N ; t) = 1

Nk/2R[k]
0 (Nt)

∑

ζ∈Bk (0)
cos
[
Φ

[k]
0 (t) − θζ (N

kt)
]
dWζ (t).

(3.31)

Our goal is to analyse the expressions in (3.31) in the limit as N → ∞, and show that
(3.30) converges to the SDE in (2.2) subject to the assumption that the k-block converges to
a partially synchronized state, i.e.,

lim
N→∞ R[k]

0 (Nt) = R[k] > 0 ∀ t > 0. (3.32)

The key idea is that, in the limit as N → ∞, the average phases of the k-blocks around ζ

decouple and converge in distribution to θ �→ p[k](θ) for all k ∈ N0, just as for the noisy
mean-field Kuramoto model discussed in Sect. 3.1, with p[k](θ) of the same form as pλ(θ)

in (3.6) for a suitable λ depending on k. This is the reason why a recursive structure is in
place, captured by the renormalization maps TKk , k ∈ N.

Along the way we need the quantities

R[k]
0 (Nt) = 1

Nk

∑

ζ∈Bk (0)
cos
[
Φ

[k]
0 (t) − θζ (N

kt)
]
,

Q[k]
0 (Nt) = 1

Nk

∑

ζ∈Bk (0)
cos2

[
Φ

[k]
0 (t) − θζ (N

kt)
]
.

(3.33)

We also use that for all k ∈ N0,

p[k](θ) = p[k](−θ), (3.34)

as well as the fact that for all k ∈ N and � ≥ k,

R[�]
ζ (Nt) = R[�]

0 (Nt),

Φ
[�]
ζ (Nt) = Φ

[�]
0 (Nt),

∀ ζ ∈ Bk(0). (3.35)

In addition, we use the trigonometric identities

sin(a + b) = sin a cos b + cos a sin b,
cos(a + b) = cos a cos b − sin a sin b,

a, b ∈ R, (3.36)

to simplify terms via a telescoping argument.
Beforeweembarkonourmulti-scale analysis,wenote that the expressions in (3.30)–(3.31)

simplify somewhat as we take the limit N → ∞. First, in I1(k, N ; t) the term K�+1/N 2

is asymptotically negligible compared to K�, while the sum over � can be restricted to
1 ≤ � ≤ k + 1 because |Bk(0)| = Nk . Second, I2(k, N ; t) is asymptotically negligible
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because of (3.34) and the fact that sin θ cos θ = − sin(−θ) cos(−θ). Thus, we have, in
distribution,

dΦ[k]
0 (t) = {[1 + o(1)] I [k]

N (t) + o(1)
}
dt + dJ [k]

N (t), N → ∞, (3.37)

with

I [k]
N (t) = 1

R[k]
0 (Nt)

k+1∑

�=1

K�

N �−1

×
∑

ζ∈Bk (0)
R[�]

ζ (N 1+k−�t) sin
[
Φ

[�]
ζ (Nk−�t) − θζ (N

kt)
]

cos
[
Φ

[k]
0 (t) − θζ (N

kt)
]
,

dJ [k]
N (t) = 1

R[k]
0 (Nt)

√
Q[k]

0 (Nt) dW [k](t).

(3.38)

In the last line we use that (Wζ (t))t≥0, ζ ∈ Bk(0), are i.i.d. and write (W [k](t))t≥0 to
denote an auxiliary Brownian motion associated with level k.

The truncation approximation consists of throwing away the terms with 1 ≤ � ≤ k and
keeping only the terms with � = k + 1.

3.2.1 Level k = 1

For k = 1, by (3.35) the first line of (3.38) reads

I [1]
N (t) = K1

∑

ζ∈B1(0)
sin
[
Φ

[1]
0 (t) − θζ (Nt)

]
cos
[
Φ

[1]
0 (t) − θζ (Nt)

]

+ K2
R[2]
0 (t)

R[1]
0 (Nt)

1

N

∑

ζ∈B1(0)
sin
[
Φ

[2]
0 (N−1t) − θζ (Nt)

]
cos
[
Φ

[1]
0 (t) − θζ (Nt)

]
.

(3.39)

We telescope the sine.Using (3.36)witha = Φ
[2]
0 (N−1t)−Φ

[1]
0 (t) and b = Φ

[1]
0 (t)−θζ (Nt),

we obtain

I [1]
N (t) = K1

∑

ζ∈B1(0)
sin
[
Φ

[1]
0 (t) − θζ (Nt)

]
cos
[
Φ

[1]
0 (t) − θζ (Nt)

]

+ K2
R[2]
0 (t)

R[1]
0 (Nt)

sin
[
Φ

[2]
0 (N−1t) − Φ

[1]
0 (t)

]

× 1

N

∑

ζ∈B1(0)
cos2

[
Φ

[1]
0 (t) − θζ (Nt)

]

+ K2
R[2]
0 (t)

R[1]
0 (Nt)

cos
[
Φ

[2]
0 (N−1t) − Φ

[1]
0 (t)

]

× 1

N

∑

ζ∈B1(0)
sin
[
Φ

[1]
0 (t) − θζ (Nt)

]
cos
[
Φ

[1]
0 (t) − θζ (Nt)

]
. (3.40)
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On time scale Nt , the oscillators in the 1-block have synchronized, and hence the last sum
vanishes in the limit N → ∞ by the symmetry property in (3.34) for k = 1. Therefore we
have

I [1]
N (t) = K1

∑

ζ∈B1(0)
sin
[
Φ

[1]
0 (t) − θζ (Nt)

]
cos
[
Φ

[1]
0 (t) − θζ (Nt)

]
(3.41)

+ K2
R[2]
0 (t) Q[1]

0 (Nt)

R[1]
0 (Nt)

sin
[
Φ

[2]
0 (N−1t) − Φ

[1]
0 (t)

]+ o(1).

Recalling (3.38) we further have

dJ [1]
N (t) = 1

R[1]
0 (Nt)

√
Q[1]

0 (Nt) dW [1](t) (3.42)

with

Q[1]
0 (Nt) = 1

N

∑

ζ∈B1(0)
cos2

[
Φ

[1]
0 (t) − θζ (Nt)

]
. (3.43)

The first term in the right-hand side of (3.41) is the same as that in (3.20) with K = K1 and
ψN (Nt) = Φ

[1]
0 (t). The term in the right-hand side of (3.42) is the same as that of (3.21) with

rN (Nt) = R[1]
0 (Nt) and W∗(t) = W [1](t). Together they produce, in the limit as N → ∞,

the same noise term as in the mean-field model, namely,

D[1] dW [1](t) (3.44)

with a renormalized noise strength

D[1] = D∗(K1) (3.45)

given by (1.26) with D = 1, where we use that

lim
N→∞ R[1]

0 (Nt) = R[1] = R[1](K1), lim
N→∞ Q[1]

0 (Nt) = Q[1] = Q[1](K1) ∀ t > 0.

(3.46)

The second term in the right-hand side of (3.41) is precisely the Kuramoto-type interaction
term ofΦ[1]

0 (t)with the average phase of the oscillators in the 2-block at time Nt . Therefore,
in the limit as N → ∞, we end up with the limiting SDE

dΦ[1]
0 (t) = K2 E [1] R[2]

0 (t) sin
[
Φ − Φ

[1]
0 (t)

]+ D[1] dW [1](t) (3.47)

with

E [1] = Q[1]

R[1] . (3.48)

If we leave out the first term in the right-hand side of (3.41) (which as shown in (3.26) may
be done at the cost of an error of less than 4 percent), then we end up with the limiting SDE

dΦ[1]
0 (t) = K2 Ē [1] R[2]

0 (t) sin
[
Φ − Φ

[1]
0 (t)

]+ D̄[1] dW [1](t) (3.49)

with Ē [1] = E [1] and

D̄[1] = D̄∗(K1) =
√
Q[1]
R[1] (3.50)
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given by (3.25) with D = 1. Thus we have justified the SDE in (2.10) for k = 1. After a
transient period we have limt→∞ R[2]

0 (t) = R[2]
0 .

Note that, in the approximation where we leave out the first term in the right-hand side of
(3.41), the pair (R[1], Q[1]) takes over the role of the pair (r , q) in the mean-field model. The
latter are the unique solution of the consistency relation and recursion relation (recall (2.7),
(3.6), (3.7) and (3.24))

r = I1(2Kr)

I0(2Kr)
, q = I2(2Kr)

I0(2Kr)
. (3.51)

These can be summarised as saying that (r , q) = TK (1, 1), with TK the renormalization map
introduced in Definition 1. Thus we see that

(R[1], Q[1]) = TK1(1, 1), (3.52)

which explains why TK1 comes on stage.

3.2.2 Levels k ≥ 2

For k ≥ 2, by (3.35) the term with � = k + 1 in I [k]
N (t) in the first line of (3.38) equals

I [k]N (t)|�=k+1

= Kk+1
R[k+1]
0 (t)

R[k]
0 (Nt)

1

Nk

∑

ζ∈Bk (0)
sin
[
Φ

[k+1]
0 (N−1t) − θζ (Nkt)

]

cos
[
Φ

[k]
0 (t) − θζ (Nkt)

]
.

(3.53)

We again telescope the sine. Using (3.36), this time with a = Φ
[k+1]
0 (N−1t) − Φ

[k]
0 (t) and

b = Φ
[k]
0 (t) − θζ (Nkt), we can write

I [k]
N (t)|�=k+1 = Kk+1

R[k+1]
0 (t)

R[k]
0 (Nt)

sin
[
Φ

[k+1]
0 (N−1t) − Φ

[k]
0 (t)

]

× 1

Nk

∑

ζ∈Bk (0)
cos2

[
Φ

[k]
0 (t) − θζ (N

kt)
]

+ Kk+1
R[k+1]
0 (t)

R[k]
0 (Nt)

sin
[
Φ

[k+1]
0 (N−1t) − Φ

[k]
0 (t)

]

× 1

Nk

∑

ζ∈Bk (0)
sin
[
Φ

[k]
0 (t) − θζ (N

kt)
]
cos
[
Φ

[k]
0 (t) − θζ (N

kt)
]
.

(3.54)

By the symmetry property in (3.34), the last term vanishes as N → ∞, and so we have

I [k]
N (t)|�=k+1 = Kk+1

R[k+1]
0 (t) Q[k]

0 (Nt)

R[k]
0 (Nt)

sin
[
Φ

[k+1]
0 (N−1t) − Φ

[k]
0 (t)

]+ o(1).

(3.55)

Using that

lim
N→∞ R[k]

0 (Nt) = R[k], lim
N→∞ Q[k]

0 (Nt) = Q[k] ∀ t > 0, (3.56)
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we obtain

I [k]
N (t)|�=k+1 = Kk+1

Q[k]

R[k] R[k+1]
0 (t) sin

[
Φ − Φ

[k]
0 (t)

]+ o(1), (3.57)

which is the Kuramoto-type interaction term of Φ
[k]
0 (t) with the average phase of the oscil-

lators in the (k + 1)-block at time Nkt . The noise term in (3.38) scales like

dJ [k]
N (t) = 1

R[k]
√
Q[k] dW [k](t) + o(1). (3.58)

Hence we end up with

I [k]
N (t)|�=k+1dt + dJ [k]

N (t) = Kk+1
Q[k]

R[k] R[k+1]
0 (t) sin

[
Φ − Φ

[k]
0 (t)

]

+
√
Q[k]
R[k] dW [k](t) + o(1). (3.59)

Thus we have justified the SDE in (2.10) for k ≥ 2, with Ē [k] and D̄[k] given by (2.11). Note
that

(R[k], Q[k]) = TKk (R
[k−1], Q[k−1]), (3.60)

in full analogy with (3.52).
For k ≥ 2 the term with � = k equals

I [k]
N (t)|�=k = Kk

N∑

i=1

1

Nk−1

∑

ζ∈Bk−1(i)

sin
[
Φ

[k]
0 (t) − θζ (Nkt)

]
cos
[
Φ

[k]
0 (t) − θζ (Nkt)

]
,

(3.61)

where Bk−1(i), 1 ≤ i ≤ N , are the (k − 1)-blocks making up the k-block Bk(0), and we
use that (R[k]

ζ (t),Φ[k]
ζ (t)) = (R[k]

0 (t),Φ[k]
0 (t)) for all ζ ∈ Bk−1(i) and all 1 ≤ i ≤ N . The

sum in (3.61) has a similar form as the first term in the right-hand side of (3.41), but now
with the 1-block replaced by N copies of (k − 1)-blocks. This opens up the possibility of a
finer approximation analogous to the one obtained by using (3.45) instead of (3.50). As we
argued in Sect. 3.1, the improvement should be minor (recall (3.26)).

4 Universality Classes and Synchronization Levels

In Sect. 4.1we derive some basic properties of the renormalizationmap (Lemmas 1–3 below).
In Sect. 4.2 we prove Theorem 3. The proof relies on convexity and sandwich estimates
(Lemmas 4–6 below).

4.1 Properties of the RenormalizationMap

For λ ∈ [0,∞), define

V (λ) =
∫ 2π

0
dθ cos θ pλ(θ) = I1(λ)

I0(λ)
,

W (λ) =
∫ 2π

0
dθ cos2 θ pλ(θ) = I2(λ)

I0(λ)
,

(4.1)
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where the probability distribution pλ(θ) is given by (1.16) with ω ≡ 0 and D = 1. The
renormalization map TK in (2.8) can be written as (R̄, Q̄) = TK (R, Q) with

R̄ = RV (λ),

Q̄ − 1
2 = (Q − 1

2 )
[
2W (λ) − 1

]
, (4.2)

and λ = 2K R̄
√
Q. It is known that λ �→ V (λ) is strictly increasing and strictly convex, with

V (0) = 0 and limλ→∞ V (λ) = 1.

Lemma 1 The map K �→ R̄(R, K , Q) is strictly increasing.

Proof The derivative of R̄ w.r.t. K exists by the implicit function theorem, so that

d R̄

dK
= 2R

√
QV ′(2K R̄

√
Q)

[
R̄ + K

d R̄

dK

]
,

d R̄

dK

[
1 − 2K

√
QRV ′(2K R̄

√
Q)
] = 2RR̄V ′(2K R̄

√
Q). (4.3)

Note that R̄ solves R̄ = RV (2K R̄
√
Q), and is non-trivial onlywhen 1 < 2RKV ′(2K R̄

√
Q)

due to the concavity of the map R̄ �→ RV (2K R̄
√
Q). This implies that 2K RV ′(2K R̄) < 1

at the solution, which makes the term in (4.3) between square brackets positive. The claim
follows because earlier we proved that R, R̄ ∈ [0, 1) and V ′(2K R̄

√
Q) > 0. �	

Lemma 2 The map K �→ Q̄(R̄, K , Q) is strictly increasing.

Proof The derivative of Q̄ w.r.t. K exists by the implicit function theorem, so that

dQ̄

dK
= (Q − 1

2 ) 4
√
Q W ′(2

√
QK R̄

) [
R̄ + K

d R̄

dK

]
. (4.4)

We have that (Q − 1
2 )

√
Q ≥ 0 because Q ∈ [ 12 , 1), W ′(2

√
QK R̄) > 0 as proven before,

and [R̄ + K d R̄
dK ] > 0 as in the proof of Lemma 1. The claim therefore follows. �	

Lemma 3 The map (R, Q) �→ (R̄, Q̄) is non-increasing in both components, i.e.,

(i) R �→ R̄(K , R, Q) is non-increasing.
(ii) Q �→ Q̄(K , R̄, Q) is non-increasing.

Proof (i) We have

R̄ = R V
(
2
√
QK R̄

)
. (4.5)

But V (
√
QK R̄) ∈ [0, 1), and so R̄ ≤ R.

(ii) We have

Q̄ − 1
2 = (Q − 1

2 )
[
2W
(
2
√
QK R̄

)− 1
]
. (4.6)

But W (2
√
QK R̄) ∈ [ 12 , 1), and so Q̄ ≤ Q. In fact, since both V (2

√
QK R̄) and

W (2
√
QK R̄) are < 1, both maps are strictly decreasing until R = 0 and Q = 1

2
are hit, respectively.

�	
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4.2 Renormalization

Recall (2.7). To prove Theorems 3 we need the following lemma.

Lemma 4 The map λ �→ log I0(λ) is analytic, strictly increasing and strictly convex on
(0,∞), with

I0(λ) = 1 + 1
4λ

2 [1 + O(λ2)], λ ↓ 0, I0(λ) = eλ

√
2πλ

[1 + O(λ−1)], λ → ∞.(4.7)

�	
Proof Analyticity follows from (2.7). Strict convexity follows because the numerator of
[log I0(λ)]′′ equals

I2(λ)I0(λ) − I1(λ)I1(λ) = 1

2π

∫ 2π

0
dφ
∫ 2π

0
dψ [cos2 φ − cosφ cosψ] eλ(cosφ+cosψ)

= 1

2π

∫ 2π

0
dφ
∫ 2π

0
dψ [cosφ − cosψ]2 eλ(cosφ+cosψ) > 0,

(4.8)

where the integrand is symmetrized. Because log I0(0) = 0, log I0(λ) > 0 for λ > 0 and
limλ→∞ log I0(λ) = ∞, the strict monotonicity follows. The asymptotics in (4.7) is easily
deduced from (2.7) via a saddle point computation. �	
Since V = I1/I0 = [log I0]′, we obtain from (4.7) and convexity that

V (λ) ∼ 1
2λ, λ ↓ 0, (4.9)

1 − V (λ) ∼ 1

2λ
, λ → ∞. (4.10)

This limiting behaviour of V (λ) inspires the choice of bounding functions in the next lemma.

Lemma 5 V+(λ) ≥ V (λ) ≥ V−(λ) for all λ ∈ (0,∞) with (see Fig. 8)

V+(λ) = 2λ

1 + 2λ
,

V−(λ) =
1
2λ

1 + 1
2λ

.

(4.11)

�	
Proof Segura [14, Theorem 1] shows that

V (λ) < V+∗ (λ) = λ

1
2 +

√
( 12 )

2 + λ2
, λ > 0. (4.12)

Since λ <

√
( 12 )

2 + λ2, it follows that V+∗ (λ) < V+(λ). Laforgia and Natalini [10, Theorem
1.1] show that

V (λ) > V−∗ (λ) = −1 + √
λ2 + 1

λ
, λ > 0. (4.13)
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Fig. 8 Plots of the tighter bounds in the proof of Lemma 5 and the looser bounds needed for the proof of
Theorem 3

Abbreviate η = √
λ2 + 1. Then λ = √

(η − 1)(η + 1), and we can write

V−∗ (λ) =
√

η − 1

η + 1
= λ

η + 1
= λ

2 + (η − 1)
. (4.14)

Since λ > η − 1, it follows that V−∗ (λ) > V−(λ). �	
Note that both V+ and V− are strictly increasing and concave on (0,∞), which guarantees
the uniqueness and non-triviality of the solution to the consistency relation in the first line of
(4.2) when we replace V (λ) by either V+(λ) or V−(λ).

In the sequelwewrite V ,W , Rk , Qk instead of Vδ0 ,Wδ0 , R
[k], Q[k] to lighten the notation.

We know that (Rk)k∈N0 is the solution of the sequence of consistency relations

Rk+1 = RkV
(
2
√
QkKk+1Rk+1

)
, k ∈ N0. (4.15)

This requires as input the sequence (Qk)k∈N0 , which is obtained from the sequence of recur-
sion relations

Qk+1 − 1
2 = (Qk − 1

2 )
[
2W
(
2
√
QkKk+1Rk+1

)− 1
]
. (4.16)

By using that Qk ∈ [ 12 , 1] for all k ∈ N0, we can remove Qk from (4.15) at the cost of
doing estimates. Namely, let (R+

k )k∈N0 and (R−
k )k∈N0 denote the solutions of the sequence

of consistency relations

R+
k+1 = RkV+(2Kk+1R

+
k+1

)
, k ∈ N0,

R−
k+1 = RkV−(2

√
1
2Kk+1R

−
k+1

)
, k ∈ N0.

(4.17)

Lemma 6 R+
k ≥ Rk ≥ R−

k for all k ∈ N. �	
Proof If we replace V (λ) by V+(λ) (or V−(λ)) in the consistency relation for Rk+1 given
by (4.15), then the new solution R+

k+1 (or R
−
k+1) is larger (or smaller) than Rk+1. Indeed, we

have

Rk+1 = RkV (2Kk+1Rk+1
√
Qk) ≤ RkV

+(2Kk+1Rk+1). (4.18)
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Because V+ is concave, it follows from (4.18) and the first line of (4.17) that Rk+1 ≤ R+
k+1.�	

We are now ready to prove Theorems 3–4.

Proof From the first lines of (4.11) and (4.17) we deduce

Rk >
1

4Kk+1
⇐⇒ R+

k+1 > 0 �⇒ Rk − R+
k+1 = 1

4Kk+1
. (4.19)

Hence, with the help of Lemma 6, we get

Rk >
1

4Kk+1
�⇒ Rk − Rk+1 ≥ 1

4Kk+1
. (4.20)

Iteration gives (recall that R0 = 1)

1 − Rk ≥ min

{
1,

k∑

�=1

1

4K�

}
. (4.21)

As soon as the sum in the right-hand side is ≥ 1, we know that Rk = 0. This gives us the
criterion for universality class (1) in Theorem 3. Similarly, from the second lines of (4.11)
and (4.17) we deduce

Rk >
2
√
2

Kk+1
⇐⇒ R−

k+1 > 0 �⇒ Rk − R−
k+1 =

√
2

Kk+1
. (4.22)

Hence, with the help of Lemma 6, we get

Rk >

√
2

Kk+1
�⇒ Rk − Rk+1 ≤

√
2

Kk+1
. (4.23)

Iteration gives

1 − Rk ≤ max

{
1,

k∑

�=1

√
2

K�

}
. (4.24)

As soon as the sum in the right-hand side is < 1, we know that Rk > 0. This gives us the
criterion for universality class (3) in Theorem 3.

In universality classes (2) and (3) we have R+
k ≥ Rk > 0 for k ∈ N, and hence

Rk − R∞ =
∑

�≥k

(R� − R�+1) ≥
∑

�≥k

(R� − R+
�+1) =

∑

�≥k

1

4K�+1
, k ∈ N0. (4.25)

In universality class (1), on the other hand, we have R+
k ≥ Rk > 0 for 1 ≤ k < k∗ and

Rk = 0 for k ≥ k∗, and hence

Rk − Rk∗−1 =
k∗−2∑

�=k

(R� − R�+1) ≥
k∗−2∑

�=k

(R� − R+
�+1) =

k∗−2∑

�=k

1

4K�+1
, 0 ≤ k ≤ k∗ − 2.

(4.26)

Finally, with no assumption on (Rk)k∈N, we have

Rk − R∞ =
∑

�≥k

(R� − R�+1) ≤
∑

�≥k

(R� − R−
�+1) ≤

∑

�≥k

√
2

K�+1
, (4.27)
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Fig. 9 Bounding functions for W (λ)

where the last inequality follows from (4.22). The bounds in (4.25)–(4.27) yields the sandwich
in Theorem 4. �	
Remark 3 In the proof of Theorem 3–4 we exploited the fact that Qk ∈ [ 12 , 1] to get estimates
that involve a consistency relation in only Rk . In principle we can improve these estimates by
exploring what effect Qk has on Rk . Namely, in analogy with Lemma 5, we have W+(λ) ≥
W (λ) ≥ W−(λ) for all λ ∈ (0,∞) with (see Fig. 9)

W+(λ) = 1 + λ

2 + λ
, W−(λ) = 1 − λ + λ2

2 + λ2
. (4.28)

This allows for better control on Qk and hence better control on Rk . However, the formulas
are cumbersome to work with and do not lead to a sharp condition anyway. �	
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Appendix: Numerical Analysis

In this appendix we numerically compute the iterates of the renormalization map in (2.8) for
two specific choices of (Kk)k∈N, belonging to universality classes (1) and (3), respectively.

In Fig. 10 we show an example in universality class (1): Kk = 3
2 log 2 log(k + 1). Syn-

chronization is lost at level k = 4. When we calculate the sum that appears in our sufficient
criterion for universality class (1), stated in Theorem 3, up to level k = 4, we find that

4∑

k=1

2 log 2

3 log(k + 1)
= 1.70774. (A.1)

This does not exceed 4, which shows that our sufficient criterion is not tight. It only gives
us an upper bound for the level above which synchronization is lost for sure (recall (2.15)),
although it may be lost earlier.
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Fig. 10 A plot of the renormalization map (R[k], Q[k]) for k = 0, . . . , 7 (left) and the corresponding values
of R[k] (right) for the choice Kk = 3
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Fig. 11 A plot of the renormalization map (R[k], Q[k]) for k = 0, . . . , 7 (left) and the corresponding values
of R[k] (right) for the choice Kk = 4 ek

In Fig. 11 we show an example of universality class (3), where Kk = 4 ek . There is
synchronization at all levels. To check our sufficient criterion we calculate the sum

∑

k∈N

1

4 ek
≈ 0.145494 <

1√
2

≈ 0.7071. (A.2)

Tofind a sequence (Kk)k∈N for universality class (2) is difficult becausewedo not know the
precise criterion for criticality. An artificial way of producing such a sequence is to calculate
the critical interaction strength at each hierarchical level and taking the next interaction
strength to be 1 larger.
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